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This paper examines the role of peer effects in teenagers’ smoking behavior in the
United States. I present a random utility model that incorporates complementarity between
individual and peer smoking. A Markov process model of smoking interactions between
individuals is presented. I estimate the structural parameters of the model using a steady
state distribution that is determined by the Markov process. The empirical results strongly
support the presence of positive peer effects. Interestingly, peer interactions are found to
be stronger within the same gender than across genders. The same result is found for race.
Moreover, a multiplier effect is found.

1. INTRODUCTION

The prevalence of youth smoking is a major public health concern in the United States.
During the last three decades, federal and local government tobacco policies have achieved
a dramatic reduction in the number of adult smokers in the United States. The same
progress, however, has not been made for American youth. For example, in the 1990s,
the smoking rate increased by about a half among 8th and 10th graders and by nearly
one-third among 12th graders. Although smoking has declined since the late 1990s and
into the 2000s, nearly a quarter of youths are smokers by the time they complete high
school (Johnston et al. 2004). Because smoking at early age leads to long-term health
consequences in later life, preventing smoking among young people is critical to ending
the epidemic of diseases related to tobacco use in the United States.

In a series of econometric studies, smoking demand functions were estimated for
young people in an attempt to explain the observed differences in youth smoking behavior
between groups. These studies found significant variation in price responsiveness across
groups: young men and blacks are more responsive to cigarette price changes than are
young women and whites. For example, Chaloupka and Pacula (1999) find that the price
elasticity is -0.93 for male high-school students while the price elasticity is -0.60 for
female high-school students, based on micro-data from the 1992-1994 Monitoring the
Future Survey. They also find that black male students are the most responsive to price;
in this case the estimated price elasticity is -1.65. Gruber and Zinman (2000), based on
the 1991-1997 Monitoring the Future Survey data, find that the price elasticity is -0.35
for white high-school students while the price elasticity is -2.32 for black high-school
students.1 However, these results raise the question of why gender and race so markedly
affect the elasticity of demand for smoking.

One explanation is that the underlying cause of this difference is the intensity of
peer interactions. DeCicca et al. (2000) hypothesize that peer interactions can lead to
“bandwagon effects” (Liebenstein 1950) on consumption, which raise the demand for
cigarettes when others are smoking. Changes in cigarette prices not only have a direct
effect on consumption but also have an indirect effect—changes in the consumption level

1. See also Report of the Surgeon General (1998) .
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of the peer group as a whole affect demand among individual group members. Thus,
differences in the intensity of such interactions could account for differences in the price
elasticity between groups.

In recent years, economists and other social scientists have devoted much effort
to studying peer interactions in smoking behavior among young people (e.g., Norton
et al. 1998; Gaviria and Raphael 2001; Powell et al. 2005). Peer effects have been of
interest because they imply an externality that can lead to large differences in smoking
behavior through social-multiplier effects. Given the presence of a strong peer effect,
government interventions to prevent young people from starting to smoke— mandated
tobacco education in schools, a complete ban on smoking by anyone on school grounds,
restrictions on tobacco advertising, and prohibitions on the sale of tobacco products to
minors — might be facilitated further.

In this paper, I investigate the importance of peer interactions in youth smoking
behavior. The hypothesis to be tested is that the probability that an individual smokes
is positively related to the fraction of smokers in his or her peer group. Data from the
2000 National Youth Tobacco Survey (NYTS) are used to test this hypothesis. This
survey contains information on the prevalence of a variety of tobacco products among
middle- and high-school students in the United States.

There are two empirical problems in estimating the magnitude of peer interactions.
The first problem is that regressing a person’s behavior on the behavior of his peers

is inappropriate. This would seem to be a natural way to estimate peer effects. However,
as argued in Case and Katz (1991), peer choice is endogenous. This endogenous aspect of
peer choice causes simultaneous equations bias. Peer choice, which enters a person’s utility
function reciprocally, is simultaneously affected by that person’s choice. The regression
would have an error term that is correlated with peer choice, which is an explanatory
variable. Standard econometric theory states that estimates from the regression would
be biased and inconsistent as a result.

The second problem is that outcomes that are due to other factors are mistakenly
attributed to peer effects. Manski (1993) argues that it is possible that peer effects may be
indistinguishable from such omitted factors. An example may clarify this point. Suppose
that there is a high smoking rate among teenagers in a neighborhood. This may be
because they face the same cultural attitudes towards tobacco in the neighborhood, or
because they have similar backgrounds as a result of choices about where to live. One
might see this as evidence of peer effects because each person’s smoking seems to be due
to smoking by others in the neighborhood. However, peer effects are absent because all
smoking behavior in the neighborhood is due to other common factors. Failure to control
for these effects may bias the estimation of peer effects.

In order to address the difficulty described above, I adopt the following empirical
strategies for estimating a social interaction model that incorporates peer effects.

First, I distinguish between endogeneity and simultaneity in decision making.
Endogeneity of choice follows from simultaneous decision making, but simultaneity is not
the only cause of choices being endogenous. I assume that youth smoking decisions occur
sequentially rather than simultaneously. That is, whereas the simultaneity of choices is not
necessarily an essential feature of the social interaction model, the reciprocity of choices
is. Choices are considered reciprocal if the direction of influence in social interactions is
two-way. 2 As reciprocal interactions are repeated, smoking profiles of a group of persons

2. Reciprocity emphasizes the bidirectional influence of social interactions. To make the difference
in unidirectional or bidirectional influence of social interactions clear, consider two similar but distinct
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evolve together over time. Feedback though peer-to-peer interactions generates a positive
correlation between the smoking choices of individuals in the same peer group. Within
the sequential framework, I argue that all outcomes are endogenous variables that are
determined by the model itself. The joint distribution of outcomes is considered in terms
of the likelihood function.

Second, I include county fixed effects to account for unobserved common factors. A
model with fixed effects allows the independent identification of endogenous peer effects
and exogenous correlated effects, under the assumption that all omitted variables vary
only at the county level. I exploit the cluster nature of the NYTS data set to control
for unobserved characteristics common to schools in the same county. Endogenous peer
effects are identified by using variations in the proportion of smokers between schools
within a county. Fixed-effects approaches have been used in recent empirical studies of
peer effects (e.g., Bertrand et al. 2000; Weinberg et al. 2004; Arcidiacono and Nicholson
2005).

The main methodological tool of this paper is a variant of the framework of
best-response dynamics, which is similar to Blume (1993). Under the assumption that
peer interactions occur frequently, a best-response dynamic model can determine the
evolution of smoking profiles. Every person, given the opportunity to review his or
her smoking status, updates the smoking choice to maximize his or her current utility
while treating other persons’ smoking as exogenous. Idiosyncratic taste shocks lead to
stochastic transitions from one state to another in smoking profiles. I show that the
dynamic interaction process follows a Markov chain on finite spaces of the smoking
profile.

In the model of dynamic interaction process, people are assumed to make the best
response to the observed smoking or nonsmoking actions of others, and they do not
attempt to anticipate the actions of others in the future. Thus, this paper assigns a very
limited view to human rationality about the ability to forecast others’ behavior. The
empirical method developed in this paper may not be applied to the study of social
interactions where the expectation of others’ behavior plays an important role.3 Yet, I
believe, the model in this paper contributes to a plausible visualization of interactive
smoking decisions among teenagers. The strategy of this paper is to demonstrate how a
simple form of interactive behavior leads to a predictable pattern of smoking behavior.

The result of this paper establishes that the dynamic interaction process converges
to a unique steady-state distribution as the number of periods becomes large, and that
it is independent of the initial state from which the dynamic process starts. The steady-
state distribution, which is defined over all possible states of the smoking profile, provides
a precise prediction of the smoking state most likely to prevail in the long run.

I estimate the structural parameters of the social interaction model by using the
steady-state distribution of the interaction process. The steady-state distribution is
assumed to represent a cross-sectional state of smoking profiles at any point in time.
Hence, it is used to formulate the likelihood function. The structural parameters of the
model are estimated by maximum likelihood.

social interaction effects: peer effect and role-model effect. Peer effect is considered as reciprocal, as it
refers to a two-sided influence in imitation, while role-model effect is considered as nonreciprocal, as it
refers to a one-sided influence in imitation.

3. For example, consider the study of social interactions on fertility choice. In this case, individuals’
expectations regarding each other would play an important role in a family planning problem. See Durlauf
and Walker (2001) for example.
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Two sets of maximum likelihood estimates are obtained. The first controls for a
variety of individual and county characteristics, which are augmented by the Census
data. Since the likelihood function is analytically intractable, it is approximated by
using a simulation method. Simulated samples are drawn from the Markov chain of the
dynamic interaction process described above. This technique was developed by Geyer and
Thompson (1992). The second set of maximum likelihood estimates incorporates fixed
effects into the social interaction model to account for unobserved common factors specific
to neighborhoods. I suggest that these fixed effects represent unobserved neighborhood-
related factors. The drawback of this approach is the associated increase in nuisance
parameters. This problem is solved by using the conditional maximum likelihood method
proposed by Andersen (1970).

In this paper, I focus on school cohorts as an approximate definition of peer groups.
Because the data set used in this paper does not include information about the structure
of peer group relations, it is necessary to make assumptions about the composition of a
person’s peer group. I assume that smoking interactions occur mainly between people at
the same school. Since the NYTS uses samples of students taking the same compulsory
courses in each school, these samples comprise students who probably see, study and
play with each other every day. Thus, this assumption is realistic. Moreover, I argue that
peer interactions relate to gender and race. Thus, I estimate both gender-specific and
race-specific peer effects on youth smoking behavior.

The empirical results provide compelling evidence for the existence of peer effects on
young people’s smoking behavior. The estimates show that peer effects are positive and
highly significant. Furthermore, peer interactions are found to be stronger within genders
than between genders. The same result is found for race. Furthermore, these strong peer
effects are robust to the inclusion of county-specific fixed effects. These findings support
the hypothesis that youth smoking patterns are due to peer effects rather than unobserved
neighborhood characteristics (in as much as they are captured by county effects).

A variety of additional specifications are also examined to determine the robustness
of the findings. I consider less restrictive assumptions on types of peers and introduce a
new characteristic to define peer type. Nevertheless, positive and significant peer effects
are found. Furthermore, separate models are estimated for middle-school and high-school
students to address heterogeneity in smoking behavior due to “addictive stock”. The
results show that high-school students are less susceptible to peer pressure than are
middle-school students. This is consistent with a priori expectations that addiction might
dampen the magnitude of peer effects. Nevertheless, sizable positive peer effects are found
not only for middle-school students but also for high-school students.

The paper also examines the expected response of youth smoking behavior to changes
in hypothetical smoking policies. The simulation results strongly indicate that cigarette
excise tax is an important policy tool for discouraging youths from smoking. Policy
experiments based on the estimated social models show that a 10 percent increase in the
tax on cigarettes could reduce the youth smoking rate by about 2 percent. Furthermore,
tax increases can explain about a third of the decline in smoking among both middle-
school and high-school students in the early 2000s. A multiplier effect is also found. The
impact of a tax on youth smoking increases by a factor of more than 1.5 when peer
interactions are present.

The paper is organized as follows. In section 2, I present the behavior model of
smoking interactions and describe the basic assumptions of the model. In section 3, I
describe the empirical specification of the model and the estimation technique. In section
4, I describe the data set and provide descriptive information on the variables used for
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estimation. In section 5, I report the estimation results, including those from the fixed-
effects model used to account for unobserved heterogeneity between counties. In section 6,
I discuss the robustness and policy implications of these findings. Section 7 concludes the
paper. Proofs and derivations of some ancillary results are presented in the appendixes.

2. BEHAVIORAL MODEL

2.1. Best Response Revision

I construct a simple interaction model based on the random-utility framework of binary
choice. The critical feature is that the chance that a young person will temporarily take up
smoking increases with the fraction of smokers in his or her peer group. Such temporary
smoking might be considered as pure experimentation for young persons, so that a puff of
a cigarette might be driven by strong peer pressure. Although several alternative models
are possible for peer interaction models,4 I adopt a simple discrete-choice framework by
using a parameterization proposed by Brock and Durlauf (2001).

Suppose that there are N persons. Persons are indexed by i ∈ I ≡ (1, · · · , N). So, the
set I denotes a peer group of N persons. Suppose that person i ∈ I is deciding whether
or not to smoke cigarettes. Let yi ∈ {−1, +1} denote the smoking status of person i. I
assume that smoking status is binary such that yi = +1 if the person is smoking, and
yi = −1 otherwise.

A smoking profile y = (y1, · · · , yN ) is a vector of the smoking status of all N persons.
Let Ω = {−1, +1}N denote all possible states of the smoking profile. The number of
different states of Ω is given by |Ω| = 2N .

Persons get satisfaction, or utility, from smoking cigarettes. Let y∗i denote the latent
utility from smoking for person i. I assume that utility is given by the following function,
which is linear in the parameters:

y∗i = bi(xi) +
∑

j 6=i ρijyj + εi. (2.1)

The first component incorporates systematic utility (bi(xi)) and a stochastic idiosyncratic
taste shock (εi). In what follows, let xi ⊂ RK be a 1 × K vector of individual
characteristics for person i, and let εi ∈ R be a random taste shock for person i. Let
f(ε) and F (ε) be the density and distribution functions of the shock ε, respectively. I
assume that the variable xi is observable by everyone but that the variable εi is private
information known only by person i.5 The second utility component involves the social
capital of the smoking behavior of other persons. This component is given by (

∑
ρijyj).

The parameter ρij measures conformity; i.e., the degree to which person i behaves like
person j. In short, the parameter ρij represents the peer effect between person i and j.

I assume that the peer effect does not depend on any individual characteristics other
than types. In other words, the peer effect ρij is assumed to be constant between person
i and person j, who belong to the same type. The assumption will be discussed in the
later section, which is concerned with coping with empirical specification of the model.

Decisions are made to maximize latent utility. While smoking utility is given by
equation (2.1), nonsmoking utility is normalized to zero. An individual with positive
latent utility chooses to smoke. Let y−i ≡ {yj , j ∈ I\{i}} be a smoking profile comprising
the smoking status of the (N − 1) persons other than person i in the peer group I.

4. See Glaeser and Scheinkman (2000) for various social interaction models.
5. For example, the random variable εi could represents exposure to psychological stress that may

lead a person to start smoking.
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Assuming that the stochastic errors εis are independent and identically distributed across
persons, the probability that person i smokes is (yi = +1), conditional on xi and y−i, is
given by

πi(yi = +1|y−i,xi) =
∫

D

f(εi)dεi, (2.2)

where D = {εi ∈ R|y∗i > 0} denotes the area under which the integral is taken.
Equation (2.2) represents a stochastic best-response rule.

