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Potential Games with a Continuum of Players
A continuum of homogeneous and anonymous players with mass 1;
A = {1, . . . , n}: (common) set of actions.

∆ = {x ∈ Rn
+ |

∑n
i=1 xi = 1}: set of action distributions.

(∆̄ ⊂ Rn: a neighborhood of ∆; ei ∈∆: ith vertex.)

A population game is a profile (ui)n
i=1 of C1 functions ui : ∆ → R

(ui(x): the payoff to action i when the action distribution is x ∈∆).

Ex.:
Random matching play of a symmetric two-player normal form game:

u(x) = Ux (x ∈∆), (u(x) = (u1(x), . . . , un(x))′)

U ∈ Rn × Rn.
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Ex. (cont.):
Traffic networks: A = set of routes.

Spatial economics: A = set of locations (regions, countries...)
(e.g., Krugman (1991): presence of trade costs).

Economic development: A = set of sectors
(e.g., Matsuyama (1991, 1992)).

3



Potential Functions for Population Games (Sandholm (2001))

Definition 1. A function v : ∆̄→ R is said to be a potential function
of (ui)n

i=1 if for all i, j = 1, . . . , n,

∂v

∂xi
(x)−

∂v

∂xj
(x) = ui(x)− uj(x) for all x ∈∆. (1)

(ui)n
i=1 is said to be a potential game if it admits a potential function.

x∗ ∈∆ is a Nash equilibrium of (ui)n
i=1

⇐⇒ it satisfies the Kuhn-Tucker first-order conditions for

Maximize v(x) subject to x ∈∆.

Local (in particular, global) maximizers ⇒ Nash equilibria.
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Examples
(1) Two-action (n = 2) case: a potential function trivially exists:

v(x1, x2) =
∫ x1

0
u1(x1,1− x1) dx1 +

∫ x2

0
u2(1− x2, x2) dx2.

(2) Random-matching of a symmetric n× n game: u(x) = Ux:
If U = V + W where

V : symmetric, W =





w1 w2 · · · wn
w1 w2 · · · wn
... ... ...

w1 w2 · · · wn



,

then this game is a potential game with

v(x) =
1

2
x′V x.
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A Characterization of Potential Games
(Hofbauer (1985), Hofbauer and Sigmund (1998, Theorem 19.5.4))

Suppose (ui)n
i=1 is defined on a neighborhood of ∆.

(ui)n
i=1 admits a potential function

⇐⇒ it satisfies triangular integrability :

∂ui

∂xj
(x) +

∂uj

∂xk
(x) +

∂uk

∂xi
(x) =

∂ui

∂xk
(x) +

∂uk

∂xj
(x) +

∂uj

∂xi
(x),

or equivalently, symmetric externalities:

∂(ui − uk)

∂(ej − ek)
(x) =

∂(uj − uk)

∂(ei − ek)
(x).

(=
∂(ui−uk)

∂xj
(x)− ∂(ui−uk)

∂xk
(x))

6

Myopic Evolutionary Dynamics in Potential Games
A potential function works as a global Lyapunov function
for many reasonable myopic dynamics.

Ex. (n = 2)

! x1
0 1

"#"#"##" #"#" ! x1
0 1

"#"#"# #" #"#"

7



Myopic Evolutionary Dynamics in Potential Games
A potential function works as a global Lyapunov function
for many reasonable myopic dynamics.

• Best response dynamics
Gilboa and Matsui (1991), Matsui (1992), Hofbauer (1995)

• Perturbed best response dynamics
Hofbauer (2000), Hofbauer and Sandholm (2002)

• Replicator dynamics
Taylor and Jonker (1978), Hofbauer and Sigmund (1998)
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Best Response Dynamics (1/2)

ẋ ∈ B(x)− x, (BRD)

where
B(x) = {α ∈∆ | αi > 0⇒ ui(x) ≥ uj(x) for all j} = argmaxα∈∆ α′u(x).

Interpretation:
During [t, t + dt), fraction λ · dt of players can revise actions (λ ≡ 1):

x(t + dt) = α(t)λdt + x(t)(1− λdt) α(t) ∈∆,

where revising players play myopic best responses to x(t):

αi(t) > 0⇒ ui(x(t)) ≥ uj(x(t)) ∀ j.

9

Best Response Dynamics (2/2)

ẋ ∈ B(x)− x, (BRD)

where
B(x) = {α ∈∆ | αi > 0⇒ ui(x) ≥ uj(x) for all j} = argmaxα∈∆ α′u(x).

