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Things to know from linear algebra
» For S = {z!,22,...} CR",
we also use S to denote the index set, i.e., S ={1,2,...}.

» For a finite set S = {z!,22,..., 27} C R", the vector
> A
jes
with A1,..., Ay € R is called a linear combination of S.

» For S C R", the set of all linear combinations of finite subsets
of S is called the span of S and denoted by span(S5).

> A finite set S C R" is linearly independent (LI) if
> Nzl =0= ) =0foralljes.
j€s

» A finite set S C R" is linearly dependent (LD) if it is not
linearly independent.
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» For S C R", afinite B C S is a maximal LI subset of S if
BU{z} is LD for any x € S'\ B.

A maximal LI subset of S is called a basis of S.

» Write ¢! for the ith standard unit vector of R™, i.e.,
¢ =(0,...,1,...,0).
(A

{el,... e"} is a basis of R™.

Proposition 1.1
If B is a basis of S C R", then span(S) = span(B).
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Proposition 1.2

1.
2.
3.

If a finite S C R™ is LI, then |S| < n.

Any S CR"™, S # (), has a basis.

Suppose that B is a basis of S C R™ and B’ is a finite LI
subset of S.

> |B| <|B|.
» B’ is a basis of S if and only if |B'| = |B|.

The rank of S C R", denoted rank(S), is the cardinality |B|
of any basis B of S.

The dimension of span(.S), denoted dim[span(S)], is the rank
of S, rank(S).
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R™*™: Set of m X n matrices
For A € R™ " we write a’ for the jth column vector of A.

We often identify A € R™*"™ with the set of its column
vectors, i.e., A= {al,...,a"} C R™.

For A € R™*" AT € R™*™ denotes the transpose of A.

For z = (z1,...,2n),y = (Y1, ..., yn) € R", we write
zy =3 7 1 x;y; (instead of z -y or 2Ty).

For A e R™*" x € R", y € R™:

aJ m
j—1zje’ €R

--- linear combination of column vectors a
coefficients x1, ..., %y

> yA=(ya',...,ya") €R™ (instead of yT A)

L. .., a™ with
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» The span of A: span(A) = {Az € R™ |z € R"}.
» The kernel (or null space) of A: ker(A) = {z € R" | Az = 0}.
(ker(AT) = {y e R™ | yA = 0})

Proposition 1.3
For A € R™*",
rank(A) = rank(AT).
Proposition 1.4
For A € R™*™,

rank[span(A)] + rank[ker(AT)] = m.
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A square matrix A € R™*™ is non-singular if rank(A) = n,
i.e., the columns of A are LI.

For A e R**" B ¢ R™ "™ such that AB = BA = I is called
the inverse of A and denoted A~ L.

A € R™ " is jnvertible if A~ exists.

A € R™™ is invertible if and only if it is non-singular.
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Fundamental Theorem of Linear Algebra

Proposition 1.5
Let A € R™*™ and b € R™. Either

1. Ax = b has a solution, or

2. yA =0, yb # 0 has a solution,
but not both.

» A theorem of the form “Either ..., or ..., but not both” is
called a “theorem of the alternative”.

» Condition 1 is equivalent to “b € span(A)".
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Proof

» Write [A]b] = (a',...,a",b) € RMX(n+1)
> Recall
span(A) = {Az e R™ | z € R"},
span([A[b]) = {Az + \b € R™ | z € R", ) € R},
ker(AT) ={y e R™ | yA =0},
ker([A|b]T) ={y e R™ | yA =0, yb=0}.

Clearly, span(A) C span([A|b]), b € span([A|b]), and
ker(AT) D ker([A]b]Y).
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» By Proposition 1.4, we have

rank[span(A)] + rank[ker(A1)]
= m = rank[span([A|b])] + rank[ker([A[b]T)].

» Therefore, we have

b € span(A)
<= span(A) = span([A|b])
<= rank[span(A)] = rank[span([A|b])]
< rank[ker(A")] = rank[ker([A]b]1)]
— ker(AT) = ker([A]p]T)
<= yb =0 whenever yA = 0.
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Cones

Definition 1.1
C Cc R"is a cone if

reC, A\>0= X xxeC.

» Some textbooks define cones with “\ > 0".
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» For a finite set S = {z!,22,... ,a:‘]} C R™, a non-negative
linear combination

> A
jES
with A1,..., A7 > 0 is called a conic combination of S.

