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Abstract

We formulate a monitoring model which is a modified inspector lead-

ership game where a principal (an inspector) monitors an effort level

chosen by an agent (an inspectee). We introduce psychological fac-

tors (a sense of guilty and an impulse to deceive) into the modified

inspector leadership game and examine impacts of these psychological

factors on an error probability that the principal conducts a costly in-

vestigation into an effort level chosen by the agent although the agent

chooses a desirable level of the effort for the principal. In psycholog-

ical equilibrium points, the agent’s sense of guilty reduces the error

probability from that in the subgame perfect equilibrium point of the

modified inspector leadership game without psychological factors, and
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the agent’s impulse to deceive the principal raises the error probabil-

ity from that in the subgame perfect equilibrium point of the modified

inspector leadership game without psychological factors.

Keywords: inspection game, psychological game, sense of guilty, im-

pulse to deceive, costly monitoring,

JEL classification numbers: C19, C72, J33.
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1 Introduction

We formulate a modified inspector leadership game which consists of four

stages. At the first stage of the game a principal (an inspector) decides a

critical output. Given the critical output, an agent (an inspectee) chooses

either a high effort eH or a low effort eL at the second stage of the game.

Each effort el (l = H,L) is a nonnegative real number. At the third stage an

output is realized. The output is a random variable conditional on the effort

level which was chosen by the agent at the previous stage. Finally, at the

fourth stage of the game the principal observes the realized output but not

the effort level which was chosen by the agent at the second stage of the game.

If the realized output is below the critical output decided by the principal at

the first stage of the game, then the principal conducts a costly investigation

that provides the principal with information on the effort level which was

chosen by the agent at the second stage. We assume that the investigation

reveals perfectly the effort level chosen by the agent. In case that the agent

chooses the low effort eL and the principal conducts the investigation, the

principal imposes a penalty on the agent, namely the principal gives the

agent a low wage wL. If the realized output is above the critical output, then

the principal does not conduct the investigation into the effort level chosen

by the agent and gives a higher wage wH than wL to the agent whether the

agent chooses the high effort eH or the low effort eL. In case that the agent

chooses the high effort eH , the principal gives a higher wage wH than wL to

the agent whether the principal conducts the invesigation or not.

The principal’s payoff is defined as follows:

· If the principal conducts the investigation into the effort level which was
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chosen by the agent at the second stage, the principal’s payoff is the output

realized according to the effort level chosen by the agent minus the wage

given to the agent minus the cost for conducting the investigation.

· If the principal does not conduct the investigation into the effort level

which was chosen by the agent, the principal’s payoff is the output realized

according to the effort level chosen by the agent minus the wage given to the

agent.

The payoff of the agent is the wage given by the principal minus the effort

level chosen by the agent. In Section 2 we formulate this modified inspector

leadership game and investigate the subgame perfect equilibrium point of

this game.1

In Section 3 we introduce a psychological factor, the agent’s sense of

guilty, into our modified inspector leadership game and show that there are

psychological equilibrium points such that the critical output chosen by the

principal is smaller than that in the subgame perfect equilibrium point of

our modified inspector leadership game in the previous section.2

In Section 4 we introduce a psychological factor, the agent’s impulse to

deceive the principal, into our modified inspector leadership game and show

that there are psychological equilibrium points such that the critical output

1Useful techniques for material accountancy and data verification are developed in

literatures of inspection games. Techniques developed for data verification are applicable to

our modified inspector leadership game. For details of these useful techniques of inspection

games, see Avenhause, Okada and Zamir (1991) and Avenhaus, Stengel and Zamir (2003).
2Many studies of experiments indicate that players are motivated by some psychological

factors. For details of the progress of game theory with psychological factors, see Camerer

(2003). Englemaier (2005) is a survey of behavioral game theoretic models about workers’

moral hazard problems.
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chosen by the principal is larger than that in the subgame perfect equilibrium

point of our modified inspector leadership game in Section 2.3

2 The model without psychological factors

We consider a dynamic game with two players, P (principal) and A (agent).

The game is described in Figure 1.

<Figure 1>

The game consists of four stages as following;

1. At the first stage of the game, player P chooses a probability α ∈ [0, 1]

that player P monitors player A ex post by conducting an investigation

that provides player P with information on an effort level chosen by

player A. 4

2. At the second stage of the game, player A given the probability α

chooses his effort level el from a set {eH, eL}. Each effort level el is a

nonnegative real number and eH > eL. We consider a behavior strategy

given by the probability q ∈ [0, 1] for choosing the low effort eL.

3In Section 3 and in Section 4 we construct these models with psychological factors by

the use of psychological game theory. Psychological game theory is proposed by Geanako-

plos, Pearce and Stacchetti (1989) and Rabin (1993).
4[0, 1] denotes an closed interval with end points 0 and 1. In the literature, we use

similar notations. For example, (a, b) denotes an open interval and (a, b] a semi closed

interval with end points a and b.
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3. At the third stage of the game, Nature picks up an output y ∈ R. If

player A has chosen el at the previous stage, the corresponding out-

put y is realized according to a cumulative distribution function Fl(y)

which has the mean μl ∈ [0,∞) where l = L,H, and μH > μL. Each

distribution function Fl (l = L,H) is absolutely continuous, has an

inverse function F−1
l , and has an identical variance with each other.

4. At the fourth stage, if an output y realized at the previous stage belongs

to a set Zα ≡ { y | FH(y) ≤ α}, player P conducts an investigation for

the effort level chosen by player A. It costs a fixed amount of c > 0

unit of output for player P to conduct the investigation. After the

investigation;

• if player A has chosen eH at the second stage of the game, then

player P gives a fixed wage wH ∈ R to player A,

• if player A has chosen eL at the second stage of the game, then

player P gives a fixed wage wL ∈ R to player A where wL < wH.

If an output y realized at the previous stage does not belong to the

set Zα ≡ { y | FH(y) ≤ α}, then player P does not conduct the

investigation and gives the fixed wage wH to player A.

Payoff of each player

Let el be the effort level chosen by the agent at the second stage of the game.