It is very difficult to estimate Equation (2.2) directly by using microeconomic data.
The problem is that the information about the other person’s smoking status y−i is that
person i’s conditions at the time of his smoking decision are hardly available from data.
I will discuss an alternative estimation strategy in detail in the next section.

2.2. A Dynamic Interaction Process

In this section, I develop a stochastic process in which each person continually updates his
or her smoking status. I assume that smoking decisions are not once-and-for-all events
but are ‘on-again-off-again’ events. This assumption is supported in many studies in
developmental psychology (e.g., Flay et al. 1983) in which it is argued that most teenagers
experiment with smoking sufficiently repeatedly to acquire the smoking habit.

To be more precise, I consider a stochastic process in which each person’s smoking
profile develops in discrete steps. Therefore, it is convenient to use discrete time,
t = 0, 1, 2, · · · ∈ Z. In what follows, I use yi(t) and xi(t) to denote the smoking status of
person i at time t and a vector of characteristics on that person, respectively.

The specification of the stochastic process relies heavily on local interaction models
of learning and adaptive behavior from game theory (e.g., Blume 1993). The key features
of these models are inertia and adaptive behavior.

Inertia implies that, once a decision is made, it defines behavior for some time.
Suppose that each person makes a decision at randomly chosen intervals.6 Let d(t) ∈ I
be the person who makes a decision at time t. In a sufficiently small interval of time,
it is unlikely that two or more persons will make decisions simultaneously. Hence, it is
reasonable to assume that the decisions occur sequentially, so that only one person d(t)
is selected out of the peer group I to make a decision at each moment t = 0, 1, 2, · · · ∈ Z.
Thus, decisions are given by a sequence (d(0), d(1), d(2), · · · ).

In adaptive behavior, a person makes a decision by considering the current, not
expected future, rewards of each choice. Let y∗i (t) be the latent utility derived from
smoking by person i at time t. Then, analogously to the way that latent utility is
represented by equation (2.1) from the static model, I assume that

y∗i (t) = bi(xi(t)) +
∑

j 6=i ρijyj(t− 1) + εi(t). (2.3)

In other words, person i at time t chooses between yi(t) = +1 if y∗i (t) ≥ 0 and yi(t) = −1
if y∗i (t) < 0, while treating other persons’ smoking, yj(t− 1), as exogenous. Each person
is given an opportunity to revise their choice responding to the lagged decisions of others
in the peer group.

I would also like to emphasize the scope of social interactions that occur between
people who imitate the smoking behavior of others. The model’s local interaction
framework postulates that in every period, only one person is making a smoking decision

6. For example, the timing of decisions could be, but need not be, described by a Poisson process.
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after observing the lagged choices of others in the same peer group. As described later
in the empirical part of the paper, I assume that the structure of the economy is such
that the entire population is divided into a number of mutually exclusive peer groups of
relatively small size. It thus follows that each process of smoking interaction is locally
independent across peer groups.

Note that I adopt a relatively simple specification for studying youth smoking
decisions; i.e., one that excludes cumulative past smoking and the ‘addiction stock’ from
equation (2.3). I assume that each person is not yet addicted when making a decision
about temporary smoking. As the rational addiction model (e.g., Becker and Murphy
1988) implies, the stock of addiction plays an important role in adult smoking. However,
there are two reasons why it might not be important for young people. First, as Chaloupka
(1991) shows empirically, young people tend to have higher rates of time preference for
future smoking decisions than do older people. Hence, it might be reasonable to assume
that youth smoking is not influenced by expected future smoking. Second, as explained in
section 4, data show that young people have low levels of past smoking.7 Note also that,
although addiction to smoking is not fully taken into account, differences in smoking
behavior due to different levels of addictive stocks are examined in a later section.

The specific way in which I model smoking interactions is through a discrete-time
stochastic process in which each person updates his or her smoking choice sequentially
over time. Let y(t) ≡ (y1(t), · · · , yN (t)) ∈ Ω denote a smoking profile at time t. Then,
a sequence [y(0),y(1),y(2), · · · ] describes the evolution of smoking profiles over time.
The transition from one state to another is specified as follows. Suppose that a smoking
profile is y(t) = ω = (ω1, · · · , ωN ) at time t. Then a new smoking profile in period t + 1
evolves from the smoking profile in period t according to the following transition. Let
x(t) ≡ (x1(t), · · · ,xN (t)) be the collection of background characteristics for N persons
at time t. For each smoking status ν ∈ {−1, +1},

yi(t + 1) =

{
ν if i = d(t),
ωi if i 6= d(t),

(2.4)

with Prob(yi(t + 1) = ν|x(t)) = πi(yi = ν|y−i = ω−i,xi(t)) for i = d(t). Recall that
the assumption of sequential decisions allows person dt ∈ I to review his or her smoking
status in period t. The transition rule states that the smoking status of person d(t) is
updated according to the conditional probability represented by the best-response rule
and given by equation (2.2). However, the smoking status of persons other than d(t)
remains unchanged.

I refer to the stochastic process [y(0),y(1), · · · ,y(t))] described above as an
interaction process. It is simple to check that the transition probability at time t + 1 is
independent of its history before time t. Thus, the interaction process follows a Markov
chain on a finite state space of Ω. Markov chains are often used to study complex
interactions between economic agents (e.g., Föllmer 1974; Blume 1993; Ellisson 1993;
Young 1993; see also Topa (2001) for an empirical application).

I make the following three assumptions about the interaction process.

7. Note however that the model assumes that the stock of addictive capital has a negligible effect
on youth smoking. Empirical analysis of rational addiction processes with peer effects warrants further
research. For example, Bisin et al. (2006) study the rational expectations equilibria of a model with peer
interactions and incomplete information.
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Assumption 1. The shock is independent between persons and over time, is
identically distributed, and has the logistic distribution εi(t) ∼ F (ε) = exp(ε) /[1 +
exp(ε)].

Assumption 2. The vector of characteristics is time invariant: x(t) = x for any
period t ∈ Z.

Assumption 3. Prob(d(t) = i) > 0 for any person i ∈ I and for any period t ∈ Z.

The first assumption concerns the error distribution. The assumption of the logistic
distribution is standard in the literature (see Brock and Durlauf 2001). The second
assumption does not necessarily require that the characteristics be constant over time.8

The third assumption requires that every person be able to make a decision in each time
period.

It is straightforward to show that the interaction process [y(0),y(1), · · · ,y(t))] is an
aperiodic and irreducible Markov chain. The standard result shows that if the Markov
chain is aperiodic and irreducible, it is asymptotically convergent to the unique steady-
state distribution. I present the asymptotic distribution subsequently.

2.3. Steady-State Distribution

The following result specifies the steady-state distribution of the interaction process.

Theorem. Let assumptions 1–3 hold. (i) The interaction process has a unique
steady-state distribution P ∗ such that, for any ω and ω(0) ∈ Ω,

lim
t→∞

Prob(y(t) = ω|y(0) = ω(0),x(0) = x) = P ∗(y = ω|x). (2.5)

(ii) The steady-state distribution P ∗ is given by

P ∗(y = ω|x) = exp Q(ω|x)
/ ∑

η∈Ω

expQ(η|x), (2.6)

where

Q(ω|x) =
1
2

∑

i

ωibi(xi) +
1
4

∑

i

∑

j

ρijωiωj , (2.7)

for ω ∈ Ω.
The proof of the theorem is presented in the Appendix. It is an application of well-

known results concerning the convergence of Markov chains.
To specify the probability structure for the steady state distribution, the assumption

that only one person is selected out of one peer group at each moment, or that what
Blume (2003) calls the “one person at a time” formalism, is crucial. As Blume (1993, 2003)
argued, the stochastic dynamic process that allows for simultaneous decision making
inside each peer group would yield a different equilibrium state from the one presented
in this paper.9

8. However, it does require the background characteristics to remain invariant, at least over the
time-scale for decision making. The assumption is reasonable if decisions about temporary smoking
change more frequently (e.g., day-to-day) than background characteristics change (e.g., year-to-year).

9. The “one person at a time” assumption of decision making has been widely used in economic
analysis of social (strategic) interactions. For example, See Young (1993);Glaeser and Scheinkman
(2000);Blume and Durlauf (2003); Blume (2003).
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The feature of “one person at a time” assumption distinguishes the discrete-choice
model of this paper from other similar models of social interactions. For example, Brock
and Durlauf (2001) assumes that each person makes his or her decision simultaneously by
responding to the common expectation of other choices. Idiosyncratic shocks are assumed
to be private information, so that each person is uncertain what decisions are being made
by others at the same time as his or her own. Thus, their model is characterized by
incomplete information. On the other hand, the sequential decisions model considered in
this paper assumes that individuals do not attempt to anticipate the actions of others.
Rather, each individual is assumed to take the best response to the observed choices of
others with a lag. 10

It is important to note that the simultaneous decisions model of social interactions
yields multiple equilibria. A model with multiple equilibria has neither a unique reduced
form probability nor a well-defined joint probability distribution. In this case, point
estimation by maximum likelihood is not generally feasible. On the other hand, the
interaction process regarding the sequential decisions does not lead to multiple equilibria.
The steady-state distribution P ∗ represents the proportion of time that the process
spends in each state. Although some states of the smoking profile may occur more often
than others, in principle, the steady-state distribution allows each state to be revisited.
Thus, the stochastic process does not converge to a few distinct equilibria.

One final note concerns the possibility of contemporaneous decision making by
multiple persons in the economy as a whole. The assumption of sequentiality, regarding
the revision opportunity, may be considered too artificial for the global interaction
framework in which every person interacts with all others in the economy. It implies that
the revision opportunities of a group increase with the size of the group. Therefore, the
interval between the revision opportunities must be taken to be perhaps unrealistically
small for the global interaction economy of a large population. However, the local
interaction nature of the model allows the interaction process of smoking decisions,
presented by the best-response rule of equation (2.3), to be independent across peer
groups. It thus follows that multiple numbers of people who are members of different
peer groups might be able to make their smoking decisions contemporaneously in the
whole economy, while only one person who is selected out of each peer group is making
a smoking decision sequentially in part of the economy. Moreover, no matter how large
the entire economy becomes, the size of each peer group is fixed, with the number of
peer groups increasing. Hence, the assumption of sequential decision making seems no
less realistic than the alternative.

3. EMPIRICAL STRATEGY

In this section, I discuss the estimation of the behavior model described above. The basic
idea is that an observed smoking profile can be taken as a realization of the steady-state
distribution of the interaction process.

10. Other simultaneous decisions models of social interactions are also proposed. For example,
Heckman (1978) , Bresnahan and Reiss (1990) and Tamer (2003) assume that decision making also
takes place simultaneously but that idiosyncratic shocks are common knowledge rather than private
information. In these models, each person observes the realizations of others’ idiosyncratic random
shocks and has complete information about others’ choices.
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3.1. The Scope for Peer Group Interaction

For estimation, one needs to define each person’s peer group. In this paper, I assume
that a person’s school cohort represents a well-defined peer group. Moreover, I assume
that a person interacts daily with others in the same school. In other words, smoking
interactions occur within, not between, schools. These assumptions seem reasonable given
the absence of information about the structure of a person’s peer group. Evidence from
the sociology and social psychology literature indicates that the majority of middle-school
and high-school students choose as their peers fellow students from the same schools.11

I introduce several pieces of notation. Suppose that there are S different schools
observed in the data set. Schools are indexed by s ∈ {1, 2, · · · , S}. Every person attends
one of the finite number of nonoverlapping schools. Let Is ⊂ I denote a set of persons
at school s and Ns ≡ |Is|. For expositional simplicity, for now, I assume that schools are
the same size: Ns = N for all s = 1, · · · , S. Let ys ≡ {yi, i ∈ Is} be a smoking profile at
school s, which is a vector of smoking status for N persons. Let xs ≡ {xi, i ∈ Is} be an
N ×K matrix of individual characteristics of N persons at school s. In what follows, I
use Ωs to denote all possible states of ys. Then, ys ∈ Ωs.

3.2. The Likelihood Function

The objective is to estimate the structural parameters (bi, ρij : i, j ∈ I) of the latent-
utility model (equation (2.1) and (2.3)). However, identification of the parameters
requires the imposition of restrictions. The first identifying restriction concerns the
parameterization of the systematic part of the utility function. This type of linear
specification is quite standard in the literature on discrete-choice theory.

Assumption 4. The perceived benefits of smoking are a linear combination of
background characteristics. For any i ∈ I, bi(xi) = α + xiβ, where α is a scalar and
β is a 1×K parameter vector.

The second assumption is that peer interactions depend on the types of person who
match. Suppose that there are G different types of person, which are indexed by g ∈
{1, 2, · · · , G}. Then, one can state the following.

Assumption 5. Interactions are uniform for each type. That is, between person i
of type g and person j of type g′ in school s, peer effects are defined by ρij = ρgg′/N .

As an example person types, I consider gender. The most consistent finding of
the literature on peer groups (e.g., Shrum et al. 1988; McPherson et al. 2001) is that
students tend to choose school friends of the same gender. Let g ∈ {M,F}, where M and
F represent male and female respectively. Then, gender determines within-gender and
between-gender peer effects. I use ρMM to denote peer effects between a pair of persons
of type M , and ρMF to denote peer effects between a pair of persons of type M and type
F . The terms ρFF and ρFM are defined analogously.

Another example type is race. Many studies in sociology provide evidence
that peer groups are formed along racial and ethnic lines. Assuming that type

11. Shrum et al. (1988), based on studies of friendship structures among students from grades three
to 12 in a 1981–1982 survey, report that more than 95 percent of friendship links are within the same
school.
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g is defined by race {W,B, H}, the following peer effects are considered: ρ =
(ρWW , ρBB , ρHH) and (ρWB , ρBW , ρBH , ρHB , ρHW , ρWH), where the subscripts W , B
and H represent whites, blacks and Hispanics respectively. This specification of peer
effects implies the within-race peer effects, ρWW , ρBB and ρHH , and the cross-race peer
effects, ρWB , ρBH and ρHW . 12

The behavioral model described in the last section can be represented in terms of
the parameterization described above. For notational convenience, let the subscript g
represent type. Hence, I let yig be the smoking status of person i of type g, and let y∗ig
be latent utility. Then, equation (2.3) can be written in recursive form as follows:

y∗ig(t) = α + xi(t)β +
∑

g′ ρgg′
(

1
N

∑
j yjg′(t− 1)

)
+ εi(t). (3.8)

This implies that a person updates his or her smoking choice by responding to the average
choice of each subgroup g observed in the previous period. The smoking influences are
transmitted through peer effects with a lag. For now, unobservable errors are assumed to
be independent across persons i. The possibility of correlated unobservables is addressed
in a later section.