» For S C R", the set of all conic combinations of finite subsets
of S is called the conic hull of S and denoted by cone(S).

» cone(S) is a cone.

Definition 1.2

For A € R™*™ the conic hull of the column vectors of A is called
the finite cone generated by the columns of A and denoted by
cone(A), i.e.,

cone(A) = {Ax € R™ | x > 0}.
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Farkas' Lemma

» In Mathematics I, we proved Farkas' Lemma by the separating
hyperplane theorem + the closedness of a finite cone.

» Here we prove Farkas’ Lemma by an algebraic argument.

» We will later prove separating hyperplane theorems from
Farkas' Lemma.
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Fundamental Theorem of Linear Inequalities

Proposition 1.6
Let Ac R™*™ and b € R™. Let r =rank(A). Either

1. b is written as a conic combination of LI columns of A, or
2. there exist an LI set of r — 1 columns of A, {a’*,... a/"-1},

and y € R™ such that ya’* =0 forallt =1,...,r —1,
yA >0, and yb < 0.

but not both.

» From Schrijver, Theory of Linear and Integer Programming,
Theorem 7.1.
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Proof

» Both conditions cannot hold simultaneously:

If b = Ax for some z > 0 and there is y as in Condition 2,
then we would have

0> yb=y(Az) = (yA)x > 0.

> If b ¢ span(A), then by the Fundamental Theorem of Linear
Algebra (Proposition 1.5), there is y such that yA = 0 and
yb < 0. — Condition 2

» In the following, we assume that b € span(A).
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» Consider the following procedure (recall » = rank(A)):

0.

Let D = {a’,...,a’"} be any linearly independent set of
r column vectors of A.

- Write b= 3", Aja?.

If A; >0 forall j € D, then stop. ~— Condition 1

. Otherwise, choose the smallest index h among {j1,...,J-}

with A, < 0.

Let y be such that ya = 0 for all a € D\ {a"} and ya" # 0.
(Such y exists by Proposition 1.5 since a” ¢ span(D \ {a"}).)

Normalize y so that ya” = 1.
Observe that yb =y (ZJED )\jaj) =X, <0.
If ya > 0 for all a € A, then stop. — Condition 2

Otherwise, choose the smallest index w such that ya™ < 0.

Let D < (D \ {a"}) U {a™}, which is linearly independent
(since a¥ ¢ span(D \ {a"})), and go to Step 1.
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Let DF denote the set D at the start of the kth iteration of
this procedure.

We want to show that this procedure stops with finitely many
iterations.

Assume the contrary.

Then, since there are finitely many linearly independent sets
of columns of A, we have D* = D for some k and ¢, k < ¢.

Let s be the largest index for which a® is removed at one of
the iterations k,k+1,...,¢ — 1, say iteration p.

Since DY = D¥, a® is inserted in D at some iteration q,
E<g</{-—1.
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Write DP = {a/',...,a’"}.
At iteration p (where a® is removed): b=}, p, )\:;aj, where

> A2 <0; and
> Ai >0 for all j; < s.

At iteration g (where a® is inserted): Let y? be as in Step 2.
Then

> y%° < 0; and
> 4907 >0 for all j < s.

For all j; > s, we have a’* € DY, hence a’* € D¥, and hence
a’t € D1, Therefore,

> ydalt =0 for all j; > s.

Therefore, we have
ylb = y? (Zjer /\g‘)a]) = Zjer )\g(yqaj) > 0,
which contradicts y9b < 0.
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Farkas' Lemma

Proposition 1.7 (Farkas' Lemma)
Let A e R™™ and b € R™. Either

1. Az =b, x > 0 has a solution, or

2. yA >0, yb < 0 has a solution,
but not both.

» Condition 1 is equivalent to “b € cone(A)".

Proof
» Both conditions cannot hold simultaneously.

