Temptation, Certainty Effect, and Diminishing Self-Control

Norio Takeoka

Faculty of Economics Ritsumeikan University

E-mail: takeoka@ec.ritsumei.ac.jp

March 6, 2007

□ > < = > <

Background Motivation

Background

• Gul and Pesendorfer (2001) provide a theory of choice under temptation

Lunch Choice: Vegetable vs Hamburger

- temptation from hamburger: $\{v\} \succ \{v, h\}$
- self-control: $\{v\} \succ \{v, h\} \succ \{h\}$
- no self-control: $\{v\} \succ \{v, h\} \sim \{h\}$

- 4 同 6 4 日 6 4 日 6

Background

- C: set of outcomes
- $\Delta(C)$: set of lotteries over C
- $\mathcal{K}(\Delta(C))$: set of compact subsets (menus) of $\Delta(C)$
- \succeq over $\mathcal{K}(\Delta(\mathcal{C}))$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Background Motivation

Background

Theorem (Gul and Pesendorfer, 2001)

 \succeq satisfies a set of axioms

\Leftrightarrow

There exist two expected utility functions $u, v : \Delta(C) \to \mathbb{R}$ such that \succeq is represented by

$$U(x) = \max_{\ell \in x} \left\{ u(\ell) - \left(\max_{\ell' \in x} v(\ell') - v(\ell) \right) \right\}$$

Introduction Model Results

Background Motivation

Difference from Multiple Selves Approach

• No self-control:

$$v \succ^0 h, h \succ^1 v \Rightarrow \{v\} \succ \{v,h\} \sim \{h\}$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

Background Motivation

Motivation

Axiom (Independence)

$$x \succ y \; \Rightarrow \; \lambda x + (1 - \lambda)z \succ \lambda y + (1 - \lambda)z$$

Definition (Mixture of Menus)

$$\lambda x + (1-\lambda)x' = \{\lambda \ell + (1-\lambda)\ell' \,|\, \ell \in x, \ell' \in x'\}$$

<ロ> <同> <同> < 同> < 同>

Background Motivation

Motivation

- GP allow lotteries over outcomes
- "Certainty effect" implies what is certain is more tempting

Example (Certainty Effect)

 $\{(0,110)\} \succ \{(0,110),(100,0)\} \sim \{(100,0)\}$

```
\left\{\left(0,110\frac{1}{2}0\right)\right\}\succ\left\{\left(0,110\frac{1}{2}0\right),\left(100\frac{1}{2}0,0\right)\right\}\succ\left\{\left(100\frac{1}{2}0,0\right)\right\}
```

violates Independence

- 4 同 6 4 日 6 4 日 6 - 日

Background Motivation

Motivation

• Ex post choice in GP model satisfies WARP:

$$\mathcal{C}(x) = \arg \max_{\ell \in x} \left\{ u(\ell) - \left(\max_{\ell' \in x} v(\ell') - v(\ell) \right) \right\}$$

= $\arg \max_{\ell \in x} \left\{ u(\ell) + v(\ell) - \max_{\ell' \in x} v(\ell') \right\}$
= $\arg \max_{\ell \in x} \left\{ u(\ell) + v(\ell) \right\}$

• Dekel, Lipman and Rustichini (2006) and Noor(2006): Choice under temptation may violate WARP

Functional Form Axioms

Functional Form

Convex Self-Control Representation

(i) Two expected utility functions: $u, v : \Delta(C) \to \mathbb{R}_+$

(ii) A continuous, strictly increasing, and weakly convex function $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ with $\varphi(0) = 0$

such that

$$U(x) = \max_{\ell \in x} \left\{ u(\ell) - \varphi \left(\max_{\ell' \in x} v(\ell') - v(\ell) \right) \right\}$$

- ・ 同 ト ・ ヨ ト - - ヨ

Functional Form Axioms

Functional Form

Ex post choice:

$$\mathcal{C}(x) = \arg \max_{\ell \in x} \left\{ u(\ell) - \varphi \left(\max_{\ell' \in x} v(\ell') - v(\ell) \right) \right\}$$

