1. Farkas' Lemma

Daisuke Oyama

Mathematical Economics

This version: June 12, 2023

Things to know from linear algebra

For
$$S = \{x^1, x^2, \ldots\} \subset \mathbb{R}^n$$
,
we also use S to denote the index set, i.e., $S = \{1, 2, \ldots\}$.

▶ For a finite set $S = \{x^1, x^2, \dots, x^J\} \subset \mathbb{R}^n$, the vector

$$\sum_{j \in S} \lambda_j x^j$$

with $\lambda_1, \ldots, \lambda_J \in \mathbb{R}$ is called a *linear combination* of S.

- For S ⊂ ℝⁿ, the set of all linear combinations of finite subsets of S is called the span of S and denoted by span(S).
- ▶ A finite set $S \subset \mathbb{R}^n$ is *linearly independent* (LI) if

$$\sum_{j \in S} \lambda_j x^j = 0 \Rightarrow \lambda_j = 0 \text{ for all } j \in S.$$

A finite set S ⊂ ℝⁿ is *linearly dependent* (LD) if it is not linearly independent.

For S ⊂ ℝⁿ, a finite B ⊂ S is a maximal LI subset of S if B ∪ {x} is LD for any x ∈ S \ B.

A maximal LI subset of S is called a *basis* of S.

Proposition 1.1 If B is a basis of $S \subset \mathbb{R}^n$, then $\operatorname{span}(S) = \operatorname{span}(B)$.

Proposition 1.2

- 1. If a finite $S \subset \mathbb{R}^n$ is LI, then $|S| \leq n$.
- 2. Any $S \subset \mathbb{R}^n$, $S \neq \emptyset$, has a basis.
- 3. Suppose that B is a basis of $S \subset \mathbb{R}^n$ and B' is a finite LI subset of S.

 $\blacktriangleright |B'| \le |B|.$

• B' is a basis of S if and only if |B'| = |B|.

- The rank of S ⊂ ℝⁿ, denoted rank(S), is the cardinality |B| of any basis B of S.
- The dimension of span(S), denoted dim[span(S)], is the rank of S, rank(S).

 $\blacktriangleright \mathbb{R}^{m \times n}$: Set of $m \times n$ matrices

- For $A \in \mathbb{R}^{m \times n}$, we write a^j for the *j*th column vector of A.
- We often identify $A \in \mathbb{R}^{m \times n}$ with the set of its column vectors, i.e., $A = \{a^1, \ldots, a^n\} \subset \mathbb{R}^m$.

For $A \in \mathbb{R}^{m \times n}$, $A^{\mathrm{T}} \in \mathbb{R}^{n \times m}$ denotes the transpose of A.

For
$$x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \in \mathbb{R}^n$$
, we write $xy = \sum_{j=1}^n x_j y_j$ (instead of $x \cdot y$ or $x^T y$).

For $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$:

• $Ax = \sum_{j=1}^{n} x_j a^j \in \mathbb{R}^m$ \cdots linear combination of column vectors a^1, \ldots, a^n with coefficients x_1, \ldots, x_n

▶ $yA = (ya^1, \dots, ya^n) \in \mathbb{R}^n$ (instead of y^TA)

- The span of A: $\operatorname{span}(A) = \{Ax \in \mathbb{R}^m \mid x \in \mathbb{R}^n\}.$
- ► The kernel (or null space) of A: $\ker(A) = \{x \in \mathbb{R}^n \mid Ax = 0\}.$ $(\ker(A^T) = \{y \in \mathbb{R}^m \mid yA = 0\})$

Proposition 1.3 For $A \in \mathbb{R}^{m \times n}$,

 $\operatorname{rank}(A) = \operatorname{rank}(A^{\mathrm{T}}).$

Proposition 1.4 For $A \in \mathbb{R}^{m \times n}$,

 $\operatorname{rank}[\operatorname{span}(A)] + \operatorname{rank}[\operatorname{ker}(A^{\mathrm{T}})] = m.$

- A square matrix A ∈ ℝ^{n×n} is non-singular if rank(A) = n, i.e., the columns of A are LI.
- For $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times n}$ such that AB = BA = I is called the *inverse* of A and denoted A^{-1} .
- $A \in \mathbb{R}^{n \times n}$ is *invertible* if A^{-1} exists.
- $A \in \mathbb{R}^{n \times n}$ is invertible if and only if it is non-singular.