» If Condition 1 does not hold, then by Proposition 1.6,
Condition 2 holds.
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Example 6
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Example 7
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Variant of Farkas' Lemma

Proposition 1.8 (Gale's Theorem)
Let A€ R™*™ and b € R™. Eijther

1. Az < b has a solution, or

2. yA=0,y >0, yb <0 has a solution,

but not both.
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Proof

> Ja: Ax <b
<~ dz,s:Ax+s=0b, s>0

<~ Jz,7,s: A(z—2)+s=b, 2>0,2 >0,5s>0

N
N

— Jz,7,s:[A —A I] || =b, |Z]| >0
s

wn W

» The Farkas alternative is
y[A —A 1] >0,y4b<0, or
yA>0, —yA>0,yl >0, yb <O, ie.,
yA=0,y>0, yb<O0.
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Variant of Farkas' Lemma

Proposition 1.9 (Farkas’ Lemma: Inequality version)
Let A € R™*™ and b € R™. Either
1. Az <b, z > 0 has a solution, or

2. yA >0,y >0, yb <0 has a solution,
but not both.
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Proof

» Condition 1 is written as 3z : [:4]} z < [8}

» By Proposition 1.8, its alternative is:

Ely,z:[y z] [:4]]:0, [y 2]20, [y z] [8]<0, or
Jy,z:yA=2, y>0,2>0, yp< 0
— dy:yA >0, y >0, yb<0.
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Application: No Arbitrage

> Assets: 1,...,m
» States: 2 ={1,...,n}
» a;;: payoff to asset 7 in state j

A = (a;) € R™*"
> y € R™: portfolio
» y; > 0: long position in asset ¢

» y; < 0: short position in asset @

> Ex post wealth vector of y:

yA = <Z yiaij)
i=1

JEQ
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pEeR™ p>0, p#0: vector of asset prices

p satisfies the no arbitrage condition if there exists no y € R™
such that

yA >0, yp <O.

By Farkas’ Lemma, the no arbitrage condition is equivalent to
the condition that there exists # € R™ such that

wherep*:ﬁandW:ﬁ.
3" 3

m € R™: risk-neutral probability distribution
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Option Pricing

» States: 2 ={g,b}

> Assets
> Stock (risky asset): (uS° dS%), wu>1>d
»> Bond (safe asset): (rB,rB), r>1

Assume u > 7 (> 1> d)

> Call option (derivative asset):
(max{0,uS® — K}, max{0,dS° — K})

K strike price
option to buy the stock at price K
» Asset price vector: p = (S°, B, p3)

Determine p3 so that p satisfies the no arbitrage condition.
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» Payoff matrix:

uS° ds°
A= rB rB
max{0,uS" — K} max{0,dS° — K}

» (Un-normalized) risk-neutral probability distribution 7:

Ar=0p
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> From the first two equations:

uS%% + dS%%, = S°,
rBny +rBnry = B.

This system has a unique solution

r—d u—r
M= Mpg= ——— Ob >r>d).
7T1 r(u—d)’ 2 r(u—d) (>0byu>r )

» For no arbitrage,

ps = 71 max{0, uS? — K} + 79 max{0, ds® — K}.
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Application: Cooperative Games

» A cooperative game (with transferable utility) is a pair (v, N)
where

> N ={1,...,n}: finite set of players; and
> v: 2V 5 R, where

for S C N, v(S) represents the monetary value of coalition S.
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Definition 1.3
The core of game (v, N) is the set

Cv,N)=(¢xeR" Z:L‘j:v(N),ZazJ-ZU(S)foraIISCN

jEN jes

» That is, the core is the set of allocations z € R" such that

» the value v(N) of the grand coalition N is allocated without
waste; and

» there is no coalition that “blocks” =z,

i.e., there is no coalition S such that >, g x; < v(9).

» The core may be empty.

In what games is the core non-empty?
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» Let B(N) be the set of vectors (ys)scny € R?" such that

Z ys =1foralli e N,
S:es
ys > 0 forall S C N.

> For example, the vector (ys)scn € R?" such that

yn =1
ys =0forall S #N

is in B(N).
Thus, B(N) # 0.
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Proposition 1.10 (Bondareva-Shapley)
C(v,N) # 0 if and only if

v(N) > " w(S)ys for all (ys)scn € B(N). ()
SCN

» Game (v, N) is said to be balanced if (x) holds.
(Or equivalently, (v, N) is balanced if C(v, N) # {).)
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Proof

» The condition C'(v, N) # () is written as
Jz eR": Y oy So(N), D jeq(—2j) < —v(S) VSCN

< dx € R": Az < b, where

1 1]
A=10 - —1---—=1 ... 0| e RA+2")xn
———
S
v(N)
"= o)
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» By Proposition 1.8 (Gale's Theorem), its alternative is:

Jy e R*2" :yAd =0, y>0, yb< 0

<~ Jy=(y0,...,95...) € RI*2":

Yo — Z ys=0 Vie N
S:eS
Yo >0, ys >0 VSCN
you(N) = ) ysv(S) <0
SCN

(For such y, yo > 0, so let yo = 1.)
> 3(ys)scy € R*" :

Z ys=1 VieN

S:ueS

ys >0 VSCN

v(N) — Z ysv(S) <0

SCN
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> <= J(ys)scn € B(N) : v(N) < X gcy ysv(S)
» The negation of this condition is:

V(ys)scn € B(N) : v(N) > > gy ysv(S)
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Example

> N ={1,2,3}

. o(S) 1 if S| =2
v =
0 if|S|<1

» Determine the condition for v(N) under which C'(v, N) # 0.
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Necessity

» C(v, N) # () means that there exists z = (21,72, 23) € R3

such that
1+ x2 + x3 = v(N), (1)
x1+x2 >v({1,2}) =1, (2)
x2+x3 > v({2,3}) =1 (3)
x3+x1 > v({3,1}) =1, (4)

xr1 > U({l}) =0,
z2 > v({2}) = 0,
x3 > v({3}) = 0.

» Adding (2)—(4) and applying (1), we have
20(N) = 2(21 + 22 + 23) = 3, or v(N) > 3.
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Sufficiency
» Conversely, suppose that v(N) > %
We want to show that the balancedness condition is satisfied.
> Let (ys) € B(N), i.e, ys >0 forall S C N and
Y gicsys =1forallie N.

» Then we have
Y23 ({1,2}) + yg2,3v({2,3}) + ygs,130({3, 1)) + ynv(N)

1
[(Yg1,2y + Yg2,3y) + (Wg2,30 +yg3,1y) + (Wgsay +yq12y)] +ynv(V)

(1 —yn)+ (1 —yn)+ (1 —yn)] +ynv(N)

3) < o(N).

2
<1
2
3
2 N) —
=5 va()2
<

1 S————
>0

» Thus, C(v,N) # 0 if and only if v(N) >

\G][VV)
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Application: Afriat's Theorem

» We are given a dataset of price vector-consumption vector
pairs: D = {(p*,z),..., (p",2™)}, where p' € R7", and
' e R

» Is there a utility function that rationalizes D?

A function u: R" — R is a utility function that rationalizes D
if foralli=1,...,n,

pr <pat = u(z) < u(z')
(i.e., 2 € argmax{u(z) | p'x < p'a'}).
» The answer is trivially yes: let u be a constant function.

» [s there a locally insatiable utility function that rationalizes D7
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» w is locally insatiable if for any x € R’ and € > 0,
there exists 2/ € R’ such that d(z',z) < € and u(z’) > u(x).

» For a locally insatiable utility function w,

if z* € argmax{u(z) | pr < I}, then pz* = I.
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Necessary Condition

» Suppose that a locally insatiable u rationalizes D.
» Then
> piad < pizt = u(z?) < u(z?);
> pixd < pizt = u(z?) < u(z?) (by local insatiability).
» Denote a;; = p'(a? — ). (a;; <0 < plad < p'a?)
> If we have a cycle

Aipin <0, Q405 < 0,000,145, < 0,044 <0,

then u(z) < u(z®) < - < w(a®1) < u(z*) < u(ah),
and therefore, Ajy59 = 0, Ajgig = 0,... y Qg 1if = 0, Qjpiy = 0.
» Call this necessary condition “Afriat Condition” (AC).
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Afriat Condition

» Dataset D = {(p',2!),..., (p", 2™)} is said to satisfy AC if
there exists no cycle (i,1s9,...,ik,41) such that

Aipiy < 0,050 < 0,000,044, < 0,04, <0
with at least one “<" holding with “<".

» (This is equivalent to the following:

for any cycle (41,42, ...,10k,%1) such that Zlgzl Qigigyy <0,
there exists some / such that a;,;,,, > 0.)

» AC is a necessary condition for the rationalizability of D.

Afriat’s theorem shows that it is also sufficient.
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Afriat's Theorem

Proposition 1.11

D is rationalized by a locally insatiable utility function
if and only if it satisfies AC.
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» Consider the following system of inequalities:

(P) si>1 for all 1,
Yi + aijsi —y; >0 for all (i,7), i # j.