If the output y realized at the third stage of the game belongs to the set

Zα, each payoff of player P and of player A is given by y − wl and wl − el,
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respectively. If the output y realized at third stage of the game does not

belong to the set Zα, each payoff of player P and of player A is given by

y − wH and wH − el, respectively. Let zα ≡ F−1
H (α). Then the expected

payoff of each player in our model is given by

EuA(α, q) = q
[∫ +∞

zα

(wH − eL)dFL(y) +

∫ zα

−∞
(wL − eL)dFL(y)

]

+ (1 − q)
[∫ +∞

zα

(wH − eH)dFH(y) +

∫ zα

−∞
(wH − eH)dFH(y)

]
, (2.1)

EuP (α, q) = q
[∫ +∞

zα

(y − wH)dFL(y) +

∫ zα

−∞
(y − wL − c)dFL(y)

]

+ (1 − q)
[∫ +∞

zα

(y − wH)dFH(y) +

∫ zα

−∞
(y −wL − c)dFH(y)

]
. (2.2)

A market-imposed minimal expected payoff for player A is 0 and we assume

that wL − eL = 0.

Relationship between hypothesis testing in statistics and our model

The null hypothesis H0 in our model is that player A chooses the high effort

eH, and the alternative hypothesis H1 in our model is that player A chooses

the low effort eL. The probability α chosen by player P is that of the error of

the first kind in hypothesis testing. Namely, the value of α is the probability

that the principal conducts the costly investigation althouth the agent chooses

the high effort eH.

We denote by β ∈ [0, 1] the probability of the error of the second kind in

hypothesis testing. Namely, the value of β is the probability that the player
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P does not conduct the investigation into the effort level chosen by player A

although player A chooses the low effort eL. Moreover, we obtain a function

β = 1 − FL(zα) where zα ≡ F−1
H (α). The function β(α) fulfills β(0) = 1 and

β(1) = 0.

Assumption 1. The function β(α) ∈ [0, 1][0,1] is a differentiable, convex,

and monotonically decreasing function.5

2.1 Analysis

The best response correspondence of player A

In order to investigate subgame perfect equilibrium points of our model, we

consider the best response correspondence q∗(α) of player A to each α ∈ [0, 1]

chosen by player P . From (2.1) and the definition of β(α), the expected payoff

of player A is given by

EuA(α, q) = q{(1− β(α))(wH − wL) + (eH − eL)} + wH − eH. (2.1.a)

Since we are interested in a case that for some α ∈ (0, 1) player A has an

incentive to choose the high effort eH, we assume that wH − eH > wL − eL.

In the following, we assume this inequality without further remark. Proofs

of lemmas in this section are relegated to the Appendix A.

Lemma 2.1. Let α∗ ≡ β−1(1 − eH−eL

wH−wL
) where β−1 is an inverse function of

5β(α) ∈ [0, 1][0,1] denotes a function β(α) on [0, 1] into [0, 1]. In the following, we use

similar notations. For example, G(α) ∈ R[0,1] denotes a function G(α) on [0, 1] into R.
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β(α). Then the best response correspondence of player A is given by

q∗(α) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if α < α∗,

[0, 1] if α = α∗,

0 if α > α∗.

The expected payoff of player P and the subgame perfect equilib-

rium points

Given the best response correspondence q∗(α) of player A, from (2.2) and

the definition of β(α), the expected payoff of player P is given by

EuP (α, q∗(α)) = (1 − q∗(α)){μH − cα − wH}
+ q∗(α){β(α)(wL + c − wH) + μL − wL} (2.2.a)

The expected payoff EuP (α, q∗(α)) of player P has following properties.

Lemma 2.2.

(1) When wH − wL > c, EuP (α, q∗(α)) is an increasing function on [0, α∗)

and a decreasing function on (α∗, 1].

(2) When wH −wL ≤ c, EuP (α, q∗(α)) is a non-increasing function on [0, α∗)

and a decreasing function on (α∗, 1].

Let Eup(α, 0) ≡ μH −cα−wH and Eup(α, 1) ≡ β(α)(wL+c−wH)+μL−wL.

Lemma 2.3. Whenever (μH − wH) − (μL − wL) > c,

(1) EuP (α, 0) > EuP (α, 1) for each α ∈ [0, 1],

(2) EuP (0, 1) < EuP (α∗, 0).
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Due to the inequality (μH − wH) − (μL − wL) > c, player A must choose

the high effort in the subgame perfect equilibrium point in our model. In

the following, we assume the inequality (μH −wH)− (μL −wL) > c without

further remark. According to Lemma 2.2 and Lemma 2.3, graphs of the

expected payoff EuP (α, q∗(α)) of player P are drawn at Figure 2.

<Figure 2>

Theorem 2.1. The subgame perfect equilibrium point (α∗, q∗) of our model

without psychological factors is given by a pair of α∗ = β−1(1− eH−eL

wH−wL
) and

q∗ = 0.

(Proof:) When wH−wL > c, an equality q∗(α) = 0 must holds in the subgame

perfect equilibrium point by part (1) of Lemma 2.3. Then by Lemma 2.1 the

optimal strategy of player P is α∗. When wH −wL ≤ c, an equality q∗(α) = 0

must holds in the subgame perfect equilibrium point by part (1) and part

(2) of Lemma 2.3. Then by Lemma 2.1 the optimal strategy of player P is

α∗. �

3 The model with a sense of guilty

We introduce a psychological factor, a sense of guilty of player A, into our

model. Let q′′ ∈ [0, 1] be player A’s belief about player P ’s belief about a

behavior strategy q ∈ [0, 1] which is a probability that player A chooses the

low effort eL. We call the belief q′′ ∈ [0, 1] the second order belief of player

A.
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Consider a situation where player A plays the low effort eL and player P

does not conduct an investigation into the effort level chosen by player A.

In this situation the second belief q′′ of player A is the smaller one, the more

player A may feel guilty about his choosing the low effort.

Assumption 2. g ∈ RR is a differentiable and monotonically increasing

function and fulfills that g(0) = −k and g(1) = 0 where k > 0.