Observation. If (ui)n
i=1 has a potential function v, then

d

dt
v(x) = ∇v(x)′ẋ

= α′∇v(x)− x′∇v(x) ≥ 0, (α ∈ B(x))

with equality only at Nash equilibria.
(Hofbauer (2000))
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Perturbed Best Response Dynamics (1/3)
ε = (ε1, . . . , εn)′: random vector with a strictly positive density on Rn.
ũj = uj + εj: perturbed payoff.
Ci(u) = Pr(argmaxj ũj = i): choice probability function (u = (u1, . . . , un)′).

ẋi = Pr(argmax
j

ũj(x) = i)− xi. (PBRD)

Ex.:
If εi: i.i.d. with extreme value distribution (F (x) = exp[− exp[−η−1x− γ]]),
then this is the logit best response dynamics:

Pr(argmax
j

ũj = i) =
exp(η−1ui)∑
j exp(η−1uj)

(η ∈ (0,∞): “noise level”).

11



Perturbed Best Response Dynamics (2/3)
ε = (ε1, . . . , εn)′: random vector with a strictly positive density on Rn.
ũj = uj + εj: perturbed payoff.
Ci(u) = Pr(argmaxj ũj = i): choice probability function (u = (u1, . . . , un)′).

ẋi = Pr(argmax
j

ũj(x) = i)− xi. (PBRD)

Interpretation:
- Heterogeneity in players’ preferences;

- Idiosyncratic preference shocks at individual level
(+ “no aggregate uncertainty”).
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Perturbed Best Response Dynamics (3/3)
ε = (ε1, . . . , εn)′: random vector with a strictly positive density on Rn.
ũj = uj + εj: perturbed payoff.
Ci(u) = Pr(argmaxj ũj = i): choice probability function (u = (u1, . . . , un)′).

ẋi = Pr(argmax
j

ũj(x) = i)− xi. (PBRD)

Theorem. There exists V : int∆→ R (convex, steep near boundary):

C(u) = argmax
z∈int∆

z′u− V (z). (C(u) = (C1(u), . . . , Cn(u))′)

(ex.: Logit ⇒ V (z) = η
∑

j zj log zj: “entropy function”.)

Theorem. (Hofbauer (2000)) If (ui)n
i=1 has a potential function v,

then v(x)− V (x) is a Lyapunov function of (PBRD).
13

Replicator Dynamics

ẋi = xi(ui(x)− ū(x)), (RD)

ū(x) = x′u(x): average payoff.

Satisfies “Positive Correlation” (Sandholm (2001)):

u(x)′ẋ =
∑

i

xi(ui(x))
2 − (ū(x))2 ≥ 0

with “=” if ui(x) = ū(x) for all i with xi > 0.

Observation. If (ui)n
i=1 has a potential function v, then

d

dt
v(x) = ∇v(x)′ẋ = u(x)′ẋ ≥ 0.
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Application: Evolutionary Implementation
Negative externality:
Sandholm (2002, 2005).

Positive externality + stochastic evolution:

Sandholm (2007a).
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Perfect Foresight Dynamics in Potential Games
Players choose current actions based on expectations about
the future behavior pattern of the society.

We consider equilibrium paths, or perfect foresight paths,
of the dynamics model.

Expected path φe : [0,∞)→∆
⇓

path φ′ : [0,∞)→∆ resulting from best responses to φe.

Equilibrium paths (from a given initial state)
= Fixed points of the correspondence φe 0→ φ′.
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Perfect Foresight Dynamics
Poisson action revisions with param λ ≡ 1 (independent across players).
−→ Fraction λ · dt of players can revise their actions.

Expected discounted utility (during a lock-in):

Vi(φ
e)(t) = (λ + θ)

∫ ∞

t
e−(λ+θ)(s−t)ui(φ

e(s)) ds.

θ > 0: discount rate. (θ/λ: degree of friction).
φe : [0,∞)→∆: anticipated feasible path.

A perfect foresight path (PF-path) is a path of distributions
along which revising players choose an action that maximizes
the expected discounted utility.
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Perfect Foresight Paths
Definition.

φ : [0,∞)→∆ is a PF-path if

φ̇(t) = λ
(
α(t)− φ(t)

)
α(t) ∈∆

(φ(t + dt) = α(t)λdt + φ(t)(1− λdt).)

such that

αi(t) > 0⇒ Vi(φ)(t) ≥ Vj(φ)(t) ∀ j.

Vi(φ)(t): expected discounted utility from action i at time t.

Observation. (Oyama, Takahashi, and Hofbauer (2003))
For each initial state, a PF-path exists.
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Ex.: n = 2 with a convex potential
Suppose the discount rate θ > 0 is sufficiently small
(i.e., future payoffs are important):

! x1
0 1

"#"#"#
#" #"#" !"

−→ is a PF-path ⇒ (x1, x2) = (1,0) is globally accessible.