» The alternative:

Zi + Zaijwij =0 for all i,
J
Zwij - Zwki =0 for all i,
J k
ZZZ' > 0,
%

z; >0 for all 4,
wij > 0 for all (i,4), i # j.
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» This is equivalent to:

(D) Zaijwij < 0 for all i,
J
Zaijwij <0 for some ’i,
J
Zwij = Zwk]’ for all i,
J k
wi; > 0 for all (¢,7), i # j.
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Proposition 1.12
The following conditions are equivalent:

1. D is rationalized by a locally insatiable utility function.
2. (P) is feasible.
3. (D) is infeasible.

4. D satisfies AC.

Proof
> 1 = 4: Already verified.

» 2 & 3: By Proposition 1.8 (Gale's Theorem).
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Proof of “2 = 1"

» Suppose that (P) is feasible, i.e., there exist y; and s; such
that

Yi <Y +p' (e —ah)s;, si>1
for all 7 and j.
» Define u: R"" — R by
u(x) = min{ys +p'(z — 2')s1,. .., yn + 0" (@ — 250},
which is strictly increasing (and hence locally insatiable).

(In fact, it is also continuous and concave).

» Then,

u(a?) = min{y;, yi + p'(z) —')s;, 0 # j}
=y; (by (P)).

48/83



» Therefore, if p’x < pia? (or p/(z — 27) < 0), then

u(x) < yj +pJ(x — a:j)sj
<y = u(a).

» This shows that the function u rationalizes D.
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Proof of “4 = 3" (“not 3 = not 4")

Lemma 1.13
If (D) is feasible, then there exists a feasible solution (w;;) such
that there exists no cycle (i1, ..., ix,%1) such that a;,;, , =0 and

Wiyip,, >0 foralll=1,... k.
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> Let (w;;) be a feasible solution of (D): > a;jw;; < 0 for all 4
with “<" for some 1, Z]- wij =y, Wy for all 4, and w;; >0
for all 7, 5.

» Suppose that there exists a cycle (i1, ...,ix,41) such that
Qigigy; = 0 and wy,,, >0 forall £=1,... k.

Write C' = {(i1,42). ..., (in_1, ix), (ix, i1)}.

> Let ¢ = ming wj,,,,, and define (ng) by

ij

W — Wij — € if(z‘,j)eC,
|y if (4,4) ¢ C.
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> Then, (wj;) also is a feasible solution of (D):

> ng > 0 for all 4, 5;

! a .. gy . . w_n
> aijw;; = ajjwg;, so that 3, azwi; <0 for all i, with “<" for
some 7;

» for each i € {i1,...,i}, there are exactly one j such that
(i,7) € C and exactly one k such that (k,7) € C, so that

Zj w;j - Zk w;w = Zj Wij — Zk wg; = 0.

» By construction, wlm , = 0 for some .

» Since there are finitely many possible cycles, by repeating this
procedure we obtain a desired feasible solution.

[End of Lemma 1.13]
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» Now suppose that (D) is feasible.

Let (w;;) be a feasible solution of (D) as in Lemma 1.13:

> Zj a;;wi; < 0 for all ¢ with “<” for some 4,
Zj wij = Y, Wy, for all 4, and w;; > 0 for all 7, 5, and

> if a;,i,., <0and wi,,, >0forallé=1,...k,
then a;,q, , <0 for some £.

> Let i1 be such that 3, a;,jw;,; < 0.

» Then there is some iy such that a;,5, < 0 and w;,4, > 0.

Then > wiy; = D) Wi, > 0, so that wj,; > 0 for some j.

» Then there is some i3 such that a;,;; <0 and w;,;, > 0.

(Otherwise, we would have . a;,jwi,; > 0.)
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P> Proceeding this way, we have a sequence:

iy < 0, Wiqig > 0
Qiniz <0, Wiyiz >0
Qiziy <0, Wiz, >0

» Since there are finitely many indices, we eventually repeat an
index.

» If the repeated index is i1, then we have a violation of AC.