At first glance, it might seem straightforward to estimate equation (3.8) by using
microeconomic data. In practice, however, it is difficult (and can be impossible) to
estimate the equation by using the available data. The problem is that it is not always
possible to determine what individuals know at the time of their actual decisions. Cross-
section data has no information on whose choice precedes whose. It is impossible from
this “snapshot” of choices to observe the choices of the reference group to which persons
respond. Panel data would not solve this problem. To estimate the sequential choice model
presented above, one needs to know the precise order in which decisions are made.13

However, the sampling frequency of any panel data set is unlikely to coincide with the
timing of actual decision making. Manski (1993) has made similar points and states
that “a researcher must maintain the hypothesis that the transmission of social patterns
really follows the assumed temporal pattern. But empirical studies typically provide no
evidence for any particular timing (p540).”

Thus, for estimation I make an additional assumption about the sampling process.
That is, I assume that the smoking profile at each school is distributed according to the
steady-state distribution P ∗, which describes the interaction process. The steady-state
distribution can be compared with the empirical cross-sectional distribution of smoking
choices across schools.14 It is described formally as follows. Given data on the smoking
choices yi and background characteristics xi of all Ns persons, I make the following
assumption about the data generation process. Let Ps ≡ {Prob(ys = ωs|xs) : ωs ∈ Ωs}
be the distribution of ys conditional on xs in the population under consideration. For
any s ∈ {1, · · · , S}, Ps = P ∗, where P ∗ is the steady-state distribution of the interaction
process described above.

The steady-state distribution of the interaction process, P ∗, can be used as a
likelihood function to estimate the model by using cross-section data. Given the
assumptions above, the likelihood of a smoking profile, ys, can be derived as follows.
Let ρ ≡ {ρgg′} be a vector of peer effects involving ρgg′s for all g, g′ ∈ {1, · · · , G}. Then,

12. In the estimation that follows, I ignore effects for Asian students. Since Asian students comprise
less than 5 percent of the total sample, there is an insufficient number of schools with at least one Asian
student. Hence, all Asian students are excluded from the samples used for estimation.

13. Of course, one can actually model the dynamic smoking behavior differently with panel data.
Such a model might be estimable without knowledge of the “order of moves” of persons.

14. A similar approach to estimation has been used by Topa (2001).
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the structural parameters to be estimated are θ = (α, β,ρ) ∈ Θ ⊂ R1+K+G2
. Because

the steady-state distribution P ∗ is given by equation (2.6) in the theorem, the likelihood
of ys conditional on xs at school s is given by

P ∗(ys = ωs|xs, θ) = exp Q(ωs|xs, θ)
/ ∑

ηs∈Ωs

exp Q(ηs|xs, θ). (3.9)

Similarly to equation (2.7), one obtains

Q(ωs|xs,θ) =
1
2

∑

i

ωi(α + xiβ) +
1
4

∑
g

∑

g′
·
∑

i

∑

j

ρgg′ωigωjg′/Ns, (3.10)

where ωig indicates the choice made by person i of type g. Then,
∑

ωigωjg′ is obtained
for any pair of individuals, i and j, who belong to types g and g′, respectively. Therefore,
one can estimate the structural parameter θ by maximum likelihood. The contribution
to the log likelihood by school s is given by

`s(θ) = Q(ys|xs,θ)− log
∑

ηs∈Ωs

exp Q(ηs|xs,θ). (3.11)

The overall likelihood function combines the likelihood contributions of all schools;
`(θ) =

∑
s `s(θ). Accordingly, a maximum likelihood estimator is defined by θ̂ =

arg maxθ∈Θ `(θ).
Concerning the data structure, I assume a cluster sampling scheme in which a large

number of peer groups are randomly selected, and in which each peer group is relatively
small. Thus the asymptotic analysis is with the number of peer groups S becoming larger,
while the size of each peer group Ns is finite. Note that N =

∑S
s=1 Ns.

The estimation strategy described in this paper differs from that used in the discrete-
choice model of Brock and Durlauf (2001), who use standard logistic regression to
estimate the model parameters under the assumption that each person responds to an
identical expectation of others’ choices. While this approach may be appropriate in many
situations, it is not applicable in the context of the problem analyzed in this paper.
The premise of Brock and Durlauf is that the size of the peer group is so large that
the individual expectations of others’ choices can be approximated by the population
average of the observed choices. However, peer groups are not necessarily large. This
paper assumes that the peer group comprises students who take the classes of required
subjects within the same school cohort. Thus, the large-limit approximation used by
Brock and Durlauf might not be applicable to the moderately sized peer groups studied
in this paper. Although the validity of the assumption should be judged on a case-by-case
basis, the estimation framework used in this paper seems to suit moderately sized peer
groups. On the other hand, the framework of Brock and Durlauf could be used when
there is one large peer group (e.g., involving interactions in a large neighborhood).

3.3. Identification of Peer Effects

In this subsection, I investigate parameter identification.
I begin by showing that not all cross-type peer effects can be separately identified

from the data. In equation (3.10), note that
∑

i

∑
j ωigωjg′ =

∑
i

∑
j ωig′ωjg for any

g 6= g′ ∈ {1, · · · , G}, so that
∑

g

∑

g′
ρgg′

∑

i

∑

j

ωigωjg′ =
∑

g<g′
(ρgg′ + ρg′g)

∑

i

∑

j

ωigωjg′ . (3.12)
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This shows that any combination of the parameters, ρgg′ and ρg′g, given the restriction
ρgg′ +ρg′g, implies the same likelihood for equation (3.9). Therefore, the parameters ρgg′

and ρg′g cannot be identified at the same time. Thus, in the empirical analysis, I report
ρgg′ = (ρgg′ + ρg′g)/2. This composite parameter ρgg′ can be interpreted as the average
of the cross-type peer effects between different types of g and g′.

Next, I consider the variations in the data required to identify the peer effects.
For simplicity, I consider a model with one type of person (G = 1), so that the peer
effect, defined only for the within type, is represented by a single parameter, ρ. The
generalization to multiple types (G > 1) is quite straightforward. Let µ(ω) be the vector
of functions of choices, defined by

µ(ω) ≡
[

1
S

S∑
s=1

ωs,
1
S

S∑
s=1

(ωx)s,
1
S

S∑
s=1

ω2
s

]
,

where ωs =
∑

i ωi/Ns, (ωx)s =
∑

i(ωixi)/Ns and ω2
s = [

∑
i ωi/Ns]2 are the average

statistics within school s, and all summands are taken over the set of persons Is at
school s.

According to the theory of exponential families (see Lehmann and Casella 1998),
µ(ω) is the canonical sufficient statistic for the parameter θ = (α, β, ρ) of the distribution
P ∗. The maximum likelihood estimator, θ̂, is given by the solution to the following system
of nonlinear equations:

E
[
µ(ω)

∣∣α̂, β̂, ρ̂
]

= µ(y), (3.13)

where E[µ(ω)] is the expected value of µ(ω) under the P ∗, and µ(y) is the realized value
of µ(ω) observed in the data. Therefore, a set of parameters, θ = (α, β, ρ), is identified
if it is the unique solution to equation (3.13).

Unfortunately, the expectation in equation (3.13) is a complicated function of the
parameter. One cannot solve the system of equations analytically. Although parameter
identification cannot be demonstrated analytically in this case, numerical methods
can be used to illustrate identification.15 That is, I provide a map between a set of
parameters, (α, β, ρ), and the expected canonical statistic, E[µ(ω)], which is numerically
approximated by using values simulated from the interaction process.

Figure 1 and 2 presents representative selections of contours of the empirical average
of µ(ω) for a grid of a reasonable range of parameters.16 For simplicity, I consider a model
with only one explanatory variable, xs, which is assumed to be normally distributed
across schools s = 1, · · · , S. Figure 1 shows the contours of 1

S

∑
s ωs and 1

S

∑
s ω2

s drawn
for α ∈ [−1 1] and ρ ∈ [0 2] given β = 0.5. Figure 2 shows the contours of 1

S

∑
s (ωx)s

and 1
S

∑
s ω2

s drawn for β ∈ [0 1] and ρ ∈ [0 2] given α = 0.5. 17 In both figures, the
intersections between these two sets of contours become singletons over the examined
parameter regions. Therefore, these numerical simulation results strongly indicate that
the parameters can be uniquely identified from the data.

15. The approach that I adopt in this paper is similar to that used by Conley and Topa (2003), who
use simulation exercises to demonstrate the local identification of a dynamic local interaction model.

16. The range of parameters is chosen to cover reasonable smoking rates across schools. The
smoking choices are simulated for the grid of the values for all parameters with a step size of 4 = 0.05.
Detailed implementation strategies of simulation are found in the working paper version, and are also
available from the supplementary web site.

17. Different sets of contours drawn for different combinations of parameters can be obtained from
the author upon request. The patterns are quite similar to those presented in Figure 1 and 2.
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Figure 1

Set of contours of the simulated averages of canonical statistics for (α, ρ) in the range of
α ∈ [−1 1] and ρ ∈ [0 2] for β = 0.5
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Figure 2

Set of contours of the simulated averages of canonical statistics for (β, ρ) in the range of
β ∈ [0 1] and ρ ∈ [0 2] for α = 0.5

The identification exercise by the numerical simulation above is examined only for
the limited region of the parameter space, and thus it is local in nature. Yet, it can provide
an idea of how and why the peer effect is identifiable from data. To gain the intuition,
consider the variance of the average smoking rates between schools, which is given by

Var(ωs) = 1
S

∑S
s=1 ω2

s −
[

1
S

∑S
s=1 ωs

]2

. In Figure 1(b), the higher values of 1
S

∑
s ω2

s

(located in higher positions) tend to yield the higher value of ρ at the intersection of a
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given contour of 1
S

∑
s ωs, which is the almost vertical line in Figure 1(a). Similarly, in

Figure 1(a), the lower absolute values of 1
S

∑
s ωs (located in more central positions) tend

to yield the higher values of ρ at the intersection of a given contour of 1
S

∑
s ω2

s, which has
an inverse-U shape in Figure 1(b). Since the cross-school variance, Var(ωs), is related to
the difference of the (squared) canonical statistics examined above, this inspection shows
that a stronger peer effect, ρ, is indicated revealed by a larger Var(ωs).

The fundamental idea is that too large a variance of aggregates explained by
differences in fundamentals between groups indicates strong peer effects. So, one could
use the cross-school variance of average smoking choices to identify the magnitude of
peer effects in the estimation. A similar empirical idea identifying peer effects using the
cross-group variation is presented in other empirical works on social interactions. 18 In
principle, as Glaeser and Scheinkman (2001) states, this empirical approach does not
suffer from the reflection problem for identification because it explicitly incorporates the
fact that all individuals affect each other. Formally, this approach attributes the sizable
variance of aggregates between groups to strong peer effects after controlling for the
observable differences in characteristics.

In contrast, in a standard cross-sectional model that excludes peer effects, the
interpretation of excessive cross-school variation would be different. The standard model,
which does not incorporate an amplifier mechanism provided by peer effects, ascribes the
large variation solely to the difference in fundamentals. If the difference in fundamentals
is magnified by peer effects, the standard model would overstate the impact of the
fundamentals. Thus, in standard models that omit peer effects, the estimate of the
coefficient β is larger than that obtained from a social interaction model with peer effects.
For example, if the same data were used, the estimated tax elasticity would be larger in
the standard model than in the social interaction model of this paper. This is shown in
a subsequent section.

3.4. Monte Carlo Maximum Likelihood

In practice, the log likelihood function `(θ) requires the computation of a normalizing
constant term,

∑
η∈Ω exp Q(η|x, θ), which is itself a function of the structural

parameters. However, the exact calculation cannot be implemented analytically, and
good analytical approximations are not available. Even for a moderate sample size, the
computation is prohibitively expensive.

To circumvent this computational impossibility, I use an approach proposed by Geyer
and Thompson (1992), which involves approximating the likelihood function `(θ) by using
Monte Carlo simulations. The basic idea is to adopt an importance-sampling approach
to the normalizing constant term through the use of simulated samples. Let samples
(y(0),y(1),y(2), · · · ,y(T )) be drawn from the interaction process described in section
2, in which the structural parameter is given by ψ ∈ Θ. Since the Markov chain of the
interaction process is irreducible and aperiodic, the steady-state distribution, P ∗(ω|x,ψ),
is unique. After many repetitions, T , the samples eventually converge to the steady-state
distribution, P ∗(ω|x, ψ), although they are neither independent nor distributed exactly
according to P ∗(ω|x,ψ). These simulated samples can be used to apply the Monte Carlo
method in the same way as could independent samples from the distribution P ∗(ω|x, ψ).

18. See, for example, Glaeser et al. (1996) , Glaeser and Scheinkman (2000, 2001), Topa (2001).
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Define the following function for an arbitrary fixed parameter ψ:

`T (θ; ψ) = Q(y|x,θ)− log
1
T

T∑
t=1

[
expQ(y(t)|x,θ)
exp Q(y(t)|x, ψ)

]
, (3.14)

where the school subscript s is henceforth suppressed for convenience. Given ψ and
the sample size T , let θ̂T = arg maxθ∈Θ `T (θ|ψ), which is known as a Monte Carlo
maximum likelihood estimator. (Geyer and Thompson, 1992, pp.658–659) show, under
mild conditions, that the Monte Carlo estimator, θ̂T , converges almost surely to the
exact estimator, θ̂, as T → ∞, whatever ψ. The likelihood functions are approximated
by using simulated samples obtained from the interaction process introduced in section
2. I follow a heuristic approach, proposed by Geyer and Thompson (1992), to determine
the value of ψ with which the interaction process is simulated.19

4. DATA DESCRIPTION

The main data set used for estimation is the 2000 NYTS. The survey was conducted by
the American Legacy Foundation in collaboration with the Centers for Disease Control
and Prevention (CDC) Foundation during the spring semester of the academic year
2000.20 The 2000 NYTS is a school-based nationally representative sample of students
from grades six to 12. Three hundred and sixty schools were selected, and approximately
five full classes in a required subject (e.g., English or Social Studies) across grades six
to 12 were randomly selected from each participating school. All students in the selected
classes were eligible to participate. In all, 35,828 students in 324 schools completed
questionnaires. The school response rate was 90.0%, and the student response rate
was 93.4%, which resulted in an overall response rate of 84.1%. Students completed an
anonymous, self-administered questionnaire in the classroom, containing questions about
tobacco use (bidis, cigarettes, cigars, kreteks, pipes and smokeless tobacco), exposure
to environmental tobacco smoke, the ability of minors to purchase or otherwise obtain
tobacco products, knowledge of and attitudes to tobacco, and familiarity with pro- and
anti-tobacco media messages.

