Asset Markets

Daisuke Oyama

Microeconomics I

July 16, 2013

Environment

- $\ell=1, \ldots, L$: physical commodities
- $i=1, \ldots, I$: consumers
- $s=1, \ldots, S$: states of the world
- $\succsim_{i}: i$'s preference relation on $\mathbb{R}_{+}^{L S}$ with a utility function representation U_{i} (assumed to be strongly monotone)
- After uncertainty is resolved, spot markets open at $t=1$.
- A price vector at state s is denoted by $p_{s} \in \mathbb{R}^{L}$, and the overall price vector by $p \in \mathbb{R}^{L S}$.

Assets

Asset markets open at $t=0$.
We consider real assets, where returns are in units of commodity 1 .

- An asset is identified with its return vector:

$$
r=\left(r_{1}, \ldots, r_{S}\right)^{\prime} \in \mathbb{R}^{S}
$$

(Here we always consider vectors as column vectors.)

- Examples:
- $\mathbf{1}=(1, \ldots, 1)^{\prime}$: "commodity futures"
- $e_{i}=(0, \ldots, 0,1,0, \ldots, 0)^{\prime}$ (i th unit vector): called an "Arrow security".

Example: Derivative Assets

- The call option on an asset $r \in \mathbb{R}^{S}$ ("primary asset") at the strike price $c \in \mathbb{R}$:

$$
r(c)=\left(\max \left\{0, r_{1}-c\right\}, \ldots, \max \left\{0, r_{S}-c\right\}\right)^{\prime}
$$

It gives the option to buy a unit of r at price c after the state is realized.

- For example, if $S=4$ and $r=(4,3,2,1)^{\prime}$,

$$
\begin{aligned}
& r(3.5)=(0.5,0,0,0)^{\prime} \\
& r(2.5)=(1.5,0.5,0,0)^{\prime} \\
& r(1.5)=(2.5,1.5,0.5,0)^{\prime}
\end{aligned}
$$

Return Matrix

- We fix K assets, $r_{1}, \ldots, r_{K} \in \mathbb{R}^{S}$, as given.

We assume that $r_{k} \geq 0, r_{k} \neq 0$ for all k.

- The $S \times K$ matrix

$$
R=\left(\begin{array}{lll}
r_{1} & \cdots & r_{K}
\end{array}\right)=\left(\begin{array}{ccc}
r_{11} & \cdots & r_{1 K} \\
\vdots & \ddots & \vdots \\
r_{S 1} & \cdots & r_{S K}
\end{array}\right)
$$

is called the return matrix.

- A vector of trades in these assets, $z=\left(z_{1}, \ldots, z_{K}\right)^{\prime} \in \mathbb{R}^{K}$, is called a portfolio.
- An asset price vector is denoted by $q=\left(q_{1}, \ldots, q_{K}\right)^{\prime} \in \mathbb{R}^{K}$.

Equilibrium

Definition 1

$\left(q, p,\left(z_{i}^{*}\right)_{i=1}^{I},\left(x_{i}^{*}\right)_{i=1}^{I}\right) \in \mathbb{R}^{K} \times \mathbb{R}^{L S} \times\left(\mathbb{R}^{K}\right)^{I} \times\left(\mathbb{R}_{+}^{L S}\right)^{I}$
is a Radner equilibrium if:
(i) for all $i,\left(z_{i}^{*}, x_{i}^{*}\right)$ solves

$$
\begin{aligned}
\max _{z_{i} \in \mathbb{R}^{K}, x_{i} \in \mathbb{R}_{+}^{L S}} & U_{i}\left(x_{i}\right) \\
\text { s.t. } & \sum_{k} q_{k} z_{k i} \leq 0 \\
& p_{s}^{\prime} x_{s i} \leq p_{s}^{\prime} \omega_{s i}+\sum_{k} p_{1 s} z_{k i} r_{s k} \text { for all } s ;
\end{aligned}
$$

(ii) $\sum_{i} z_{i}^{*} \leq 0$ and $\sum_{i} x_{i}^{*} \leq \sum_{i} \omega_{i}$.

Price Normalization and Budget Constraint

- Normalize $p_{1 s}=1$ for all s.
- Budget constraint of i :

$$
\begin{aligned}
B_{i}(q, p, R)=\left\{x_{i} \in \mathbb{R}_{+}^{L S} \mid \exists z_{i}\right. & \in R^{K} \text { s.t. } \\
q^{\prime} z_{i} & \left.\leq 0 \text { and } m_{i} \leq R z_{i}\right\}
\end{aligned}
$$

where

$$
m_{i}=\left(p_{1}^{\prime}\left(x_{1 i}-\omega_{1 i}\right), \ldots, p_{S}^{\prime}\left(x_{S i}-\omega_{S i}\right)\right)^{\prime} \in \mathbb{R}^{S}
$$

State Prices

Proposition 1

If $q \in \mathbb{R}^{K}$ is an asset price vector in a Radner equilibrium, then there exists $\mu \in \mathbb{R}_{++}^{S}$ such that $q^{\prime}=\mu^{\prime} R$.

