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Environment

I ` = 1, . . . , L: physical commodities

I i = 1, . . . , I: consumers

I s = 1, . . . , S: states of the world

I %i: i’s preference relation on RLS
+

with a utility function representation Ui

(assumed to be strongly monotone)

I After uncertainty is resolved, spot markets open at t = 1.

I A price vector at state s is denoted by ps ∈ RL,
and the overall price vector by p ∈ RLS .
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Assets

Asset markets open at t = 0.

We consider real assets,
where returns are in units of commodity 1.

I An asset is identified with its return vector:

r = (r1, . . . , rS)′ ∈ RS .

(Here we always consider vectors as column vectors.)

I Examples:

I 1 = (1, . . . , 1)′: “commodity futures”

I ei = (0, . . . , 0, 1, 0, . . . , 0)′ (ith unit vector):
called an “Arrow security”.

2 / 17



Example: Derivative Assets

I The call option on an asset r ∈ RS (“primary asset”)
at the strike price c ∈ R:

r(c) = (max{0, r1 − c}, . . . ,max{0, rS − c})′.

It gives the option to buy a unit of r at price c
after the state is realized.

I For example, if S = 4 and r = (4, 3, 2, 1)′,

r(3.5) = (0.5, 0, 0, 0)′,

r(2.5) = (1.5, 0.5, 0, 0)′,

r(1.5) = (2.5, 1.5, 0.5, 0)′.
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Return Matrix

I We fix K assets, r1, . . . , rK ∈ RS , as given.

We assume that rk ≥ 0, rk 6= 0 for all k.

I The S ×K matrix

R =
(
r1 · · · rK

)
=

r11 · · · r1K
...

. . .
...

rS1 · · · rSK


is called the return matrix.

I A vector of trades in these assets, z = (z1, . . . , zK)′ ∈ RK , is
called a portfolio.

I An asset price vector is denoted by q = (q1, . . . , qK)′ ∈ RK .
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Equilibrium

Definition 1

(q, p, (z∗i )Ii=1, (x
∗
i )

I
i=1) ∈ RK × RLS × (RK)I × (RLS

+ )I

is a Radner equilibrium if:

(i) for all i, (z∗i , x
∗
i ) solves

max
zi∈RK , xi∈RLS

+

Ui(xi)

s.t.
∑

k qkzki ≤ 0

p′sxsi ≤ p′sωsi +
∑

k p1szkirsk for all s;

(ii)
∑

i z
∗
i ≤ 0 and

∑
i x
∗
i ≤

∑
i ωi.
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Price Normalization and Budget Constraint

I Normalize p1s = 1 for all s.

I Budget constraint of i:

Bi(q, p,R) = {xi ∈ RLS
+ | ∃ zi ∈ RK s.t.

q′zi ≤ 0 and mi ≤ Rzi},

where

mi = (p′1(x1i − ω1i), . . . , p
′
S(xSi − ωSi))

′ ∈ RS .
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State Prices
Proposition 1

If q ∈ RK is an asset price vector in a Radner equilibrium,
then there exists µ ∈ RS

++ such that q′ = µ′R.

I µ is called a state price vector.

I µs is the shadow price of the state-contingent commodity for
state s.

I q′ = µ′R ⇐⇒

(
q1 · · · qK

)
=
(
µ1 · · · µS

)r11 · · · r1K
...

. . .
...

rS1 · · · rSK


=
(∑

s µsrs1 · · ·
∑

s µsrsK
)
.
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Proof 1 (1/2)

I q ∈ RK is arbitrage free if there is no portfolio z ∈ RK

such that q′z ≤ 0, Rz ≥ 0, and [q′z < 0 or Rz 6= 0].

I Under our assumption that rk ≥ 0, rk 6= 0 for all k,
an arbitrage free price vector must be strictly positive, and hence
the above definition is equivalent to the definition in MWG:

q ∈ RK is arbitrage free if and only if there is no portfolio z ∈ RK

such that q′z ≤ 0, Rz ≥ 0, and Rz 6= 0.

(I.e., there is no portfolio that is budgetarily feasible and
that yields a nonnegative return in every state and

a strictly positive return in some state.)

I Under strongly monotone preferences,
an equilibrium asset price vector q ∈ RK is arbitrage free.

I Proposition 1 follows from the following lemma.
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Proof 1 (2/2)

Lemma 1

For any R ∈ RS×K ,
q ∈ RK is arbitrage free if and only if
there exists µ ∈ RS

++ such that q′ = µ′R.