Several sample restrictions are imposed on the data set. First, the samples are
restricted to students of the four major races in the United States (whites, blacks,
Hispanics and Asians). Other races (i.e., American Indians, Native Hawaiians and other
Pacific Islanders) are excluded from the samples.21 Second, the samples are also restricted
to students in schools for which the 2000 NYTS collects at least ten male and female
students.22. Additional restrictions due to missing observations reduce the sample size
to N = 29, 385 students and the number of schools to S = 305. Therefore, about 80
percent of the full sample is used for estimation. I imposed this restriction to ensure that
a reasonable number of observations were available for computing meaningful average
smoking outcomes for each peer group.

The average sample size per school is 96.344 with a standard deviation of 24.823
students. Maximum and minimum sample sizes per school are 193 and 23, respectively.

19. Detailed implementation strategies of simulation and estimation are found in the working paper
version, and are also available from the supplementary web site.

20. The publicly available data set and codebook can be obtained from the website of the American
Legacy Foundation. See also Center for DiseaseControl andPrevention (2001) for an overview of the
results from this survey.

21. This led to 1, 153 students (3.22 percent) being dropped.
22. This led to 957 students (2.67 percent) from 13 schools being dropped.
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TABLE 1

Smoking Rates (Percentages) by Gender, Grade and Race Subgroups in Sample

Male Female Middle School High School Total

White 21.829 22.192 10.809 30.525 22.012
Black 15.499 11.153 9.850 16.984 13.158
Hispanic 18.111 13.507 10.852 20.730 15.745
Asian 17.237 11.425 5.684 19.786 14.486

Total 19.874 18.059 10.415 26.228 18.951

Note- Data are composed of all students between the grades of 6 and 12 of the four major races
in the United States (whites, blacks, Hispanics and Asians). Data are restricted to students
in the schools in the schools for which the 2000 NYTS collects at least ten male and female
students. The sample size is N = 29385 from S = 305 schools.

Most schools contain either middle-school students (6th–8th grade) or high-school
students (9th–12th grade). The number of schools that includes only middle-school
students is 126 (41.31 percent) whereas the number of schools that includes only high-
school students is 149 (48.85 percent). On the other hand, only 30 schools (9.84 percent)
contain both middle-school and high-school students at the same time.

It is found that almost one third of schools (99 schools) contain students from only
one racial group. Most of these racially uniform schools contain only white students.
In addition, the majority-race proportion exceeds 80 percent in more than half of the
schools. Thus, most of the sampled schools are racially segregated, rather than racially
integrated.

A dichotomous measure of smoking was constructed for all respondents.23 Each
student was asked the following question: “During the past 30 days, on how many days
did you smoke cigarettes?” If the answer was “none”, the student was classified as a
nonsmoker, otherwise the student was classified as a current smoker. 24 Table 1 reports
the percentages of current smokers for various categories. As expected, the smoking
prevalence is higher among high- school students than among middle-school students.
Table 1 also shows that smokers are not distributed equally between groups: that is,
white youths smoke more than Hispanic youths, who in turn smoke more than black
and Asian youths. This pattern has been also found in recent national surveys (e.g., the
Monitoring the Future Survey).

It is also found that smoking rates vary greatly between schools. The mean of the
average smoking rate is 18.52 with a standard deviation of 11.80. The highest smoking
rate is about 60 percent and the lowest is close to zero.

Table 2 presents information on the frequency and intensity of cigarette smoking.
As shown in Table 2, most students sampled did not have a high level of past cigarette
consumption. For example, most students were not regular smokers: more than 95 percent
of students were not daily smokers and about 85 percent of students did not smoke at
all or had smoked on at least 1–2 days within the last 30 days. Smoking intensity was
also low: about 90 percent of smokers smoked less than half a pack of cigarettes per
day. However, Table 2 also shows that some students were hooked on cigarettes. More
than 25 percent of smokers are daily smokers. About one third of the daily smokers are

23. For compatibility with the behavior model described above, the binary smoking-choice variable
is set to yi = +1 if person i is a current smoker, and otherwise is set to yi = −1.

24. This type of smoking variable has been widely used as a smoking participation measure in
previous studies of youth smoking decisions. (e.g., Chaloupka and Grossman 1996; Gruber and Zinman
2000
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TABLE 2

Smoking Frequency and Intensity

intensity: frequency: number of smoking days per month total (percentage)
number of cigarettes per day 0 days 1-2 days 3-9 days 10-29days 30 days

zero 23728 0 0 0 0 23728 (82.83)
less than one 0 764 214 47 5 1030 (3.60)
from one to five 0 628 978 998 507 3111 (10.86)
from six to ten 0 22 59 177 520 778 (2.72)
from eleven to twenty 0 2 14 61 401 478 (1.67)
more than twenty 0 0 3 6 136 145 (0.51)

total 23728 1416 1268 1289 1569 28647
(percentage) (82.83) (4.94) (4.43) (4.50) (5.48)

Note- Data are composed of all students between the grades of 6 and 12 of the four major races in the
United States (whites, blacks, Hispanics and Asians). Data are restricted to students in the schools in
the schools for which the 2000 NYTS collects at least ten male and female students. The sample size
is N = 29385 from S = 305 schools. All respondents were also asked about the frequency and intensity
of their cigarette smoking.

considered as “heavy smokers”, who smoke more than half a pack of cigarettes every day.
Thus, a small proportion of students might be considered as potential “addicts”, while
the majority of students are considered as “chippers”, smokers who are just beginning
to get addicted.

After investigating the frequency and intensity of the relationships between smokers
for middle-school students and high school students, respectively, I found that, as
expected, potential addicts appear to be far more concentrated among high-school
students than among middle-school students. In middle schools, only 14 percent of
smokers are daily smokers and 6 percent of smokers smoke more than half a pack of
cigarettes per day. In high schools, on the other hand, 33 percent of smokers are daily
smokers and about one third of daily smokers smoke more than half a pack of cigarettes
every day. These results suggests that middle-school and high-school students might have
different levels of cumulative past cigarette consumption.

I have included a number of independent variables to control for factors that are
thought to influence youth smoking decisions. The first set of such variables contains
information on students’ personal background characteristics and attitudinal attributes
towards smoking. To explore the effects of cigarette taxes on smoking participation, I
have also included the federal and state excise taxes (in dollars) on cigarettes per pack.
25 Descriptive statistics for these control variables are presented in Table 3.

The second set of control variables reflects the characteristics of the neighborhoods
in which the students live. Since the 2000 NYTS data do not provide any information on
the neighborhoods from which the samples are taken, I have supplemented information
on county characteristics by other data sources. By exploiting information on counties
from the 2000 Census (Summary Tape File 3A) and the 2000 Uniform Crime Reporting
Program Data (County-level Detailed Arrest and Offence Data), I have incorporated
35 county characteristics as control variables. To control for endogenous selection into
neighborhoods, I have included as many attributes as possible that may affect families’
decisions to locate in a given county. 26

25. Cigarette taxes at 31 May are used because the 2000 NYTS was carried out during the spring
semester. The data set is from Orzechowski and Walker (2001).

26. All the county variables used for estimation are available from the supplementary web site.
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TABLE 3

Descriptive Statistics for Individual Background Variables Used in Estimation

Standard
Variable Minimum Maximum Mean Deviation

7th Grade (0-1 Dummy) 0.00000 1.00000 0.15604 0.36290
8th Grade (0-1 Dummy) 0.00000 1.00000 0.16259 0.36900
9th Grade (0-1 Dummy) 0.00000 1.00000 0.15635 0.36319
10th Grade (0-1 Dummy) 0.00000 1.00000 0.13788 0.34478
11th Grade (0-1 Dummy) 0.00000 1.00000 0.13977 0.34676
12th Grade (0-1 Dummy) 0.00000 1.00000 0.10756 0.30983
Asian (0-1 Dummy) 0.00000 1.00000 0.04994 0.21783
Black (0-1 Dummy) 0.00000 1.00000 0.16904 0.37479
Hispanic (0-1 Dummy) 0.00000 1.00000 0.18691 0.38985
White Male (0-1 Dummy) 0.00000 1.00000 0.29381 0.45551
Asian Male (0-1 Dummy) 0.00000 1.00000 0.02646 0.16051
Black Male (0-1 Dummy) 0.00000 1.00000 0.07781 0.26787
Hispanic Male (0-1 Dummy) 0.00000 1.00000 0.09074 0.28724
Weekly Income (U.S. Dollar) 0.00000 46.71429 6.43774 8.36576
Working Dummy (0-1 Dummy) 0.00000 1.00000 0.39563 0.48899
Smokers in Home (0-1 Dummy) 0.00000 1.00000 0.40516 0.49093
See Actors Smoking in TV (0-1 Dummy) 0.00000 1.00000 0.83573 0.37053
See Actors Smoking in Movie (0-1 Dummy) 0.00000 1.00000 0.86279 0.34408
School Program 1 (0-1 Dummy) 0.00000 1.00000 0.27043 0.44419
School Program 2 (0-1 Dummy) 0.00000 1.00000 0.42268 0.49399
School Program 3 (0-1 Dummy) 0.00000 1.00000 0.22080 0.41480
School Program 4 (0-1 Dummy) 0.00000 1.00000 0.56102 0.49627
Cigarette Tax (U.S. Dollar) 0.36500 1.45000 0.89206 0.32863

Note- Data are composed of all students between the grades of 6 and 12 of the four major races
in the United States (whites, blacks, Hispanics and Asians). Data are restricted to students in the
schools in the schools for which the 2000 NYTS collects at least ten male and female students. The
sample size is N = 29385 from S = 305 schools. Each student was asked the following question
about school-based prevention programs (1) school program1: did you practice ways to say “No”
to tobacco in any of your classes? (2) school program 2: were you taught in any of your classes the
reasons why people your age smoke? (3) school program 3: were you taught in any of your classes
that most people your age do not smoke cigarettes? (4) school program 4: were you taught in any
of your classes about the effects of smoking, like it makes your teeth yellow, causes wrinkles, or
makes you smell bad?

5. EMPIRICAL RESULTS

5.1. Basic Estimation Results

In this section, I compute maximum likelihood estimates of the structural parameters,
θ = (α, β, ρ), of the behavioral model of smoking decisions. The Monte Carlo technique
described in section 3 is used to obtain the maximum likelihood estimates. All estimates
are calculated with a final Monte Carlo sample size of 10, 000 experiments.27 The
estimated parameters from the benchmark model of youth smoking behavior are reported
in Tables 4 and 5. The point estimates of the county variables are available from the
supplementary web site.

Table 4 reports the estimated coefficients of the background characteristics. For
comparison, estimates from standard logistic regression are presented in the first column
of the table. No significant difference in the pattern of coefficients is found between the
estimates from standard logistic regression and those from maximum likelihood method,
except in relation to the constant term. As shown, almost all variables are significant and
have the expected signs. The estimates provide some support for the idea that grade,

27. The Monte Carlo sample size of T = 10, 000 is chosen arbitrarily. However, the sizes of the
simulations are of little practical significance. I re-estimated the model by using simulations of T = 30, 000
and T = 50, 000. The associated estimation results were virtually identical to those obtained from
simulations of T = 10, 000.
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race, sex, income and work experience significantly affect the probability that a student is
a current smoker. All these results are consistent with the existing literature (e.g., Gruber
and Zinman 2000). It is interesting to note that the coefficients of other smokers in the
family are highly significant, which suggests that youths are highly likely to smoke if
their parents and siblings also smoke. The evidence that family influences are important
determinants of youth smoking is also consistent with previous empirical studies (e.g.,
Emery et al. 2001). For ease of exposition, I treat the model specified in column (3) of
Table 4 as the best-fitting model because all the individual background characteristics
except the constant term are statistically significant at the 5 percent level.28

As far as the school-based prevention programs are concerned, the estimates in
Table 4 suggest that some of them reduce youth smoking rates. Specifically, school
program 1 (practice ways to say “No” to tobacco) and school program 2 (which
explains why youths smoke cigarettes) significantly reduce youth smoking. The significant
reduction in youth smoking due to school-based program 1 is consistent with previous
research, which suggests that prevention programs that teach students how to cope
with peer pressure to smoke are very effective deterrents to youth smoking.29 Curiously,
however, the coefficient on school-based program 3 (which explains that most youths
do not smoke cigarettes) is positive and significant, while the coefficient of school-based
program 4 (which explains the effects of smoking) is negative but insignificant. These
rather surprising results may indicate that school-based programs 1 and 2 are responsible
for most of the preventative effects of school-based programs.

The estimates of peer effects (ρMM ,ρFF ,ρMF ) are reported in Table 5. First,
standard logistic regression yields greater estimates of peer effects than does the
maximum likelihood method. The difference between the two estimators is significant
especially for the within-gender peer effects ρMM and ρFF . 30 Second, all estimates
are positive and highly significant. The peer effects are fairly large from a policy
perspective. Suppose, for example, that a student moves from a school with average
smoking prevalence to a new school with one standard deviation from the average. My
results predict that in such a case, the probability of smoking would increase by about
12 percentage points (from 14.6 percent to 26.5 percent) when evaluated at the sample
mean of the other variables. I found that the elasticity in response to the change of the
smoking environment is 1.616. Such effect is substantial.