We add the function g to player A’s payoff of this situation. Note that the

function g is defined not only on [0, 1] but also on the set of all real numbers

R, so that we can define an inverse function g−1 of g where the range of g−1

is the set of all real numbers R. This change in our model is described at

Figure 3.6 Namely, the value of −g(q′′) captures the strength of the sense of

guilty of player A with q′′.

<Figure 3>

In the following of this paper an equilibrium concept to analyze our model

with a psychological factor was given by Geanakoplos, Pearce and Stacchetti

(1989) and Rabin (1993).

Definition 3.1. A psychological equilibrium point of our model with a psy-

chological factor is a triplet (α∗∗, q∗∗, q′′) such that

(1) the pair of (α∗∗, q∗∗) is the subgame perfect equilibrium point of our model

with a psychological factor and

(2) q∗∗ = q′′. (consistency)

6Dufenberg (2002) proposed a trust game with a sense of guilty.
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3.1 Analysis

The best response correspondence of player A

In order to investigate the psychological equilibrium point of our model with

a sense of guilty of player A, we consider the best response correspondence

q∗(α, q′′) of player A to each pair (α, q′′) ∈ [0, 1]2. From (2.1) and Figure 3,

the expected payoff EuA(α, q, q′′) of player A with q′′ is given by

EuA(α, q, q′′) = q{β(α)
(
wH − wL + g(q′′)

)

+ (wL − wH) + (eH − eL)} + (wH − eH). (2.1.b)

Let G(α) ≡ g−1
(

(wH−wL)+(eL−eH)
β(α)

− (wH −wL)
)

where g−1 is an inverse func-

tion of g and α �= 1.

Proofs of lemmas in this section are relegated to the Appendix B.

Lemma 3.1. The best response correspondence q∗(α, q′′) of player A with

q′′ is given by

q∗(α, q′′) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if q′′ > G(α),

[0, 1] if q′′ = G(α),

0 if q′′ < G(α) or α = 1.

We are interested in the minimum value of α that induces player A with

some q′′ to choose the high effort eH. This minimum value of α is given by

an equation G(α) = 0 due to monotonicity of the function G(α).

Lemma 3.2. There is a number αl ∈ [0, α∗) such that G(αl) = 0 if and only

if eH − eL ≥ k.
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Since G(α) is a monotonically increasing function of α, to each α ≤ αl the

optimal strategy of player A with each q′′ ∈ [0, 1] is choosing the low effort eL.

According to Lemma 3.1 and Lemma 3.2, the best response correspondence

q∗(α, q′′) of player A with q′′ is drawn at Figure 4.

<Figure 4>

The expected payoff of player P and the psychological equilibrium

points

Lemma 3.3. Given the best response correspondence q∗(α, q′′) of player A

with a second order belief q′′, the expected payoff EuP (α, q∗(α, q′′)) of player

P is given by

(1) β(α)(wL + c − wH) + μL − wL

on a set S1 = {(α, q′′) ∈ [0, 1]2 | 0 ≤ α < αl, 0 ≤ q′′ ≤ 1} and

on a set S2 = {(α, q′′) ∈ [0, 1]2 | αl ≤ α < α∗, q′′ > G(α)}.
(2) μH − cα − wH

on a set S3 = {(α, q′′) ∈ [0, 1]2 | αl < α < α∗, q′′ < G(α)} and

on a set S4 = {(α, q′′) ∈ [0, 1]2 | α∗ < α < 1, 0 ≤ q′′ ≤ 1}.

Let k ≤ eH − eL. Then, for each ᾱ ∈ [αl, α
∗], there is a second order

belief q̄′′ ∈ [0, 1] such that q̄′′ = G(ᾱ). By Lemma 3.3 and monotonicity

of G(α), for this q̄′′, the expected payoff of player P choosing α < ᾱ is

given by EuP (α, q∗(α, q̄′′)) = β(α)(wL + c − wH) + μL − wH . Similarly, the

expected payoff of player P choosing α > ᾱ is given by EuP (α, q∗(α, q̄′′)) =

μH − cα − wH. The expected payoff EuP (α, q∗(α, q̄′′)) for the fixed q̄′′ is

drawn at Figure 5. While the graph of EuP (α, q∗(α, q̄′′)) for the fixed q̄′′
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jumps at a point ᾱ ∈ [αl, α
∗], its shape of the graph is the same as the graph

of Eup(α, q∗(α)) in Section 2 except the point that the graph jumps at.

<Figure 5>

Let c < wH − wL. Then EuP (α, 1) is a monotonically increasing function,

and EuP (α, 0) is a monotonically decreasing function. Therefore, there is

no incentive for player P to change ᾱ to any other strategies. By Lemma

3.3, q∗(ᾱ, q̄′′) = [0, 1], and by Lemma 2.3, Eup(α, 0) > Eup(α, 1) for each

α ∈ [0, 1]. For ᾱ to constitute player P ’s strategy of a subgame perfect

equilibrium point, an equality q∗(α, q′′) = 0 must hold. By the consistency

condition of Definition 3.1, an equality q∗∗ = q′′ = 0 holds in a psychological

equilibrium point of our model. Hence it turns out that a triplet of ᾱ ∈
[αl, α

∗], q∗∗ = 0 and q′′ = 0 is one of the psychological equilibrium points.

Let Sp ≡ {α ∈ [0, 1] | ∃ q′′ ∈ [0, 1] such that q′′ = G(α)}. We call a set

Ep ≡ {(α∗∗, q∗∗) ∈ [0, 1]2 | (1) α∗∗ ∈ Sp, (2) a pair (α∗∗, q∗∗) is a subgame

perfect equilibrium} a possible set of psychological equilibrium points. We

use these concepts Sp and Ep, in the following cases of this Section 3 and in

the next Section 4.

Case 1 ( k ≤ eH − eL, c < wH −wL )

Lemma 3.4. Each α ∈ [0, αl)∪(α∗, 1] is not the strategy of the psychological

equilibrium point of player P .

Theorem 3.1. The possible set of psychological equilibrium points is given

by {(α∗∗, q∗∗, q′′) | αl ≤ α∗∗ ≤ α∗ and q∗∗ = q′′ = 0}.

