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Abstract

Gul and Pesendorfer (2001) provide a model of temptation and self-control. In a
theory of choice under risk, experimental evidence suggests a “certainty effect”, that
is, a decision maker tends to put more weight on a certain object in comparison with
a lottery that is very likely but not completely certain. Thus what is certain may
be more tempting, in other words, randomization may make objects less tempting.
However, one of the axioms of Gul and Pesendorfer, called Independence, is not
consistent with such a hypothesis. We provide an axiomatic model that can account
for intuitive choice behavior under risk and temptation.
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1 Introduction

1.1 Objective

In a two-period setting, Gul and Pesendorfer [6] (Hereafter GP) model a decision maker
who may be tempted by ex ante inferior items. That is, in the second period, the decision
maker faces a conflict between two different perspectives - one is an ex ante ranking of
items (what she should choose), and the other is a temptation ranking (what she would
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mine.
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like to choose now). She may be able to resist temptation and choose an item which is
desirable in terms of the ex ante ranking. Alternatively, she may not be able to exercise
self-control and end up with choosing ex ante inferior items.

GP consider preference over menus of lotteries to rationalize the above story. Let C
be a compact metric space of outcomes and ∆(C) be the set of lotteries over outcomes.
Preference % is defined over non-empty compact subsets (called menus) of ∆(C), denoted by
K(∆(C)). GP provide an axiomatic foundation for the following representation: There exist
mixture linear utility functions u, v : ∆(C) → R such that % over K(∆(C)) is represented
by

U(x) = max
l∈x

(

u(l) −

(

max
l′∈x

v(l′) − v(l)

))

. (1)

The function u represents the DM’s commitment preference and hence reflects her norma-
tive ranking of alternatives, while v is interpreted as the temptation ranking. The DM
behaves as if she makes a choice so as to reconcile those two factors.

Since Allais [1] and Kahneman and Tversky [9], an experimental evidence, called “cer-
tainty effect”, is well-known. A decision maker tends to put more weight on a certain
object in comparison with a lottery that is very likely but not completely certain. Thus
in decision making under risk and temptation we may hypothesize that what is certain is
more tempting, in other words, randomization may make objects less tempting. However,
GP’s model does not accommodate such a hypothesis because it may violate one of their
axiom, called Independence. Our objective is to weaken Independence so as to explain
intuitive choice behavior under risk and temptation.

When C is finite, we axiomatize preference having the following representation: There
exist mixture linear utility functions u, v : ∆(C) → R+ and a continuous, strictly increasing
and (weakly) convex function ϕ : R+ → R+ with ϕ(0) = 0 such that % over K(∆(C)) is
represented by

U(x) = max
l∈x

(

u(l) − ϕ

(

max
l′∈x

v(l′) − v(l)

))

. (2)

As in GP, u and v are interpreted as commitment ranking and as temptation ranking,
respectively. If ϕ(w) = w, this functional form is reduced to GP’s model (1). Convexity of
ϕ means that the marginal cost of self-control is increasing, whereas it is constant in GP’s
model. We show also uniqueness of the representation.

1.2 Motivating Example

Let Ct be a consumption set in a single period. There are two periods and let C1 × C2 be
the set of lifetime consumptions. For some γ > α > 0, consider the following ranking over
menus of consumption streams:

{(c, c+ γ)} ≻ {(c+ α, c), (c, c+ γ)} ∼ {(c+ α, c)}. (3)
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The first half of this ranking suggests that the DM prefers the delayed but greater consump-
tion (c, c+ γ) to the immediate but smaller consumption (c+ α, c), but is tempted by the
immediate consumption. Moreover, the second half of the ranking reveals that she cannot
exercise self-control and end up with picking up (c+ α, c) out of {(c+ α, c), (c, c+ γ)}.

Suppose that the DM is more tempted by objects obtained with certainty. Let (c+α)1
2
c

denote the lottery assigning c+α and c with even chance. The lottery (c+ γ)1
2
c is defined

similarly. That is,

(c+ α)
1

2
c ≡

[

c+ α 1/2
c 1/2

]

, and (c+ γ)
1

2
c ≡

[

c+ γ 1/2
c 1/2

]

.

Even if ((c+α)1
2
c, c) is chosen, the DM may end up with low consumption level c in period

1. Thus ((c+α)1
2
c, c) is less tempting than (c+α, c) . Now the DM may be able to exercise

self-control, and choose (c, (c + γ)1
2
c) over ((c + α)1

2
c, c). That is, the following ranking

seems intuitive:
{(

c, (c+ γ)
1

2
c

)}

≻

{(

(c+ α)
1

2
c, c

)

,

(

c, (c+ γ)
1

2
c

)}

≻

{(

(c+ α)
1

2
c, c

)}

. (4)

Keren and Roelofsma [10] report an experimental evidence supporting the above hy-
pothesis. Following the first column (corresponding to p = 1) of Table 1, 82% of the
subjects prefers the consumption stream ($100, 0) to (0, $110), though most of the subjects
exhibit preference reversal when consumption takes place in the remote future. Taking
c = $0, α = $100 and γ = $110, this experimental evidence is consistent with ranking (3).
Furthermore, following the third column (corresponding to p = 0.5), 61% of the subjects
prefers the lottery (0, $110 1

2
$0) to ($100 1

2
$0, 0) even though immediate consumption may

be possible by choosing ($100 1
2
$0, 0). This finding is consistent with ranking (4).

p = 1 p = 0.9 p = 0.5
$100 now 0.82 0.54 0.39
$110 in 4 weeks 0.18 0.46 0.61

$100 in 26 weeks 0.37 0.25 0.33
$110 in 30 weeks 0.63 0.75 0.67

Figure 1: Experimental evidence from Keren and Roelofsma [10]

However, rankings (3) and (4) are not consistent with Independence in Gul and Pe-
sendorfer [6] that requires, for all menus x, y, and z,

x ≻ y ⇒ λx+ (1 − λ)z ≻ λy + (1 − λ)z. (5)

Indeed, notice that each menu appearing in ranking (4) is obtained by mixing {(c, c)} and
the corresponding menu in ranking (3) with even weight. Thus Independence together with

3



ranking (3) must imply

{(

c, (c+ γ)
1

2
c

)}

≻

{(

(c+ α)
1

2
c, c

)

,

(

c, (c+ γ)
1

2
c

)}

∼

{(

(c+ α)
1

2
c, c

)}

.

Thus Independence excludes the possibility that objects obtained with certainty are more
tempting, in other words, randomization may make objects less tempting.

1.3 Related Literature

Several authors provide models of temptation without Independence. Gul and Pesendor-
fer [7] consider preference over finite menus of deterministic items, derive a temptation
ranking from the preference, and characterize a representation. Epstein and Kopylov [3]
adapt GP’s model to explain cognitive dissonance. By extending choice objects to menus
of acts, they characterize a functional form with a convex temptation utility.

Noor [12], Nehring [11], Olszewski [13], and Dillenberger and Sadowski [2] provide foun-
dations for functional forms closely related to ours. Noor [12] points out that the weak
axiom of revealed preference (WARP) is not compelling under temptation. To accommo-
date choice behavior without WARP, he considers preference over menus of lotteries, as in
GP, and provides a menu-dependent self-control model as follows:

U(x) = lim
k→κ(x)

[

max
l∈x

(

u(l) + k

(

v(l) − max
l′∈x

v(l′)

))]

, (6)

where u and v are expected utility functions on ∆(C) and κ : K(∆(C)) → R+ ∪ {∞} is a
lower semicontinuous function. Since our set of axioms is stronger than his, the preference
we consider should also admit a representation of the form (6). Notice that our model also
admits menu-dependent self-control even under the stronger axioms.

Nehring [11] considers “second-order preference” over extended outcomes (c, P ), where
c is an element of a finite outcome set C and P is a linear order on C. For a menu x ⊂ C,
let P (x) denote a P -maximal element in x. His model can induce preference over menus of
outcomes as

U(x) = max
P∈L(C)

V (P (x), P ),

where L(C) is the set of all linear orders on C and V is a representation of the second-
order preference. His model can accommodate a nonlinear generalization of GP’s model.
He mentions the same functional form as (2) as a special case of his model.

By considering preference over pairs of a finite menu x and a deterministic item l
included in x, Olszewski [13] characterizes a functional form over the pairs (x, l), which
induces the representation over menus as follows:

U(x) = max
l∈x

(

u(l) − c

(

l,max
l′∈x

r(l, l′)

))

, (7)
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where c satisfies c(l, r(l, l)) = 0. Our functional form is a special case of (7).
To explain seemingly altruistic behavior, Dillenberger and Sadowski [2] model a DM

who avoids a feeling of shame from behaving selfishly when observed by someone else. They
consider preference over finite menus of pairs (a1, a2) ∈ R

2
+, where a1 and a2 are interpreted

as payoffs of the DM and of the (potentially anonymous) other player. The functional form
they consider is

U(x) = max
a∈x

(

u(a1) − g

(

a,max
b∈x

ϕ(b)

))

,

where u : R+ → R and ϕ : R
2
+ → R are continuous and strictly increasing, and g :

R
2
+ × ϕ(R2

+) → R satisfies a certain property. The components u and ϕ capture “selfish
utility” and “fairness utility”, respectively.

Fudenberg and Levine [5] take a different approach for modeling a self-control problem.
They directly assume a long-run patient self and a sequence of short-run impulsive selves as
primitives, and show that the equilibria of the game played by those selves can be regarded
as the solution to a maximization problem. Though they have more general models, we
focus on the case that the cost of self-control is convex. In our terminology, it can be
expressed as the functional form

U(x) = max
l∈x

(

u(l) − γ

(

max
l′∈x

v(l′) − v(l)

)θ
)

, (8)

where γ > 0 and θ > 1. Some experimental findings suggest that self-control is a limited
resource, that is, a DM tends not to resist temptation as cognitive load increases. Their
model (8) can explain those evidence. Fudenberg and Levine also point out that Indepen-
dence in GP, and hence the linear cost of self-control, is not compelling when lotteries are
taken as choice objects.

Halevy [8] provides an intertemporal choice model under risk, and explains the experi-
mental findings of Keren and Roelofsma [10] by a dynamically inconsistent model.

2 Model

2.1 Domain

Let C be a compact metric space and ∆(C) be the set of all probability measures over C.
Under the weak convergence topology, ∆(C) is a compact and metric space. Denote the
metric by d(l, l′) for l, l′ ∈ ∆(C).