Peer effects generate social multipliers. If socioeconomic conditions change, each
student’s smoking behavior changes not only because of the socioeconomic change but
also because the smoking behavior of the peer group changes. Thus, socioeconomic change
has both direct and indirect effects on youth smoking behavior. The social multiplier,
which is defined as the ratio of the total effect to the direct effect, is the factor by
which the externality raises the direct effect through peer interactions. Consider the
following hypothetical situation. Suppose that school-based program 1 (practice ways
to say “No” to tobacco) is newly introduced to schools. A prediction based on the
estimated parameters shows that the youth smoking rate would fall by 3.68 percentage

28. The estimates of other specifications are available on request.
29. See Report of the Surgeon General (1998), chapter 6.
30. The estimation results are consistent with several simulation studies. For example, Geyer

(1991), Geyer and Thompson (1992), Huffer and Wu (1998) examine the finite sample properties of
different types of estimators, including the standard logistic regression estimator (maximum pseudo
likelihood estimator), and the Monte Carlo ML estimator that I employed in this paper. A general
conclusion from these simulation studies is that the standard logistic regression estimator tends to
overestimate the parameter of endogenous dependency especially when the magnitude of the dependency
parameter is large.
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TABLE 4

The estimated coefficients of individual background characteristics in the baseline
model: smoking choices among students in grades from six to twelve

Parameters Standard Logit MonteCarlo MLE
Coefficient on

(1) (2) (3) (4)

Constant -1.04969 -0.68177 -0.03845 -0.87633
(4.60251) (3.69140) (3.53725) (3.58852)

7th Grade 0.47629 0.47755 0.46843 0.46602
(0.09070) (0.08802) (0.08763) (0.08605)

8th Grade 0.95070 0.94492 0.93562 0.93465
(0.08491) (0.08213) (0.08088) (0.08058)

9th Grade 0.92397 0.98692 0.97299 0.99142
(0.08942) (0.08437) (0.08285) (0.08340)

10th Grade 1.04231 1.07936 1.06156 1.07325
(0.09147) (0.08838) (0.08718) (0.08789)

11th Grade 1.05953 1.07958 1.05034 1.06054
(0.09211) (0.09053) (0.08826) (0.08822)

12th Grade 1.12002 1.15153 1.13572 1.15289
(0.096140 ( 0.09397) (0.09157) (0.09232)

Asian -0.55555 -0.54672 -0.54873 -0.54734
(0.13346) ( 0.13176) (0.12929) (0.12993)

Black -0.83468 -0.80229 -0.80005 -0.79480
(0.07546) (0.07247) (0.07182) (0.07200)

Hispanic -0.35979 -0.39855 -0.41438 -0.42327
(0.07281) (0.07055) (0.06743) (0.06971)

White Male -0.10788 -0.12576 -0.14919 -0.13157
(0.07527) ( 0.06984) (0.06733) (0.06944)

Asian Male 0.51544 0.47027 0.43158 0.44862
(0.17996) (0.17744) (0.17336) (0.17580)

Black Male 0.27928 0.24751 0.20722 0.27635
(0.11708) (0.11557) (0.11408) (0.11248)

Hispanic Male 0.24973 0.22300 0.18893 0.25128
(0.11311) (0.10729) (0.10414) (0.10617)

Weekly Income 0.02892 0.02878 0.02903 0.02911
(0.00232) (0.00231) (0.00224) (0.00226)

Working Dummy 0.31307 0.31798 0.32408 0.32637
(0.04269) (0.04204) (0.04144) (0.04216)

Smokers in Home 0.95056 0.96354 0.96556 0.96087
(0.03326) (0.03308) (0.03181) (0.03222)

See Actors Smoking in TV 0.05993 0.05762 - 0.07542
(0.04997) (0.04963) - (0.04378)

See Actors Smoking in Movie 0.06421 0.05875 0.06059 -
(0.05683) (0.05656) (0.04968) -

School Program 1 -0.19578 -0.19903 -0.20304 -0.18129
(0.04612) ( 0.04626) (0.04410) (0.04499)

School Program 2 -0.08713 -0.09634 -0.10557 -0.11811
(0.04440) (0.04450) (0.03855) (0.03880)

School Program 3 0.14560 0.14327 0.16336 0.14783
(0.04715) (0.04733) (0.04570) (0.04590)

School Program 4 -0.00596 -0.01018 - -
(0.04176) (0.04179) - -

Cigarette Tax -0.21504 -0.23608 -0.21771 -0.20983
(0.11475) ( 0.09212) (0.08868) (0.08925)

Note- Data are composed of all students between the grades of 6 and 12 of the four major races in the
United States (whites, blacks, Hispanics and Asians). Data are restricted to students in the schools
in the schools for which the 2000 NYTS collects at least ten male and female students. The sample
size is N = 29385 from S = 305 schools. Asymptotic standard errors are in parenthesis.

points from 19.71 percent to 16.03 percent. The total reduction in youth smoking can be
decomposed into the direct and indirect components. For this example, the direct effect
is 2.36 percentage points while the indirect effect is 1.32 percentage points. Thus, the
social multiplier effect of smoking program 1 is 1.56.

Table 5 shows that the magnitudes of ρMM and ρFF are not significantly different,
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TABLE 5

The estimated peer effects in the baseline model: smoking choices among
students in grades from six to twelve

Peer Effects Standard Logit MonteCarlo MLE
(1) (2) (3) (4)

ρMM 2.19279* 1.70269* 1.66938* 1.66987*
(0.21248) (0.20653) (0.19879) (0.20741)

ρFF 2.00905* 1.65828* 1.73793* 1.628*
(0.20660) (0.20407) (0.19796) (0.20646)

ρMF 0.76445* 0.7275* 0.74057* 0.76848*
(0.16775) (0.16668) (0.16465) (0.17157)

Note- Data are composed of all students between the grades of 6 and 12 of the four major races
in the United States (whites, blacks, Hispanics and Asians). Data are restricted to students
in the schools for which the 2000 NYTS collects at least ten male and female students. The
sample size is N = 29385 from S = 305 schools. Asymptotic standard errors are in parenthesis.
Asterisks indicate significance at 5 percent level.

while the within-gender peer effects, (ρMM , ρFF ), are significantly larger than the
between-gender peer effect, (ρMF ). In fact, the within-gender peer effects are more
than twice as large as the between-gender peer effect. This finding suggests that peer
interactions are stronger within genders than between genders. In other words, when
making smoking decisions, male students seem to be more influenced by their male
friends than their female friends, while female students seem to be more influenced by
their female friends than their male friends. Consistent with the peer network literature
in sociology (e.g., Shrum et al. 1988), this result supports the premise that smoking
interactions are gender specific.

If there is race homogeneity in peer groups, one would expect peer interaction to
differ between racial groups. To explore the possibility, I estimated peer effects that are
assumed to be constant within racial groups but different between racial groups. The
race-based peer effects are denoted by (ρWW , ρBB , ρHH , ρWB , ρBH , ρHW ), where the
subscripts represents each race group {W,B, H}. One drawback with the estimation of
race-based peer effects is that this requires further subsampling of the data set. As stated
earlier, it is found that many schools are racially segregated. The racially uniform schools
cannot be used to estimate between-race peer effects. In the estimation that follows, I
use only samples of students in schools in which there are more than two racial groups,
each of which contains at least 10 students. With these restrictions, the sample size is
N = 13, 622 individuals and the number of schools is S = 156. This is about 40 percent
of the original sample.

The estimates of the race-based peer effects are given in Table 6. I start with
estimates from the logit model for the purposes of comparison.31 Once again the estimates
of peer effects from standard logistic regression tend to be greater than those from the
maximum likelihood method. The difference is significant for within-male and within-
black peer effects.

Table 6 shows that all point estimates of within-race peer effects, (ρWW , ρBB and
ρHH), are positive and statistically significant at the 1 percent level for all races. While
peer effects between white students ρWW are of a similar magnitude to those between
Hispanic students, ρHH , peer effects between black students, ρBB , are smaller but remain
substantial. Peer effects between white and Hispanic students, ρWH , are positive and

31. Since the estimated coefficients of the background characteristics are broadly similar in sign
and significance to those in Table 4, estimates of ˛ are not presented.
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TABLE 6

Estimated raced-based peer effects: smoking choices among students in grades
from six to twelve

Peer Effects Standard Logit MonteCarlo MLE
(1) (2) (3) (4)

ρWW 1.69914* 1.55833* 1.5875* 1.53104*
(0.21748) (0.20126) (0.19402) (0.20347)

ρBB 1.21111* 0.77466* 0.79752* 0.72025*
(0.36105) (0.36861) (0.36423) (0.36913)

ρHH 1.48881* 1.4452* 1.39753* 1.45932*
(0.37557) (0.36970) (0.35295) (0.35689)

ρWB 0.09463 0.01568 0.03009 −0.00037
(0.25670) (0.25102) (0.25006) (0.25667)

ρWH 0.63648* 0.71963* 0.75615* 0.71113*
(0.28831) (0.27574) (0.26759) (0.28123)

ρBH 0.91066* 0.99595* 0.94710* 0.88158*
(0.33225) (0.33315) (0.33104) (0.34128)

Note- Data are composed of all students between the grades of 6 and 12 of the four major races
in the United States (whites, blacks, Hispanics and Asians). Data are restricted to students
in the schools for which the 2000 NYTS collects at least ten male and female students, and
there are more than two racial groups. The sample size is N = 13622 from S = 156 schools.
Asymptotic standard errors are in parenthesis. Asterisks indicate significance at 5 percent level.

significant, as are those between black and Hispanic students, ρBH . However, peer effects
between white and black students, ρWB , are statistically insignificant, and not uniformly
positive. This suggests that there are no, or negligible, peer interactions between white
and black students in terms of smoking decisions. If white and black students hardly
interact with each another, as the results suggest, there is no social multiplier between
the two races. This suggests that an aggregate shock that increases the smoking rate of
white (or black) students would not necessarily raise the smoking rate of black (or white)
students. As a result, smoking rates could differ for these two racial groups.

Finally in this section, the results in Table 6 suggest that the within-race peer effects,
ρWW , ρBB and ρHH , are substantially larger than the between-race peer effects, ρWB ,
ρHW and ρBH . As shown, this tendency is clear among white and Hispanic students. This
is illustrated in Table 6 by values for the within-race peer effects, ρWW and ρHH , that
are substantially larger than those for the between-race peer effects, ρWB and ρHW . This
implies that white and Hispanic students take account of peer behavior among students
of their own race, rather than other races, when making smoking decisions. For black
students, point estimates of the peer effects show that ρBH > ρBB > ρWB , but the null
hypothesis that ρBH is significantly larger than ρHH cannot be rejected. This suggests
that when making smoking decisions, black students are equally influenced by black and
Hispanic students, but are hardly influenced by white students.

5.2. Omitted County Characteristics

While there is evidence of strong peer effects, there are two possible sources of omitted
variables bias, as suggested by Manski (1993). The first is the environmental and
institutional characteristics of a neighborhood, and the second is the shared individual
characteristics of a neighborhood. In the present context, (i) students in a neighborhood
may be exposed to common unobserved perceptions (or cultural attitudes) towards
tobacco and (ii) students in a neighborhood may share unobserved predispositions that
lead them to smoke as a result of their families’ self-selection into the neighborhood.



24 REVIEW OF ECONOMIC STUDIES

The effect of these omitted variables, which affect everyone in a neighborhood, may be
mistaken for peer effects.

To examine the possibility of omitted variables bias, I added to the model fixed
effects that explicitly account for unobserved heterogeneity between counties. Under the
assumption that all unobserved heterogeneities vary at the county level, the endogenous
peer effect is separately identified from the omitted factors. The county fixed effects
account for a common unobserved factor confronted by everyone living in the same
county.

The primary assumption of the fixed-effects model is that a county-specific factor,
which is unobservable to researchers, affects all persons in the same county. So, the latent-
utility model is modified as follows. Let ` ∈ {1, · · · , L} denote a county, where L is the
number of counties in the sample.32 Let δ` represent the unobserved factor specific to
county `, which affects all students in the county. Denote the vector of county factors by
δ = (δ1, · · · , δL). I assume that the systematic utility of person i in county ` is given by

bi(xi) = δ` + xiβ. (5.15)

Similarly, the latent utility of person i is given by y∗i = bi(xi) + εi; smoking, yi = +1,
is chosen if y∗i ≥ 0, and nonsmoking, yi = −1, is chosen if y∗i < 0. The space-specific
factor δ` yields neighborhood correlation if it is not taken into account. In that case,
the unobserved error term, (δ` + εi), is correlated between individuals who belong to the
same county due to the common factor δ`.

In the following description of the model, the likelihood function is derived for each
county. I use y` and x` to denote the smoking profile and background characteristics in
county ` respectively. Let I` denote the persons in county `. Then, y` ≡ {yi, i ∈ I`} is
the smoking profile for county ` and x` ≡ {xi, i ∈ I`} denotes background characteristics
in county `. Let Ω` denote all possible states of y` such that y` ∈ Ω`. Suppose
that each person i ∈ I` belongs to one of the S` schools in the county. Given that
I` = (I1, · · · , Is, · · · , IS`

), Ω` =
∏S`

s=1 Ωs. For the parameter θ = (δ,β,ρ), the log
likelihood function of county ` is given by

``(θ) = Q(ω`|x`, θ)− log
∑

η`∈Ω`

exp Q(η`|x`,θ), (5.16)

where Q(ω`|x`,θ) =
∑S`

s=1 Q(ωs|xs,θ) analogously to equations (3.10) and (3.11). The
overall log likelihood is `(θ) =

∑
` ``(θ), and the maximum likelihood estimator is

θ̂ ≡ arg maxθ∈Θ `(θ).
The following assumption is made concerning the sampling structure for the fixed-

effects model. According to the cluster sampling scheme that I assumed above, the
number of schools S is large in the empirical analysis. Given the two-stage sampling
design adopted for the NYTS, I assume that more and more observations are taken for S
by increasing the number of counties L, while each country contains several school units
S`. Note that S =

∑L
`=1 S`. 33

One potential problem with the maximum likelihood method described above is
that it is inconsistent when S → ∞. The sampling scheme for the fixed-effects model
leads to an increasing number of counties L as the number of schools S become large.

32. There are L = 146 counties in the sample.
33. The NYTS employs the following multistage cluster sample design. The first-stage sampling

contained about 150 primary sampling units, each comprising a large county or a group of smaller
adjacent counties. At the second sampling stage, several schools were selected from each primary sampling
unit with a probability proportional to weighted school enrollment.



25

It thus follows that the number of fixed effects, which attempts to capture unobserved
county-specific factors, grows to infinity. This is the well-known “incidental parameter”
problem.

Andersen (1970) suggests that the problem can be solved if the likelihood function is
conditional on the minimum sufficient statistic for incidental parameters. In the present
context, the likelihood function, `(θ), must be conditioned on the minimum sufficient
statistic for the fixed-effects parameter δ`.

The conditional log likelihood function can be derived as follows. It is straightforward
to show that the sufficient statistic of δ` is τ` =

∑
i∈I`

yi, which is the total number of
smokers in county `.34 Define all possible states of the smoking profile given the restriction
that the number of smokers is fixed at τ` as follows:

B` ≡
{

ω` ∈ Ω`

∣∣∣∣
∑

i

ωi = τ`

}
.

