Evolutionary phenomena of indirect reciprocity in *n*-person games

Shinsuke Suzuki^{1*}, Eizo Akiyama¹

suzuki92@sk.tsukuba.ac.jp

¹Graduate School of Systems & Information Engineering, University of Tsukuba.

*Research Fellow of the Japan Society for the Promotion of Science.

Evolution of cooperation

- Kin-selection (Hamilton 1964)
- Multi-level selection (Wilson & Sober 1999)
- Reciprocity (Trivers 1971)
 - Direct reciprocity (Axelrod & Hamilton 1984)
 - □ Indirect reciprocity (Nowak & Sigmund 1998)
 - Referring reputation, a reciprocator can know which partners are cooperative and can reciprocate with a cooperator.
 - □ Community enforcement (Kandori 1992), or general exchange.

Mathematical model of indirect reciprocity

- Nowak & Sigmund(1998):
 - □ The same individuals interact only a few times.
 - The individuals play a <u>2-person prisoner's dilemma</u> (or giving) game.
 - □ Image scoring is adopted as a reputation criterion.
 - Cooperation $\rightarrow G$ (good), Defection $\rightarrow B$ (bad)
 - DIS (discriminating) strategy: cooperates only with the opponents who have good reputation.
 - \rightarrow *DIS* can form indirectly reciprocal cooperation.

Related issues

- Image scoring is not sufficient for the evolution of indirect reciprocity (e.g. Panchanathan & Boyd 2003, Ohtsuki & Iwasa 2007, Takahashi & Mashima 2006, Kandori 1992).
- What if in *n*-person games? (*n*>2)

Ostrom et al., 1999

Dugatkin, 1990

→We investigate the case of <u>n-person games</u>.
■Suzuki & Akiyama 2005, 2007

Summary of the results

- Indirect reciprocity can be an ESS in *n*-person games under *image scoring*.
 - In 2-person games, indirect reciprocity can not be an ESS (Panchanathan & Boyd 2003, Ohtsuki & Iwasa 2005).
- Indirect reciprocal cooperation can be maintained as (sometimes chaotic) oscillation under *image scoring*.
 - As mutation rate increases, evolutionary dynamics change: convergence to a fixed point → oscillation → *chaotic* oscillation → oscillation → convergence.

Overview of the model

Consider a population consisting of infinite number of individuals. All individuals are divided into groups consisting of *n*-individuals. They play an *n*-person prisoner's dilemma game in each group. Each individual is assigned her reputation based on her action. -A round (2-4) is repeated. Each individual leave her offspring depending on her fitness (natural selection).

A generation (2-6) is repeated.

n-person prisoner's dilemma game

- Payoff for a cooperator: bk/(n-1)-c
- Payoff for a defector: bk/(n-1)
 - c: cost of cooperation, b: benefit of cooperation, k: the number of opponents cooperating in the group.

Other settings

- The number of rounds in a generation:
 - After the first round, each of the subsequent rounds occurs with probability w (0 < w < 1).
 - → The expected value of the number of rounds in a generation is 1/(1-w).
- Implementation error (action noise):
 - □ With the small probability *ε*, an individual who intends to cooperate fails to cooperate.

Reputation criterion

Bshary 2001, 2006

Image scoring (Nowak & Sigmund 1998):

- □ At the first round, all individuals have Good reputation.
- $\Box \text{ Cooperation } \rightarrow \text{Good.}$
- $\Box \text{ Defection } \rightarrow \text{ Bad.}$

Strategies (n-person games)

- Each individual decides her own action based on <u>the</u> <u>number of *Good*-opponents in the group</u>.
- The strategies are represented as an *n*-dimensional binary vector ∈ {0,1}ⁿ.
 - □ e.g., in 4-person game, (0,1,1,0).
 - □ 0: defection, 1: cooperation.
 - \rightarrow There exist 2^n strategies in total.

Important strategies in 4-person games

- $S_0 = (0, 0, 0, 0)$ called ALLD <u>always</u> defects.
- $S_1 = (0, 0, 0, 1)$ called *strictDIS* cooperates only when <u>*all*</u> the opponents are *Good*.
- $S_3 = (0,0,1,1)$ called *generousDIS1* cooperates only when <u>at least two</u> opponents are *Good*.
- $S_7 = (0, 1, 1, 1)$ called *generousDIS2* cooperates only when <u>at least one</u> opponents is *Good*.
- $S_{15} = (1,1,1,1)$ called *ALLC <u>always</u>* cooperates.
- → 2^4 =16 strategies in total.

Fitness for the strategies

- Share of the strategies: $\mathbf{x} = (x_0, \dots, x_{2^{n}-1})$.
- Fitness for strategy S_i is $f_i(\mathbf{x})$,
 - which is defined as an average total payoff during the generation.
- Replicator dynamics:

Fitness for strategy *i*

$$x_{i}(t+1) = x_{i}(t) \frac{f_{i}(\mathbf{x})}{\sum_{j=0}^{15} x_{j}(t) f_{j}(\mathbf{x})}$$

Average fitness over the population

In addition, we consider the effect of *mutation*.