14



(Proof:) Fix a strategy α ∈ [αl, α
∗] of player P . Since G(α) is a monotonically

increasing and differentiable function on (αl, α
∗), there is a second order belief

q′′ ∈ [0, 1] such that q′′ = G(α), so that α ∈ Sp.

For this pair of α and q′′, q∗(α, q′′) = [0, 1] by Lemma 3.3. For this α

to constitute player P ’s strategy of a subgame perfect equilibrium point,

an equality q∗(α, q′′) = 0 must hold, because by Lemma 2.3, Eup(α, 0) >

Eup(α, 1) for each α ∈ [0, 1]. By the consistency condition of Definition 3.1,

q∗∗ = q′′ = 0 in a psychological equilibrium point of our model. Hence it turns

out that a triplet of this α, q∗∗ = 0 and q′′ = 0 is one of the psychological

equilibrium points.

By Lemma 3.4, each α /∈ [αl, α
∗] is not the strategy of the psychological

equilibrium point of player P . We obtain the result. �

Case 2 ( k > eH − eL, c < wH − wL )

Note that S1 = φ and other sets Si (i = 2, 3, 4) in Lemma 3.3 are non-empty.

Lemma 3.5. Each α ∈ (α∗, 1] is not the strategy of the psychological

equilibrium point of player P .

Theorem 3.2. The possible set of psychological equilibrium points is given

by {(α∗∗, q∗∗, q′′) | 0 ≤ α∗∗ ≤ α∗ and q∗∗ = q′′ = 0}.

(Proof:) Fix a strategy α ∈ [0, α∗] of player P . Since k > eH − eL, there is a

second order belief q′′ ∈ (0, 1] such that q′′ = G(α), so that α ∈ Sp.

For this α and q′′, q∗(α, q′′) = [0, 1]. For α to be player P ’s strategy of

the subgame perfect equilibrium point, an equality q∗(α, q′′) = 0 must hold

because Eup(α, 0) > Eup(α, 1) > 0 for each α ∈ [0, 1] by Lemma 2.3. By the
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consistency condition of Definition 3.1, in a psychological equilibrium point

of our model q∗∗ = q′′ = 0. Hence it turns out that a triplet of this α, q∗∗ = 0

and q′′ = 0 is one of the psychological equilibrium points.

By Lemma 3.5, each α /∈ [0, α∗] is not the strategy of the psychological

equilibrium point of player P . We obtain the result. �

Case 3 ( k ≤ eH − eL, c > wH −wL )

Note that each set Si (i = 1, 2, 3, 4) in Lemma 3.3 is non-empty.7

Lemma 3.6. Each α ∈ (0, αl)∪(α∗, 1] is not the strategy of the psychological

equilibrium point of player P .

Theorem 3.3. The possible set of psychological equilibrium points is given

by {(α∗∗, q∗∗, q′′) | αl ≤ α∗∗ ≤ α∗ and q∗∗ = q′′ = 0}.

(Proof:) Fix strategy α ∈ [αl, α
∗] of player P . Then there is a second order

belief q′′ = G(α), so that α ∈ Sp. For this α and q′′, q∗(α, q′′) = [0, 1]. For α

to be an optimal strategy for player P , q∗(α, q′′) = 0 must hold by part (1) of

Lemma 2.4. By Lemma 3.6, each α ∈ (0, αl)∪(α∗, 1] is not player P ’s strategy

of the psychological equilibrium point of player P . By part (2) of Lemma

2.4, α = 0 is not player P ’s strategy of the psychological equilibrium point of

player P . We obtain the result. �

Case 4 ( k > eH − eL, c > wH − wL )

Note that S1 = φ and other sets Si (i = 2, 3, 4) in Lemma 3.3 are non-empty.

7We can deal with a case of c = wH − wL in a similar way to the following Case 3 and

Case 4.
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Lemma 3.7. Each α ∈ (α∗, 1] is not the strategy of the psychological

equilibrium point of player P .

Theorem 3.4. The set of possible psychological equilibrium points is given

by {(α∗∗, q∗∗, q′′) | 0 ≤ α∗∗ ≤ α∗ and q∗∗ = q′′ = 0}.

(Proof:) Fix a strategy α ∈ [0, α∗] of player P . Then there is a second order

belief q′′ = G(α), so that α ∈ Sp. For this α and q′′, q∗(α, q′′) = [0, 1]. For α

to be an optimal strategy, q∗(α, q′′) = 0 must hold. By Lemma 3.7, each α ∈
(α∗, 1] is not the strategy of the psychological equilibrium point of player P .

We obtain the result. �

4 The model with an impulse to deceive

We introduce a psychological factor, player A’s impulse to deceive player P ,

into our model formulated in Section 2. Consider a situation where player A

chooses the low effort eL and player P does not conduct an investigation for

the effort level chosen by player A. In this situation the second order belief q′′

of player A for choosing the low effort eL is the larger one, this situation gives

the feeling of the more satisfaction to player A with an impulse to deceive

player P .

Assumption 3. gd ∈ RR is a differentiable and monotonically increasing

function and fulfills that gd(0) = 0 and gd(1) = k where k > 0.

We add the function gd to player A’s payoff of this situation. This change

in our model is described at Figure 6.
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<Figure 6>

We investigate the psychological equilibrium point in our model with player

A’s impulse to deceive.

The best response correspondence of player A

We replace the function g in the proof of Lemma 3.1 with gd, so that obtain

following Lemma 4.1. Proofs of lemmas in this section are relegated to the

Appendix B. Let Gd(α) ≡ g−1
d

( (wH−wL)+(eL−eH )
β(α)

− (wH − wL)
)

where g−1
d is

an inverse function of gd where α �= 1.

Lemma 4.1 The best response correspondence q∗(α, q′′) of player A with q′′

is given by

q∗(α, q′′) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if q′′ > Gd(α),

[0, 1] if q′′ = Gd(α),

0 if q′′ < Gd(α) or α = 1.

We are interested in the maximum value of α which induces player A

with some q′′ to choose the high effort eH. The maximum value of α is given

by an equation Gd(α) = 1 due to monotonicity of the function Gd(α).

Lemma 4.2.