As shown in the appendix, the conditional probability, P ∗ given τ`, is

P ∗(ω`|x`,θ; τ`) = exp Q1(ω`|x1`,θ1)
/ ∑

η`∈B`

exp Q1(η`|x1`, θ1). (5.17)

In this case, it can be shown that the Q1 function does not depend on the nuisance
parameter, δ`, as follows:

Q1(ω`|x1`, θ1) =
S∑̀

s=1


1

2

∑

i

ωix1iβ1 +
1
4

∑
g

∑

g′
·
∑

i

∑

j

ρgg′ωigωjg′/N


 . (5.18)

Thus, the conditional likelihood is given by

`1`(θ1) = Q1(ω`|x1`, θ1)− log
∑

η`∈B`

exp Q1(η`|x1`, θ1) (5.19)

where x1` is a matrix of independent variables that includes individual background
characteristics (e.g., grade dummies and race dummies). In other words, x1` includes
neither a constant nor county-specific variables (e.g., cigarette taxes and other county
attributes). θ1 = (β1, ρ) and β1 are unknown parameters corresponding to x1`. Note
that the summation in the normalizing constant covers the states in the smoking profile
that satisfy the restriction given by τ`.

Because of computational difficulties,35 the conditional log likelihood function,
`1`(θ1), is obtained by using the Monte Carlo technique described in section 3. By analogy
to equation (3.14), I define a Monte Carlo conditional likelihood function for an arbitrary

34. As the overall likelihood is given by `(„) =
P

` ``(„), the Q-function of the likelihood
`(„) contains the following term (see the argument in subsection 3.3 on parameter identification)P

` δ`

hPS`
s=1 ω̄s

i
. Here the ω̄s is the sum of the choices of all persons in school s. One can thus interpret

the term
PS`

s=1 ω̄s as the summation of choices for all persons in county `. Using the definition of the

τ`, one finds
PS`

s=1 ω̄s =
P

i∈I`
ωi ≡ τ`. Therefore, it is shown that the Q-function of the likelihood `(„)

contains
P

` δ`τ`. Following the theory of exponential families, one can find that the τ` is the sufficient
statistic for δ`.

35. Since the set B has
`N

τ

´
distinct states, computational effort rises geometrically with the sample

size N .
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fixed parameter ψ1 as follows:

`1T (θ1;ψ1) = Q1(y|x,θ1)− log

[
T∑

t=1

exp Q1(y(t)|x, θ1)
expQ1(y(t)|x, ψ1)

]
, (5.20)

where the subscript ` is suppressed for convenience.
The simulated samples, (y(0),y(1),y(2), · · · ,y(T )), used to construct `1T (θ) are

realizations from a stochastic process that converges to the conditional distribution
P ∗(ω`|x`,θ1; τ`), which is given by equation (5.17). It should be noted, however, that
the interaction process used to compute the Monte Carlo unconditional log likelihood
function (i.e., equation (3.14)) cannot be used to obtain these simulated samples. This
is because it generates samples that do not converge to the conditional distribution
P ∗(ω`|x`,θ1; τ`), but converge to the unconditional distribution P ∗(ω`|x`, θ1). In
Appendix, I present an example of the Markov chain that has the conditional distribution
P ∗(ω`|x`,θ1; τ`) as its steady-state distribution. The Markov chain, which is aperiodic
and irreducible, is convergent to the P ∗(ω`|x`, θ1; τ`) as t →∞.

I estimate the structural parameter, θ1 = (β1, ρ), by using the model with county
fixed effects. Using the stochastic process described in the appendix, the estimates are
obtained by using the Monte Carlo conditional maximum likelihood method described
above. The estimates are obtained from a final Monte Carlo sample size of T = 10, 000,
with a spacing of two full scans between simulated samples.

Table 7 reports the point estimates of the coefficients β1 for individual background
characteristics. Compare these results with those in Table 4, in which fixed effects are
not controlled for. The point estimates of the coefficients β1 are similar. All signs are as
before, and the variables that are significant in Table 4 are also significant in Table 7.

Table 8 shows the estimated peer effects, ρ. These peer effects are gender based :
ρ = (ρMM , ρMF , ρFF ). The magnitudes of the peer effects in Table 8 are smaller than
those in Table 5. For example, when county fixed effects are accounted for, the within-
gender peer effects, (ρMM , ρFF ), decrease from 1.67 to 1.54 and from 1.62 to 1.46,
respectively, while the between-gender peer effect, (ρMF ), decreases from 0.77 to 0.59.
These are not dramatic decreases. The results in Table 8 show that these peer effects are
all statistically significant, which suggests that peer groups substantially affect individual
smoking behavior.

I also estimate the race-based peer effects, ρ = (ρWW , ρBB , ρHH , ρWB , ρBH , ρHW ),
for white, black and Hispanic students, by using the model with county fixed effects. The
results are reported in Table 9. These point estimates are directly comparable with those
presented in Table 6. The standard errors of these estimates are larger, which indicates
that the point estimates are not as precise as those in Table 6. This may explain why
not all raced-based peer effects are statistically significant in Table 9. The estimated
peer effects based on the inclusion of the fixed effects are smaller than those in Table 6.
The difference is marked for the between-race peer effects. For example, the signs of the
peer effects, ρWB and ρBH , have changed in all specifications. However, these effects
are not statistically significant because the standard errors of the estimates are large. In
addition, some within-race peer effects remain positive and statistically significant. The
point estimate of ρWW is statistically significant at the 1 percent level, and the point
estimate of ρBB is statistically significant at the 10 percent level.

In summary, many of the estimated peer effects from the model with the fixed effects
(Table 8 and 9) are qualitatively similar to those from the model without the fixed effects
(Table 5 and 6). The estimation results show that the inclusion of county-specific fixed
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TABLE 7

The estimated coefficients of individual background characteristics in the
fixed-effects model: smoking choices among students in grades from six to twelve

Parameters MonteCarlo MLE
Coefficient on

(2) (3) (4)

Constant - - -

7th Grade 0.52662 0.52286 0.50752
(0.09180) (0.09025) (0.09007)

8th Grade 1.01922 1.00826 0.99930
(0.08510) (0.08356) (0.08502)

9th Grade 1.01244 0.98488 1.00323
(0.09690) (0.09490) (0.09374)

10th Grade 1.19693 1.17840 1.17205
(0.10006) (0.09764) (0.09762)

11th Grade 1.21891 1.19134 1.18839
(0.10136) (0.10007) (0.09815)

12th Grade 1.31568 1.29056 1.29675
(0.10745) (0.10483) (0.10376)

Asian -0.64295 -0.63722 -0.65163
(0.14644) (0.14265) (0.14941)

Black -0.90837 -0.90505 -0.89120
(0.08222) (0.07740) (0.07982)

Hispanic -0.34677 -0.35483 -0.37839
(0.07724) (0.07665) (0.07645)

White Male -0.13693 -0.16880 -0.12908
(0.07756) (0.07588) (0.07682)

Asian Male 0.58284 0.52515 0.58495
(0.19558) (0.18740) (0.19418)

Black Male 0.25413 0.21341 0.30129
(0.11848) (0.11556) (0.11746)

Hispanic Male 0.21696 0.16202 0.25584
(0.11501) (0.11355) (0.11223)

Weekly Income 0.03073 0.03055 0.03084
(0.00242) (0.00242) (0.00241)

Working Dummy 0.30452 0.31242 0.31701
(0.04563) (0.04442) (0.04414)

Smokers in Home 0.96465 0.96668 0.95985
(0.03522) (0.03420) (0.03567)

See Actors Smoking in TV 0.07796 - 0.09351
(0.05369) (0.04759)

See Actors Smoking in Movie 0.05611 0.05994 -
(0.05931) (0.05173)

School Program 1 -0.20497 -0.20845 -0.18925
(0.04906) (0.04788) (0.04754)

School Program 2 -0.07463 -0.09275 -0.10200
(0.04742) (0.04181) (0.04177)

School Program 3 0.15234 0.15958 0.14387
(0.04949) (0.04791) (0.04903)

School Program 4 -0.03682 - -
(0.04494)

Cigarette Tax - - -

Note- Data are composed of all students between the grades of 6 and 12 of the four major races
in the United States (whites, blacks, Hispanics and Asians). Data are restricted to students
in the schools for which the 2000 NYTS collects at least ten male and female students. The
sample size is N = 29385 from S = 305 schools. All parameters are estimated by Monte Carlo
maximum likelihood method. Asymptotic standard errors are in parenthesis.

effects does not negate the peer effects, which suggests that the estimated peer effects are
not biased by the omission of county-level unobserved factors. The evidence of strong peer
effects reinforces the conclusion that peer effects are not mainly driven by unobserved
county characteristics. Thus, as long as one is willing to accept that most of the omitted
variables vary only at the county level, the evidence can be interpreted in favor of positive
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TABLE 8

The estimated coefficients of peer effects in the fixed-effects model: smoking
choices among students in grades from six to twelve

Peer Effects MonteCarlo MLE
(2) (3) (4)

ρMM 1.5209* 1.47377* 1.54619*
(0.24665) (0.25002) (0.25164)

ρFF 1.4803* 1.60347* 1.46383*
(0.24326) (0.23562) (0.24089)

ρMF 0.52547* 0.56642* 0.5856*
(0.20739) (0.20826) (0.2062)

Note- Data are composed of all students between the grades of 6 and 12 of the four major races
in the United States (whites, blacks, Hispanics and Asians). Data are restricted to students
in the schools for which the 2000 NYTS collects at least ten male and female students. The
sample size is N = 29385 from S = 305 schools. All parameters are estimated by Monte Carlo
maximum likelihood method. Asymptotic standard errors are in parenthesis. Asterisks indicate
significance at 5 percent level.

TABLE 9

The estimated coefficients of race-based peer effects in the the fixed-effects
model: smoking choices among students in grades from six to twelve

Peer Effects MonteCarlo MLE
(2) (3) (4)

ρWW 1.49926* 1.50204* 1.47278*
(0.31725) (0.30838) (0.31973)

ρBB 0.7817* 0.73457* 0.63131*
(0.53012) (0.52385) (0.52662)

ρHH 0.51174 0.51186 0.58596
(0.55511) (0.54107) (0.5332)

ρWB −0.18108 −0.24148 −0.25722
(0.37773) (0.37937) (0.38538)

ρWH 0.29493 0.36871 0.30975
(0.43672) (0.43398) (0.42431)

ρBH −0.44739 −0.42444 −0.48892
(0.52332) (0.51826) (0.53077)

Note- Data are composed of Data are composed of all students between the grades of 6 and 12
of the four major races in the United States (whites, blacks, Hispanics and Asians). Data are
restricted to students in the schools for which the 2000 NYTS collects at least ten male and
female students, and there are more than two racial groups. The sample size is N = 13622 from
S = 156 schools. All parameters are estimated by Monte Carlo maximum likelihood method.
Asymptotic standard errors are in parenthesis. Asterisks indicate significance at 5 percent level.

peer effects.
It is important to keep in mind that the aforementioned results do not exclude

the possibility that some unobserved attributes may be influential. If unobserved
“neighborhood” factors vary between areas, smaller than the county level, such as
“streets” for example, these estimates of peer effects may still overestimate the total
peer effect. I ignore the potential omitted variable bias because there is no sufficient
variation in the data that allows for fixed effects to capture systematic differences between
subcounty areas. Hence, the estimates presented above might be interpreted as an upper
bound of the true peer effects. Nevertheless, the fixed-effects model and the conditional
likelihood argument could be applicable without any modification to the case where the
unobserved factors are aggregated at the subcounty level, only if data were available.
Such an analysis is an interesting direction for future research.
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6. DISCUSSION

In the previous section, I presented estimates of peer effects. The results can be
interpreted as evidence of peer effects among secondary school students in smoking
decisions. This section examines a range of alternative specifications to check the
robustness of the preceding results. I then use the parameter estimates of the structural
model to simulate the effects of proposed smoking policies.

6.1. Alternative Specification of Peer Groups

In the previous section, I assumed that a person’s peer group is defined by two
characteristics, gender and race. Although many sociological studies suggest that these
characteristics are possibly related to peer group composition, the estimates could be
sensitive to this specification of peer groups.

One problem with the previous definition of peer groups is that gender and race
enter the model in a linear form. That is, peer effects are allowed to change on the basis
of any one of these two characteristics. In order to mitigate this problem, I estimate the
model under a less restrictive assumption. In particular, I allow peer effects to vary by
race and gender simultaneously. 36

The results are presented in Table 10. Peer effects are categorized into four groups,
based on whether they are within-group or between-group effects. For the same reason
given in the previous section, the sample is restricted to individuals who belong to schools
in which there are more than two racial groups. The sample size is N = 13622. For
all estimates, the standard errors are substantially larger than those of the previous
estimates, which is to be expected given the increase in the number of parameters and
the decrease in the sample size.

I begin by discussing the estimates from the model without fixed effects, which are
reported in the first column of Table 10. This shows that several peer effects are positive
and significant. I then add fixed effects. The results are reported in the second column
of Table 10. It is interesting that three estimated peer effects that were significant in the
model without fixed effects are insignificant when fixed effects are included. Specifically,
inclusion of the fixed effects reduces the between-gender peer effects between black and
Hispanic students substantially. Since these peer effects are probably weak in practice,
the positive estimates obtained when fixed effects are excluded might be spurious because
of unobserved common factors.