Let K(∆(C)) be the set of all non-empty compact subsets of ∆(C). Endow K(∆(C))
with the Hausdorff metric. That is, for all x, x′ ∈ K(∆(C)), let

dh(x, x
′) ≡ max

[

max
l∈x

min
l′∈x′

d(l, l′),max
l′∈x′

min
l∈x

d(l, l′)

]

.

Preference % is defined on D ≡ K(∆(C)).
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2.2 Convex Self-Control Representation

Take continuous mixture linear utility functions u, v : ∆(C) → R+ and a continuous,
strictly increasing and (weakly) convex function ϕ : R+ → R+ with ϕ(0) = 0. We consider
the functional form U : D → R defined by

U(x) = max
l∈x

(

u(l) − ϕ

(

max
l′∈x

v(l′) − v(l)

))

. (9)

Components u and v are interpreted as in GP. When committed to a lottery l ∈ ∆(C),
the DM evaluates {l} by U({l}) = u(l). Thus u is commitment ranking of lotteries. On
the other hand, the function v is supposed to represent the DM’s temptation ranking
of lotteries. Taking into account the most tempting lottery within a menu at hand, the
DM evaluates the menu by maximizing commitment utility u(l) minus self-control cost
ϕ(maxl′∈x v(l

′) − v(l)). Since ϕ is convex, a self-control cost increases drastically as the
difference between maxx v and v(l) increases. In case of GP, ϕ(w) = w, and hence the
difference, maxl′∈x v(l

′)− v(l), is directly interpreted as the self-control cost from choosing
l when confronted with the most tempting lottery.

Definition 2.1. Preference % on D admits a convex self-control representation if there
exists a functional form (9) with components (u, v, ϕ) that represents %. Furthermore,
% is said to admit a partial convex self-control representation if a functional form (9)
represents % but ϕ is convex only on a non-degenerate interval [0, w].

Ex post choice suggested by a convex self-control model is

C(x) = arg max
l∈x

(

u(l) − ϕ

(

max
l′∈x

v(l′) − v(l)

))

. (10)

Since ϕ is convex, ex post preference over lotteries is concave in l. Thus choice structure
captured by (10) may accommodate Allais-type behavior or certainty effect. Furthermore,
unlike GP, the ex post preference depends on the most tempting item in x, and hence
exhibits menu-dependent self-control.

Recall the motivating example in the Introduction. A convex self-control model can
explain rankings (3) and (4). Let C = C1 × C2, where C1 and C2 are identical. Abusing
notation, let u, v : Ct → R be instantaneous vNM indices. Let ϕ : R+ → R+ is a strictly
increasing convex function with ϕ(0) = 0. Suppose that, under commitment, the DM
evaluates a consumption stream (c1, c2) by u(c1) + βu(c2), where β ∈ (0, 1) is the discount
factor. Suppose also that temptation comes from the immediate consumption only, that
is, v(c1) is the temptation utility from the consumption stream (c1, c2). The DM has a
preference relation on D represented by

U(x) = max
l∈x

{
∫

(u(c1) + βu(c2)) dl − ϕ

(

max
l′∈x

∫

v(c1) dl′1 −

∫

v(c1) dl1

)}

,

where l1 denotes the marginal distribution of l on C1.
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The indifference relation in ranking (3) implies that, when facing the menu {(c +
α, c), (c, c + γ)}, the utility from choosing (c + α, c) over (c, c + γ) is greater than the
other way around, that is,

u(c+ α) + βu(c) > u(c) + βu(c+ γ) − ϕ(v(c+ α) − v(c)).

Equivalently,

ϕ(v(c+ α) − v(c)) > β(u(c+ γ) − u(c)) − (u(c+ α) − u(c)). (11)

On the other hand, ranking (4) implies that

pu(c+ α) + (1 − p)u(c) + βu(c)

< u(c) + pβu(c+ γ) + (1 − p)βu(c) − ϕ(pv(c+ α) + (1 − p)v(c) − v(c)),

that is,

1

p
ϕ(p(v(c+ α) − v(c))) < β(u(c+ γ) − u(c)) − (u(c+ α) − u(c)). (12)

If ϕ is strictly convex with ϕ(0) = 0, pϕ(v(c+α)− v(c)) > ϕ(p(v(c+α)− v(c))). Thus the
LHS of (11) is strictly greater than that of (12), and hence there exist c, α and γ consistent
with both (11) and (12).

3 Foundations

3.1 Axioms

From now on, we use the following notation: For all λ ∈ (0, 1) and l, l′ ∈ ∆(C), let
lλl′ ≡ λl + (1 − λ)l′.

Say that % on D is a self-control preference if there exist l, l′ ∈ ∆(C) with {l} ≻ {l, l′} ≻
{l′}.

The axioms which we consider on % are the following. The first two axioms are standard
and need no explanation.

Axiom 1 (Order). % is complete and transitive.

Axiom 2 (Continuity). For all x ∈ Z, {z ∈ Z|x % z} and {z ∈ Z|z % x} are closed.

The next is a key axiom of GP. It captures behavior of the DM who cares about the
most tempting item within the menu at hand.

Axiom 3 (Set Betweenness). For all x, y, if x % y, then x % x ∪ y % y.
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GP show that % satisfies Order, Continuity, Set Betweenness and Independence men-
tioned as (5) if and only if it admits a representation of the form (1).

Let M(C) be the set of all signed measures on ∆(C) and

Θ ≡ {θ ∈ M(C)|θ(∆(C)) = 0}

be the set of all translations. For all l ∈ ∆(C) and θ ∈ Θ, if l + θ ∈ ∆(C), we can view
l + θ as the lottery obtained by shifting l toward θ. For all l ∈ ∆(C), say that θ ∈ Θ is
admissible for l if l + θ ∈ ∆(C).

The next axiom is a variant of Strong Continuity of Ergin and Sarver [4].

Axiom 4 (Properness). There exists θ ∈ Θ such that for all l, l′ ∈ ∆(C) with {l} ≻
{l, l′}, ε > 0 and λ ∈ (0, 1), if d(lλl′, l′) < ε and l + εθ, l′ + εθ ∈ ∆(C), then

{l + εθ, l′ + εθ} ≻ {l, lλl′}.

The ranking {l} ≻ {l, l′} reveals that the DM is tempted by l′. Since lλl′ would be
preferred to l′ and less tempting than l′, the DM should rank {l, lλl′} over {l, l′} for all
λ ∈ (0, 1). Properness says that, for a sufficiently small λ, the difference between {l, lλl′}
and {l, l′} would be negligible, and hence the ranking can be reversed when {l, l′} is slightly
translated toward the normatively preferable direction θ.

Suppose that the DM has two rankings of lotteries in mind; one is the commitment
ranking that reflects her normative view, and the other is the temptation ranking expressing
her craving. If the DM knows that both rankings conform with the expected utility axioms,
she should not care about shifting a menu x toward θ because such a translation does not
alter the difference between temptation utility of the most tempting lottery and that of a
lottery she will choose. Thus we introduce the following axiom:

Axiom 5 (Translation Invariance). For all l, l′, k, k′ ∈ ∆(C) and θ ∈ Θ, if θ is admis-
sible for these lotteries, then

{l, l′} % {k, k′} ⇒ {l + θ, l′ + θ} % {k + θ, k′ + θ}.

Following Noor [12], for all l ∈ ∆(C), let

L+(l) ≡ {l′ ∈ ∆(C) | {l} ≻ {l, l′}},

L−(l) ≡ {l′ ∈ ∆(C) | {l} ∼ {l, l′} ≻ {l′}}.

Axiom 6 (Temptation Convexity). For all l ∈ ∆(C), (i) L+(l) and L−(l) are convex,
and, (ii) for all λ ∈ (0, 1),

{l} ≻ {l, l′} ⇒ {l} ≻ {l, lλl′},

{l} ∼ {l, l′} ≻ {l′} ⇒ {l} ∼ {l, lλl′} ≻ {lλl′}.

8



Part (i) says that, if both l′ and l′′ tempt l, then l′λl′′ also tempts l. Moreover, if neither
l′ nor l′′ tempts l, then l′λl′′ does not tempt l either. Part (ii) says that, if l′ tempts l, then
lλl′ also tempts l, and if l′ does not tempt l, then neither does lλl′.

Translation Invariance implies that, for all l, l′ and admissible θ,

{l} ≻ {l, l′} ⇒ {l + θ} ≻ {l + θ, l′ + θ}. (13)

Noor [12] shows that, under axiom (13) and Temptation Convexity, there exists a preference
relation ≻T over ∆(C) satisfying the vNM axioms and, if {l} ≻ {l′} then

l′ ≻T l ⇔ {l} ≻ {l, l′}.

We can interpret ≻T as a temptation ranking of the DM. Indifference relation ∼T is defined
as a usual manner.

Axiom 7 (Temptation Consistency). For all l, l′, l′′ ∈ ∆(C), if {l} ≻ {l, l′} ≻ {l′},
{l} ≻ {l, l′′} and l′ ∼T l

′′, then {l, l′′} % {l, l′}.

As stated above, suppose that the DM exhibits self-control at {l, l′} and that l′ and
l′′ are equally tempting. If the DM chooses l over l′′ at {l, l′′}, she would incur the same
self-control cost as choosing l out of {l, l′} because l′ and l′′ are equally tempting. Thus
the ex post choice from {l, l′′} guarantees at least the same utility as that from {l, l′}, and
hence {l, l′′} should be at least as good as {l, l′}.

For any x ∈ D, if there exists a lottery e(x) ∈ ∆(C) satisfying {e(x)} ∼ x, e(x) is called
a singleton equivalent of x.

Axiom 8 (Mixing Preserves Self-Control). For all l, l′, l′′ ∈ ∆(C) and λ ∈ (0, 1),

(i) if {l} ≻ {l, l′} ≻ {l′}, then {lλl′′} ≻ {lλl′′, l′λl′′} ≻ {l′λl′′}, and

(ii) if {l, l′} and {l, l′′} admit singleton equivalents, and if {l} ≻ {l, l′} ≻ {l′} and {l} ≻
{l, l′′} ≻ {l′′}, then {l, l′λl′′} % {e({l, l′})λe({l, l′′})}.

Part (i) says that, if the DM exhibits self-control at {l, l′}, then she does so at {lλl′′, l′λl′′}
because mixing of items may mitigate a self-control cost. As in part (ii), suppose that the
DM exhibits self-control at both {l, l′} and {l, l′′}. Since a self-control cost at {l, l′λl′′}
will be less than the highest self-control cost between at {l, l′} and {l, l′′}, she should ex-
hibit self-control at {l, l′λl′′}. Part (ii) says that a self-control cost from choosing l out of
{l, l′λl′′} is smaller than the average self-control cost between from choosing l out of {l, l′}
and that of {l, l′′}. The role of part (ii) is to establish convexity of ϕ.