Fundamental Theorem of Linear Algebra

Proposition 1.5 Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Either 1. Ax = b has a solution, or 2. yA = 0, $yb \neq 0$ has a solution, but not both.

- A theorem of the form "Either ..., or ..., but not both" is called a "theorem of the alternative".
- Condition 1 is equivalent to " $b \in \operatorname{span}(A)$ ".

Proof

• Write
$$[A|b] = (a^1, \dots, a^n, b) \in \mathbb{R}^{m \times (n+1)}$$
.

Recall

$$span(A) = \{Ax \in \mathbb{R}^m \mid x \in \mathbb{R}^n\},$$

$$span([A|b]) = \{Ax + \lambda b \in \mathbb{R}^m \mid x \in \mathbb{R}^n, \ \lambda \in \mathbb{R}\},$$

$$ker(A^{\mathrm{T}}) = \{y \in \mathbb{R}^m \mid yA = 0\},$$

$$ker([A|b]^{\mathrm{T}}) = \{y \in \mathbb{R}^m \mid yA = 0, \ yb = 0\}.$$

Clearly, $\operatorname{span}(A) \subseteq \operatorname{span}([A|b])$, $b \in \operatorname{span}([A|b])$, and $\ker(A^{\mathrm{T}}) \supseteq \ker([A|b]^{\mathrm{T}})$.

By Proposition 1.4, we have

 $\begin{aligned} \operatorname{rank}[\operatorname{span}(A)] + \operatorname{rank}[\operatorname{ker}(A^{\mathrm{T}})] \\ = m = \operatorname{rank}[\operatorname{span}([A|b])] + \operatorname{rank}[\operatorname{ker}([A|b]^{\mathrm{T}})]. \end{aligned}$

Therefore, we have

$$b \in \operatorname{span}(A)$$

$$\iff \operatorname{span}(A) = \operatorname{span}([A|b])$$

$$\iff \operatorname{rank}[\operatorname{span}(A)] = \operatorname{rank}[\operatorname{span}([A|b])]$$

$$\iff \operatorname{rank}[\operatorname{ker}(A^{\mathrm{T}})] = \operatorname{rank}[\operatorname{ker}([A|b]^{\mathrm{T}})]$$

$$\iff \operatorname{ker}(A^{\mathrm{T}}) = \operatorname{ker}([A|b]^{\mathrm{T}})$$

$$\iff yb = 0 \text{ whenever } yA = 0.$$

$\begin{array}{l} \text{Definition } 1.1 \\ C \subset \mathbb{R}^n \text{ is a } \textit{cone} \text{ if} \end{array}$

$$x \in C, \ \lambda > 0 \Rightarrow \lambda x \in C.$$

Some textbooks define cones with " $\lambda \ge 0$ ".

 \blacktriangleright For a finite set $S=\{x^1,x^2,\ldots,x^J\}\subset \mathbb{R}^n$, a non-negative linear combination

$$\sum_{j \in S} \lambda_j x^j$$

with $\lambda_1, \ldots, \lambda_J \geq 0$ is called a *conic combination* of S.

For S ⊂ ℝⁿ, the set of all conic combinations of finite subsets of S is called the *conic hull* of S and denoted by cone(S).

Definition 1.2

For $A \in \mathbb{R}^{m \times n}$, the conic hull of the column vectors of A is called the *finite cone* generated by the columns of A and denoted by $\operatorname{cone}(A)$, i.e.,

$$\operatorname{cone}(A) = \{ Ax \in \mathbb{R}^m \mid x \ge 0 \}.$$

Farkas' Lemma

- In Mathematics II, we proved Farkas' Lemma by the separating hyperplane theorem + the closedness of a finite cone.
- Here we prove Farkas' Lemma by an algebraic argument.
- We will later prove separating hyperplane theorems from Farkas' Lemma.

