Asset Markets

Daisuke Oyama

Microeconomics I

July 17, 2012

Environment

- $\ell = 1, \dots, L$: physical commodities
- \triangleright $i=1,\ldots,I$: consumers
- $ightharpoonup s=1,\ldots,S$: states of the world
- $\succ \succsim_i$: *i*'s preference relation on \mathbb{R}_+^{LS} with a utility function representation U_i (assumed to be strongly monotone)

- ▶ After uncertainty is resolved, spot markets open at t = 1.
- ▶ A price vector at state s is denoted by $p_s \in \mathbb{R}^L$, and the overall price vector by $p \in \mathbb{R}^{LS}$.

Assets

Asset markets open at t = 0.

We consider *real* assets, where returns are in units of commodity 1.

▶ An *asset* is identified with its return vector:

$$r = (r_1, \ldots, r_S)' \in \mathbb{R}^S$$
.

(Here we always consider vectors as column vectors.)

- Examples:
 - ▶ $\mathbf{1} = (1, ..., 1)'$: "commodity futures"
 - $e_i = (0, ..., 0, 1, 0, ..., 0)'$ (*i*th unit vector): called an "Arrow security".

Example: Derivative Assets

▶ The *call option* on an asset $r \in \mathbb{R}^S$ ("primary asset") at the strike price $c \in \mathbb{R}$:

$$r(c) = (\max\{0, r_1 - c\}, \dots, \max\{0, r_S - c\})'.$$

It gives the option to buy a unit of r at price c after the state is realized.

▶ For example, if S = 4 and r = (4, 3, 2, 1)',

$$r(3.5) = (0.5, 0, 0, 0)',$$

 $r(2.5) = (1.5, 0.5, 0, 0)',$
 $r(1.5) = (2.5, 1.5, 0.5, 0)'.$

Return Matrix

- ▶ We fix K assets, $r_1, \ldots, r_K \in \mathbb{R}^S$, as given. We assume that $r_k \geq 0$, $r_k \neq 0$ for all k.
- ▶ The $S \times K$ matrix

$$R = \begin{pmatrix} r_1 & \cdots & r_K \end{pmatrix} = \begin{pmatrix} r_{11} & \cdots & r_{1K} \\ \vdots & \ddots & \vdots \\ r_{S1} & \cdots & r_{SK} \end{pmatrix}$$

is called the return matrix.

- A vector of trades in these assets, $z = (z_1, \dots, z_K)' \in \mathbb{R}^K$, is called a *portfolio*.
- ▶ An asset price vector is denoted by $q = (q_1, ..., q_K)' \in \mathbb{R}^K$.

Equilibrium

Definition 1

$$(q, p, (z_i^*)_{i=1}^I, (x_i^*)_{i=1}^I) \in \mathbb{R}^K \times \mathbb{R}^{LS} \times (\mathbb{R}^K)^I \times (\mathbb{R}_+^{LS})^I$$
 is a Radner equilibrium if:

(i) for all i, (z_i^*, x_i^*) solves

$$\begin{aligned} \max_{z_i \in \mathbb{R}^K,\, x_i \in \mathbb{R}_+^{LS}} & U_i(x_i) \\ \text{s.t.} & \sum_k q_k z_{ki} \leq 0 \\ & p_s' x_{si} \leq p_s' \omega_{si} + \sum_k p_{1s} z_{ki} r_{sk} \text{ for all } s; \end{aligned}$$

(ii) $\sum_i z_i^* \leq 0$ and $\sum_i x_i^* \leq \sum_i \omega_i$.

Price Normalization and Budget Constraint

- Normalize $p_s = 1$ for all s.
- ▶ Budget constraint of *i*:

$$B_i(q, p, R) = \{x_i \in \mathbb{R}_+^{LS} \mid \exists z_i \in R^K \text{ s.t.}$$
$$q'z_i \le 0 \text{ and } m_i \le Rz_i\},$$

where

$$m_i = (p'_1(x_{1i} - \omega_{1i}), \dots, p'_S(x_{Si} - \omega_{Si}))' \in \mathbb{R}^S.$$

State Prices

Proposition 1

If $q \in \mathbb{R}^K$ is an asset price vector in a Radner equilibrium, then there exists $\mu \in \mathbb{R}^S_{++}$ such that $q' = \mu' R$.