←− is NOT a PF-path ⇒ (x1, x2) = (1,0) is absorbing.
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Stability under PFD
Definition.
A distribution x∗ ∈∆ is absorbing if
∃ neighborhood of x∗, ∀ PF-path converges to x∗.

A state x∗ ∈∆ is globally accessible if
∀ initial distribution, ∃ PF-path that converges to x∗.

Theorem. (Hofbauer and Sorger (JET 1999))

Suppose (ui)n
i=1 admits a potential function v, and

assume {x∗} = argmaxx∈∆ v(x).

Then, x∗ is the unique state that is absorbing and globally accessible
for any sufficiently small discount rate.

20

Sketch of Proof.
Consider the maximization problem (v: potential function):

Maximize J(φ) =
∫ ∞

0
θe−θtv(φ(t)) dt

subject to φ : feassible path.

φ∗: solution ⇒ φ∗: perfect foresight path.

Turnpike property:
There exists θ̄ > 0 such that if θ ∈ (0, θ̄),
then for any optimal solution φ,
φ(t) gets close to the potential maximizer for some t.

+ Neighborhood turnpike property (= absorption)

⇒ Global accessibility.
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An Open Problem
Suppose x∗ ∈∆ is a unique global potential maximizer.

For each initial condition x0 in a neighborhood of x∗,
is a PF-path from x0 unique?

(Note: absorption does not require uniqueness of PF-paths.)
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Core-Periphery Model as a Potential Game
“New Economic Geography” (Krugman (1991) and others)

General equilibrium models with
- scale economies (Dixit-Stiglitz type),
- trade costs (“iceberg”),
- production factor mobility (with two locations).

Interested in distributions of manufacturing firms
that are stable under myopic evolutionary dynamics.

Standard result:
Trade costs: Large ⇒ Dispersion;

Small ⇒ Agglomeration (a “core” and a “periphery”).
Only “history” matters.
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History versus Expectations
Relevance of forward-looking expectations in relocation decisions.
← standard response: “Difficult to consider expectations”.

Oyama (2006) considers a version of CP model with n countries
which admits a potential function.

⇒ Apply the results by Hofbauer and Sorger (1999):
a (unique) global potential maximizer is uniquely stable under PFD
(for small discount rates).

⇒ Just characterize the shape of the potential function
for various values of the key parameters (such as trade costs).
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Model
Ex.: n = 2

1

Modern goods

↑↑
Entrepreneurs x1

⇒ u1(x)

!
1 1/τ12
"

1/τ21 1

2

Modern goods

↑↑
Entrepreneurs x2

⇒ u2(x)

τji > 1: trade cost from country j to country i,
ui(x): indirect utility from locating in country i.

⇒ (ui)n
i=1: reduced population game.
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Key Assumption
Trade cost depends only on the trade barrier of the destination:

τji = τki (=: τi) for all j, k 4= i.

τi > 1: trade barrier of country i.

(+ Quasi-linear preference.)

Observation.
The population game (ui)n

i=1 admits a potential function v.

Trade barriers:
Low ⇒ v: convex;
Hight ⇒ v: concave.
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Proposition.

Assume trade barriers are sufficiently low.
If (trade barrier of country i∗) > (trade barrier of country j) ∀j 4= i,
then agglomeration in i∗ is the absorbing and globally accessible state
for a sufficiently small discount rate.

(Expectations matter.)

Proposition.

If trade barriers are sufficiently high,
then there exists a unique potential maximizer x∗ ∈ int(∆),
and any PF-path converges to x∗ for any discount rate.

(Expectations as well as history play no role.)
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Notes

1 Potential Games with a Continuum of Players

Sandholm (2001). See also Sandholm (2007b).

2 Myopic Evolutionary Dynamics in Potential Games

Hofbauer (2000), Sandholm (2001), Hofbauer and Sandholm (2002).

Textbooks: Fudenberg and Levine (1998), Hofbauer and Sigmund (1998), Weibull
(1997).

Application of perturbed best response dynamics to New Economic Geography:
Murata (2003), Tabuchi and Thisse (2002).

3 Perfect Foresight Dynamics in Potential Games

Industrialization: Matsuyama (1991, 1992).

Random matching: Matsui and Matsuyama (1995), Hofbauer and Sorger (1999),
Oyama, Takahashi, and Hofbauer (2003).

See also Hofbauer and Sorger (2002), Oyama (2002), Matsui and Oyama (2006),
Oyama and Tercieux (2004), Takahashi (2005).

4 Core-Periphery Model as a Potential Game

Krugman (1991).

Textbooks: Baldwin et al. (2003), Fujita, Krugman, and Venables (1999).
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