Fundamental Theorem of Linear Inequalities

Proposition 1.6

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Let $r = \operatorname{rank}(A)$. Either

- 1. b is written as a conic combination of LI columns of A, or
- 2. there exist an LI set of r-1 columns of A, $\{a^{j_1}, \ldots, a^{j_{r-1}}\}$, and $y \in \mathbb{R}^m$ such that $ya^{j_t} = 0$ for all $t = 1, \ldots, r-1$, $yA \ge 0$, and yb < 0.

but not both.

From Schrijver, Theory of Linear and Integer Programming, Theorem 7.1.

Proof

Both conditions cannot hold simultaneously:

If b = Ax for some $x \ge 0$ and there is y as in Condition 2, then we would have

$$0 > yb = y(Ax) = (yA)x \ge 0.$$

- If b ∉ span(A), then by the Fundamental Theorem of Linear Algebra (Proposition 1.5), there is y such that yA = 0 and yb < 0. → Condition 2</p>
- In the following, we assume that $b \in \operatorname{span}(A)$.

• Consider the following procedure (recall $r = \operatorname{rank}(A)$):

0. Let $D = \{a^{j_1}, \dots, a^{j_r}\}$ be any linearly independent set of r column vectors of A.

1. Write
$$b = \sum_{j \in D} \lambda_j a^j$$
.

If $\lambda_j \geq 0$ for all $j \in D$, then stop. \rightarrow Condition 1

2. Otherwise, choose the smallest index h among $\{j_1, \ldots, j_r\}$ with $\lambda_h < 0$.

Let y be such that ya = 0 for all $a \in D \setminus \{a^h\}$ and $ya^h \neq 0$. (Such y exists by Proposition 1.5 since $a^h \notin \operatorname{span}(D \setminus \{a^h\})$.) Normalize y so that $ya^h = 1$.

Observe that $yb = y\left(\sum_{j \in D} \lambda_j a^j\right) = \lambda_h < 0.$

- 3. If $ya \ge 0$ for all $a \in A$, then stop. \rightarrow Condition 2
- 4. Otherwise, choose the smallest index w such that $ya^w < 0$. Let $D \leftarrow (D \setminus \{a^h\}) \cup \{a^w\}$, which is linearly independent (since $a^w \notin \operatorname{span}(D \setminus \{a^h\})$), and go to Step 1.

- Let D^k denote the set D at the start of the kth iteration of this procedure.
- We want to show that this procedure stops with finitely many iterations.
- Assume the contrary.

Then, since there are finitely many linearly independent sets of columns of A, we have $D^k = D^\ell$ for some k and ℓ , $k < \ell$.

- ► Let s be the largest index for which a^s is removed at one of the iterations k, k + 1,..., ℓ − 1, say iteration p.
- Since D^ℓ = D^k, a^s is inserted in D at some iteration q, k ≤ q ≤ ℓ − 1.

• Write $D^p = \{a^{j_1}, \dots, a^{j_r}\}.$

• At iteration p (where a^s is removed): $b = \sum_{i \in D^p} \lambda_i^p a^j$, where

• $\lambda_s^p < 0$; and • $\lambda_{j_t}^p \ge 0$ for all $j_t < s$.

At iteration q (where a^s is inserted): Let y^q be as in Step 2. Then

•
$$y^q a^s < 0$$
; and

•
$$y^q a^j \ge 0$$
 for all $j < s$.

For all $j_t > s$, we have $a^{j_t} \in D^{\ell}$, hence $a^{j_t} \in D^k$, and hence $a^{j_t} \in D^q$. Therefore,

• $y^q a^{j_t} = 0$ for all $j_t > s$.

► Therefore, we have $y^q b = y^q \left(\sum_{j \in D^p} \lambda_j^p a^j \right) = \sum_{j \in D^p} \lambda_j^p (y^q a^j) > 0$, which contradicts $y^q b < 0$.

Farkas' Lemma

Proposition 1.7 (Farkas' Lemma) Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Either 1. $Ax = b, x \ge 0$ has a solution, or 2. $yA \ge 0, yb < 0$ has a solution, but not both.