Mutation

Probability that one bit of a strategy vector inverts is denoted as μ . That is,

(0011)	(0011)
\downarrow the prob is μ .	\downarrow the prob is μ^2 .
(0010)	(1010)
(0011)	(0011)
\downarrow the prob is μ^3 .	\downarrow the prob is μ^4 .
(1110)	(1100)

Replicator-mutator dynamics: $x_i(t+1) = \frac{\sum_{j=0}^{15} x_j(t) f_j(\mathbf{x}) q_{ji}}{\sum_{j=0}^{15} x_j(t) f_j(\mathbf{x})}$ q_{ji} : the probability that mutation of strategy *j* give rise to strategy *i*.

Evolutionary stability of Discriminator

- $(0, \dots, 0, 1)$ called *strictDIS* can be an ESS.
 - □ Region I: *strictDIS* can be invaded by cooperative strategies.
 - □ Region II: *strictDIS* is an ESS.
 - □ Region III: *strictDIS* can be invaded by defective strategies.

Evolutionary stability of Discriminator

• When *n* is sufficiently large,

• strict DIS is an ESS, if $c/b < w\hat{\varepsilon}^{n-1}/(1+w\hat{\varepsilon}^{n-1})$.

- Region II: <u>strict DIS is an ESS.</u>
- Region III: *strict DIS* can be invaded by defective strategies.

Evolutionary stability of Discriminator

- In *n*-person games, *Discriminating* strategy can be an ESS under image scoring.
 - On the other hand, it cannot be an ESS in 2-person games (e.g. Panchanathan & Boyd 2003, Ohtsuki & Iwasa 2007).
- Why?
- \rightarrow The mechanism for this is as follows...

2-person games • If an individual fails to cooperate, ... G: good **B**: bad B DIS DIS DIS D C DIS DIS ALLC

• Only ALLC is not drawn into the chain of the retaliative defections. \rightarrow ALLC can invade!

3-person gameIf an individual fails to cooperate, ...

• ALLC cannot avoid being drawn into the chain of the defections. \rightarrow ALLC cannot invade!

Can strict DIS form cooperation?

*The frequency of cooperation does not depend on <u>the benefit</u>, <u>b</u>, and <u>the cost</u>, <u>c</u>, of cooperation.

Evolutionary dynamics

- Numerical simulation of replicator-mutator equation:
 - 4-person game (n = 4).
 - The cost-to-benefit ratio of cooperation, c/b = 1/12.
 - The probability that each of the subsequent rounds occurs, w = 0.9.
 - Noise rate, $\varepsilon = 0.01$.
 - \rightarrow at which no pure strategy is an ESS.
 - □ Mutation rate, $\mu = 0.002$, 0.003, 0.006, 0.008, 0.009, 0.010, or 0.011 (to compare Nowak & Sigmund 1993).

Bifurcation of the evolutionary dynamics as mutation rate increases

• Mutation rate, $\mu = 0.002, 0.003$.

Bifurcation of the evolutionary dynamics as mutation rate increases • Mutation rate, $\mu = 0.006, 0.008$.

0.8 0.6 Cooperativeness 0.4 μ =0.006, 4 period 0.2 0 2000 4000 6000 8000 10000 0 0.8 0.6 0.4 μ =0.008, 6 period 0.2 0 2000 4000 10000 6000 8000 0 Generation

Bifurcation of the evolutionary dynamics as mutation rate increases

• Mutation rate, $\mu = 0.009$.

strictDIS = (0,0,0,1)

Bifurcation of the evolutionary dynamics as mutation rate increases

• Mutation rate, $\mu = 0.010, 0.011$.

• Unconditional defectors \rightarrow strict reciprocators \rightarrow generous reciprocators or unconditional cooperators \rightarrow unconditional defectors.

• Irregularly, $ALLD=(0,0,0,0) \rightarrow strictDIS = (0,0,0,1) \rightarrow generousDIS = (0,0,1,1) \text{ or } (0,1,1,1), (1,0,0,1), (0,1,0,1), ALLC = (1,1,1,1) \rightarrow ALLD.$

Evolutionary dynamics

- Evolutionary dynamics change as mutation rate increases:
 - □ <u>convergence</u> to a fixed point → <u>oscillation (2 period)</u> → <u>oscillation (4 period)</u> → <u>oscillation (6 period)</u> → <u>chaotic</u> <u>oscillation</u> → <u>oscillation (2 period)</u> → <u>convergence</u>.
 - Oscillation:
 - ALLD → strictDIS → generousDIS or ALLC → ALLD.
 - Chaotic oscillation:
 - Irregularly, $ALLD \rightarrow strictDIS \rightarrow generousDIS$, (1,0,0,1), (0,1,0,1) or $ALLC \rightarrow ALLD$.

Evolutionary dynamics

 A similar transition of the evolutionary dynamics is observed in iterated 2-person prisoner's dilemma games (Nowak & Sigmund, 1993).

	2-person game	<i>n</i> -person game
Iterated PD	Nowak & Sigmund	?
diment manufacture		

We conjecture that the transition of the dynamics is a common nature of the evolution of reciprocal cooperation.

Conclusion

- Indirect reciprocity can be an ESS in *n*-person games under image scoring.
 - In 2-person games, indirect reciprocity can not be an ESS (Panchanathan & Boyd 2003, Ohtsuki & Iwasa 2005).
- Indirect reciprocal cooperation can be maintained as (sometimes chaotic) oscillation under image scoring.
 - As mutation rate increases, evolutionary dynamics change: convergence to a fixed point → oscillation → chaotic oscillation → oscillation → convergence.