7. Choquet Integral

Daisuke Oyama

Mathematical Economics

This version: July 21, 2023

Ellsberg Paradox

- An urn contains 30 Red balls and 60 Green and Blue balls.

$$
\Omega=\{R, G, B\}
$$

- Bets (or acts)
- $f_{R}(R)=10, f_{R}(G)=0, f_{R}(B)=0$
- $f_{G}(R)=0, f_{G}(G)=10, f_{G}(B)=0$
- $f_{R B}(R)=10, f_{R B}(G)=0, f_{R B}(B)=10$
- $f_{G B}(R)=0, f_{G B}(G)=10, f_{G B}(B)=10$
- Typical preferences:

$$
f_{R} \succ f_{G} \text { and } f_{R B} \prec f_{G B}
$$

- Expected utility theory fails to explain these preferences.
- p: probability measure on Ω
$u: \mathbb{R} \rightarrow \mathbb{R}$: utility function $\quad(0=u(0) \neq u(10))$
- $\int u\left(f_{R}\right) d p=p(\{R\}) u(10), \int u\left(f_{G}\right) d p=p(\{G\}) u(10)$
$\int u\left(f_{R B}\right) d p=p(\{R, B\}) u(10)$,
$\int u\left(f_{G B}\right) d p=p(\{G, B\}) u(10)$
- $\int u\left(f_{R}\right) d p>\int u\left(f_{G}\right) d p \Longleftrightarrow p(\{R\})>p(\{G\})$
$\int u\left(f_{R B}\right) d p<\int u\left(f_{G B}\right) \Longleftrightarrow p(\{R\})<p(\{G\})$
... contradiction!

Capacities

- $\Omega=\{1, \ldots, n\}$: (Finite) state space

Definition 7.1
$v: 2^{\Omega} \rightarrow[0,1]$ is called a capacity if it satisfies the following:

1. $v(\emptyset)=0$,
2. $v(\Omega)=1$, and
3. $v(E) \leq v(F)$ whenever $E \subset F$.

- A capacity v is additive if $v(E)+v(F)=v(E \cap F)$ for all $E, F \subset \Omega$ with $E \cap F=\emptyset$.
- Probability measures are a special case of capacities.
- A capacity v is convex if it is supermodular with respect to C : $v(E)+v(F) \leq v(E \cup F)+v(E \cap F)$ for all $E, F \subset \Omega$.

Choquet Integral

- For $X: \Omega \rightarrow \mathbb{R}$, order the states so that

$$
X\left(\omega_{1}\right) \leq \cdots \leq X\left(\omega_{n}\right)
$$

- We write $v(X \geq t)=v(\{\omega \in \Omega \mid X(\omega) \geq t\})$.

Definition 7.2
For $X: \Omega \rightarrow \mathbb{R}$, the Choquet integral of X with respect to capacity v is defined by

$$
\begin{aligned}
\int X d v & =\int_{0}^{\infty} v(X \geq t) d t+\int_{-\infty}^{0}(v(X \geq t)-1) d t \\
& =X\left(\omega_{1}\right)+\sum_{k=2}^{n}\left(X\left(\omega_{k}\right)-X\left(\omega_{k-1}\right)\right) v\left(\left\{\omega_{k}, \ldots, \omega_{n}\right\}\right) \\
& =\sum_{k=1}^{n} X\left(\omega_{k}\right)\left(v\left(\left\{\omega_{k}, \ldots, \omega_{n}\right\}\right)-v\left(\left\{\omega_{k+1}, \ldots, \omega_{n}\right\}\right)\right) .
\end{aligned}
$$

Properties

1. $\int \mathbf{1}_{E} d v=v(E)$ for any $E \subset \Omega$.
2. [Monotonicity] If $X \leq Y$, then $\int X d v \leq \int Y d v$.
3. [Homogeneity] $\int t X d v=t \int X d v$ for any $t \geq 0$.
4. [Comonotonic additivity] If X and Y are comonotonic, i.e., $\left(X(\omega)-X\left(\omega^{\prime}\right)\right)\left(Y(\omega)-Y\left(\omega^{\prime}\right)\right) \geq 0$ for all $\omega, \omega^{\prime} \in \Omega$, then $\int(X+Y) d v=\int X d v+\int Y d v$.
5. If v is additive, then $\int X d v=\sum_{\omega \in \Omega} X(\omega) v(\{\omega\})$.