- \bullet ex post preference is concave in ℓ
- consistent with Allais Paradox (certainty effect) and menu-dependent self-control

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Functional Form Axioms

Axioms

Axiom (Order)

 \succsim is complete and transitive

Axiom (Continuity)

 $\{y \in \mathcal{Z} | x \succsim y\}$ and $\{y \in \mathcal{Z} | y \succsim x\}$ are closed

Axiom (Set Betweenness)

 $x \succsim y \Rightarrow x \succsim x \cup y \succsim y$

 $\{v\} \succ \{h\} \Rightarrow \{v\} \succsim \{v, h\} \succsim \{h\}$

◆□▶ ◆帰▶ ◆三▶ ◆三▶ 三 - のへや

Functional Form Axioms

Axioms

Axiom (Translation Invariance)

$$\{\ell,\ell'\} \succsim \{k,k'\} \ \Rightarrow \ \{\ell+\theta,\ell'+\theta\} \succsim \{k+\theta,k'+\theta\}$$

Functional Form Axioms

Axioms

Axiom (Translation Invariance)

$$\{\ell,\ell'\} \succsim \{k,k'\} \ \Rightarrow \ \{\ell+\theta,\ell'+\theta\} \succsim \{k+\theta,k'+\theta\}$$

Norio Takeoka Temptation, Certainty Effect, and Diminishing Self-Control

Functional Form Axioms

Axioms

Axiom (Temptation Convexity) (i) $\{\ell\} \succ \{\ell, \ell'\}$ and $\{\ell\} \succ \{\ell, \ell''\} \Rightarrow \{\ell\} \succ \{\ell, \ell'\lambda\ell''\}$ (ii) $\{\ell\} \sim \{\ell, \ell'\} \succ \{\ell'\}$ and $\{\ell\} \sim \{\ell, \ell''\} \succ \{\ell''\}$ $\Rightarrow \{\ell\} \sim \{\ell, \ell'\lambda\ell''\} \succ \{\ell'\lambda\ell''\}$ (iii) $\{\ell\} \succ \{\ell, \ell'\} \Rightarrow \{\ell\} \succ \{\ell, \ell\lambda\ell'\}$ (iv) $\{\ell\} \sim \{\ell, \ell'\} \succ \{\ell'\} \Rightarrow \{\ell\} \sim \{\ell, \ell\lambda\ell'\} \succ \{\ell\lambda\ell'\}$

- ・ 同 ト ・ ヨ ト ・ ヨ

Functional Form Axioms

Axioms

Axiom (Temptation Consistency)

Assume
$$\{\ell\} \succ \{\ell, \ell'\} \succ \{\ell'\}$$
 and $\{\ell\} \succ \{\ell, \ell''\}$

$$\mathsf{Either}\ \{\ell''\}\succ\{\ell',\ell''\}\ \mathsf{or}\ \{\ell'\}\sim\{\ell',\ell''\}\succ\{\ell''\}\succ\{\ell''\}$$

$$\Rightarrow \{\ell, \ell''\} \succsim \{\ell, \ell'\}$$

<ロ> <同> <同> < 同> < 同>

Functional Form Axioms

Axioms

Axiom (Mixing Preserves Self-Control)

(i)
$$\{\ell\} \succ \{\ell, \ell'\} \succ \{\ell'\} \Rightarrow \{\ell\lambda\ell''\} \succ \{\ell\lambda\ell'', \ell'\lambda\ell''\} \succ \{\ell'\lambda\ell''\}$$

(ii)
$$\{\ell\} \succ \{\ell, \ell'\} \succ \{\ell'\}$$
 and $\{\ell\} \succ \{\ell, \ell''\} \succ \{\ell''\}$

$$\Rightarrow \{\ell, \ell' \lambda \ell''\} \succeq \{e(\{\ell, \ell'\}) \lambda e(\{\ell, \ell''\})\}$$

Definition (Commitment Equivalent)

$$e(x) \in \Delta(C)$$
 satisfies $\{e(x)\} \sim x$

・ロト ・回ト ・ヨト ・ヨト

Representation Uniqueness

Representation Theorem

Theorem

The following statements are equivalent:

(a) Preference \succeq satisfies Order, Continuity, Set Betweenness, Translation Invariance, Temptation Convexity, Temptation Consistency, MPSC, Monotone Self-Control, and Properness

(b) Preference \succeq is represented by

$$U(x) = \max_{\ell \in x} \left\{ u(\ell) - \varphi \left(\max_{\ell' \in x} v(\ell') - v(\ell) \right) \right\}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof Sketch

Step-1 \succeq satisfies vNM independence on $\Delta(C) \Rightarrow u$ Step-2 $\{\ell^+\} \succeq x \succeq \{\ell^-\} \Rightarrow x \sim \{\alpha(x)\ell^+ + (1 - \alpha(x))\ell^-\}$ $\Rightarrow U(x) \equiv u(\alpha(x)\ell^+ + (1 - \alpha(x))\ell^-)$ Step-3 $\{\ell\} \succ \{\ell, \ell'\} \Leftrightarrow v(\ell') > v(\ell)$

Step-4
$$\varphi(v(\ell') - v(\ell)) = u(\ell) - U(\{\ell, \ell'\})$$
 for $\{\ell\} \succ \{\ell, \ell'\} \succ \{\ell'\}$

Step-5 U(x) can be rewritten as the desired form for binary x, finite x, and all x

・ロト ・同ト ・ヨト ・ヨト

-

Representation Uniqueness

Uniqueness

Theorem

Suppose (u, v, φ) and $(\tilde{u}, \tilde{v}, \tilde{\varphi})$ represent \succeq Then:

(i)
$$\tilde{u} = \alpha_u u + \beta_u$$
 and $\tilde{v} = \alpha_v v + \beta_v$
(ii) $\tilde{\varphi}(\tilde{w}) = \alpha_u \varphi\left(\frac{\tilde{w}}{\alpha_v}\right)$ on
 $W(\tilde{u}, \tilde{v}, \tilde{\varphi}) = \{\tilde{w} = \tilde{v}(\ell') - \tilde{v}(\ell) \in \mathbb{R}_+ \mid \{\ell\} \succ \{\ell, \ell'\} \succ \{\ell'\}\}$

For $\tilde{w} = \alpha_v w$

$$rac{ ilde w ilde arphi''(ilde w)}{ ilde arphi'(ilde w)} = rac{w arphi''(w)}{arphi'(w)}$$

《曰》《聞》《臣》《臣》

Representation Uniqueness

Uniqueness

Theorem

Suppose (u, v, φ) represents \succeq

continuous and strictly increasing
$$\tilde{\varphi} \begin{cases} = \varphi & \text{on } W(u, v, \varphi) \\ \geq \varphi & \text{otherwise} \end{cases}$$

$$\Rightarrow (u, v, ilde{arphi})$$
 represents \succeq

<ロト <部ト < 注ト < 注ト

Representation Uniqueness

Uniqueness

Related Literature Conclusion

Related Literature

Noor, 2006: Menu-Dependent Self-Control Model

$$U(x) = \max_{\ell \in x} \left\{ u(\ell) - \kappa(x) \left(\max_{\ell' \in x} v(\ell') - v(\ell) \right) \right\}$$

Ex post choice:
$$C(x) = \arg \max_{\ell \in x} \left\{ u(\ell) + \kappa(x)v(\ell) \right\}$$

- 《圖》 《문》 《문》

Related Literature Conclusion

Related Literature

Fudenberg and Levine, 2006: Dual-Self Model

$$U(x) = \max_{\ell \in x} \left\{ u(\ell) - \gamma \left(\max_{\ell' \in x} v(\ell') - v(\ell) \right)^{\theta} \right\}$$

where $\gamma > 0, \theta > 1$

Special case of CSCM: $\varphi(w) = \gamma w^{\theta}$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Related Literature Conclusion

Conclusion

- generalization of Gul and Pesendorfer (2001)
- axiomatic foundation for convex self-control model
- can explain certainty effect and menu-dependent self-control

・ 同 ト ・ ヨ ト ・ ヨ ト