(1) Gd(α
∗) = 0,

(2) There is a number αh ∈ (α∗, 1] such that Gd(αh) = 1 if and only if

k ≤ eH − eL.

According to Lemma 4.1 and Lemma 4.2, the best response correspondence

q∗(α, q′′) of player A with q′′ is drawn at Figure 7.
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<Figure 7>

The expected payoff of player P and the psychological equilibrium

points

Lemma 4.3. Given the best response correspondence q∗(α, q′′) of player A

with a second order belief q′′, the expected payoff EuP (α, q∗(α, q′′)) of player

P is given by

(1) β(α)(wL + c − wH) + μL − wL

on a set S1d = {(α, q′′) ∈ [0, 1]2 | 0 ≤ α < α∗, 0 ≤ q′′ ≤ 1} and

on a set S2d = {(α, q′′) ∈ [0, 1]2 | α∗ ≤ α < αh, q′′ > Gd(α)}.
(2) μH − cα − wH

on a set S3d = {(α, q′′) ∈ [0, 1]2 | α∗ < α ≤ αh, q′′ < Gd(α)} and

on a set S4d = {(α, q′′) ∈ [0, 1]2 | αh < α ≤ 1, 0 ≤ q′′ ≤ 1}.

Let c < wH −wL. In order to investigate the possible set of psychological

equilibrium points in our model with player A’s impulse on deceit, we use

the same logic as used in Case 1 and in Case 2 in the previous section. We

omit the proof of the following theorem.

Theorem 4.1. Let c < wH − wL.

(1) When k ≤ eH − eL, The possible set of psychological equilibrium points

is given by {(α∗∗, q∗∗, q′′) | α∗ ≤ α∗∗ ≤ αh and q∗∗ = q′′ = 0}.
(2) When k > eH − eL, The possible set of psychological equilibrium points

is given by {(α∗∗, q∗∗, q′′) | α∗ ≤ α∗∗ ≤ 1 and q∗∗ = q′′ = 0}.

In case that c > wH − wL and k ≤ eH − eL, (k > eH − eL), there is

a subtle difference between the following analysis in this section and the
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corresponding analysis, Case 3 (Case 4, resp.), in the previous section.8 If

there is some α′
h ∈ (α∗, αh) (α′

h ∈ (α∗, 1), resp.) such that μH − cα′
h −wH =

β(0)(wL +c−wH)+μL−wL, then at each α ∈ (α′
h, αh) ((α′

h, 1),resp.), player

P gets a lower expected payoff than that at a point α = 0. See Figure 8.

<Figure 8>

Each α ∈ (α′
h, αh) (α ∈ (α′

h, 1), resp.) is not player P ’s strategy of the

subgame perfect equilibrium point for each q′′ ∈ [0, 1], so that is not player

P ’s strategy of the psychological equilibrium point. Noting this fact, we

obtain following theorems.

Theorem 4.2. Let c > wH − wL and k ≤ eH − eL.

If there is a number α′
h ∈ (α∗, αh) such that α′

h = μH−μL−c
c

, then the possible

set of psychological equilibrium points is given by {(α∗∗, q∗∗, q′′) | α∗ ≤ α∗∗ ≤
α′

h and q∗∗ = q′′ = 0}.
If αh = μH−μL−c

c
, then the possible set of psychological equilibrium points is

given by {(α∗∗, q∗∗, q′′) | α∗ ≤ α∗∗ ≤ α′
h and q∗∗ = q′′ = 0} ∪ {(0, 1, 1)}.

Otherwise, the possible set of psychological equilibrium points is given by

{(α∗∗, q∗∗, q′′) | α∗ ≤ α∗∗ ≤ αh and q∗∗ = q′′ = 0}.

(Proof:) An equality μH−cα′
h−wH = β(0)(wL+c−wH)+μL−wL is equivalent

to α′
h = μH−μL−c

c
. Assume that α′

h ∈ (α∗, αh). By Lemma 4.1 and Lemma

4.2, the best response correspondence q∗(α, q′′) of player A with q′′ < Gd(α)

is given by q∗(α, q′′) = 0 for each α ∈ (α′
h, αh). Then, on (α′

h, 1], the expected

payoff Eup(α, q∗(α, q′′)) of player P is smaller than that of α = 0, namely

8We can deal with a case of c = wH − wL in a similar way to the following.
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μH − cα − wH < Eup(0, q
∗(α, q′′)) = β(0)(wL + c −wH) + μL − wL, because

the function μH − cα − wH is monotonically decreasing. Hence we have a

following claim.

Claim 1: Each α ∈ (α′
h, 1] is not a player P ’s strategy of psychological

equilibrium points of our model with an impulse of deceive.

For each α ∈ [0, α∗), Eup(α, 1) < Eup(α
∗, 0) by part (2) of Lemma 2.3

and monotonicity of both Eup(α, 1) and Eup(α, 0). Hence, each α ∈ (0, α∗)

is not the optimal strategy for player P given player A’s best responce cor-

respondence. Hence we have a following claim.

Claim 2: Each α ∈ (0, α∗) is not a player P ’s strategy of psychological

equilibrium points.

Fix a strategy α ∈ [α∗, α′
h] of player P . Then there is a second order

belief q′′ = G(α), so that α ∈ Sp. For this α and q′′, q∗(α, q′′) = [0, 1]. For

α to be an optimal strategy, q∗(α, q′′) = 0 must hold by part (1) of Lemma

2.3. By Claim 1 and Claim 2, each α ∈ (0, α∗)∪ (α′
h, 1] is not the strategy of

the psychological equilibrium point of player P .

If αh = μH−μL−c
c

, an equality Eup(0, 1) = Eup(αh, 0) holds, so that ob-

viously a point (α∗∗, q∗∗, q′′) = (0, 1, 1) is also the psychological equilibrium

point.