Table 10 establishes the following three findings. First, within-race peer effects tend
to be larger than between-race peer effects. When fixed effects are included, the largest
peer effect is found among black male students, and the second largest is found among
white female students. On the other hand, no positive and significant peer effects are
found for between-race peer effects. In particular, no significant evidence of peer effects
between white and black students is obtained. This is consistent with previous findings
that there is little interaction between these two racial groups. Second, the evidence
on whether within-gender peer effects are stronger than between-gender peer effects is
mixed. Comparison of within-race and between-race peer effects is less clear because of
the large standard errors of the estimates. Nevertheless, it can be seen that, for black

36. For example, I consider peer effects between male white students and female black students,
which may differ, for example, from peer effects between female white students and black male students.
However, this modification increases the number of estimated peer effects, from 6 to 21.
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TABLE 10

The estimated coefficients of gender and race based peer effects in the model:
smoking choices among students in grades from six to twelve

Peer Effects without fixed effects with fixed effects

(1) within race; within gender
white male-white male 1.09718 0.84071

(0.64132) (0.72533)
white female-white female 1.99610* 1.97717*

(0.48082) (0.54431)
black male-black male 2.05083* 2.08932*

(1.10483) (1.21822)
black female-black female 0.45058 0.44938

(0.98469) (1.06182)
hispanic male-hispanic male 1.54189* 1.33725

(0.80785) (1.08822)
hispanic female-hispanic female 0.36991 -0.60811

(0.94691) (1.08198)
(2) within race; between genders
white male-white female 1.46888* 1.39364*

(0.46258) (0.52843)
black male-black female 0.14077 −0.10236

(0.78197) (0.86825)
hispanic male-hispanic female 1.93743* 0.72877

(0.64820) (0.82115)
(3) betwwen races; within gender
white male-black male 0.82193 0.29827

(0.80509) (0.90117)
white male-hispanic male 1.08192 1.10626

(0.72201) (0.90584)
white female-black female 0.36464 0.06603

(0.62748) (0.71815)
white female-hispanic female 0.46598 0.02245

(0.7172) (0.81785)
black male-hispanic male 0.10215 −0.75752

(1.26952) (1.33411)
black female-hispanic female −1.75191* −2.88424*

(0.87552) (1.00213)
(4) between races; between genders
white male-black female −1.06325 −1.25204

(0.72978) (0.80465)
white male-hispanic female 0.21252 −0.50348

(0.78221) (0.94037)
white female-black male −0.02553 −0.37501

(0.73214) (0.78994)
white female-hispanic male 0.79950 0.22420

(0.74853) (0.84582)
black male-hispanic female 3.06901* 1.14289

(1.09675) (1.22373)
black female-hispanic male 2.11233* 0.28526

(1.05631) (1.12711)

Note- Data are composed of all students between the grades of 6 and 12 of the four major races
in the United States (whites, blacks, Hispanics and Asians). Data are restricted to students in
the schools for which the 2000 NYTS collects at least ten male and female students, and there
are more than two racial groups. The sample size is N = 13622 from S = 156 schools. All
parameters are estimated by Monte Carlo maximum likelihood method. Estimates are based
on the best fitting specification (4) in Table 4. Asymptotic standard errors are in parenthesis.
Asterisks indicate significance at 5 percent level.

students, the within-male peer effect is significantly stronger than the between-male-and-
female peer effect.37 Third, a negative and significant peer effect is found between racial
groups. Based on the estimates from the fixed-effects model, there is a negative peer

37. For white students, the estimate of the peer effect between male and female students is
statistically significant. However, I cannot reject the hypothesis that the peer effect between male and
female students is larger than the effect among male students at the 10 percent significance level because
these point estimates have large standard errors.
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effect between black female and Hispanic female students. This might be evidence of
“snob effects” between these groups, in the sense that one group’s demand for smoking
falls when a person from the other group is smoking. Of course, this evidence is not
sufficient to confirm the possibility of nonconforming behavior among these two groups
of adolescents, and hence, the issue of negative peer effects warrants further research.

Hence, there is ample evidence of positive and significant peer effects even under
alternative specifications of peer groups.38 Moreover, the finding that within-type peer
effects are stronger than between-type peer effects appears to be consistent for all groups.
Hence, the previous results are not merely artifacts of specifically defined peer groups.

6.2. Heterogeneity due to Addictive Stocks

I have thus far ignored the addictive nature of cigarette smoking by assuming that the
accumulation of addictive substances might have negligible effects on youths’ smoking
decisions. Yet, as Tables 2 show, there is evidence that some students, if only a small
fraction, may already be addicted to cigarettes to some extent.

As is well known, addiction is an irreversible process with what is often referred
to as the “withdrawal effect”. When a stock of an addictive substance (i.e., nicotine) is
accumulated beyond a critical threshold, addicts fixated on cigarettes are less likely to
quit smoking even within a nonsmoking peer environment. Thus persons with a greater
stock of an addictive substance might be less responsive to peer influence than those with
a lower stock. Thus, persons with a greater stock of an addictive substance might be less
responsive to peer influences than those with a lower stock. To explore the possibility
of differences in smoking behavior due to different levels of addictive stocks, I estimate
smoking models for middle-school and high-school students separately. I assume that
high-school students have a greater accumulation of past cigarette consumption than do
middle-school students. This assumption seems plausible given the results that heavy
smokers are more concentrated in high schools than in middle schools.39

To estimate the effects, I split the data set used for the baseline estimates (N =
29, 385) into two subsamples, middle-school students (6th–8th graders) and high-school
students (9th–12th graders). I exclude students in “mixed” schools, which include both
middle-school and high-school students, so that neither subsample includes 6th–12th-
grade students at the same time.40 Therefore, in the context of the samples used for
estimation, one can assume that middle-school students interact exclusively with middle-
school students within the same school, as do high-school students. The effect of addiction
will not be transmitted from high-school students to middle-school students because there
is no externality between middle- and high-school students. For the final analysis, I used

38. Another concern about the earlier definition of peer groups is that peer groups might be based
on aspects other than gender and race. To address the issue, I use student grades to extend the definition
of peer groups. Assuming that peer groups are characterized by gender and grade simultaneously,
there are six peer-effects parameters to be estimated. The result of estimation is available from the
supplementary web site. The result shows that, either within or between groups, the peer effects are
significantly positive. Again, it is found that peer effects are stronger within group than between groups.
Thus, the conclusion is not changed under the alternative specification of peer groups. For detailed
discussion, see the working paper version of the paper.

39. Arguably, to take into full account the effects of addiction on youth smoking decision making,
one would need to control for past smoking consumption, or equivalently, the stock of accumulated
nicotine in the past. However, the NYTS data set provides only an imprecise measure of past smoking
consumption. The quality of the information is questioned because it is collected retrospectively. The
teenagers’ ability to recollect their past smoking consumption might be limited.

40. This leads to the exclusion of 3, 139 students in 31 “mixed” schools. This is only 10.87 percent
of the baseline data set.
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TABLE 11

The estimated coefficients of peer effects for middle school students in grades
from six to eight and high school students in grades from nine to twelve
Peer Effects middle school high school

N = 11829 N = 14363
S = 126 S = 149

ρMM 2.64823* 1.43518*
(0.53032) (0.28923)

ρFF 1.60864* 1.40478*
(0.59035) (0.2798)

ρMF 0.59959 0.73054
(0.44537) (0.23078)

Note- Data are composed of the four major races in the United States (whites, blacks,
Hispanics and Asians). Data are restricted to students in the schools for which the 2000
NYTS collects at least ten male and female students. Middle school students are students
who were in grade 6, 7, or 8, and high school students are students who were in grade
9, 10, 11, or 12 at the time of the survey. All parameters are estimated by Monte Carlo
maximum likelihood method. Estimates are based on the best fitting specification (4) in
Table 4. Asymptotic standard errors are in parenthesis. Asterisks indicate significance at
5 percent level.

N = 11, 829 students from S = 126 middle schools and N = 14, 363 students from
S = 149 high schools for estimation.

Table 11 compares the estimates of gender-based peer effects for the subsamples
of middle-school and high-school students.41 Table 11 reports the estimated parameters
from the model without county fixed effects. Because many counties in the data sets tend
to contain either one middle school or one high school 42, there is insufficient variation
to allow for county-specific fixed effects. Thus, maximum likelihood estimates from the
fixed-effects-model cannot be obtained for these subsamples.

The first column reports the estimated peer effects for middle-school students. There
is a striking difference between the estimated within-gender peer effects, ρMM and
ρFF . That is, the peer effect among male middle-school students is much larger than
that among female middle-school students. This suggests that male students are more
strongly influenced by each other than are female students in the lower (6th–8th) grades.
Again, the within-gender peer effects, ρMM and ρFF , are larger than the between-gender
peer effect, ρMF . Note that the between-gender peer effect is positive but insignificant.
Hence, peer influences are negligible between genders, and middle-school students quite
segregated on the basis of gender.

The second column reports the estimated peer effects for high-school students. For
higher-grade (9th–12th) students, there is no significant difference between the estimated
within-male peer effect, ρMM , and the within-female peer effect, ρFF . Moreover, although
the estimated between-gender peer effect, ρMF , is smaller than the within-gender peer
effect, it remains positive and significant at the 5 percent level. This result suggests that,
although high-school students are more likely to be influenced by friends of the same

41. When I tried to estimate race-based peer effects for the subsamples of middle-school and high-
school students, the maximum likelihood estimate did not converge. As stated in the previous section,
the estimation of race-based peer effects requires further exclusion of racially uniform schools from the
data set. This only leaves less than one fifth of the whole sample for estimation. Given that, as already
stated, peer effects are identified by variations in choices between schools, the small sample size is makes
reliable estimation problematic. In fact, in the initial search for an appropriate starting value,  tended
to oscillate widely, and hence, the maximum likelihood estimate, „, failed to converge.

42. To be more precise, 92 of 143 counties (64.33 percent) have only one middle school and 80 of
125 counties (64.00 percent) have only one high school.
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gender than by friends of a different gender, they might take into account cross-gender
peer influences. Taken together, these results suggest that, at higher grades, within-gender
peer effects diminish whereas between-gender peer effects strengthen. This pattern can be
explained by findings from sociology that the degree of gender homogeneity in friendship
declines from middle school to high school (e.g., Shrum et al. 1988). Relative to the
baseline estimates in Table 5, the magnitudes of the estimates are smaller for all types
of peer effects. However, the reduction is not substantial, and all peer effects are remain
statistically significant at the 5 percent level.

Are middle-school or high-school students more sensitive to peer pressures to smoke?
To answer the question, consider a student of average background characteristics in a
school of average smoking prevalence. Suppose that this student relocates from a school
with average smoking prevalence to a new school in which the proportion of smokers
exceeds the average by one standard deviation. The estimated model for middle-school
students predicts that the probability of such a student being smoker increases from 0.085
to 0.180. The elasticity in response to a change in the smoking environment is 2.208. On
the other hand, the estimated model for high-school students predicts an increase in the
probability of being smoker from 0.209 to 0.338. The elasticity of smoking participation
is 1.237. Hence, middle-school students are more responsive to a peer-induced change in
the smoking environment than are high-school students.

Overall, these results suggest the following conclusions. First, middle-school and
high-school students respond differently to peer pressures. Middle-school students are
more influenced by the smoking behavior of their friends than are high-school students.
This is compatible with the a priori expectation that addiction might reduce peer effects
in youth smoking decisions. Second, and nevertheless, ample evidence of substantial
positive peer interactions among both middle-school and high-school students remains.
Positive peer effects remain after controlling for differences in the stock of addiction.
Hence, there are substantial peer effects for middle-school students and high-school
students.

6.3. Policy Experiments

To reduce youth smoking, it is essential to know whether proposed smoking policies
are effective. In this section, I evaluate the effects of various smoking policies on
youth smoking behavior based on the estimated model above. I predict the effects of
hypothetical policy changes on smoking rates, and compare these effects with those of
past policy interventions of a similar nature.

The first policy experiment relates to cigarette taxes. The first panel of Table 12
reports predicted smoking rates under a variety of hypothetical taxes. To obtain the
predicted smoking rates, I repeat experiments by simulating smoking profiles from
the social interaction model based on the parameter estimates for the best-fitting
specifications.43 The first column reports simulated tax effects on the smoking rates
of students in all grades from 6 through 12. As expected, smoking rates decrease as
cigarette taxes increase. The estimated elasticities are presented in square brackets.44

These elasticities range from −0.18 to −0.20 for the tax increases considered. This implies

43. I use the estimates reported in column (4) of Table 4 and 5 relating to students of all grades,
and use the estimates reported in Table 11 relating to middle- and high-school students separately.

44. Each tax elasticity is (∆y/y)/(∆τ/τ), where ∆y is the predicted change in the smoking rate
due to the assumed tax change, ∆τ , y is the average smoking rate in the baseline simulation, and τ is
the average tax rate for the relevant sample.
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TABLE 12

Simulated Smoking Prevalence Following Tax Increases
students of middle school high school
all grades students students
N=29385 N=11829 N=14363

baseline 18.941 10.304 26.356

A. hypothetical tax impacts on smoking rates; with peer effects
20 cents 18.084 9.716 25.646

[-0.202] [-0.255] [-0.120]
40 cents 17.264 9.165 24.955

[-0.198] [-0.247] [-0.119]
60 cents 16.483 8.651 24.278

[-0.193] [-0.239] [-0.117]
80 cents 15.738 8.166 23.615

[-0.189] [-0.232] [-0.116]
100 cents 15.024 7.706 22.974

[-0.185] [-0.225] [-0.115]
120 cents 14.344 7.281 22.348

[-0.181] [-0.218] [-0.113]

B. hypothetical tax impacts on smoking rates; without peer effects
20 cents 0.179 0.097 0.252

[-0.248] [-0.269] [-0.196]
40 cents 0.169 0.091 0.241

[-0.243] [-0.262] [-0.193]
60 cents 0.159 0.085 0.23

[-0.238] [-0.256] [-0.190]
80 cents 0.15 0.08 0.219

[-0.233] [-0.249] [-0.188]
100 cents 0.141 0.075 0.209

[-0.228] [-0.243] [-0.185]
120 cents 0.133 0.07 0.199

[-0.224] [-0.237] [-0.182]

Note- Data are composed of the four major races in the United States (whites, blacks,
Hispanics and Asians). Data are restricted to students in the schools for which the
2000 NYTS collects at least ten male and female students. Middle school students are
between 6th and 8th grades, high school students are between 9th and 12th grades. All
simulated values are computed from the average over 1000 experiments. The elasticities
are computed based on the average tax of 89.26 cent in sample. Tax elasticities are in
blankets.

that a 10 percent increase in federal and state taxes reduces smoking rates among middle-
school and high-school students by roughly 2 percent.

The second and third columns of Table 12 present simulated tax effects on the
smoking rates of middle- and high-school students, respectively. Again, the tax increases
have negative and substantial effects on youth smoking. The results show that the
elasticities range from −0.22 to −0.26 for middle-school students, and from −0.11 to
−0.12 for high-school students. Thus, middle-school students are much more responsive
to tax changes than are high-school students: the tax elasticity for middle-school students
is about twice as large as that for high-school students.