» Otherwise, we have a cycle of nonpositive a;;'s,
but by the choice of (w;;), there must be a negative a;;,
which is again a violation of AC.
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Problem 2.9

Proposition 1.14
Let A € R™*"™ and b € R™. Either
1. Az < b has a solution, or

2. yA=0,yb<0,y >0,y #0 has a solution,

but not both.
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Proof

» Condition 2 is rewritten as:
JyeR™:yA=0, yp<0, y>0, y#0

<~ dyeR™ seR:
yA=0, ybp+s=0, s>0, y>0, yl=1

(1 is the vector of ones)
<— dyeR™ seR:
A b1
oo 1 o=l 0l

> By Farkas' Lemma, its alternative is:

dJreR" zeR,welR:

X X
A b 1
[Olo}zzo,[ooqzw

56 /83



> — dreR"zeRwekR:
Ar+2zb+wl >0, 2>0, w<0

<— dreR"zeRweR:
Az +2b> (—w)l, 2>0, —w >0

<— deeR"zeR:Ax+2b>0, 2>0
— dJrxeR": Az < b
» The last equivalence holds because:

» If 2 =0, then 3z : Az > 0.
A(—tx) < 0 can be arbitrarily small as ¢t — 0.
Hence, 32’ : Az’ < b.

> If 2> 0, then Jz,2: 4 (£ ) <b.
Hence, 32’ : Az’ < b.

» For the converse, let z = —2’ and z = 1.
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Problem 2.7

Proposition 1.15 (Gordan's Theorem)
Let A € R™*", Either
1. Az =0, z >0, x # 0 has a solution, or

2. yA > 0 has a solution,
but not both.

» Special case of Problem 2.9:
Let b= 0 (and replace A with —A™T).
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Problem 2.6

Proposition 1.16
Let A € R™*™, Ejther

1. Az =0, x > 0, 1z = 1 has a solution, or
2. yA > 0 has a solution,
but not both.

» Condition 1 is equivalent to Condition 1 in Problem 2.7.
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Problem 2.8

» A= (a;;) € R"™™ is a column Markov matrix (or column
stochastic matrix) if a;; > 0 for all ¢, j, and }_" | a;; =1 for
all 5.

» It represents the transition probabilities of a Markov chain:

a;;: probability that the random variable changes from j to 7.

» x € R" is a probability vector if x; > 0 for all j, and
Z?:1 zj = 1.

» A probability vector z is a steady state vector (or stationary
distribution) of a column Markov matrix A if Az = x.

Proposition 1.17

Every Markov matrix has a steady state vector.
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Proof

Let A € R™*™ be a column Markov matrix.

We want to show that A has a steady state vector x.
This is rewritten as:

de:Ar =2, >0, lz=1

— Jz:(A-DNzx=0,2>0, 1z =1

By Problem 2.6, its alternative is:
Jy:y(A—1)>0

— dy:yA>y

It suffices to show that this condition does not hold.
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> Take any y € R™.
Let j* be such that y;+ > y; for all j.

» Then we have
n
(YA =D yiaij»
i=1
n
=1
n
=1
n
i=1

» Therefore, yA > y cannot hold.
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Variant of Farkas' Lemma

Proposition 1.18 (Ville's Theorem)
Let A € R™*™, Ejther
1. Az > 0, x > 0 has a solution, or

2. yA <0,y >0, y#0 has a solution,

but not both.
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Proof

» First,
dax:Ax >0, >0
< d7 A >0, 2/ >0

" Given x such that Az >0, 2 >0, let 2’ =z + 1 for
sufficiently small € > 0.

» Therefore, by Gordan’s Theorem (Proposition 1.15), its
alternative is

Jyzily 2 [ﬂ:o, W 220, [y <] £[0 0]

= Jy,z:yA=—-2,9y>0,2>0,y#0
— Jy:yA<0,y>0, y#0

64/83



Hyperplanes and Half-Spaces

Definition 1.4
» A hyperplane is a set of the form {z € R" | hx = 5} with
heR™ h+#0,and 8 €R.

» A half-space is a set of the form {z € R" | hxz < $} with
heR™ h#0,and g €R.
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Polyhedral Cones

Definition 1.5
A cone C C R™ is polyhedral if there exists A € R™*™ such that

C={zeRm| ATz <0}.

» That is, cone C' is polyhedral if it is the intersection of finitely
many half spaces.

» R™ is polyhedral by letting A be an “m x 0 matrix”.