Assume that there is no α′
h ∈ (α∗, αh) such that μH − cα′

h − wH =

β(0)(wL +c−wH)+μL−wL and αh �= μH−μL−c
c

. Then each α ∈ (αh, 1] is not

optimal starategy of player P by Lemma 4.3 and monotonicity of Eup(α, 1).
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Each α ∈ [0, α∗) is not optimal strategy of player P by part (2) of Lemma

2.3. Fix a strategy α ∈ [α∗, αh] of player P . Then there is a second order

belief q′′ = G(α), so that α ∈ Sp. For this α and q′′, q∗(α, q′′) = [0, 1]. For α

to be an optimal strategy, q∗(α, q′′) = 0 must hold.

We have thus proved the theorem. �

Theorem 4.3. Let c > wH − wL and k > eH − eL.

If there is a number α′
h ∈ (α∗, 1) such that α′

h = μH−μL−c
c

, then the possible

set of psychological equilibrium points is given by {(α∗∗, q∗∗, q′′) | α∗ ≤ α∗∗ ≤
α′

h and q∗∗ = q′′ = 0}.
If μH−μL−c

c
= 1, then the possible set of psychological equilibrium points is

given by {(α∗∗, q∗∗, q′′) | α∗ ≤ α∗∗ ≤ 1 and q∗∗ = q′′ = 0} ∪ {(0, 1, 1)}.
Otherwise, the possible set of psychological equilibrium points is given by

{(α∗∗, q∗∗, q′′) | α∗ ≤ α∗∗ ≤ 1 and q∗∗ = q′′ = 0}.

(Proof:) An equality μH−cα′
h−wH = β(0)(wL+c−wH)+μL−wL is equivalent

to α′
h = μH−μL−c

c
. Assume that α′

h ∈ (α∗, 1]. By Lemma 4.1 and Lemma 4.2,

the best response correspondence q∗(α, q′′) of player A with q′′ < Gd(α) is

given by q∗(α, q′′) = 0 for each α ∈ (α′
h, 1]. Then, on (α′

h, 1], the expected

payoff Eup(α, q∗(α, q′′)) of player P is smaller than that of α = 0, namely

μH − cα − wH < Eup(0, q
∗(α, q′′)) = β(0)(wL + c −wH) + μL − wL, because

the function μH − cα − wH is monotonically decreasing. Hence we have a

following claim.

Claim 3: Each α ∈ (α′
h, 1] is not a player P ’s strategy of psychological

equilibrium points of our model with an impulse of deceive.
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For each α ∈ (0, α∗), Eup(α, 0) > Eup(α, 1) by part (2) of Lemma 2.3 and

monotonicity of both Eup(α, 0) and Eup(α, 1). Each α ∈ (0, α∗) is not the

optimal strategy for player P given player A’s best response correspondence.

Hence we have a following claim.

Claim 4: Each α ∈ [0, α∗) is not a player P ’s strategy of psychological

equilibrium points.

Fix a strategy α ∈ [α∗, α′
h] of player P . Then there is a second order

belief q′′ = G(α), so that α ∈ Sp. For this α and q′′, q∗(α, q′′) = [0, 1]. For α

to be an optimal strategy, q∗(α, q′′) = 0 must hold. By Claim 3 and Claim 4,

each α ∈ [0, α∗) ∪ (α′
h, 1] is not the strategy of the psychological equilibrium

point of player P .

If μH−μL−c
c

= 1, an equality Eup(0, 1) = Eup(1, 0) holds, so that obviously

a point (α∗∗, q∗∗, q′′) = (0, 1, 1) is also the psychological equilibrium point.

Assume that there is no α′
h ∈ (α∗, 1] such that μH−cα′

h−wH = β(0)(wL+

c − wH) + μL − wL. Each α ∈ [0, α∗) is not optimal strategy of player P by

part (2) of Lemma 2.3. Fix a strategy α ∈ [α∗, 1] of player P . Then there

is a second order belief q′′ = G(α), so that α ∈ Sp. For this α and q′′,

q∗(α, q′′) = [0, 1]. For α to be an optimal strategy, q∗(α, q′′) = 0 must hold.

We have thus proved the theorem. �
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5 Concluding remarks

We show that a possible set of psychological equilibrium points constitutes a

connected set, [αl, α
∗], [α∗, αh] etc. Avenhaus, Okada and Zamir (1991) shows

that in a inspector leadership game with incomplete information about player

A’s payoff, the inspector’s payoff function given player A’s best response

becomes a continuous function of α. Our model with psychological factors

gives a psychological foundation to incomplete information about player A’s

payoff.

In psychological terms g, gd, of our model, player A does not take account

of a difference between player P ’s payoff and player A’ payoff, moreover we

do not introduce a psychological factor of fairness between players. Each

player with a psychological factor of fairness behaves reciprocally toward the

opponent player. Behavioral game theories with players who have reciprocal

factors in psychological terms have good predictions in experiments.9 Falk

and Fischbacher (2006) gives explanations for some anomalous behaviors

ovserved in experiments by the use of their theory of reciprocity. With a

reciprocal factor, our modified inspection game may have a good prediction

of experiments.

We assume fixed wages for player A. Our results may change drastically

if we consider more flexible systems of wages. Then we need to consider an

optimization with respect to both the error probability α and the wage level.

This is a challenging and interesting work. Dye (1986) and Kanodia (1985)

study more flexible systems of wage than that of our models, but they do

9Dufwenberg and Kirchsteiger (2004) and Falk and Fischbacher (2006) propose theories

of reciprocity.
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not introduce psychological factors into their models.

Appendix A

This appendix A provides proofs of lemmas in Section 2.

Proof of Lemma 2.1. From (2.1.a), if (1−β(α))(wH −wL)+(eH −eL) > 0

then q∗(α) = 1. Since wH − wL > 0, β(α) > 1 − eH−eL

wH−wL
. By Assumption 1,

the function β(α) has an inverse function β−1 ∈ [0, 1][0,1] which is decreasing.

Due to wH − eH > wL − eL = 0, eH−eL

wH−wL
∈ (0, 1) and β−1(1 − eH−eL

wH−wL
) is well

defined. Hence we obtain α < β−1(1 − eH−eL

wH−wL
).

From (2.1.a) and the definition of β(α), if (1−β(α))(wH −wL) = 0, then

q∗(α) ∈ [0, 1].