Suppose that l′ and k′ tempt l and k, respectively, and that the DM exhibits self-
control at {l, l′}. Suppose that lotteries l, l′, k, k′ and another lottery h are mixed with the
same weight λ, and translated so as to satisfy lλh + θ = kλh + θ′. If % satisfies MPSC
and Translation Invariance, she exhibits self-control also at {lλh + θ, l′λh + θ}. Since
lλh + θ = kλh + θ′, the ranking, {kλh + θ′, k′λh + θ′} % {lλh + θ, l′λh + θ}, implies that
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the self-control cost from choosing lλh + θ out of {lλh + θ, l′λh + θ} exceeds the cost of
choice at {kλh+θ′, k′λh+θ′}. This ranking should be preserved when {l, l′} and {k, k′} are
translated so as to satisfy l+ θ̃ = k+ θ̃′. That is, the ranking {k+ θ̃′, k′+ θ̃′} % {l+ θ̃, l′+ θ̃}
would still hold. This axiom has an appeal when the DM expects her temptation ranking
to conform with the expected utility axioms.

Prior to formulating the above idea, notice that, for some {l, l′} and {k, k′}, there exist
no admissible translations at all satisfying l + θ̃ = k + θ̃′. Thus, alternatively, consider
singleton equivalents of {l, l′} and of {k, k′} as follows:

Axiom 9 (Monotone Self-Control). For all l, l′, k, k′, h ∈ ∆(C) such that {l} ≻ {l, l′} ≻
{l′} and {k} ≻ {k, k′}, if there exist λ ∈ (0, 1) and admissible translations θ, θ′ ∈ Θ with
lλh+ θ = kλh+ θ′ such that

{kλh+ θ′, k′λh+ θ′} % {lλh+ θ, l′λh+ θ},

then {e({k, k′})+ θ̃′} % {e({l, l′})+ θ̃} for all admissible translations θ̃, θ̃′ satisfying e({l})+
θ̃ = e({k}) + θ̃′.

3.2 Results

We are ready to state the main theorem.

Theorem 3.1.

(i) If a self-control preference % satisfies Order, Continuity, Set Betweenness, Translation
Invariance, Temptation Convexity, Temptation Consistency, MPSC and Monotone
Self-Control, then % admits a partial convex self-control representation.

(ii) Suppose that C is finite. A self-control preference % satisfies Order, Continuity,
Set Betweenness, Translation Invariance, Temptation Convexity, Temptation Con-
sistency, MPSC, Monotone Self-Control and Properness if and only if % admits a
convex self-control representation.

Theorem 3.1 (i) says that there exists a partial convex self-control representation if %

satisfies all the axioms except for Properness. The necessary part does not hold in general
because ϕmay not be convex on the whole domain, which may violate MPSC and Monotone
Self-Control. The reason why we cannot ensure convexity of ϕ is that the axioms are not
enough to establish Lipschitz continuity of ϕ. As stated in Theorem 3.1 (ii), if we impose
Properness in addition and assume that C is finite, then the set of axioms characterizes
the convex self-control model.

We turn to uniqueness of convex self-control representations. For a convex self-control
representation (u, v, ϕ), define

W (u, v, ϕ) = {w ∈ R+|w = v(l′) − v(l) for some l, l′ with {l} ≻ {l, l′} ≻ {l′}}.

We call W (u, v, ϕ) the self-control region for (u, v, ϕ).
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Theorem 3.2. Suppose that a self-control preference % admits a convex self-control rep-
resentation U with components (u, v, ϕ).

(i) If u′ = αuu + βu and v′ = αvv + βv for some αu, αv > 0, βu, βv ∈ R and ϕ′(αvw) =
αuϕ(w) for w ∈ R+, then the functional form with components (u′, v′, ϕ′) also rep-
resent %. Conversely, if another representation U ′ with components (u′, v′, ϕ′) also
represents %, then there exist αu, αv > 0 and βu, βv ∈ R such that u′ = αuu+βu, v

′ =
αvv+βv, W (u′, v′, ϕ′) = αvW (u, v, ϕ), and ϕ′(αvw) = αuϕ(w) for all w ∈W (u, v, ϕ).

(ii) Take any continuous and strictly increasing function ϕ′ : R+ → R+ such that ϕ′ = ϕ
on the closure of W (u, v, ϕ) and ϕ′ ≥ ϕ elsewhere. Then the functional form with
components (u, v, ϕ′) coincides with U .

From Part (i), we know that u and v are unique up to positive affine transformation.
Moreover, if (u, v, ϕ) and (ũ, ṽ, ϕ̃) represent the same preference and ṽ = αvv + βv, then
for w̃ = αvw and w ∈W (u, v, ϕ),

w̃ϕ̃′′(w̃)

ϕ̃′(w̃)
=
wϕ′′(w)

ϕ′(w)

where f ′ and f ′′ denote the first and the second derivatives of f , respectively. Thus the
curvature of ϕ is uniquely determined within the self-control region, while part (ii) says
that ϕ is not unique beyond the self-control region.

4 Proofs

4.1 Sufficiency Part of Theorem 3.1

Throughout the proof, we assume that % satisfies all the axioms except for Properness and
C is a compact metric space unless otherwise stated.

Lemma 6 of Ergin and Sarver [4] show that Order, Continuity, and Translation Invari-
ance imply Commitment Independence: For all l, l′, l′′ ∈ ∆(C),

{l} % {l′} ⇔ λ{l} + (1 − λ){l′′} % λ{l′} + (1 − λ){l′′}.

Since % satisfies all the vNM axioms on ∆(C), there exists a continuous mixture linear
function u : ∆(C) → R which represents % on ∆(C).

Since u is continuous on ∆(C), there exist a maximal and a minimal lotteries c+, c− ∈
∆(C). Without loss of generality, we can assume u(c+) = 1 and u(c−) = 0. For any
finite menu x, Set Betweenness implies that {c+} % x % {c−}. Continuity ensures that
{c+} % x % {c−} for all x ∈ D. By Continuity, there exists a unique number α(x) ∈ [0, 1]
such that x ∼ {α(x)c+ + (1 − α(x))c−}. That is, all menus admit singleton equivalents.
Define

U(x) = u(α(x)c+ + (1 − α(x))c−).
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Then U represents %. Moreover, U({l}) = u(l) for all l ∈ ∆(C). This representation has
the following properties:

Lemma 4.1.

(i) For all λ ∈ (0, 1) and all l, l′, l′′ ∈ ∆(C) such that {l} ≻ {l, l′} ≻ {l′} and {l} ≻
{l, l′′} ≻ {l′′}, U({l, l′λl′′}) ≥ λU({l, l′}) + (1 − λ)U({l, l′′}).

(ii) For all l, l′ ∈ ∆(C) and θ ∈ Θ, if l + θ, l′ + θ ∈ ∆(C), then
U({l + θ, l′ + θ}) = U({l, l′}) + u(θ).

Proof. (i) By definition of singleton equivalent, U({l, l′}) = u(e({l, l′})) and U({l, l′′}) =
u(e({l, l′′})). By MPSC (ii) and mixture linearity of u,

U({l, l′λl′′}) ≥ u(λe({l, l′}) + (1 − λ)e({l, l′′})) = λu(e({l, l′})) + (1 − λ)u(e({l, l′′}))

= λU({l, l′}) + (1 − λ)U({l, l′′}).

(ii) By Set Betweenness, {l} % {l, l′} % {l′}. Since u is continuous, there exists λ ∈ [0, 1]
such that U({l, l′}) = u(lλl′). If l + θ, l′ + θ ∈ ∆(C), lλl′ + θ = (l + θ)λ(l′ + θ) ∈ ∆(C).
Hence Translation Invariance implies that

U({l + θ, l′ + θ)}) = u(lλl′ + θ) = u(lλl′) + u(θ) = U({l, l′}) + u(θ).

Lemma 7 of Noor [12] shows that, under Translation Invariance and Temptation Con-
vexity, there exists a continuous mixture linear function v : ∆(C) → R+ such that, if
{l} ≻ {l′}, then

{l} ≻ {l, l′} ⇔ v(l′) > v(l).

Without loss of generality, assume that v(∆(C)) = [0, 1]. By his construction, we know
that L+(l) ⊂ {l′ ∈ ∆(C)|v(l′) > v(l)} and L−(l) ⊂ {l′ ∈ ∆(C)|v(l′) ≤ v(l)}.

Let

A = {w ∈ [0, 1] |w = v(l′) − v(l), for some l, l′ such that {l} ≻ {l, l′} ≻ {l′}}.

Since % is a self-control preference, A is non-empty.

Lemma 4.2. (i) A is an interval with inf A = 0. (ii) A is open in [0, 1].

Proof. (i) It suffices to show that, for all w ∈ A, λw ∈ A for all λ ∈ (0, 1). Let w ∈ A.
There exist l, l′ such that w = v(l′) − v(l) and {l} ≻ {l, l′} ≻ {l′}. By MPSC (i), {l} ≻
{l, (1−λ)l+λl′} ≻ {(1−λ)l+λl′}. Thus λw = λ(v(l′)−v(l)) = v((1−λ)l+λl′)−v(l) ∈ A.

(ii) Notice first that 0 /∈ A by definition of v. If there exist l, l′ such that {l} ≻
{l, l′} ≻ {l′} and v(l′) − v(l) = 1, we can conclude from (i) that A = (0, 1], and hence A
is relatively open in [0, 1]. Now suppose that A = (0, w] for some w < 1. Then there exist
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l, l′ such that {l} ≻ {l, l′} ≻ {l′} and v(l′)− v(l) = w. We have either max∆(C) v > v(l′) or
min∆(C) v < v(l). In case of the former, Continuity implies that there exists l′′ sufficiently
close to l′ such that {l} ≻ {l, l′′} ≻ {l′′} and v(l′′) > v(l′). Thus w < v(l′′) − v(l) ∈ A,
which is a contradiction. In case of the latter, there exists l′′ sufficiently close to l such that
{l′′} ≻ {l′′, l′} ≻ {l′} and v(l) > v(l′′). Thus w < v(l′)− v(l′′) ∈ A, which is a contradiction
either. Therefore A must be an open interval in [0, 1].