- μ is called a state price vector.
- μ_{s} is the shadow price of the state-contingent commodity for state s.
- $q^{\prime}=\mu^{\prime} R$

$$
\begin{aligned}
\left(\begin{array}{lll}
q_{1} & \cdots & q_{K}
\end{array}\right) & =\left(\begin{array}{lll}
\mu_{1} & \cdots & \mu_{S}
\end{array}\right)\left(\begin{array}{ccc}
r_{11} & \cdots & r_{1 K} \\
\vdots & \ddots & \vdots \\
r_{S 1} & \cdots & r_{S K}
\end{array}\right) \\
& =\left(\begin{array}{llll}
\sum_{s} \mu_{s} r_{s 1} & \cdots & \sum_{s} \mu_{s} r_{s K}
\end{array}\right)
\end{aligned}
$$

Proof $1(1 / 2)$

- $q \in \mathbb{R}^{K}$ is arbitrage free if there is no portfolio $z \in \mathbb{R}^{K}$ such that $q^{\prime} z \leq 0, R z \geq 0$, and $\left[q^{\prime} z<0\right.$ or $\left.R z \neq 0\right]$.
- Under our assumption that $r_{k} \geq 0, r_{k} \neq 0$ for all k, an arbitrage free price vector must be strictly positive, and hence the above definition is equivalent to the definition in MWG:
$q \in \mathbb{R}^{K}$ is arbitrage free if and only if there is no portfolio $z \in \mathbb{R}^{K}$ such that $q^{\prime} z \leq 0, R z \geq 0$, and $R z \neq 0$.
(I.e., there is no portfolio that is budgetarily feasible and that yields a nonnegative return in every state and a strictly positive return in some state.)
- Under strongly monotone preferences, an equilibrium asset price vector $q \in \mathbb{R}^{K}$ is arbitrage free.
- Proposition 1 follows from the following lemma.

Proof $1(2 / 2)$

Lemma 1

For any $R \in \mathbb{R}^{S \times K}$,
$q \in \mathbb{R}^{K}$ is arbitrage free if and only if there exists $\mu \in \mathbb{R}_{++}^{S}$ such that $q^{\prime}=\mu^{\prime} R$.

- Proof by "Stiemke's Lemma".

Proof $2(1 / 2)$

- Choose any consumer i. Assume that U_{i} has a representation $U_{i}\left(x_{1 i}, \ldots, x_{S i}\right)=\sum_{s} \pi_{s i} u_{s i}\left(x_{s i}\right) \quad\left(\pi_{s i}>0\right)$ where $u_{s i}$ are concave, strictly increasing, and differentiable.
- Denote by $v_{s i}$ the indirect utility function derived from $u_{s i}$.
- Let q, p be the equilibrium prices, and consider

$$
\begin{aligned}
\max _{z_{i} \in \mathbb{R}^{K}} & \sum_{s} \pi_{s i} v_{s i}\left(p_{s}, p_{s}^{\prime} \omega_{s i}+\sum_{k} r_{s k} z_{k i}\right) \\
\text { s.t. } & \sum_{k} q_{k} z_{k i} \leq 0
\end{aligned}
$$

- The equilibrium portfolio plan z_{i}^{*} must satisfy the FOC with some $\alpha_{i}>0$ (Lagrange multiplier):

$$
\sum_{s} \pi_{s i} \frac{\partial v_{s i}}{\partial w_{s i}}\left(p_{s}, w_{s i}^{*}\right) r_{s k}=\alpha_{i} q_{k} \text { for all } k
$$

where $w_{s i}^{*}=p_{s}^{\prime} \omega_{s i}+\sum_{k} r_{s k} z_{k i}^{*}$.

Proof $2(2 / 2)$

- Define $\mu \in \mathbb{R}_{++}^{S}$ by

$$
\mu_{s}=\frac{\pi_{s i}}{\alpha_{i}} \frac{\partial v_{s i}}{\partial w_{s i}}\left(p_{s}, w_{s i}^{*}\right)
$$

- This satisfies $q^{\prime}=\mu^{\prime} R$.
- Note: choice of a different consumer may lead to a different μ.

Complete Markets

Definition 2

An asset structure with an $S \times K$ return matrix R is complete if $\operatorname{rank} R=S$, i.e.,

$$
\left\{v \in \mathbb{R}^{S} \mid v=R z \text { for some } z \in \mathbb{R}^{K}\right\}=\mathbb{R}^{S}
$$

- Example:

$$
R=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

is not complete.
No portfolio can give, for example, a return vector $(0,0,1)^{\prime}$.