Choquet Expected Utility Theory

- A preference relation \precsim on the set of functions from Ω to \mathbb{R} admits a Choquet expected utility representation if there exist a capacity v and a utility function u such that

$$
f \precsim g \Longleftrightarrow \int u(f) d v \leq \int u(g) d v
$$

Ellsberg Paradox "Resolved"

- $\Omega=\{R, G, B\}$
- Bets
- $f_{R}(R)=10, f_{R}(G)=0, f_{R}(B)=0$
- $f_{G}(R)=0, f_{G}(G)=10, f_{G}(B)=0$
- $f_{R B}(R)=10, f_{R B}(G)=0, f_{R B}(B)=10$
- $f_{G B}(R)=0, f_{G B}(G)=10, f_{G B}(B)=10$
- $f_{R} \succ f_{G}$ and $f_{R B} \prec f_{G B}$
- Assume $0=u(0)<u(10)$.
- For a capacity v,

$$
\begin{aligned}
& \int u\left(f_{R}\right) d v=v(\{R\}) u(10), \int u\left(f_{G}\right) d v=v(\{G\}) u(10) \\
& \int u\left(f_{R B}\right) d v=v(\{R, B\}) u(10), \\
& \int u\left(f_{G B}\right) d v=v(\{G, B\}) u(10)
\end{aligned}
$$

- If, for example,

$$
\begin{aligned}
& v(\{R\})=v(\{R, G\})=v(\{R, B\})=\frac{1}{3}, \\
& v(\{G\})=v(\{B\})=0, v(\{G, B\})=\frac{2}{3},
\end{aligned}
$$

then

$$
\begin{aligned}
& \int u\left(f_{R}\right) d v=\frac{1}{3} u(10)>\int u\left(f_{G}\right) d v=0 \\
& \int u\left(f_{R B}\right) d v=\frac{1}{3} u(10)<\int u\left(f_{G B}\right) d v=\frac{2}{3} u(10)
\end{aligned}
$$

- This capacity v is not additive and is convex.
- In particular,

$$
v(\{R, G\})+v(\{R, B\})=\frac{1}{3}+\frac{1}{3}<v(\{R\})+v(\Omega)=\frac{1}{3}+1 .
$$

- Perception of uncertainty/ambiguity + aversion to uncertainty/ambiguity

Maxmin Expected Utility Theory

- Denote by Δ the set of probability measures on Ω :

$$
\Delta=\left\{p \in \mathbb{R}^{n} \mid p_{i} \geq 0, \sum_{i=1}^{n} p_{i}=1\right\}
$$

- A preference relation \precsim on the set of functions from Ω to \mathbb{R} admits a maxmin expected utility representation if there exist a convex closed set $C \subset \Delta$ and a utility function u such that

$$
f \precsim g \Longleftrightarrow \min _{p \in C} \int u(f) d p \leq \min _{p \in C} \int u(g) d p
$$

- Non-singleton $C \cdots$ perception of uncertainty/ambiguity $\min _{p \in C} \cdots$ aversion to uncertainty/ambiguity

Ellsberg Paradox "Resolved"

- $\Omega=\{R, G, B\}$
- Bets
- $f_{R}(R)=10, f_{R}(G)=0, f_{R}(B)=0$
- $f_{G}(R)=0, f_{G}(G)=10, f_{G}(B)=0$
- $f_{R B}(R)=10, f_{R B}(G)=0, f_{R B}(B)=10$
- $f_{G B}(R)=0, f_{G B}(G)=10, f_{G B}(B)=10$
- $f_{R} \succ f_{G}$ and $f_{R B} \prec f_{G B}$
- Assume $0=u(0)<u(10)$.
- Let, for example,

$$
C=\left\{p \in \Delta \left\lvert\, p(\{R\})=\frac{1}{3}\right.\right\} .
$$

- Then

$$
\begin{aligned}
& \min _{p \in C} \int u\left(f_{R}\right) d p=\frac{1}{3} u(10)>\min _{p \in C} \int u\left(f_{G}\right) d p=0, \\
& \min _{p \in C} \int u\left(f_{R B}\right) d p=\frac{1}{3} u(10)<\min _{p \in C} \int u\left(f_{G B}\right) d p= \\
& \frac{2}{3} u(10) .
\end{aligned}
$$