For comparison, I estimate the tax elasticities from the standard cross-sectional
model, which does not include peer effects, for the same tax increases. The results are
shown in the second panel of Table 12.45 The following findings are highlighted. First,
the estimated elasticities from the standard model are consistently larger than those
from the social interaction model. As stated earlier (see section 3.3), the peer effects are

45. The estimated parameters from the standard model are available from the supplementary web
site. Since no peer interactions are assumed in the standard model, the parameter estimates can be
obtained by standard logistic regression.
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identified from excessive cross-group variations in choices that cannot be explained by
differences in fundamentals. Thus, the standard model overstates the impact of tax on
smoking decisions, which in practice, may be amplified by peer interactions. Second, the
tax elasticities for middle-school students are significantly larger than those for high-
school students, based on models with and without peer effects. Third, however, the
difference in tax elasticities between middle-school and high-school students is much
greater according to the social interaction model than according to the standard model.
This result indicates that the larger difference in tax elasticities is due to the different
magnitudes of peer effects between middle- and high-school students. Since middle-school
students have larger peer effects than high-school students, the tax effects on middle
school students might be greater than those on high-school students.

Do the estimated tax elasticities explain changes in the smoking rate over time? I
examine this issue by computing out-of-sample predictions. Youth smoking rates have
been falling steadily since the early 2000s. According to the data from the Monitoring the
Future Survey, between 2000 and 2004, the smoking rate among 8th graders fell from 14.6
percent to 19.2 percent, and the smoking rate among 12th graders decreased from 31.4
percent to 25.0 percent. During the same period, federal and state excise taxes increased
from 75.9 cents to 111.6 cents per pack.46 One would expect at least part of the decline
in youth smoking rates to have been due to these tax increases. Based on the estimated
elasticities from the social interaction model above, 47 the tax increase can explain 31.3
percent of the 5.4 percentage-point decrease in the smoking rate of 8th graders, and can
explain 27.3 percent of the 6.4 percentage-point decrease in the smoking rate among
12th graders. This suggests that the tax increase can explain about one third of the
smoking trends of middle- and high-school students. Thus, although the estimated tax
elasticities appear small, they can explain a substantial part of the time-series changes
since 2000. According to a similar estimate reported by Gruber and Zinman (2000) and
Gruber (2001), tax increases explain about 26 percent of the the changes in smoking
rates between 1991 and 1997 among 12th-grade, which is comparable with the finding of
this paper. Note that the explanatory power of the tax increases is similar for middle-
and high school students.

The explanatory power of the estimated tax elasticities from the standard model is
different. On the basis of the results reported in the second panel of Table 12, the tax
shift explains 33.3 percent of the time-series variation in the smoking trend among 8th
graders and explains 44.5 percent of the time-series variation in smoking by 12th-grade
students between 2000 and 2004.48 The finding that tax has a greater effect on high-
school students than on middle-school students is unconvincing, given that the smoking
trends of middle-school and high-school students are similar. However, there is no strong
evidence linking reduced smoking rate among middle-school students to other changes,
either in background characteristics or in regulatory policies.

As stated earlier, the tax effects are magnified by multiplier effects. Table 13 reports
the decomposition into these direct and indirect effects of tax increase on smoking
prevalence for all students from grades six to 12. The first and second columns show

46. To be more precise, between 2000 and 2004, the average state excise tax increased from 41.9
cents to 72.6 cents, and the federal excise tax increased from 34.0 cents to 39.0 cents.

47. Assuming a tax change from 2000 to 2004 of about 40 cents, I used the estimated elasticity
of −0.247 for middle-school students in the 8th grade, and the estimated elasticity of −0.119 for high-
school students in the 12th grade.

48. I used the estimated elasticity−0.262 for 8th-grade students and the estimated elasticity−0.193
for 12th grade students.
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TABLE 13

Decomposition of Tax Effects on Smoking Prevalence
tax increases total direct social

effect effect multiplier

20 cents -0.857 -0.533 1.610
40 cents -1.677 -1.055 1.590
60 cents -2.458 -1.567 1.569
80 cents -3.203 -2.068 1.549

100 cents -3.917 -2.559 1.531
120 cents -4.598 -3.039 1.513

Note- Data are composed of all students between the grades of 6 and 12 of the four major
races in the United States (whites, blacks, Hispanics and Asians). Data are restricted to
students in the schools for which the 2000 NYTS collects at least ten male and female
students. The sample size is N = 29385 from S = 305 schools. All simulated values are
computed from the average over 1000 experiments. Social multiplier is defined by the
ratio of total effect to direct effect.

the total effect and the direct effect, respectively. The third column shows the implied
social multiplier effects, which are the factors by which the externality raises the direct
effect through peer interactions. As shown, the multipliers range from 1.513 to 1.612 for
the tax increases examined. This implies that peer effects raise the direct tax effect on
youth smoking by a factor of more than 1.5. This evidence of significant multiplier effects
on the tax elasticities supports the hypothesis that peer interactions strongly affect youth
smoking behavior. 49

In summary, there is evidence to suggest that cigarette taxes can substantially reduce
youth smoking. Tax increases explain about one third of the observed recent reductions
in the smoking rates of both middle- and high-school students. It should be stressed,
however, that tax is not the only effective tool for reducing youth smoking. For example,
Healthy People 2000 sets the objective of more than doubling the average federal and
state taxes on cigarettes to $2.00 per pack. According to the results in Table 12, a
tax increase of 120 cents per pack (a cigarette tax of $2.10 per pack) could reduce the
smoking rates of middle-school and high-school students by 4.6 percentage points, from
18.9 percent to 14.3 percent. While this tax-induced reduction is significant, it is far short
of the target set by Healthy People 2000, which is to reduce youth smoking to half of its
current rate.

7. SUMMARY AND CONCLUSIONS

If peer behavior influences individual behavior, youth smoking can differ between groups.
I have used a micro data set that records the smoking behavior of middle-school and high-
school students to examine the hypothesis that peer interactions play an important role
in explaining variations in youth smoking behavior.

49. Note that the estimated social multiplier effects decrease systematically as the hypothetical
tax increases. The intuitive explanation is as follows. Suppose that tax increases. The social interaction
model implies that the latent smoking utility of a person , which is assumed to be linear in background
characteristics, decreases proportionally to the tax rise, due to a direct tax effect. At the same time,
the tax rise reduces the fraction of smokers in the person’s peer group, so that the utility of the person
decreases further through the indirect effect of the reduced fraction of smokers. However, the decrease in
utility due to the indirect effect is not proportional to the tax increase because the fraction of smokers is
bounded between 0 and 1. The larger the tax change, the closer is the fraction of smokers to the upper
or lower bound. Therefore, as the tax increases, the direct tax effect dominates the indirect tax effect,
and the social multiplier diminishes.
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The model presented in this paper specifies how each person’s smoking behavior
is related to the smoking behavior of peers through utility. The behavioral model
incorporates a utility-maximization framework by using the standard parameterization of
the discrete-choice literature. Smoking interactions between individuals are modeled by
using a Markov process, which produces a unique cross-sectional distribution of smoking
profiles. This distribution is used as a likelihood function from which to estimate the
model.

The model was estimated by using a maximum likelihood method. The estimates
show that peer effects are positive and statistically significant, and are important
determinants of youth smoking. The results are robust to the inclusion of the fixed effects
that control for unobserved heterogeneity between counties; i.e., peer effects remain
significant. Furthermore, peer effects generate substantial externalities that lead to a
more than 1.5-fold increase in the direct tax effects on youth smoking behavior. These
empirical results represent consistent evidence of peer effects on youth smoking behavior.
Peer effects are so important that youths succumb to smoking because of the influence
of their peers.

I conclude by emphasizing that the empirical analysis of this paper is merely the first
step of a wider study into peer effects on smoking decisions. To develop a comprehensive
policy strategy to reduce the prevalence of tobacco smoking, further research should be
implemented to clarify the remaining issues. In particular, the model did not incorporate
an addiction mechanism where reinforcing feedback operates across past-self, present-
self, and future-self within an individual. Instead, the model of this paper focuses on peer
interactions where a reinforcing feedback loop is only at work across different individuals.
Undoubtedly, it would be worthwhile to analyze both dimensions of reinforcing feedbacks.
This analysis would require a rational expectations model where young people optimally
choose their current smoking decision based on past smoking choices by both themselves
and their peers, as well as on their anticipation of the future smoking choices of both
themselves and their peers. The dynamic analysis featuring forward-looking expectations
is a fertile ground for future research.

APPENDIX A. PROOFS AND DERIVATIONS OF EQUATIONS

Appendix A.1. Proof of Theorem 1

I show that the conditional probabilities πi are compatible under the steady state distribution P ∗. I will
use the phrase compatible to refer to the case in which a set of conditional probabilities are generated
by a common joint distribution (see Arnold et al. (1999)).

Consider the conditional probability of P ∗ on ωi given ω−i and given x. A straightforward
computation yields

P ∗(ωi|ω−i;x) =
P ∗(!|x)

P ∗(!+|x) + P ∗(!−|x)
(A21)

where ! = (ωi, ω−i),!+ = (+1, ω−i), and !− = (−1, ω−i). The denominator is the marginal
distribution P ∗(ω−i|x) = P ∗(!+|x)+P ∗(!−|x). For convenience, I rewrite Equation (A21) by dividing
the both denominator and numerator by P ∗(!) as

P ∗(ωi|ω−i;x) =

(
[1 + P ∗(!−|x)/P ∗(!+|x)]−1 if ωi = +1,

[1 + P ∗(!+|x)/P ∗(!−|x)]−1 if ωi = −1.
(A22)

Suppose that ωi = +1. Then I compute the value P ∗(!−|x)/P ∗(!+|x) in Equation (A22) as

P ∗(!−|x)/P ∗(!+|x) = exp−{Q(!+|x)−Q(!−|x)}, (A23)
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using the definition of P ∗ in Equation (2.6). By substituting the Qs by Equation (2.7), I obtain the
following result

P ∗(ωi|ω−i;x) =
h
1 + exp−˘bi(xi) +

P
j 6=iρijωj

¯i−1
(A24)

A similar result follows when ωi = −1. Under the assumption 1 and 2, this is equal to πi(ωi|ω−i,xi),
which is the conditional probability of smoking decision for person i. Thus, I proved that the set of
conditional probability πi are compatible under the distribution P ∗.

The same induction steps as in Amemiya (1975) prove that the P ∗ is a unique joint distribution
from which the set of distribution πi are generated from.

I then turn attention to the convergence of the interaction process [y(0),y(1), · · · ,y(t)]. The
transition of the stochastic process is given by rule (2.4) with the updating probability πi. This type of
the Markov chain is generally referred as Glauber dynamics, or Gibbs sampler dynamics. According to
the theory of Markov chain (see Geman and Geman 1984; Guyon 1995), if every N person in a sequence
(d(0), d(1), d(2), · · · ) is chosen infinitely often, the Markov chain [y(0),y(1), · · · ,y(t)] converges on a
common joint distribution under which the set of conditional probabilities πi are compatible, which turn
out to be the distribution P ∗ from the discussion above. This result is independent of the initial condition
!(0), and the result of Eq (2.5) follows. The only necessary condition for applying the convergence result
follows from the assumption 3. ‖

Appendix A.2. Derivation of the Conditional Distribution P ∗ on τ

I begin with notations. Given the vector of individual background characteristics xi, let x1i denote a
vector of individual characteristics (e.g., grade dummies, race dummies), and let x2i denote a vector of
constant and county characteristics (e.g., cigarette tax and other county characteristics). The x2i does
not change across individuals in county `. The parameters are decomposed into ˛ = (˛1,˛2)′, where ˛1

and ˛2 denote vectors of unknown parameters that correspond to x1i and x2i respectively.

By using the new notations, the Q-function in Equation (5.17) can be rewritten as

Q(!`|x`,„) =
1

2

X

i

ωi(δ` + x1i˛1 + x2i˛2) +
1

4

X

i

X

j

ρijωiωj

=

 
1

2

X

i

(δ` + x2i˛2)τ`

!
+

0
@1

2

X

i

ωix1i˛1 +
1

4

X

i

X

j

ρijωiωj

1
A . (A25)

The last equation follows from the restriction τ` =
P

i ωi. I use the following notation for convenience:
C` = 1

2

P
i(δ` + x2i˛2)τ` = NL

2
(δ` + x2i˛2)τ`. Then, the Q function is

Q(!`|x`,„) = C` + Q1(!`|x`,„). (A26)

Bayes rule implies that the conditional probability of P ∗ on !` given τ` is computed as follows

P ∗(y` = !`|x`,„; τ`) =
exp Q(!`|x`,„)P

”`∈Ω`
exp Q(”`|x`, „)

ffiP
!`∈B`

exp Q(!`|x`,„)P
”`∈Ω`

exp Q(”`|x`,„)

=
exp Q(!`|x`, „)P

”`∈B`
exp Q(”`|x`,„)

. (A27)

Plug Equation (A26) into Equation (A27). Since the expC` is constant for any profile that belong to
B`, it is canceled out from the numerator and the denominator above. Thus Equation (5.17) follows. ‖

APPENDIX B. AN EXAMPLE OF A MARKOV CHAIN

Consider a Markov chain with following transition: Suppose that pair of persons i and j are randomly
selected. Let σ(!) = (σ1, · · · , σN ) be a vector that swaps i and j elements of !. In other words, σi = ωj

and σj = ωi. Consider the following transition of profile y(t + 1) from y(t) = ! ∈ B such as

y(t + 1) =

(
! with probability α(!, σ(ω)),

σ(!) with probability 1− α(!, σ(!)),
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where I define

α(!, σ(!)) = min


Q1(!|x, „)

Q1(σ(!)|x,„)
, 1

ff
.

The transition states that the candidate value in next period is proposed by swapping choices between
the randomly selected persons i and j, and is then accepted or rejected according to the Q-function at
the candidate value relative to the Q-function at the current value. Such an algorithm is often referred
to as the Metropolis sampling algorithm in the statistical literature. Note that whenever y(t) ∈ B then
y(t+1) ∈ B. That is, the Markov chain proposed above satisfies the summation restriction imposed by B
where

P
i ωi = τ for ! ∈ B. Since two elements of ! are just swapped, it follows that

P
i σi =

P
i ωi = τ ,

and thus σ(ω) ∈ B.
Second, the Markov process is aperiodic. This is because the algorithm states that the probability

that the next draw is the same as the current draw is positive. This happens when the proposed sample
is rejected.

Finally, the Markov process is irreducible. The reason is as follows: To move from state ! to state
!′, find the coordinates whose values in ! and !′ are different, and swap these two values. Continue
swapping until ! and !′ agree. If pairs swapped are chosen randomly, such a transition from state !
to state !′ occurs with positive probability for any !,!′ ∈ B. That means that there is a positive
probability of reaching any state from any other state in finite steps, so that the process visits all the
states of B.
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