Equivalence between Radner and Arrow-Debreu Equilibria

Proposition 2

Assume that the asset structure is complete.
(i) If $\left(p, x^{*}\right) \in \mathbb{R}_{++}^{L S} \times\left(\mathbb{R}_{+}^{L S}\right)^{I}$ is an Arrow-Debreu equilibrium, then there $q \in \mathbb{R}_{++}^{K}$ and $z^{*} \in\left(\mathbb{R}^{K}\right)^{I}$ such that $\left(q, p, z^{*}, x^{*}\right)$ is a Radner equilibrium.
(ii) If $\left(q, p, z^{*}, x^{*}\right) \in \mathbb{R}_{++}^{K} \times \mathbb{R}_{++}^{L S} \times\left(\mathbb{R}^{K}\right)^{I} \times\left(\mathbb{R}_{+}^{L S}\right)^{I}$ is
a Radner equilibrium, then there exists $\mu \in \mathbb{R}_{++}^{S}$ such that $\left(\left(\mu_{1} p_{1}, \ldots, \mu_{S} p_{S}\right), x^{*}\right)$ is an Arrow-Debreu equilibrium.

Sketch of the Proof $(1 / 4)$

- Denote

$$
B_{i}^{\mathrm{AD}}(p)=\left\{x_{i} \in \mathbb{R}_{+}^{L S} \mid \sum_{s} p_{s}^{\prime}\left(x_{s i}-\omega_{s i}\right) \leq 0\right\}
$$

and

$$
\begin{aligned}
B_{i}^{\mathrm{R}}(q, p)=\left\{x_{i} \in \mathbb{R}_{+}^{L S} \mid \exists z_{i}\right. & \in R^{K} \text { s.t. } \\
q^{\prime} z_{i} & \left.\leq 0 \text { and } m_{i} \leq R z_{i}\right\},
\end{aligned}
$$

where

$$
m_{i}=\left(p_{1}^{\prime}\left(x_{1 i}-\omega_{1 i}\right), \ldots, p_{S}^{\prime}\left(x_{S i}-\omega_{S i}\right)\right)^{\prime} \in \mathbb{R}^{S}
$$

Sketch of the Proof $(2 / 4)$

(i) Let $\left(p, x^{*}\right)$ be an Arrow-Debreu equilibrium.

- Denote

$$
\Lambda=\left(\begin{array}{ccc}
p_{11} & & 0 \\
& \ddots & \\
0 & & p_{1 S}
\end{array}\right)
$$

Then

$$
\Lambda R=\left(\begin{array}{ccc}
p_{11} r_{11} & \cdots & p_{11} r_{1 K} \\
\vdots & \ddots & \vdots \\
p_{1 S} r_{S 1} & \cdots & p_{1 S} r_{S K}
\end{array}\right)
$$

Let

$$
q^{\prime}=\mathbf{1}^{\prime} \Lambda R \quad\left(\Longleftrightarrow q_{k}=\sum_{s} p_{1 s} r_{s k} \forall k\right)
$$

Sketch of the Proof $(3 / 4)$

- WTS: $x_{i}^{*} \in B_{i}^{\mathrm{R}}(q, p)$ and $x_{i} \in B_{i}^{\mathrm{R}}(q, p) \Rightarrow x_{i} \in B_{i}^{\mathrm{AD}}(p)$.
- Let

$$
m_{i}^{*}=\left(p_{1}^{\prime}\left(x_{1 i}^{*}-\omega_{1 i}\right), \ldots, p_{S}^{\prime}\left(x_{S i}^{*}-\omega_{S i}\right)\right)^{\prime} \in \mathbb{R}^{S} .
$$

- Since $\operatorname{rank} \Lambda R=S$ by completeness, for each $i=1, \ldots, I-1$, there exists z_{i}^{*} such that

$$
m_{i}^{*}=\Lambda R z_{i}^{*}
$$

Define

$$
z_{I}^{*}=-\left(z_{1}^{*}+\cdots+z_{I-1}^{*}\right)
$$

- Show $x_{i}^{*} \in B_{i}^{\mathrm{R}}(q, p)$.

Sketch of the Proof $(4 / 4)$

(ii) Let $\left(q, p, z^{*}, x^{*}\right)$ be a Radner equilibrium.

Assume without loss of generality that $p_{1 s}=1$ for all s.

- By Proposition 1, there exists $\mu \in \mathbb{R}_{++}^{S}$ such that $q^{\prime}=\mu^{\prime} R$.
- WTS: $x_{i}^{*} \in B_{i}^{\mathrm{AD}}(q, p)$ and

$$
x_{i} \in B_{i}^{\mathrm{AD}}(q, p) \Rightarrow x_{i} \in B_{i}^{\mathrm{R}}\left(\mu_{1} p_{1}, \ldots, \mu_{S} p_{S}\right)
$$

- For the former,

$$
\sum_{s} \mu_{s} p_{s}^{\prime}\left(x_{s i}-\omega_{s i}\right) \leq \sum_{s} \mu_{s}\left(R z_{i}\right)_{s}=\mu^{\prime} R z_{i}=q^{\prime} z_{i} \leq 0
$$

- For the latter, by the completeness, there exists z_{i} such that $m_{i}=R z_{i}$.

Then,

$$
q^{\prime} z_{i}=\mu^{\prime} R z_{i}=\mu^{\prime} m_{i} \leq 0
$$