Relationship

- The core of capacity v :

$$
C(v)=\{p \in \Delta \mid p(E) \geq v(E) \text { for all } E \subset \Omega\}
$$

Proposition 7.1

For a capacity v, define $I(X)=\int X d v(X: \Omega \rightarrow \mathbb{R})$.
The following statements are equivalent:

1. v is convex.
2. $I(X)=\min _{p \in C(v)} \int X d p$ for all $X: \Omega \rightarrow \mathbb{R}$.
3. $I(X+Y) \geq I(X)+I(Y)$ for all $X, Y: \Omega \rightarrow \mathbb{R}$.

- Under homogeneity, 3 is equivalent to concavity of I.
- Recall the capacity v given by

$$
\begin{aligned}
& v(\{R\})=v(\{R, G\})=v(\{R, B\})=\frac{1}{3}, \\
& v(\{G\})=v(\{B\})=0, v(\{G, B\})=\frac{2}{3},
\end{aligned}
$$

- $C(v)=\left\{p \in \Delta \left\lvert\, p(\{R\})=\frac{1}{3}\right.\right\}$.
- Bets
- $f_{R}(R)=10, f_{R}(G)=0, f_{R}(B)=0$
- $f_{G}(R)=0, f_{G}(G)=10, f_{G}(B)=0$
- $f_{B}(R)=0, f_{B}(G)=0, f_{B}(B)=10$.
$f_{R B}=f_{R}+f_{B}, f_{G B}=f_{G}+f_{B}$
- $I\left(f_{R}+f_{B}\right)>I\left(f_{R}\right)+I\left(f_{B}\right), I\left(f_{G}+f_{B}\right)>I\left(f_{G}\right)+I\left(f_{B}\right)$

Compatible with $I\left(f_{R}\right)>I\left(f_{G}\right), I\left(f_{R}+f_{B}\right)<I\left(f_{G}+f_{B}\right)$.

Proof of Proposition 7.1

- $1 \Rightarrow 2$: By Propositions 5.2 and 6.9.
- Indeed, fix any $X: \Omega \rightarrow \mathbb{R}$, and suppose that $X\left(\omega_{1}\right) \leq \cdots \leq X\left(\omega_{n}\right)$.
- Let $\alpha^{\sigma} \in \Delta$ be the marginal contribution vector associated with permutation $\sigma=\left(\omega_{n}, \ldots, \omega_{1}\right)$.
Then by the definition of the Choquet integral, we have $\int X d v=\int X d \alpha^{\sigma}$.
- Also, by the definition of the Choquet integral, we have $\int X d v \leq \int X d p$ for any $p \in C(v)$.
- Since $\alpha^{\sigma} \in C(v)$ by the convexity of v (Proposition 5.2), we therefore have $\int X d v=\min _{p \in C(v)} \int X d p$.
- $2 \Rightarrow 3$:

Let $p \in C(v)$ be such that $I(X+Y)=\int(X+Y) d p$.

- Then $I(X+Y)=\int X d p+\int Y d p \geq I(X)+I(Y)$.
- $3 \Rightarrow 1$:

Fix any $E, F \subset \Omega$.

- Since $\mathbf{1}_{E \cup F}$ and $\mathbf{1}_{E \cap F}$ are comonotonic, we have

$$
\begin{aligned}
& v(E \cup F)+v(E \cap F) \\
& =I\left(\mathbf{1}_{E \cup F}\right)+I\left(\mathbf{1}_{E \cap F}\right) \\
& =I\left(\mathbf{1}_{E \cup F}+\mathbf{1}_{E \cap F}\right) \quad \text { (by comonotonic additivity) } \\
& =I\left(\mathbf{1}_{E}+\mathbf{1}_{F}\right) \\
& \geq I\left(\mathbf{1}_{E}\right)+I\left(\mathbf{1}_{F}\right)=v(E)+v(F)
\end{aligned}
$$