Define ϕ : A→ R++ by

ϕ(w) ≡ u(l) − U({l, l′}),

where l, l′ satisfy {l} ≻ {l, l′} ≻ {l′} and w = v(l′) − v(l).

Lemma 4.3. ϕ is well-defined, that is, for any l, l′, k, k′ ∈ ∆(C) such that {l} ≻ {l, l′} ≻
{l′} and {k} ≻ {k, k′} ≻ {k′},

v(k′) − v(k) = v(l′) − v(l) ⇒ u(k) − U({k, k′}) = u(l) − U({l, l′}).

Proof. Assume that v(k′) − v(k) = v(l′) − v(l). Take a full support lottery h ∈ ∆(C). By
MPSC (i), for all λ ∈ (0, 1),

{lλh} ≻ {lλh, l′λh} ≻ {l′λh}, {kλh} ≻ {kλh, k′λh} ≻ {k′λh}.

Let θ ≡ lλh− kλh ∈ Θ. For small λ, k′λh+ θ ∈ ∆(C). Since v is mixture linear,

v(k′λh+ θ) − v(lλh) = v(k′λh+ θ) − v(kλh+ θ) = λ(v(k′) − v(k))

= λ(v(l′) − v(l)) = v(l′λh) − v(lλh).

Thus v(k′λh + θ) = v(l′λh). Furthermore, by Translation Invariance, {kλh + θ} ≻
{kλh+ θ, k′λh+ θ} ≻ {k′λh+ θ}, that is, {lλh} ≻ {lλh, k′λh+ θ} ≻ {k′λh+ θ}. By Temp-
tation Consistency, {lλh, l′λh} ∼ {lλh, k′λh+ θ}. Let e({l}) = α({l})c+ + (1 − α({l}))c−,
e({k}) = α({k})c+ + (1 − α({k}))c−, e({l, l′}) = α({l, l′})c+ + (1 − α({l, l′}))c− and
e({k, k′}) = α({k, k′})c+ + (1 − α({k, k′}))c−. By definition, u(l) = u(e({l})), u(k) =
u(e({k})), U({l, l′}) = u(e({l, l′})), and U({k, k′}) = u(e({k, k′})). Since these lotteries
belong to

{αc+ + (1 − α)c− ∈ ∆(C) |α ∈ [0, 1]},

we can find θl, θk ∈ Θ such that e({l})+θl = e({k})+θk and e({l})+θl, e({k})+θk, e({l, l
′})+

θl, e({k, k
′}) + θk ∈ ∆(C). By Monotone Self-Control, {e({l, l′}) + θl} % {e({k, k′}) + θk},

and hence

u(e({l, l′}) + θl) ≥ u(e({k, k′}) + θk)

⇔ u(k + θk) − u(e({k, k′}) + θk) ≥ u(l + θl) − u(e({l, l′}) + θl)

⇔ u(k) − u(e({k, k′})) ≥ u(l) − u(e({l, l′}))

⇔ u(k) − U({k, k′}) ≥ u(l) − U({l, l′}).

By the symmetric argument, we can show u(l)−U({l, l′}) ≥ u(k)−U({k, k′}) as well.
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Lemma 4.4. (i) ϕ is weakly convex, and (ii) lim infw→0 ϕ(w) = 0.

Proof. (i) Take any w,w′ ∈ A with w > w′ and λ ∈ (0, 1). There exist l, l′ ∈ ∆(C) such
that w = v(l′) − v(l) and {l} ≻ {l, l′} ≻ {l′}. Since w > w′ > 0, there exists µ ∈ (0, 1)
satisfying v(lµl′) − v(l) = w′. Define l′′ ≡ lµl′. By MPSC (i), {l} ≻ {l, l′′} ≻ {l′′}. By
definition,

ϕ(w) = u(l) − U({l, l′}), ϕ(w′) = u(l) − U({l, l′′}). (14)

By mixture linearity of v,

λw + (1 − λ)w′ = λ(v(l′) − v(l)) + (1 − λ)(v(l′′) − v(l)) = v(l′λl′′) − v(l).

Since v(l′λl′′) > v(l) and u(l) > u(l′λl′′), {l} ≻ {l, l′λl′′}. Furthermore, by MPSC (ii),

U({l, l′λl′′}) ≥ u(λe({l, l′}) + (1 − λ)e({l, l′′})) = λu(e({l, l′})) + (1 − λ)u(e{l, l′′})

> λu(l′) + (1 − λ)u(l′′) = u(l′λl′′).

Thus by definition of ϕ,

ϕ(λw + (1 − λ)w′) = ϕ(v(l′λl′′) − v(l)) = u(l) − U({l, l′λl′′}). (15)

Taking (14), (15) and Lemma 4.1 together,

λϕ(w) + (1 − λ)ϕ(w′) = λu(l) + (1 − λ)u(l) − λU({l, l′}) − (1 − λ)U({l, l′′})

≥ u(l) − U({l, l′λl′′}) = ϕ(λw + (1 − λ)w′).

(ii) Take any w ∈ A. There exist l, l′ such that w = v(l′)− v(l) and {l} ≻ {l, l′} ≻ {l′}.
By MPSC (i), {l} ≻ {l, (1 − λ)l + λl′} ≻ {(1 − λ)l + λl′} for all λ ∈ (0, 1). Since

ϕ(λw) = ϕ(v((1 − λ)l + λl′) − v(l)) = u(l) − U({l, (1 − λ)l + λl′}),

0 = lim infλ→0 ϕ(λw) ≥ lim infw→0 ϕ(w) ≥ 0, and hence lim infw→0 ϕ(w) = 0.

Denote the closure of A by A. By Lemma 4.2 (i), A is a closed interval including 0.

Lemma 4.5. There exists a unique continuous convex extension of ϕ to A. Moreover, the
extension ϕ is strictly increasing with ϕ(0) = 0.

Proof. Theorem 10.3 [14, p.85] ensures the existence of a unique continuous convex exten-
sion ϕ. By Lemma 4.4 (ii),

0 = lim inf
w→0

ϕ(w) = lim inf
w→0

ϕ(w) = lim
w→0

ϕ(w) = ϕ(0).

Finally, we claim that ϕ is strictly increasing, that is, w′ > w implies ϕ(w′) > ϕ(w). Since
ϕ(w′) > 0 = ϕ(0) for all w′ ∈ A, the claim holds when w = 0 and w′ ∈ A. Suppose that
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there exist w,w′ ∈ A such that w′ > w and ϕ(w′) ≤ ϕ(w). There exists λ ∈ (0, 1) with
w = λw′. Since ϕ is weakly convex,

ϕ(w) = ϕ(λw′) = ϕ(λw′ + (1 − λ)0) ≤ λϕ(w′) + (1 − λ)ϕ(0)

= λϕ(w′) ≤ λϕ(w) < ϕ(w),

which is a contradiction. Thus ϕ is strictly increasing on A ∪ {0}. Let w ≡ supA. Since
ϕ(w) < sup{ϕ(w)|w ∈ A} = ϕ(w) for all w ∈ A ∪ {0}, ϕ is strictly increasing on A.

Lemma 4.6. Assume in addition that C is finite and % satisfies Properness.

(i) There exists K > 0 such that, for all l, l′ ∈ ∆(C) with {l} ≻ {l, l′} and λ ∈ (0, 1),
U({l, lλl′}) − U({l, l′}) ≤ Kd(lλl′, l′).

(ii) There exists K > 0 such that, for all w,w′ ∈ A with w′ > w,

ϕ(w′) − ϕ(w)

w′ − w
≤ K.

Proof. (i) Since {l} ≻ {l, l′}, we have v(l′) > v(l) and u(l) > u(l′), and hence {l} ≻ {l, lλl′}
for all λ ∈ (0, 1). If {l} ≻ {l, l′} ≻ {l′}, MPSC (i) implies {l} ≻ {l, lλl′} ≻ {lλl′}. Since
v(l′) − v(l) > v(lλl′) − v(l) and ϕ is strictly increasing,

u(l) − U({l, lλl′}) = ϕ(v(lλl′) − v(l)) < ϕ(v(l′) − v(l)) = u(l) − U({l, l′}),

that is, U({l, lλl′}) > U({l, l′}). If {l} ≻ {l, l′} ∼ {l′}, by Set Betweenness,

{l, lλl′} % {lλl′} ≻ {l′} ∼ {l, l′}.

In either case, we have U({l, lλl′}) > U({l, l′}) for all λ ∈ (0, 1).
We adapt the argument in Ergin and Sarver [4, Lemma 16]. Since C is finite, the

metric d(a, b) on ∆(C) is understood to be the metric induced by a norm in R
#C . That is,

d(a, b) = ‖a− b‖. Let θ ∈ Θ be the object guaranteed by Properness. Let K ≡ u(θ).

Step 1: For all ε > 0 and λ ∈ (0, 1), if l + εθ, l′ + εθ ∈ ∆(C) and d(lλl′, l′) < ε, then
U({l, lλl′}) − U({l, l′}) ≤ Kd(lλl′, l′).

Take any ε′ > 0 with d(lλl′, l′) < ε′ < ε. Then l + ε′θ, l′ + ε′θ ∈ ∆(C). By Properness
and Lemma 4.1 (ii),

U({l, lλl}) < U({l + ε′θ, l′ + ε′θ}) = U({l, l′}) + ε′u(θ) = U({l, l′}) +Kε′.

Hence U({l, lλl′})−U({l, l′}) < Kε′. Since this inequality holds for all ε′ with d(lλl′, l′) <
ε′ < ε, U({l, lλl′}) − U({l, l′}) ≤ Kd(lλl′, l′).

Since U({l, lλl′}) > U({l, l′}), K is positive.

Step 2: For all ε > 0 and λ ∈ (0, 1), if l+εθ, l′+εθ ∈ ∆(C), then U({l, lλl′})−U({l, l′}) ≤
Kd(lλl′, l′).
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For all α ∈ [0, 1], let l(α) = α(lλl′) + (1 − α)l′. Notice that {l} ≻ {l, l(α)}. Since
l + εθ, l′ + εθ ∈ ∆(C),

l(α) + εθ = α(lλl′) + (1 − α)l′ + θ = αλ(l + εθ) + (1 − αλ)(l′ + εθ) ∈ ∆(C).