» A cone C' C R™ is finitely generated if there exists A € R™*"
such that C' = cone(A).
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Farkas-Minkowski-Weyl Theorem

Proposition 1.19 (Farkas-Minkowski-Weyl Theorem)
A cone is polyhedral if and only if it is finitely generated.
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Proof

Suppose that a cone C' C R™ is finitely generated, i.e.,
C = cone(A) for some A = [al,...,a"] € R™*",

We first consider the case where rank(A) = m (so m < n).
For each LI subset S of m — 1 columns of A, define
F={yeR"|[[ly| =1,
yaol =0 forall jeS,
ya’ <0 forall j ¢ S}.
For each such S, since rank[ker(S™)] = 1, there are only two
y's such that ||yl = 1 and yS = 0, and hence |F*| < 2.

Let ' = |J F¥ where the union is taken over all LI subsets S
of m — 1 columns of A.

Then F'is a finite set, since there are finitely many such S's.
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Consider F' as the m x |F| matrix that consists of the vectors
in F' as columns.

Write D = {z € R™ | FTz < 0}.
By construction, ya’ < 0 for all a/ € A and all y € F.
Hence, cone(A) C D.

If b ¢ cone(A), then by Proposition 1.6 (Fundamental
Theorem of Linear Inequalities), there exists y € R"™ such that
yA <0, yS = 0 for some LI subset S of m — 1 columns of A,
and yb > 0, where by normalization we can assume ||y|| = 1.

l.e., there is some y € F' such that yb > 0, which implies that
b¢ D.

This shows that cone(A) = D, i.e., cone(A) is polyhedral.
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Then consider the case where r = rank(A4) < m.

Let A" € R™" be the matrix that consists the first r rows of
A, and assume without loss of generality that rank(A’) = r.

By the previous case, there exists a finite set I/ C R”"
(considered as an r x |F’| matrix) such that
cone(A’) = {2’ e R" | (F")"x < 0}.

Extend the r-dimensional vectors in F’ to m-dimensional

vectors by adding m — r zeros
/

(so [
O(m—ryx|F|

Fix any basis I = {z!,...,2™ "} of ker(AT) (note that
rank[ker(AT)] =m —r).

Let D= {z e R" | (F)Tz <0, (F")Tz = 0}.

] is referred to again as F’).
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By construction, ya’ < 0 for all ¢/ € A and all y € F.
Hence, cone(A) C D.

Suppose that b € span(A) \ cone(A).

Then V' ¢ cone(A’), where b’ € R" is the vector that consists
of the first » components of b.

Then there is some y € F’ such that yb > 0, and hence,
b¢ D.

Suppose that b ¢ span(A).

Then there exists z € R™ such that zA = 0 and zb # 0.

Then there must be some 27 € F” such that z7b # 0, and
hence, b ¢ D.

This shows that cone(A) = D.

Finally, let FF = F' U F” U (—F"). Then we have
D = {z € R™ | FTx <0}, and thus cone(A) is polyhedral.
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For the converse, suppose that C'is polyhedral, i.e.,
C = {x € R™ | BTz <0} for some B = [b',...,b"] € R™*",

By the “if" part, there exists G = [z, ..., 2] € R™* such
that cone(B) = {z € R™ | GTx < 0}.

We want to show that C' = cone(G).

For all z € G and all b € B (C cone(B)), zb < 0.
Hence, for all z € G, z € C, and therefore, cone(G) C C.

Suppose that z ¢ cone(G).

Then by Farkas’ Lemma, there exists y € R™ such that
yG <0 and yx > 0,

i.e., there exists y € cone(B) such that yx > 0.
Then there must be b’ € B such that ¥’z >0, i.e., z ¢ C.

This shows that C' C cone(G).
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Polyhedra and Polytopes

Definition 1.6
P C R™ is called a polyhedron if there exist A € R™*™ and
b € R" such that P = {x €¢ R™ | ATz < b}.

P> |.e., it is the intersection of finitely many half-spaces.
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Definition 1.7

For a finite set S = {z!,22,..., 27} C R", the vector
> A
JES
with A\1,..., Ay >0, Z}']:1 Aj = 1 is called a convex combination
of S.
Definition 1.8

For S C R", the set of all convex combinations of finite subsets of
S is called the convex hull of S and denoted by conv(S).

Definition 1.9
P C R™ is called a polytope if there exists a finite S C R" such
that P = conv(S).
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Resolution Theorem

Proposition 1.20 (Resolution Theorem)

P CR™, P+#1, is a polyhedron if and only if P = Q + C
for some polytope Q and some finitely generated cone C'.