- q is called a state price vector.
- $q' = \mu' R \iff$

$$(q_1 \cdots q_K) = (\mu_1 \cdots \mu_S) \begin{pmatrix} r_{11} \cdots r_{1K} \\ \vdots & \ddots & \vdots \\ r_{S1} \cdots & r_{SK} \end{pmatrix}$$
$$= (\sum_s \mu_s r_{s1} \cdots \sum_s \mu_s r_{sK}).$$

Proof 1 (1/2)

- ▶ $q' \in \mathbb{R}^K$ is arbitrage free if there is no portfolio $z \in \mathbb{R}^K$ such that $q'z \leq 0$, $Rz \geq 0$, and $Rz \neq 0$
 - (i.e., there is no portfolio that is budgetarily feasible and that yields a nonnegative return in every state and a strictly positive return in some state).
- ▶ Under strongly monotone preferences, an equilibrium asset price vector $q \in \mathbb{R}^K$ is arbitrage free.
- ▶ Proposition 1 follows from the following lemma.

Proof 1 (2/2)

Lemma 1

 $q \in \mathbb{R}^K$ is arbitrage free if and only if there exists $\mu \in \mathbb{R}^S_{++}$ such that $q' = \mu' R$.

Proof by "Stiemke's Lemma".

Proof 2 (1/2)

- ▶ Choose any consumer i. Assume that U_i has a representation $U_i(x_{1i}, \ldots, x_{Si}) = \sum_s \pi_{si} u_{si}(x_{si})$ $(\pi_{si} > 0)$ where u_{si} are concave, strictly increasing, and differentiable.
- ▶ Denote by v_{si} the indirect utility function derived from u_{si} .
- Let q, p be the equilibrium prices, and consider

$$\begin{array}{ll} \max_{z_i \in \mathbb{R}^K} & \sum_s \pi_{si} v_{si} (p_s, p_s' \omega_{si} + \sum_k r_{sk} z_{ki}) \\ \text{s.t.} & \sum_k q_k z_{ki} \leq \text{0}. \end{array}$$

▶ The equilibrium portfolio plan z_i^* must satisfy the FOC with some $\alpha_i > 0$ (Lagrange multiplier):

$$\sum_{s} \pi_{si} \frac{\partial v_{si}}{\partial w_{si}} (p_s, w_{si}^*) \, r_{sk} = \alpha_i q_k \text{ for all } k,$$
 where $w_{si}^* = p_s' \omega_{si} + \sum_{k} r_{sk} z_{ki}^*$.

Proof 2 (2/2)

▶ Define $\mu \in \mathbb{R}_{++}^{S}$ by

$$\mu_s = \frac{\pi_{si}}{\alpha_i} \frac{\partial v_{si}}{\partial w_{si}} (p_s, w_{si}^*).$$

- ▶ This satisfies $q' = \mu' R$.
- ▶ Note: choice of a different consumer may lead to a different μ .

Complete Markets

Definition 2

An asset structure with an $S \times K$ return matrix R is complete if rank R = S, i.e.,

$$\{v \in \mathbb{R}^S \mid v = Rz \text{ for some } z \in \mathbb{R}^K\} = \mathbb{R}^S.$$

Example:

$$R = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

is not complete.

No portfolio can give, for example, a return vector (0,0,1)'.

Equivalence between Radner and Arrow-Debreu Equilibria

Proposition 2

Assume that the asset structure is complete.