By continuity of l(α), for all α, we can find an open interval O(α) ⊂ [0, 1] such that
α ∈ O(α) and d(l(α), l(α′)) < ε

2
for all α′ ∈ O(α). Then {O(α)|α ∈ [0, 1]} is an open

cover of [0, 1]. Since [0, 1] is compact, there exists a finite open cover {O(α1), · · · , O(αk)}.
Without loss of generality, assume α1 ≤ · · · ≤ αk. Let α0 ≡ 0 and αk+1 ≡ 1. Since
{l} ≻ {l, l(αi)}, l(αi) + εθ ∈ ∆(C) and d(l(αi+1), l(αi)) < ε, Step 1 implies

U({l, l(αi+1)}) − U({l, l(αi)}) ≤ Kd(l(αi+1), l(αi)).

Since d(l(αi+1), l(αi)) = ‖l(αi+1) − l(αi)‖ = (αi+1 − αi)‖lλl
′ − l′‖ and l(α0) = l′ and

l(αk+1) = lλl′,

U({l, lλl′}) − U({l, l′}) =

k
∑

i=0

(U({l, l(αi+1)}) − U({l, l(αi)}) ≤ K

k
∑

i=0

d(l(αi+1), l(αi))

= Kd(lλl′, l′)

k
∑

i=0

(αi+1 − αi) = Kd(lλl′, l′).

Step 3: For all l, l′ with {l} ≻ {l, l′} and λ ∈ (0, 1), U({l, lλl′}) − U({l, l′}) ≤ Kd(lλl′, l′).

Take a lottery l∗ in the relative interior of ∆(C). There exists κ > 0 such that l∗ +κθ ∈
∆(C). Let ln = (1 − 1

n
)l + 1

n
l∗, l

′n = (1 − 1
n
)l′ + 1

n
l∗ and εn = κ

n
. Since v(l′) > v(l)

and u(l) > u(l′), we have v(l
′n) > v(ln) and u(ln) > u(l

′n), and hence {ln} ≻ {ln, l
′n}.

Furthermore, ln + εnθ, l
′n + εnθ ∈ ∆(C). Thus Step 2 implies, for all λ ∈ (0, 1),

U({ln, lnλl
′n}) − U({ln, l

′n}) ≤ Kd(lnλl
′n, l

′n).

Since U is continuous, we have U({l, lλl′}) − U({l, l′}) ≤ Kd(lλl′, l′).
(ii) Take a monotone sequence wn → w with wn ∈ A. There exist an, bn such that

wn = v(bn) − v(an) and {an} ≻ {an, bn} ≻ {bn}. Since {an}∞n=0 and {bn}∞n=0 are sequences
in ∆(C), assume an → a0 and bn → b0 without loss of generality. For all λ ∈ (0, 1),
{an} ≻ {an, anλbn} ≻ {anλbn} and v(anλbn)− v(an) = (1− λ)(v(bn)− v(an)) = (1− λ)wn.
We have

ϕ(w) − ϕ((1 − λ)w)

λw
= lim

n→∞

ϕ(wn) − ϕ((1 − λ)wn)

λwn

= lim
n→∞

U({an, anλbn}) − U({an, bn})

λwn

=
U({a0, a0λb0}) − U({a0, b0})

λw
. (16)
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Since the LHS of (16) is positive, U({a0, a0λb0}) > U({a0, b0}). Since v(b0)−v(a0) = w > 0,
v(b0) > v(a0). By continuity of u, u(a0) ≥ u(b0). If u(a0) = u(b0), Set Betweenness implies
U({a0, a0λb0}) = U({a0, b0}). Thus we must have u(a0) > u(b0). By definition of v,
{a0} ≻ {a0, b0}. Let K > 0 be the number guaranteed by (i). For all λ ∈ (0, 1),

U({a0, a0λb0}) − U({a0, b0}) ≤ Kd(a0λb0, b0) = K‖b0 − a0λb0‖ = λK‖b0 − a0‖. (17)

Taking (16) and (17) together, K ≡ K‖b0 − a0‖/w satisfies

sup
λ→0

ϕ(w) − ϕ((1 − λ)w)

λw
≤ K. (18)

Since ϕ is strictly increasing and convex, (18) implies the desired property.

Lemma 4.7. There exists a strictly increasing continuous extension of ϕ to R+ such that,
for all a, b ∈ ∆(C),

U({a, b}) = max
l∈{a,b}

(

u(l) − ϕ

(

max
{a,b}

v − v(l)

))

.

Furthermore, if C is finite and % satisfies Properness, then the extension ϕ can be taken
to be convex.

Proof. By Lemma 4.5, there exists a strictly increasing continuous extension of ϕ to R+.
Without loss of generality, assume {a} % {b}. By Set Betweenness, {a} % {a, b} % {b}.
There are four cases: (i) {a} ≻ {a, b} ≻ {b}; (ii) {a} ≻ {a, b} ∼ {b}; (iii) {a} ∼ {a, b} ≻
{b}; and (iv) {a} ∼ {a, b} ∼ {b}. We first show that, in cases of (i), (iii) and (iv), the
desired result holds for any increasing extension ϕ.

(i) {a} ≻ {a, b} ≻ {b}. In this case, v(b) > v(a). By definition of ϕ, U({a, b}) =
u(a) − ϕ(v(b) − v(a)) > u(b). Thus U({a, b}) can be expressed as the desired form.

(iii) {a} ∼ {a, b} ≻ {b}. By definition, b ∈ L−(a). By construction of v, v(a) ≥ v(b).
Since U({a, b}) = u(a) > u(b) − ϕ(v(a) − v(b)), U({a, b}) is represented by the desired
form.

(iv) {a} ∼ {a, b} ∼ {b}. If v(b) ≥ v(a), U({a, b}) = u(b) ≥ u(a) − ϕ(v(b) − v(a)). If
v(a) ≥ v(b), we have U({a, b}) = u(a) ≥ u(b) − ϕ(v(a) − v(b)). In either case, U({a, b}) is
represented by the desired form.

Now turn to case (ii) {a} ≻ {a, b} ∼ {b}. This ranking implies v(b) > v(a).

Step 1: If v(b) − v(a) ∈ A, then u(b) ≥ u(a) − ϕ(v(b) − v(a)).

There exists a′, b′ such that {a′} ≻ {a′, b′} ≻ {b′} and v(b′) − v(a′) = v(b) − v(a).
Since ϕ(v(b) − v(a)) = ϕ(v(b′) − v(a′)) = u(a′) − U({a′, b′}), it suffices to show that
u(a′) − U({a′, b′}) ≥ u(a) − U({a, b}). Take a full support lottery h ∈ ∆(C). For all
λ ∈ (0, 1), since v(bλh) > v(aλh) and u(aλh) > u(bλh), {aλh} ≻ {aλh, bλh}. By MPSC
(i), {a′λh} ≻ {a′λh, b′λh} ≻ {b′λh}. Let θ ≡ a′λh − aλh ∈ Θ. For sufficiently small λ,
bλh+ θ ∈ ∆(C). By Translation Invariance,

{a′λh} = {aλh+ θ} ≻ {aλh + θ, bλh+ θ} = {a′λh, bλh+ θ}.
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Moreover, since

v(bλh+ θ) − v(a′λh) = λ(v(b) − v(a)) = λ(v(b′) − v(a′)) = v(b′λh) − v(a′λh),

v(bλh + θ) = v(b′λh). By Temptation Consistency, {a′λh, bλh + θ} % {a′λh, b′λh}. Let
e({a}) = α({a})c+ + (1 − α({a}))c−, e({a′}) = α({a′})c+ + (1 − α({a′}))c−, e({a, b}) =
α({a, b})c+ + (1 − α({a, b}))c− and e({a′, b′}) = α({a′, b′})c+ + (1 − α({a′, b′}))c−. By
definition, u(a) = u(e({a})), u(a′) = u(e({a′})), U({a, b}) = u(e({a, b})), and U({a′, b′}) =
u(e({a′, b′})). There exist feasible θ, θ′ ∈ Θ such that e({a}) + θ = e({a′}) + θ′. By
Monotone Self-Control, {e({a, b}) + θ} % {e({a′, b′}) + θ′}. Thus

u(a′ + θ′) − u(e({a′, b′}) + θ′) ≥ u(a+ θ) − u(e({a, b}) + θ)

⇔ u(a′) − u(e({a′, b′})) ≥ u(a) − u(e({a, b}))

⇔ u(a′) − U({a′, b′}) ≥ u(a) − U({a, b}).

By Step 1, when A = (0, 1], we complete the proof. Now consider the case that A =
(0, w) for some w ≤ 1. Let

B = {w ∈ [w, 1] |w = v(l′) − v(l), for some l, l′ such that {l} ≻ {l, l′} ∼ {l′}}.

Step 2: (i) w ∈ B, (ii) B is convex, and (iii) if w < 1, there exists w′ ∈ B with w′ > w.

(i) Since A = (0, w), there exists a monotone sequence wn → w such that wn =
v(bn)−v(an) < w and {an} ≻ {an, bn} ≻ {bn}. Since {an}∞n=1 and {bn}∞n=1 are sequences in
∆(C), we can assume an → a0 and bn → b0 without loss of generality. Since v is continuous,
w = v(b0) − v(a0). Moreover, since ϕ is increasing, u(an) − u(bn) > ϕ(v(bn) − v(an)) =
u(an)−U({an, bn}) ≥ u(a1)−U({a1, b1}) > 0. By continuity, u(a0)− u(b0) > 0. Rankings
{a0} ≻ {b0} and v(b0) > v(a0) imply {a0} ≻ {a0, b0}. Set Betweenness and the definition
of A imply {a0} ≻ {a0, b0} ∼ {b0}. Thus w ∈ B.

(ii) Take w,w′ ∈ B. There exist l, l′, k, k′ such that w = v(l′)−v(l), w′ = v(k′)−v(k) and
{l} ≻ {l, l′} ∼ {l′} and {k} ≻ {k, k′} ∼ {k′}. Then v(l′λk′)−v(lλk) = λw+(1−λ)w′. Since
v(l′λk′) > v(lλk) and u(lλk) > u(l′λk′), we have {lλk} ≻ {lλk, l′λk′}. Set Betweenness
implies {lλk} ≻ {lλk, l′λk′} % {l′λk′}. Moreover, since λw + (1 − λ)w′ ≥ w, {lλk} ≻
{lλk, l′λk′} ∼ {l′λk′}. Thus λw + (1 − λ)w′ ∈ B.