> (Q+C={g+c|qgeq, ceC})

» As a corollary, we have the following (let C' = {0}):

Proposition 1.21

P CR™, P+#1, is a bounded polyhedron if and only if
it is a polytope.
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Proof of Proposition 1.20

» The “only if” part:

Suppose that P = {x € R™ | Az < b} for some A € R"*™
and b € R™.

» Consider the polyhedral cone
P={(z,u) e R" xR |u>0, Az —ub < 0}.

» By Proposition 1.19, it is finitely generated, i.e.,

P = cone({(z',u1), ..., (x7,uy)}) for some

(x',u1),..., (27, u;) € R™ x R, where v/ > 0.

> Let J© = {j|u; >0} and J* = {j | u; =0}.
By normalization, we let u; =1 for j € J.

» Let Q = conv({z’/ | j € J*}) and C = cone({x? | j € J'}).
We want to show that P = Q + C.
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» |ndeed,

reP < (r,1)eP

= (z,1)= Y N/, 1)+ D A(a,0)

jeJt jeJo
for some Ay,...,A; >0
<:>$:Z)\j.%'j+z}\j$j
jeJt jeJo
for some Aq,...,A; > 0 with Z)\jzl

jeJt
> xcconv({z? | j € JT}) + cone({z? | j € J°}).
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The “if" part:

Suppose that P = conv({z!,...,27}) 4+ cone({y*,...,y%})
for some 2t ..., 27, y', ...,y e R™.

Define P = cone({(z',1),...,(z7,1), (y*,0),..., (¥*,0)}).

By Proposition 1.19, the cone P is polyhedral, i.e.,
P={(x,u) e R" xR | Az — ub < 0} for some A € R"*™
and b € R™.

Let P/ = {z e R™ | Az < b}.
We want to show that P = P'.

Indeed, z € P <= (2,1) € P <= Az —b<0.
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Application: Linear Production Model

» Inputs: {1,...,m}
Input vector: = € R

» Outputs: {1,...,n}
Output vector: y € R"

» P e R™*™: Production matrix
y=uxP

> b€ R : Resource/capacity vector

» Cc RTX’“: Consumption matrix (C' # O)
Resource constraint: xC <b

» Input space: X = {z € R" | 2C <b, x>0}

» Output space: Y ={y e R" |y =2P, z € X}
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Lemma 1.22
Y is a polyhedron,
ie, Y ={yecR"|yD <r} for some D € R"*¢ and r € R,

Proof

» X is a bounded polyhedron (since C' > 0 and X C R"), and
hence is a polytope by the Resolution Theorem,

i.e., X = conv(E) for some finite set £ C R™.
» Then Y = conv{xP | z € E}; thus Y is a polytope.

» By the Resolution Theorem, Y is a (bounded) polyhedron.
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» y €Y is efficient if there is no 3y € Y such that ¢/ >y,
/
Yy #u

Proposition 1.23

y* €Y is efficient if and only if there exists p > 0 such that
y'p>uyp forallyey.

> With “p >0, p# 0" in place of “p > 0":
» the “if” part is false;

> the “only if” part holds whenever Y is a convex set
(not only for polyhedron Y).
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Proof

The “if" part:

If y* is not efficient, i.e., 3/ —y* >0, #0 for some ¢/ €Y,
then for any p > 0, we have (v —y*)p > 0 or y/'p > y*p.

The “only if" part:
Suppose that y* € Y is efficient.

By Lemma 1.22, Y is written as Y = {y € R" | yD < r} for
some D € R™* and r € R,

Write D = [S|T] and r = [TS|7'T] so that y*S = TS and
y*T < rl.
S # () by the efficiency of y*:

If S=0,ie., y*D < r, then (y* +e1)D < r for sufficiently
small € > 0, where y* +¢1 2 y*.
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25 <0, 2> 0, z# 0 has no solution by the efficiency of y*:

If there exists such z, then (y* +€2z)D < r for sufficiently
small € > 0, where y* + ¢z 2 y*.

By Ville's Theorem (Problem 5 in Homework 1),
SA >0, A > 0 has a solution.

For a solution A, let p = SA (> 0).

Then for any y € Y (where yS < r), we have
y'p =y SA =1\,
yp = ySA < 19N,

as desired.
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