If (1 − β(α))(wH − wL) ≤ 0, then q∗(α) = 0. Since wH − wL > 0,

β(α) > 1 − eH−eL

wH−wL
. By Assumption 1, the function β(α) has an inverse

function β−1 ∈ [0, 1][0,1] which is non-increasing. Due to wH − eH > wL − eL

and eH > eL, eH−eL

wH−wL
∈ (0, 1) and β−1(1 − eH−eL

wH−wL
) is well defined. Hence we

obtain α > β−1(1 − eH−eL

wH−wL
). �

Proof of Lemma 2.2. (1) By Lemma 2.1 and (2.2.a), EuP (α, q∗(α)) =

μL + β(α)(wL + c − wH) − wL for each α ∈ [0, α∗). Since wH − wL > c and

β(α) is a decreasing function of α, EuP (α, q∗(α)) is an increasing function

on [0, α∗). By Lemma 2.1, EuP (α, q∗(α)) = μH − cα − wH for each (α∗, 0].

Since c > 0, we obtain the result.

(2) By Lemma 2.1 and (2.2.a), EuP (α, q∗(α)) = μL +β(α)(wL +c−wH)−wL

for each α ∈ [0, α∗). Since wH − wL ≤ c and β(α) is a monotonically de-

creasing function of α, EuP (α, q∗(α)) is a non-increasing function on [0, α∗).
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By Lemma 2.1, EuP (α, q∗(α)) = μH−cα−wH for each (α∗, 0]. Since c > 0, we

obtain the result. �

Proof of Lemma 2.3. (1) EuP (α, 0) > EuP (α, 1) is μH − cα − wH >

μL +β(α)(wL + c−wH)−wL from (2.2). This inequality becomes μH −μL +

(β(α) − 1)(wH − wL) > (α + β(α))c. By the definition of β(α) and a fact

that α + β(α) < 1, for each α ∈ [0, 1] μH − μL + (β(α) − 1)(wH − wL) ≥
μH − μL − wH + wL = (μH − wH) − (μL − wL) > c > (α + β(α))c.

(2) Suppose, by contradiction, EuP (0, 1) ≥ EuP (α∗, 0). Then there is a

number α′ ∈ [0, α∗] such that EuP (0, 1) = EuP (α′, 0) by part (2) of Lemma

2.2. We have α′ = (μH−wH )−(μL−wL)
c

+ 1. Since (μH −wH)− (μL −wL) > 0, a

contradiction. �

Appendix B

This appendix B provides proofs of lemmas in Section 3 and in Section 4.

Proof of Lemma 3.1. From (2.1.b), if an inequality β(α)(wH−wL+g(q′′))+

(wL−wH)+(eH −eL) > 0 holds, then q∗(α, q′′) = 1. Let β(α) �= 0. Then the

inequality becomes g(q′′) > (wH−wL)+(eL−eH )
β(α)

−(wH−wL). Since g has a mono-

tonically increasing inverse function g−1 ∈ RR, q′′ > g−1
(

(wH−wL)+(eL−eH )
β(α)

−
(wH − wL)

)
. A function G(α) ≡ g−1( (wH−wL)+(eL−eH )

β(α)
− (wH − wL)) is a

monotonically increasing function of α on [0, 1]. This follows from facts that;

(1) β(α) is a monotonically increasing function of α,

(2) wH − eH > wL − eL,

(3) g−1 is a monotonically increasing function.
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Therefore, if q′′ > G(α) then q∗(α, q′′) = 1.

From (2.1.b), if an inequality β(α)
(
wH − wL + g(q′′)

)
+ (wL − wH) +

(eH − eL) < 0 holds, then q∗(α, q′′) = 0. Let β(α) �= 0. Then the inequality

becomes g(q′′) < (wH−wL)+(eL−eH )
β(α)

−(wH −wL). Since g has the monotonically

increasing inverse function g−1 ∈ RR, q′′ < g−1
( (wH−wL)+(eL−eH)

β(α)
−(wH−wL)

)
.

The function G(α) ≡ g−1
(

(wH−wL)+(eL−eH)
β(α)

− (wH − wL)
)

is a monotonically

increasing function of α on [0, 1], so that if q′′ < G(α) then q∗(α, q′′) = 0.

From (2.1.b), if an equality β(α)
(
wH − wL + g(q′′)

)
+ (wL − wH) +

(eH − eL) = 0 holds, then player A randomly chooses his effort level. Let

β(α) �= 0. Then the equality becomes g(q′′) = (wH−wL)+(eL−eH)
β(α)

− (wH −wL).

Since g has the monotonically increasing inverse function g−1 ∈ RR, q′′ =

g−1
( (wH−wL)+(eL−eH )

β(α)
−(wH−wL)

)
. The function G(α) ≡ g−1

( (wH−wL)+(eL−eH)
β(α)

−
(wH − wL)

)
is a monotonically increasing function of α on [0, 1], so that if

q′′ = G(α) then player A randomly chooses his effort level.

When β(α) = 0, that is α = 1, β(α)
(
wH−wL+g(q′′)

)
+(wL−wH)+(eH−

eL) = (wL−wH)+(eH−eL) < 0 due to wH−eH > wL−eL. Then q∗(1, q′′) = 0

for each q′′ ∈ [0, 1]. �

Proof of Lemma 3.2. Since β(0) = 1, G(0) = g−1(eL − eH) ≤ 0. By

Assumption 2, eL − eH < −k if and only if G(0) < 0. G(α) ∈ R(0,1] is

a differentiable and monotonically increasing function due to Assumption 1

and Assumption 2. Since lim
α→+1

G(α) = +∞, eL − eH < −k if and only if

there is a number αl ∈ (0, 1) such that G(αl) = 0.

Since G(α∗) = G
(
1 − eH−eL

wH−wL

)
= 0 and G(α) ∈ R(0,1] is monotonically in-

creasing, we obtain αl < α∗. �
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Proof of Lemma 3.3. (1) Since G(α) is monotonically increasing, q′′ ≥
0 ≥ G(α) for each point (α, q′′) ∈ S1. Hence q∗(α, q′′) = 1 for each point

(α, q′′) ∈ S1 by Lemma 3.1. From (2.2.a), the expected payoff of player P is

given by Eup(α, 1) = β(α)(wL+c−wH)+μL−wL for each point (α, q′′) ∈ S1.