• Condition 1 is equivalent to " $b \in \operatorname{cone}(A)$ ".

Proof

- Both conditions cannot hold simultaneously.
- If Condition 1 does not hold, then by Proposition 1.6, Condition 2 holds.

Example 6

$$\blacktriangleright A = \begin{bmatrix} 4 & 1 & -5 \\ 1 & 0 & 2 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Example 7

$$\bullet \ A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \ b = \begin{bmatrix} 2 \\ 2 \\ 2 \\ 1 \end{bmatrix}$$

Variant of Farkas' Lemma

Proposition 1.8 (Gale's Theorem) Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Either 1. $Ax \leq b$ has a solution, or 2. $yA = 0, y \geq 0, yb < 0$ has a solution, but not both.

Proof

$$\exists x : Ax \leq b \iff \exists x, s : Ax + s = b, \ s \geq 0 \iff \exists z, z', s : A(z - z') + s = b, \ z \geq 0, z' \geq 0, s \geq 0 \iff \exists z, z', s : \begin{bmatrix} A & -A & I \end{bmatrix} \begin{bmatrix} z \\ z' \\ s \end{bmatrix} = b, \ \begin{bmatrix} z \\ z' \\ s \end{bmatrix} \geq 0$$

► The Farkas alternative is

$$\begin{split} y\begin{bmatrix} A & -A & I\end{bmatrix} &\geq 0, \ yb < 0, \ \text{or} \\ yA &\geq 0, \ -yA &\geq 0, \ yI &\geq 0, \ yb < 0, \ \text{i.e.}, \\ yA &= 0, \ y &\geq 0, \ yb < 0. \end{split}$$

Proposition 1.9 (Farkas' Lemma: Inequality version) Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Either 1. $Ax \leq b, x \geq 0$ has a solution, or 2. $yA \geq 0, y \geq 0, yb < 0$ has a solution, but not both.

Proof

• Condition 1 is written as
$$\exists x : \begin{bmatrix} A \\ -I \end{bmatrix} x \leq \begin{bmatrix} b \\ 0 \end{bmatrix}$$
.

▶ By Proposition 1.8, its alternative is:

$$\begin{split} \exists \, y, z: \begin{bmatrix} y & z \end{bmatrix} \begin{bmatrix} A \\ -I \end{bmatrix} &= 0, \begin{bmatrix} y & z \end{bmatrix} \geq 0, \begin{bmatrix} y & z \end{bmatrix} \begin{bmatrix} b \\ 0 \end{bmatrix} < 0, \text{ or } \\ \exists \, y, z: yA &= z, \ y \geq 0, z \geq 0, \ yb < 0 \\ &\iff \exists \, y: yA \geq 0, \ y \geq 0, \ yb < 0. \end{split}$$

Application: No Arbitrage

• States:
$$\Omega = \{1, \ldots, n\}$$

▶ a_{ij} : payoff to asset *i* in state *j* $A = (a_{ij}) \in \mathbb{R}^{m \times n}$

▶ $y \in \mathbb{R}^m$: portfolio

▶ $y_i > 0$: long position in asset *i*

•
$$y_i < 0$$
: short position in asset i

Ex post wealth vector of y:

$$yA = \left(\sum_{i=1}^m y_i a_{ij}\right)_{j \in \Omega}$$

- ▶ $p \in \mathbb{R}^m$, $p \ge 0$, $p \ne 0$: vector of asset prices
- $\blacktriangleright p$ satisfies the no arbitrage condition if there exists no $y \in \mathbb{R}^m$ such that

 $yA \ge 0, yp < 0.$

▶ By Farkas' Lemma, the no arbitrage condition is equivalent to the condition that there exists $\hat{\pi} \in \mathbb{R}^n$ such that

 $p = A\hat{\pi}, \ \hat{\pi} \ge 0.$

▶ By $p \neq 0$, we have $\hat{\pi} \neq 0$. So by normalization we have

$$p^* = A\pi,$$

where
$$p^* = \frac{p}{\sum_j \hat{\pi}_j}$$
 and $\pi = \frac{\hat{\pi}}{\sum_j \hat{\pi}_j}$.