- (i) If $(p, x^*) \in \mathbb{R}_{++}^{LS} \times (\mathbb{R}_{+}^{LS})^I$ is an Arrow-Debreu equilibrium, then there $q \in \mathbb{R}_{++}^K$ and $z^* \in (\mathbb{R}^K)^I$ such that (q, p, z^*, x^*) is a Radner equilibrium.
- (ii) If $(q, p, z^*, x^*) \in \mathbb{R}_{++}^K \times \mathbb{R}_{++}^{LS} \times (\mathbb{R}^K)^I \times (\mathbb{R}_+^{LS})^I$ is a Radner equilibrium, then there exists $\mu \in \mathbb{R}_{++}^S$ such that $((\mu_1 p_1, \dots, \mu_S p_S), x^*)$ is an Arrow-Debreu equilibrium.

Sketch of the Proof (1/4)

Denote

$$B_i^{\mathsf{AD}}(p) = \{x_i \in \mathbb{R}_+^{LS} \mid \sum_s p_s'(x_{si} - \omega_{si}) \le 0\}$$

and

$$B_i^{\mathsf{R}}(q,p) = \{ x_i \in \mathbb{R}_+^{LS} \mid \exists z_i \in R^K \text{ s.t.}$$
$$q'z_i \le 0 \text{ and } m_i \le Rz_i \},$$

where

$$m_i = (p_1'(x_{1i} - \omega_{1i}), \dots, p_S'(x_{Si} - \omega_{Si}))' \in \mathbb{R}^S.$$

Sketch of the Proof (2/4)

- (i) Let (p, x^*) be an Arrow-Debreu equilibrium.
 - Denote

$$\Lambda = \begin{pmatrix} p_{11} & 0 \\ & \ddots & \\ 0 & p_{1S} \end{pmatrix}.$$

Then

$$\Lambda R = \begin{pmatrix} p_{11}r_{11} & \cdots & p_{11}r_{1K} \\ \vdots & \ddots & \vdots \\ p_{1S}r_{S1} & \cdots & p_{1S}r_{SK} \end{pmatrix}.$$

Let

$$q' = \mathbf{1}' \Lambda R$$
 $(\iff q_k = \sum_s p_{1s} r_{sk} \ \forall \ k).$

Sketch of the Proof (3/4)

- ▶ WTS: $x_i^* \in B_i^{\mathsf{R}}(q,p)$ and $x_i \in B_i^{\mathsf{R}}(q,p) \Rightarrow x_i \in B_i^{\mathsf{AD}}(p)$.
- ▶ Let

$$m_i^* = (p_1'(x_{1i}^* - \omega_{1i}), \dots, p_S'(x_{Si}^* - \omega_{Si}))' \in \mathbb{R}^S.$$

▶ Since rank $\Lambda R = S$ by completeness, for each $i=1,\ldots,I-1$, there exists z_i^* such that

$$m_i^* = \Lambda R z_i^*.$$

Define

$$z_I^* = -(z_1^* + \cdots + z_{I-1}^*).$$

▶ Show $x_i^* \in B_i^{\mathsf{R}}(q,p)$.

Sketch of the Proof (4/4)

(ii) Let (q, p, z^*, x^*) be a Radner equilibrium.

Assume without loss of generality that $p_{1s} = 1$ for all s.

- ▶ By Proposition 1, there exists $\mu \in \mathbb{R}_{++}^S$ such that $q' = \mu' R$.
- ► WTS: $x_i^* \in B_i^{\mathsf{AD}}(q,p)$ and $x_i \in B_i^{\mathsf{AD}}(q,p) \Rightarrow x_i \in B_i^{\mathsf{R}}(\mu_1 p_1, \dots, \mu_S p_S)$.
- ► For the former,

$$\sum_{s} \mu_{s} p'_{s}(x_{si} - \omega_{si}) \leq \sum_{s} \mu_{s}(Rz_{i})_{s} = \mu' Rz_{i} = q'z_{i} \leq 0.$$

lacktriangle For the latter, by the completeness, there exists z_i such that $m_i=Rz_i$.

Then,

$$q'z_i = \mu' R z_i = \mu' m_i \le 0.$$