For each point (α, q′′) ∈ S2, q∗(α, q′′) = 1 by Lemma 3.1. From (2.2.a),

the expected payoff of player P is given by Eup(α, 1) = β(α)(wL + c−wH)+

μL − wL for each point (α, q′′) ∈ S2.

(2) For each point (α, q′′) ∈ S3, q∗(α, q′′) = 0 by Lemma 3.1. From

(2.2.a), the expected payoff of player P is given by μH − cα − wH for each

point (α, q′′) ∈ S3.

Since G(α) is monotonically increasing, q′′ < G(α) for each point (α, q′′) ∈
S4. Hence q∗(α, q′′) = 0 for each point (α, q′′) ∈ S4 by Lemma 3.1. From

(2.2.a), the expected payoff of player P is given by μH−cα−wH for each point

(α, q′′) ∈ S4. �

Proof of Lemma 3.4. By Lemma 3.3, q∗(α, q′′) = 1 for each α ∈ [0, αl]

and each q′′ ∈ [0, 1], so that EuP (α, q∗(α, q′′)) = EuP (α, 1) = β(α)(wL + c−
wH) + μL − wL for each α ∈ [0, αl) and each q′′ ∈ [0, 1].

By Assumption 1 and an inequality c < wH−wL, the expected payoff function

EuP (α, q∗(α, q′′)) = β(α)(wL +c−wH)+μL−wL is monotonically increasing

in α ∈ [0, αl), so that α ∈ [0, α) is not a strategy of the subgame perfect

equilibrium point of our model with a sense of guilty of the agent. Hence

each α ∈ [0, αl) is not the psychological equilibrium point of our model.

By Lemma 3.3 and the fact c > 0, for each α ∈ (α∗, 1], EuP (α, q∗(α, q′′)) =

EuP (α, 0) = μH − cα−wH which is monotonically decreasing in α ∈ (α∗, 1],

so that α ∈ (α∗, 1] is not a strategy of the subgame perfect equilibrium point
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of our model with a sense of guilty of the agent. Thus, each α ∈ (α∗, 1] is not

the psychological equilibrium point of our model. �

Proof of Lemma 3.5. Since Lemma 3.3 and the consistency condition of

Definition 1, EuP (α, q∗(α, q′′)) = EuP (α, 0) = μH − cα − wH for each α ∈
(α∗, 1]. This function EuP (α, q∗(α, 0) is decreasing on (α∗, 1] due to c > 0,

so that each α ∈ (α∗, 1] is not player P ’s strategy of the subgame perfect

equilibrium strategy. Hence each α ∈ (α∗, 1] is not player P ’s strategy of the

psychological equilibrium point of our model. �

Proof of Lemma 3.6. By Lemma 3.3 EuP (α, q∗(α, q′′)) = EuP (α, 1) =

β(α)(wL + c − wH) + μL − wL for each α ∈ [0, αl). By Assumption 1, if c >

wH − wL then the expected payoff function EuP (α, q∗(α, q′′)) = β(α)(wL +

c − wH) + μL − wL is monotonically decreasing in α ∈ [0, αl), so that each

α ∈ (0, αl) is not a strategy of the subgame perfect equilibrium point. Hence

each α ∈ (0, αl) is not a strategy of the psychological equilibrium point.

By Lemma 3.3, for each α ∈ (α∗, 1], EuP (α, q∗(α, q′′)) = EuP (α, 0) =

μH − cα−wH which is monotonically decreasing in α ∈ (α∗, 1] due to c > 0.

Thus, each α ∈ (α∗, 1] is not a strategy of the psychological equilibrium point

of our model. �

Proof of Lemma 3.7. By Lemma 3.3, EuP (α, q∗(α, q′′)) = EuP (α, 1) =

μH−cα−wH for each α ∈ (α∗, 1]. This expected payoff function EuP (α, q∗(α, 0)

of player P is monotonically decreasing in α ∈ (α∗, 1] due to c > 0. Thus,

each α ∈ (α∗, 1) is not player P ’s strategy of the psychological equilibrium

point of our model. �
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Proof of Lemma 4.2. (1) Let Gd(α) = 0. Then gd(0) = (wH−wL)+(eL−eH)
β(α)

−
(wH − wL) = 0 by Assumption 3. We obtain α = β−1

(
1 − eH−eL

wH−wL

)
= α∗.

(2) Let G(α) = 1. Then (wH−wL)+(eL−eH )
β(α)

− (wH −wL) = k by Assumption

3, so that β(α) = (wH−wL)+(eL−eH )
wH−wL+k

. By the definition of β(α), if k < eH − eL,

there is a unique number α ≤ 1 such that β(α) = (wH−wL)+(eL−eH )
wH−wL+k

. Let

the number α be αh. By Assumption 2, α − α∗ = β−1
(

wH−wL+eL−eH

wH−wL+k

) −
β−1

(
wH−wL+eL−eH

wH−wL

) ≥ 0. �

Proof of Lemma 4.3. By Lemma 4.1, q∗(α, q′′) = 1 on S1d and S2d. From

(2.2.a), the expected payoff of player P is given by Eup(α, 1) = β(α)(wL +

c − wH) + μL − wL.

By Lemma 4.2, q∗(α, q′′) = 0 on S3d and S4d. From (2.2.a), the expected

payoff of player P is given by μH − cα−wH. �
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Figure 1: The model without psychological factors.
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Figure 2: The expected payoff Eup(α, q∗(α)) of player P .
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Figure 3: The model with a sense of guilty of player A.
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Figure 4: The best response correspondences q∗(α, q′′) of player A.
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1α∗ᾱαlO

Eup(α, q∗(α, q̄′′))

Eup(α, 0)

Eup(α, 1)

α
α∗ 1ᾱαlO
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Figure 5: The expected payoff of player P for a fixed second order belief

q̄′′ = G(ᾱ).
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Figure 6: The model with an impulse to deceive.
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Figure 7: The best response correspondence q∗(α, q′′) of player A.
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