(iii) Let l, l′ satisfy w = v(l′) − v(l) and {l} ≻ {l, l′} ∼ {l′}. Since w < 1, we have
either 1 > v(l′) or v(l) > 0. In case of the former, let lM ∈ ∆(C) be a maximal element
of v. By Continuity, for all λ sufficiently close to 1, {l} ≻ {l, l′λlM}. By Set Betweenness,
{l} ≻ {l, l′λlM} % {l′λlM}. Moreover, v(l′λlM) − v(l) > v(l′) − v(l) = w. By definition of
A, we must have {l} ≻ {l, l′λlM} ∼ {l′λlM}. Hence w < w′ ≡ v(l′λlM) − v(l) ∈ B. The
symmetric argument works for the latter case.

By Lemma 4.2 (i) and Step 2, A ∪ B is an interval in [0, 1] with w ∈ A ∪ B. For all
w ∈ A ∪ B, define

F (w) ≡ sup {u(l) − u(l′) |w = v(l′) − v(l) for some {l} ≻ {l, l′}} .
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Step 3: (i) F is weakly concave on A ∪ B, (ii) F (w) ≤ ϕ(w), and (iii) if w < 1, F (w) =
ϕ(w).

(i) Take w,w′ ∈ A ∪ B and λ ∈ (0, 1). There exist an, bn, ln, kn ∈ ∆(C) such that
{an} ≻ {an, bn}, {ln} ≻ {ln, kn}, v(bn) − v(an) = w, u(kn) − u(ln) = w′, u(an) − u(bn) →
F (w), and u(ln) − u(kn) → F (w′). Since v(bn) > v(an), v(kn) > v(ln), u(an) > u(bn) and
u(ln) > u(kn), we have v(bnλkn) > v(anλln) and u(anλln) > u(bnλkn). Thus {anλln} ≻
{anλln, bnλkn}. Furthermore,

λw + (1 − λ)w′ = λ(v(bn) − v(an)) + (1 − λ)(v(kn) − v(ln)) = v(bnλkn) − v(anλln).

Thus

F (λw + (1 − λ)w′) ≥ lim sup u(anλln) − u(bnλkn)

= lim sup λ(u(an) − u(bn)) + (1 − λ)(u(ln) − u(kn))

= λF (w) + (1 − λ)F (w′).

(ii) Suppose F (w) > ϕ(w) = sup{ϕ(w)|w ∈ A}. For all w ∈ A and l, l′ ∈ ∆(C) such
that w = v(l′) − v(l) and {l} ≻ {l, l′} ∼ {l′}, we have shown in Step 1 that ϕ(w) ≥
u(l) − u(l′). Thus there exist sequences wn → w, {an}∞n=1 and {bn}∞n=1 such that wn =
v(bn) − v(an) ∈ A, {an} ≻ {an, bn} ≻ {bn}, and u(an) − u(bn) > c > sup{ϕ(w)|w ∈ A},
where c > 0 is a constant number. Since {an}∞n=1 and {bn}∞n=1 are sequences in ∆(C), we
can assume an → a0 and bn → b0 without loss of generality. Since

u(an) − u(bn) > c > ϕ(v(bn) − v(an)) = u(an) − U({an, bn}),

continuity implies u(a0)− u(b0) > u(a0)−U({a0, b0}), that is, U({a0, b0}) > u(b0). On the
other hand, since w = v(b0)− v(a0) > 0 and u(a0) > u(b0), we have {a0} ≻ {a0, b0}. Hence
{a0} ≻ {a0, b0} ≻ {b0}, which contradicts w /∈ A.

(iii) By Step 2 (ii) and (iii), [w,w′] ⊂ B for some w′ > w. Since a convex function is
continuous on the relative interior of the domain, F is continuous around w.

Suppose F (w) < sup{ϕ(w)|w ∈ A}. By continuity of F and ϕ, there exists w < w such
that F (w) < ϕ(w). There exist a, b such that {a} ≻ {a, b} ≻ {b} and w = v(b) − v(a).
Since

u(a) − U({a, b}) = ϕ(v(b) − v(a)) > F (w) ≥ u(a) − u(b),

we have u(b) > U({a, b}), which is a contradiction. Hence F (w) = ϕ(w).

By Step 3 (ii), when w = 1, for all a, b with {a} ≻ {a, b} ∼ {b} with v(b) − v(a) = 1,
we have ϕ(v(b) − v(a)) ≥ F (v(b) − v(a)) ≥ u(a)− u(b). Thus, taking Step 1 together, any
strictly increasing continuous extension ϕ : R+ → R+ is the desired object.

Now assume w < 1. By Step 3 (i) and (iii), there exists an affine function f1 : R → R

supporting F at w. If its slope is negative, then take any positive affine function f2 with
f2(w) = ϕ(w). Now define

ϕ(w) ≡

{

ϕ(w) if w ∈ A,
max[f1, f2] elsewhere.
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Since ϕ(w) = f1(w) = f2(w), ϕ is continuous and strictly increasing.
We can verify that ϕ(v(b)− v(a)) ≥ u(a)−u(b) for all a, b such that {a} ≻ {a, b} ∼ {b}

and v(b) − v(a) ≥ w. Indeed, by definition of f1,

ϕ(v(b) − v(a)) ≥ f1(v(b) − v(a)) ≥ F (v(b) − v(a)) ≥ u(a) − u(b).

Therefore U({a, b}) can be written as the desired form in all the cases.
Finally, suppose in addition that C is finite and % satisfies Properness. Then by

Lemma 4.6 (ii), there exists K > 0 satisfying the statement of the lemma. Let f3 be
the affine function which has slope K and f3(w) = ϕ(w). Define

ϕ(w) ≡

{

ϕ(w) if w ∈ A,
max[f1, f2, f3] elsewhere.

Then ϕ is convex. By the same argument above, ϕ(v(b) − v(a)) ≥ u(a) − u(b) for all a, b
such that {a} ≻ {a, b} ∼ {b} and v(b) − v(a) ≥ w. This completes the proof.

Lemma 4.8. For all finite menus x ∈ D,

U(x) = max
l∈x

(

u(l) − ϕ
(

max
x

v − v(l)
))

.

Proof. First of all, Gul and Pesendorfer [6] show that, if % satisfies Set Betweenness, for
all finite menus x ∈ D,

U(x) = max
a∈x

min
b∈x

U({a, b}) = min
b∈x

max
a∈x

U({a, b}). (19)

Define ψ : R− → R− by ψ(w) = −ϕ(−w). Since ϕ is increasing, so is ψ. Fix a ∈ x
arbitrarily. Since ψ is increasing,

min
b∈x

U({a, b}) = min
b∈x

max
l∈{a,b}

(

u(l) − ϕ

(

max
{a,b}

v − v(l)

))

= min
b∈x

max
l∈{a,b}

(

u(l) + ψ

(

v(l) + min
{a,b}

(−v)

))

≥ min
b∈x

max
l∈{a,b}

(

u(l) + ψ

(

v(l) + min
b∈x

min
{a,b}

(−v)

))

= max
l∈{a,ba}

(

u(l) + ψ

(

v(l) + min
l′∈x

(−v)

))

,

where ba is a minimizer of the associated minimization problem. Since the above inequality
holds for all a ∈ x, if follows from (19) that

U(x) ≥ max
a∈x

max
l∈{a,ba}

(

u(l) + ψ

(

v(l) + min
l′∈x

(−v)

))

= max
l∈x

(

u(l) + ψ

(

v(l) + min
l′∈x

(−v)

))

= max
l∈x

(

u(l) − ϕ

(

max
l′∈x

v − v(l)

))

. (20)
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Similarly, for all fixed b ∈ x,

max
a∈x

U({a, b}) = max
a∈x

max
l∈{a,b}

(

u(l) − ϕ

(

max
{a,b}

v − v(l)

))

= max
a∈x

max
l∈{a,b}

(

u(l) + ψ

(

v(l) + min
{a,b}

(−v)

))

≤ max
a∈x

max
l∈{a,b}

(

u(l) + ψ

(

v(l) + max
a∈x

min
{a,b}

(−v)

))

= max
l∈x

(

u(l) + ψ

(

v(l) + min
{ab,b}

(−v)

))

,

where ab is a maximizer of the associated maximization problem. Since the above inequality
holds for all b ∈ x, if follows from (19) that

U(x) ≤ min
b∈x

max
l∈x

(

u(l) + ψ

(

v(l) + min
{ab,b}

(−v)

))

= max
l∈x

(

u(l) + ψ

(

v(l) + min
b∈x

min
{ab,b}

(−v)

))

= max
l∈x

(

u(l) + ψ

(

v(l) + min
l′∈x

(−v)(l′)

))

= max
l∈x

(

u(l) − ϕ

(

max
l′∈x

v − v(l)

))

. (21)

Taking (20) and (21) together, the desired result holds.

Lemma 4.9. For all x ∈ D, U can be written as the desired form.

Proof. By Lemma 0 of Gul and Pesendorfer [6, p.1421], there exists a sequence of subsets
xn of x such that each xn is finite and xn → x in the Hausdorff metric. By Lemma 4.8,

U(xn) = max
l∈xn

(

u(l) − ϕ
(

max
xn

v − v(l)
))

. (22)

Since ϕ is continuous, the maximum theorem implies that the RHS of (22) converges to

max
l∈x

(

u(l) − ϕ
(

max
x

v − v(l)
))

.

On the other hand, by Continuity, U(xn) → U(x). This completes the proof.

4.2 Necessity Part of Theorem 3.1

Lemma 4.10. A convex self-control model satisfies Set Betweenness (NEEDS ONLY IN-
CREASING ϕ).
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Proof. Suppose x % y. Since maxx∪y v ≥ maxx v and ϕ is increasing, for all l ∈ x,

U(x) ≥ u(l) − ϕ
(

max
x

v − v(l)
)

≥ u(l) − ϕ

(

max
x∪y

v − v(l)

)

. (23)

Furthermore, since maxx∪y v ≥ maxy v and ϕ is increasing, for all l′ ∈ y,

U(x) ≥ U(y) ≥ u(l′) − ϕ

(

max
y
v − v(l′)

)

≥ u(l′) − ϕ

(

max
x∪y

v − v(l′)

)

. (24)

Taking (23) and (24) together, U(x) ≥ U(x ∪ y).
Next we show U(x ∪ y) ≥ U(y). If maxx v ≤ maxy v, maxx∪y v = maxy v. Since

u(l) − ϕ

(

max
x∪y

v − v(l)

)

= u(l) − ϕ

(

max
y
v − v(l)

)

for all l,

U(x ∪ y) = max
x∪y

(

u(l) − ϕ

(

max
x∪y

v − v(l)

))

≥ max
y

(

u(l) − ϕ

(

max
y
v − v(l)

))

= U(y).