• $\pi \in \mathbb{R}^n$: risk-neutral probability distribution

Option Pricing

States:
$$\Omega = \{g, b\}$$

Assets

• Stock (risky asset): (uS^0, dS^0) , u > 1 > d

▶ Bond (safe asset): (rB, rB), r > 1 Assume u > r (> 1 > d)

Call option (derivative asset): $(\max\{0, uS^0 - K\}, \max\{0, dS^0 - K\})$

K: strike price

option to buy the stock at price K

• Asset price vector:
$$p = (S^0, B, p_3)$$

Determine p_3 so that p satisfies the no arbitrage condition.

$$A = \begin{bmatrix} uS^{0} & dS^{0} \\ rB & rB \\ \max\{0, uS^{0} - K\} & \max\{0, dS^{0} - K\} \end{bmatrix}$$

• (Un-normalized) risk-neutral probability distribution $\hat{\pi}$:

$$A\hat{\pi} = p$$

From the first two equations:

$$uS^0\hat{\pi}_1 + dS^0\hat{\pi}_2 = S^0,$$

 $rB\hat{\pi}_1 + rB\hat{\pi}_2 = B.$

This system has a unique solution

$$\hat{\pi}_1 = \frac{r-d}{r(u-d)}, \ \hat{\pi}_2 = \frac{u-r}{r(u-d)} \qquad (>0 \ \text{by} \ u > r > d).$$

► For no arbitrage,

$$p_3 = \hat{\pi}_1 \max\{0, uS^0 - K\} + \hat{\pi}_2 \max\{0, dS^0 - K\}.$$

Application: Cooperative Games

• A cooperative game (with transferable utility) is a pair (v, N) where

•
$$N = \{1, \ldots, n\}$$
: finite set of players; and

$$\blacktriangleright$$
 $v: 2^N \to \mathbb{R}$, where

for $S \subset N$, v(S) represents the monetary value of coalition S.

Definition 1.3 The core of game (v, N) is the set

$$C(v,N) = \left\{ x \in \mathbb{R}^n \ \bigg| \ \sum_{j \in N} x_j = v(N), \ \sum_{j \in S} x_j \ge v(S) \text{ for all } S \subset N \right\}$$

• That is, the core is the set of allocations $x \in \mathbb{R}^n$ such that

the value v(N) of the grand coalition N is allocated without waste; and

there is no coalition that "blocks" x,

i.e., there is no coalition S such that $\sum_{j \in S} x_j < v(S)$.

The core may be empty.

In what games is the core non-empty?

▶ Let B(N) be the set of vectors $(y_S)_{S \subset N} \in \mathbb{R}^{2^n}$ such that

$$\sum_{\substack{S:i\in S}} y_S = 1 \text{ for all } i \in N,$$
$$y_S \ge 0 \text{ for all } S \subset N.$$

▶ For example, the vector $(y_S)_{S \subset N} \in \mathbb{R}^{2^n}$ such that

$$y_N = 1$$

 $y_S = 0$ for all $S \neq N$
is in $B(N)$.
Thus, $B(N) \neq \emptyset$.

Proposition 1.10 (Bondareva-Shapley) $C(v, N) \neq \emptyset$ if and only if

$$v(N) \ge \sum_{S \subset N} v(S) y_S$$
 for all $(y_S)_{S \subset N} \in B(N)$. (*)

Game (v, N) is said to be balanced if (*) holds.
 (Or equivalently, (v, N) is balanced if C(v, N) ≠ Ø.)

Proof

► The condition
$$C(v, N) \neq \emptyset$$
 is written as
 $\exists x \in \mathbb{R}^n : \sum_{j \in N} x_j \leq v(N), \sum_{j \in S} (-x_j) \leq -v(S) \forall S \subset N$
 $\iff \exists x \in \mathbb{R}^n : Ax \leq b$, where
 $A = \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & 1 \\ 0 & \cdots & -1 \cdots - 1 & \cdots & 0 \\ \vdots & & \end{bmatrix} \in \mathbb{R}^{(1+2^n) \times n},$
 $b = \begin{bmatrix} v(N) \\ \vdots \\ -v(S) \\ \vdots \end{bmatrix}$