I Proof by “Stiemke’s Lemma”.
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Proof 2 (1/2)

I Choose any consumer i. Assume that Ui has a representation
Ui(x1i, . . . , xSi) =

∑
s πsiusi(xsi) (πsi > 0)

where usi are concave, strictly increasing, and differentiable.

I Denote by vsi the indirect utility function derived from usi.

I Let q, p be the equilibrium prices, and consider

max
zi∈RK

∑
s πsivsi(ps, p

′
sωsi +

∑
k rskzki)

s.t.
∑

k qkzki ≤ 0.

I The equilibrium portfolio plan z∗i must satisfy the FOC with
some αi > 0 (Lagrange multiplier):∑

s πsi
∂vsi
∂wsi

(ps, w
∗
si) rsk = αiqk for all k,

where w∗si = p′sωsi +
∑

k rskz
∗
ki.

10 / 17



Proof 2 (2/2)

I Define µ ∈ RS
++ by

µs =
πsi
αi

∂vsi
∂wsi

(ps, w
∗
si).

I This satisfies q′ = µ′R.

I Note: choice of a different consumer may lead to a different µ.
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Complete Markets

Definition 2

An asset structure with an S ×K return matrix R is complete if
rankR = S, i.e.,

{v ∈ RS | v = Rz for some z ∈ RK} = RS .

I Example:

R =

1 0 1
0 1 1
0 1 1


is not complete.

No portfolio can give, for example, a return vector (0, 0, 1)′.
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Equivalence between Radner and Arrow-Debreu Equilibria

Proposition 2

Assume that the asset structure is complete.

(i) If (p, x∗) ∈ RLS
++ × (RLS

+ )I is an Arrow-Debreu equilibrium,
then there q ∈ RK

++ and z∗ ∈ (RK)I such that
(q, p, z∗, x∗) is a Radner equilibrium.

(ii) If (q, p, z∗, x∗) ∈ RK
++ × RLS

++ × (RK)I × (RLS
+ )I is

a Radner equilibrium,
then there exists µ ∈ RS

++ such that
((µ1p1, . . . , µSpS), x∗) is an Arrow-Debreu equilibrium.
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Sketch of the Proof (1/4)

I Denote

BAD
i (p) = {xi ∈ RLS

+ |
∑

s p
′
s(xsi − ωsi) ≤ 0}

and

BR
i (q, p) = {xi ∈ RLS

+ | ∃ zi ∈ RK s.t.

q′zi ≤ 0 and mi ≤ Rzi},

where

mi = (p′1(x1i − ω1i), . . . , p
′
S(xSi − ωSi))

′ ∈ RS .
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Sketch of the Proof (2/4)

(i) Let (p, x∗) be an Arrow-Debreu equilibrium.

I Denote

Λ =

p11 0
. . .

0 p1S

 .

Then

ΛR =

p11r11 · · · p11r1K
...

. . .
...

p1SrS1 · · · p1SrSK

 .

Let

q′ = 1′ΛR (⇐⇒ qk =
∑

s p1srsk ∀ k).

15 / 17



Sketch of the Proof (3/4)

I WTS: x∗i ∈ BR
i (q, p) and xi ∈ BR

i (q, p)⇒ xi ∈ BAD
i (p).

I Let

m∗i = (p′1(x
∗
1i − ω1i), . . . , p

′
S(x∗Si − ωSi))

′ ∈ RS .

I Since rank ΛR = S by completeness,
for each i = 1, . . . , I − 1, there exists z∗i such that

m∗i = ΛRz∗i .

Define

z∗I = −(z∗1 + · · ·+ z∗I−1).

I Show x∗i ∈ BR
i (q, p).
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Sketch of the Proof (4/4)
(ii) Let (q, p, z∗, x∗) be a Radner equilibrium.

Assume without loss of generality that p1s = 1 for all s.

I By Proposition 1, there exists µ ∈ RS
++ such that q′ = µ′R.

I WTS: x∗i ∈ BAD
i (q, p) and

xi ∈ BAD
i (q, p)⇒ xi ∈ BR

i (µ1p1, . . . , µSpS).

I For the former,∑
s µsp

′
s(xsi − ωsi) ≤

∑
s µs(Rzi)s = µ′Rzi = q′zi ≤ 0.

I For the latter,
by the completeness, there exists zi such that mi = Rzi.

Then,

q′zi = µ′Rzi = µ′mi ≤ 0.
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