If maxx v > maxy v, maxx∪y v = maxx v. Since u(l) − ϕ (maxx∪y v − v(l)) = u(l) −
ϕ (maxx v − v(l)), it follows from the same argument that U(x ∪ y) ≥ U(x). Hence
U(x ∪ y) ≥ U(x) ≥ U(y).

Lemma 4.11. A convex self-control model satisfies Properness.

Proof. Suppose {l} ≻ {l, l′}. From this ranking, we have v(l′) > v(l) and u(l) > u(l′), and
hence v(lλl′) > v(l) and u(l) > u(lλl′) for all λ ∈ (0, 1). Thus {l} ≻ {l, lλl′}.

Let v = max∆(C) v and v = min∆(C) v. Then for all a, b ∈ ∆(C) with {a} ≻ {a, b},
v(b) − v(a) ∈ [0, v − v]. Since a convex function is Lipschitz continuous on any compact
subset included in the relative interior of the domain (See Rockafellar [14, p.86, Theorem
10.4]), there exists K > 0 such that, for all a, b, a′, b′ with {a} ≻ {a, b} and {a′} ≻ {a′, b′},

|ϕ(v(b′) − v(a′)) − ϕ(v(b) − v(a))| ≤ K|v(b′) − v(a′) − (v(b) − v(a))|.

Thus we have

ϕ(v(l′) − v(l)) − ϕ((1 − λ)(v(l′) − v(l))) ≤ Kλ(v(l′) − v(l)). (25)

Consider the case that {l} ≻ {l, lλl′} ≻ {lλl′}. By (25),

U({l, lλl′}) = u(l) − ϕ(v(lλl′) − v(l)) = u(l) − ϕ((1 − λ)(v(l′) − v(l)))

≤ u(l) − ϕ(v(l′) − v(l)) +Kλ(v(l′) − v(l)) ≤ U({l, l′}) +K|v(lλl′) − v(l′)|

≤ U({l, l′}) +K‖v‖d(lλl′, l′), (26)
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where ‖v‖ is the norm of the mixture linear function v.
In case of {l} ≻ {l, lλl′} ∼ {lλl′},

U({l, lλl′}) = u(lλl′) ≤ u(l′) + ‖u‖d(lλl′, l′) ≤ U({l, l′}) + ‖u‖d(lλl′, l′), (27)

where ‖u‖ is the norm of the mixture linear function u.
Let K∗ ≡ max[‖u‖, K‖v‖]. Take θ ∈ Θ such that u(θ) = K∗. For all ε > 0 and λ such

that d(lλl′, l′) < ε and l + εθ, l′ + εθ ∈ ∆(C), taking (26) and (27) together,

U({l + εθ, l′ + εθ}) = U({l, l′}) + u(εθ) = U({l, l′}) + εK∗

> U({l, l′}) + d(lλl′, l′)K∗ ≥ U({l, lλl′}).

Lemma 4.12. A convex self-control model satisfies Translation Invariance (ϕ CAN BE
ARBITRARY).

Proof. Notice first that, for all mixture linear functions w : ∆(C) → R, w(l + θ) = w(l) +
w(θ). Thus for all x ∈ D and θ ∈ Θ,

U(x+ θ) = max
x

(

u(l + θ) − ϕ
(

max
x

v(l′ + θ) − v(l + θ)
))

= max
x

(

u(l) + u(θ) − ϕ
(

max
x

v(l′) − v(l)
))

= U(x) + u(θ).

Therefore, U(x) ≥ U(y) if and only if

U(x+ θ) = U(x) + u(θ) ≥ U(y) + u(θ) = U(y + θ).

Lemma 4.13. A convex self-control model satisfies Temptation Convexity (NEEDS ONLY
INCREASING ϕ).

Proof. First we show L+(l) is convex. Take l′, l′′ ∈ L+(l), that is, {l} ≻ {l, l′} and {l} ≻
{l, l′′}. This ranking implies v(l′) > v(l) and v(l′′) > v(l). Since v is mixture linear,
v(λl′ + (1 − λ)l′′) > v(l). On the other hand, Set Betweenness implies u(l) > u(l′) and
u(l) > u(l′′). Hence u(l) > u(λl′ + (1 − λ)l′′). Therefore,

u(l) > max
{l,λl′+(1−λ)l′′}

(u(k) − ϕ(v(λl′ + (1 − λ)l′′) − v(k))) ,

which means {l} ≻ {l, λl′ + (1 − λ)l′′}. That is, λl′ + (1 − λ)l′′ ∈ L+(l).
Next we show L−(l) is convex. Take l′, l′′ ∈ L−(l), that is, {l} ∼ {l, l′} ≻ {l′} and {l} ∼

{l, l′′} ≻ {l′′}. This ranking implies v(l′) ≤ v(l) and v(l′′) ≤ v(l). Since v is mixture linear,
v(λl′+(1−λ)l′′) ≤ v(l). On the other hand, since u is mixture linear, u(l) > u(λl′+(1−λ)l′′).
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Thus u(l) = U({l, λl+(1−λ)l′′}), which means {l} ∼ {l, λl′+(1−λ)l′′} ≻ {λl′+(1−λ)l′′}.
That is, λl′ + (1 − λ)l′′ ∈ L−(l).

Next we show that {l} ≻ {l, l′} implies {l} ≻ {l, λl + (1 − λ)l′}. By Set Betweenness,
{l} ≻ {l, l′} % {l′}. Hence the assumption implies v(l′) > v(l). Since u and v are mixture
linear, u(l) > u(λl+(1−λl′)) and v(λl+(1−λ)l′) > v(l). Thus the representation implies
that u(l) > U({l, λl + (1 − λ)l′}).

Finally, we show that {l} ∼ {l, l′} ≻ {l′} implies {l} ∼ {l, λl+(1−λ)l′} ≻ {λl+(1−λ)l′}.
Since u(l) > u(l′), mixture linearity implies u(l) > u(λl + (1 − λ)l′). Furthermore, the
assumption implies v(l) ≥ v(l′), and hence v(l) ≥ v(λl+(1−λ)l′). Thus the representation
implies that u(l) = U({l, λl + (1 − λ)l′}).

Lemma 4.14. A convex self-control model satisfies Temptation Consistency (NEEDS ONLY
INCREASING ϕ).

Proof. By assumption, v(l′) = v(l′′) > v(l). Thus we have U({l, l′′}) ≥ u(l) − ϕ(v(l′′) −
v(l)) = u(l) − ϕ(v(l′) − v(l)) = U({l, l′}). That is, U({l, l′′}) ≥ U({l, l′}).

Lemma 4.15. A convex self-control model satisfies MPSC.

Proof. (i) By assumption, v(l′) > v(l) and u(l) > u(l′). Since U({l, l′}) > u(l′), u(l) −
ϕ(v(l′) − v(l)) > u(l′). Since ϕ is weakly convex with ϕ(0) = 0,

λu(l) − λu(l′) > λϕ(v(l′) − v(l)) ≥ ϕ(λ(v(l′) − v(l))).

Thus we have

λu(l) + (1 − λ)u(l′′) − ϕ(λ(v(l′) − v(l))) > λu(l′) + (1 − λ)u(l′′),

equivalently,

u(λl + (1 − λ)l′′) − ϕ(v(λl′ + (1 − λ)l′′) − v(λl + (1 − λ)l′′)) > u(λl′ + (1 − λ)l′′).

Therefore, u(lλl′′) > U({lλl′′, l′λl′′}) > u(l′λl′′).
(ii) By assumption, v(l′) > v(l), v(l′′) > v(l), u(l) > u(l′) and u(l) > u(l′′). Mixture

linearity of u and v implies u(l) > u(l′λl′′) and v(l′λl′′) > v(l). Since u(l)−ϕ(v(l′)−v(l)) >
u(l′) and u(l) − ϕ(v(l′′) − v(l)) > u(l′′), weakly convex ϕ implies

u(l) − ϕ(v(l′λl′′) − v(l))

≥ λu(l) + (1 − λ)u(l) − λϕ(v(l′) − v(l)) − (1 − λ)ϕ(v(l′′) − v(l)) > u(l′λl′′).

Thus u(l) > U({l, l′λl′′}) > u(l′λl′′). By definition of singleton equivalent, u(e({l, l′})) =
U({l, l′}), u(e({l, l′′})) = U({l, l′′}), and u(e({l, l′λl′′})) = U({l, l′λl′′}). Since u is mixture
linear and ϕ is weakly convex,

u(e({l, l′})λe({l, l′′})) = λU({l, l′}) + (1 − λ)U({l, l′′})

= λ(u(l) − ϕ(v(l′) − v(l))) + (1 − λ)(u(l) − ϕ(v(l′′) − v(l)))

≤ u(l) − ϕ(v(l′λl′′) − v(l)) = U({l, l′λl′′}).
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Lemma 4.16. A convex self-control model satisfies Monotone Self-Control.

Proof. Let {l} ≻ {l, l′} ≻ {l′} and {k} ≻ {k, k′}. For some h ∈ ∆(C), λ ∈ (0, 1] and
θl, θk ∈ Θ, assume lλh + θl = kλh + θk and {kλh + θk, k

′λh + θk} % {lλh + θl, l
′λh + θl}.

Since {lλh+ θl} ≻ {lλh+ θl, l
′λh+ θl} ≻ {l′λh+ θl},

U({lλh + θl, l
′λh+ θl}) = u(lλh+ θl) − ϕ(v(l′λh) − v(lλh)).

We will claim that u(l)−U({l, l′}) ≥ u(k)−U({k, k′}). In case of {kλh} ≻ {kλh, k′λh} ≻
{k′λh}, we have also

U({kλh + θk, k
′λh+ θk}) = u(kλh+ θk) − ϕ(v(k′λh) − v(kλh)).

It follows from the assumption that ϕ(λ(v(l′)−v(l))) ≥ ϕ(λ(v(k′)−v(k))). Since ϕ is strictly
increasing, this inequality is equivalent to saying that ϕ(v(l′) − v(l)) ≥ ϕ(v(k′) − v(k)).
Since U({l, l′}) = u(l) − ϕ(v(l′) − v(l)) and U({k, k′}) ≥ u(k) − ϕ(v(k′) − v(k)), we have
u(l) − U({l, l′}) ≥ u(k) − U({k, k′}).

If {kλh} ≻ {kλh, k′λh} ∼ {k′λh}, U({kλh + θk, k
′λh + θk}) = u(k′λh + θk). By the

assumption,

ϕ(λ(v(l′) − v(l))) = u(lλl′ + θl) − U({lλh + θl, l
′λh+ θl})

≥ u(kλh+ θk) − U({kλh + θk, k
′λh+ θk})

= u(kλh+ θk) − u(k′λh+ θk) = λ(u(k) − u(k′)).

Since ϕ is weakly convex with ϕ(0) = 0,

λϕ(v(l′) − v(l)) ≥ ϕ(λ(v(l′) − v(l))) ≥ λ(u(k) − u(k′)),

that is, u(l) − U({l, l′}) = ϕ(v(l′) − v(l)) ≥ u(k) − u(k′) ≥ u(k) − U({k, k′}). The last
inequality follows from Set Betweenness.

For all e({l, l′}) + θl, e({k, k
′}) + θk ∈ ∆(C) with e({l}) + θl = e({k}) + θk ∈ ∆(C),

u(e({l}) + θl) − u(e({l, l′}) + θl) = u(l) − U({l, l′}) ≥ u(k) − U({k, k′})

= u(e({k}) + θk) − u(e({k, k′}) + θk).

Thus {e({k, k′}) + θk} % {e({l, l′}) + θl}.

4.3 Proof of Theorem 3.2

(i) By assumption, for all w′ ∈ R+, ϕ′(w′) = αuϕ( w′

αv
). Since

U ′(x) = max
l∈x

(

αuu(l) + βu − αuϕ

(

αv(maxx v − v(l))

αv

))

= αu

{

max
l∈x

(

u(l) − ϕ
(

max
x

v − v(l)
))

}

+ βu

= αuU(x) + βu,
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U ′ and U represent the same preference.
We turn to the converse. Since mixture linear functions U({l}) = u(l) and U ′({l}) =

u′({l}) represent the same preference over ∆(C), they are cardinally equivalent by the
standard argument. That is, there exist αu > 0 and βu ∈ R such that u′ = αuu+ βu.

Next we claim that mixture linear functions v and v′ represent the identical preference
over ∆(C).

Lemma 4.17. For all l, l′ ∈ ∆(C), {l} ≻ {l, l′} if and only if u(l) > u(l′) and v(l′) > v(l).
Similarly, {l} ≻ {l, l′} if and only if u′(l) > u′(l′) and v′(l′) > v′(l).

Proof. If part: By assumption, u(l) > u(l) − ϕ(v(l′) − v(l)) and u(l) > u(l′). Thus the
associated representation implies u(l) > U({l, l′}). Only-if part: Since the representation
satisfies Set Betweenness, u(l) > U({l, l′}) ≥ u(l′), that is, u(l) > u(l′). Suppose v(l) ≥
v(l′). Then the representation implies u(l) = u(l)− ϕ(v(l)− v(l)) > u(l′)− ϕ(v(l)− v(l′)),
that is, U({l, l′}) = u(l). This is a contradiction. The exactly same argument works for
(u′, v′, ϕ′).

Suppose by contradiction that v and v′ are not identical. Then there exist l, l′ satisfying
v(l′) > v(l) and v′(l′) ≤ v′(l). Let lM and lm be a maximal lottery and a minimal lottery
with respect to v′. Since % is a self-control preference, there exist k, k′ ∈ ∆(C) such that
{k} ≻ {k, k′} ≻ {k′}. Thus by Lemma 4.17, v′(lM) ≥ v′(k′) > v′(k) ≥ v′(lm). Since
v is continuous and v′ is mixture linear, we can find small λ > 0 such that v′(lmλl′) <
v′(lMλl) and v(lmλl′) > v(lMλl). Redefine l and l′ as lMλl and lmλl′, respectively. If
either u(l) > u(l′) or u(l′) > u(l), this contradicts Lemma 4.17 because v(l′) > v(l) and
v′(l) > v′(l′). Suppose u(l) = u(l′). Since {k} ≻ {k′}, u is not degenerate. Let l+ and l− be
a maximal lottery and a minimal lottery with respect to u. Since v, v′ are continuous and u
is mixture linear, there exists a small µ > 0 such that u(l+µl) > u(l−µl′), v(l−µl′) > v(l+µl)
and v′(l+µl) > v′(l−µl′). Again, this contradicts Lemma 4.17. Thus v and v′ induce the
identical preference over ∆(C). Since v and v′ are mixture linear, there exist αv > 0 and
βv ∈ R such that v′ = αvv + βv.

Since v′ = αvv + βv,

W (u′, v′, ϕ′) = {v′(l′) − v′(l) ∈ R+ | l, l′ ∈ ∆(C) with {l} ≻ {l, l′} ≻ {l′}}

= {αv(v(l
′) − v(l)) ∈ R+ | l, l′ ∈ ∆(C) with {l} ≻ {l, l′} ≻ {l′}}

= αvW (u, v, ϕ).

Lemma 4.18. If U and U ′ represent the same preference and u′ = αuu + βu, then U ′ =
αuU + βu.

Proof. Let l+ and l− be a maximal lottery and a minimal lottery with respect to u. By Set
Betweenness and Continuity, {l+} % x % {l−} for all x ∈ D. Thus there exists a unique
λ(x) ∈ [0, 1] such that x ∼ {λ(x)l+ + (1 − λ(x))l−}. Since u and u′ are mixture linear,

U ′(x) = u′(λ(x)l+ + (1 − λ(x))l−) = λ(x)u′(l+) + (1 − λ(x))u′(l−)

= λ(x)(αuu(l
+) + βu) + (1 − λ(x))(αuu(l

−) + βu)

= αu(λ(x)u(l+) + (1 − λ(x))u(l−)) + βu = αuU(x) + βu.
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Since u′ = αuu+ βu and v′ = αvv + βv, for all x ∈ D,

U ′(x) = max
l∈x

(

u′(l) − ϕ′

(

max
l′∈x

v′(l′) − v′(l)

))

= max
l∈x

(

αuu(l) + βu − ϕ′

(

αv

(

max
l′∈x

v(l′) − v(l)

)))

= αu

{

max
l∈x

(

u(l) −
1

αu

ϕ′

(

αv

(

max
l′∈x

v(l′) − v(l)

)))}

+ βu.

By Lemma 4.18,

U(x) = max
l∈x

(

u(l) − ϕ

(

max
l′∈x

v(l′) − v(l)

))

= max
l∈x

(

u(l) −
1

αu

ϕ′

(

αv

(

max
l′∈x

v(l′) − v(l)

)))

. (28)

Take any w ∈ W (u, v, ϕ). There exist l, l′ such that {l} ≻ {l, l′} ≻ {l′} and w =
v(l′) − v(l). Since v(l′) > v(l) and u(l) > u(l′), it follows from (28) that

u(l) − ϕ(v(l′) − v(l)) = U({l, l′}) = u(l) −
1

αu

ϕ′(αv(v(l
′) − v(l))),

and hence ϕ′(αvw) = αuϕ(w).
(ii) Take any continuous and strictly increasing function ϕ′ : R+ → R+ such that ϕ′ = ϕ

on the closure of W (u, v, ϕ) and ϕ′ ≥ ϕ elsewhere. Let U ′ be the functional form associated
with (u, v, ϕ′).

Lemma 4.19. W (u, v, ϕ) is an interval with infW (u, v, ϕ) = 0.

Proof. It suffices to show that, for all w ∈ W (u, v, ϕ), λw ∈ W (u, v, ϕ) for all λ ∈ (0, 1).
Let w ∈ W (u, v, ϕ). There exist l, l′ such that w = v(l′) − v(l) and {l} ≻ {l, l′} ≻ {l′}.
Since a convex self-control model satisfies MPSC (i), {l} ≻ {l, l(1 − λ)l′} ≻ {l(1 − λ)l′}.
Thus λw = λ(v(l′) − v(l)) = v(l(1 − λ)l′) − v(l) ∈ W (u, v, ϕ).

By Lemma 4.19, ϕ′(0) = ϕ(0) = 0.

Lemma 4.20. For all binary menus {a, b}, U({a, b}) = U ′({a, b}).

Proof. Assume {a} % {b} without loss of generality. By Set Betweenness, {a} % {a, b} %

{b}. There are four cases. Case 1: {a} ≻ {a, b} ≻ {b}. This ranking implies v(b) > v(a)
and u(a) > u(b). Since v(b) − v(a) ∈ W (u, v, ϕ), U({a, b}) = u(a) − ϕ(v(b) − v(a)) =
u(a)−ϕ′(v(b)− v(a)), and hence U({a, b}) = U ′({a, b}). Case 2: {a} ≻ {a, b} ∼ {b}. This
ranking implies v(b) > v(a) and u(a) > u(b). The representation U implies ϕ(v(b)−v(a)) ≥
u(a) − u(b). Since ϕ′ ≥ ϕ on R+, ϕ′(v(b) − v(a)) ≥ u(a) − u(b), and hence U({a, b}) =

27



u(b) = U ′({a, b}). Case 3: {a} ∼ {a, b} ≻ {b}. By definition, b ∈ L−(a). By construction
of v, v(a) ≥ v(b). Since U({a, b}) = u(a) > u(b) − ϕ(v(a) − v(b)) and ϕ′ ≥ ϕ, u(a) >
u(b)−ϕ′(v(a)−v(b)). Thus U({a, b}) = u(a) = U ′({a, b}). Finally, (iv) {a} ∼ {a, b} ∼ {b}.
If v(b) ≥ v(a), U({a, b}) = u(b) ≥ u(a) − ϕ(v(b) − v(a)) ≥ u(a) − ϕ′(v(b) − v(a)). If
v(a) ≥ v(b), we have U({a, b}) = u(a) ≥ u(b)− ϕ(v(a)− v(b)) ≥ u(b)− ϕ′(v(a)− v(b)). In
either case, U({a, b}) = U ′({a, b}).

Notice that any functional form U ′′ with components (u′′, v′′, ϕ′′) defined as (9) satisfies
Set Betweenness as long as ϕ′′ is increasing (See Lemma 4.10), U ′ satisfies Set Between-
ness. Gul and Pesendorfer [6] show that, if the preference induced by a representation U ′′

satisfies Set Betweenness, for all finite menus x ∈ D, U ′′(x) = maxa∈x minb∈x U
′′({a, b}) =

minb∈x maxa∈x U
′′({a, b}). Thus we have, for all finite menus x,

U(x) = max
a∈x

min
b∈x

U({a, b}) = max
a∈x

min
b∈x

U ′({a, b}) = U ′(x).

Hence by continuity of U and U ′, U = U ′.
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