▶ By Proposition 1.8 (Gale's Theorem), its alternative is:

$$\exists y \in \mathbb{R}^{1+2^{n}} : yA = 0, \ y \ge 0, \ yb < 0$$

$$\iff \exists y = (y_{0}, \dots, y_{S} \dots) \in \mathbb{R}^{1+2^{n}} :$$

$$y_{0} - \sum_{S:i \in S} y_{S} = 0 \quad \forall i \in N$$

$$y_{0} \ge 0, \ y_{S} \ge 0 \quad \forall S \subset N$$

$$y_{0}v(N) - \sum_{S \subset N} y_{S}v(S) < 0$$
(For such $y, \ y_{0} > 0$, so let $y_{0} = 1$.)

$$\iff \exists (y_{S})_{S \subset N} \in \mathbb{R}^{2^{n}} :$$

$$\sum_{S:i \in S} y_{S} = 1 \quad \forall i \in N$$

$$y_{S} \ge 0 \quad \forall S \subset N$$

$$v(N) - \sum_{S \subset N} y_{S}v(S) < 0$$
$\blacktriangleright \iff \exists (y_S)_{S \subset N} \in B(N) : v(N) < \sum_{S \subset N} y_S v(S)$

The negation of this condition is:

 $\forall (y_S)_{S \subset N} \in B(N) : v(N) \ge \sum_{S \subset N} y_S v(S)$

Example

▶
$$N = \{1, 2, 3\}$$

▶ $v(S) = \begin{cases} 1 & \text{if } |S| = 2\\ 0 & \text{if } |S| \le 1 \end{cases}$

• Determine the condition for v(N) under which $C(v, N) \neq \emptyset$.

Necessity

▶ $C(v,N) \neq \emptyset$ means that there exists $x = (x_1, x_2, x_3) \in \mathbb{R}^3$ such that

$$\begin{aligned} x_1 + x_2 + x_3 &= v(N), & (1) \\ x_1 + x_2 &\ge v(\{1, 2\}) &= 1, & (2) \\ x_2 + x_3 &\ge v(\{2, 3\}) &= 1, & (3) \\ x_3 + x_1 &\ge v(\{3, 1\}) &= 1, & (4) \\ x_1 &\ge v(\{1\}) &= 0, & \\ x_2 &\ge v(\{2\}) &= 0, & \\ x_3 &\ge v(\{2\}) &= 0. & \end{aligned}$$

Adding (2)–(4) and applying (1), we have
$$2v(N) = 2(x_1 + x_2 + x_3) = 3$$
, or $v(N) \ge \frac{3}{2}$.

Sufficiency

• Conversely, suppose that $v(N) \ge \frac{3}{2}$.

We want to show that the balancedness condition is satisfied.

▶ Let $(y_S) \in B(N)$, i.e., $y_S \ge 0$ for all $S \subset N$ and $\sum_{S:i \in S} y_S = 1$ for all $i \in N$.

Then we have

$$\begin{split} y_{\{1,2\}}v(\{1,2\}) + y_{\{2,3\}}v(\{2,3\}) + y_{\{3,1\}}v(\{3,1\}) + y_Nv(N) \\ &= \frac{1}{2}[(y_{\{1,2\}} + y_{\{2,3\}}) + (y_{\{2,3\}} + y_{\{3,1\}}) + (y_{\{3,1\}} + y_{\{1,2\}})] + y_Nv(N) \\ &\leq \frac{1}{2}[(1 - y_N) + (1 - y_N) + (1 - y_N)] + y_Nv(N) \\ &= \frac{3}{2} + \underbrace{y_N}_{\leq 1}\underbrace{\left(v(N) - \frac{3}{2}\right)}_{\geq 0} \leq v(N). \end{split}$$

• Thus, $C(v, N) \neq \emptyset$ if and only if $v(N) \ge \frac{3}{2}$.

Application: Afriat's Theorem

- We are given a dataset of price vector-consumption vector pairs: $\mathcal{D} = \{(p^1, x^1), \dots, (p^n, x^n)\}$, where $p^i \in \mathbb{R}^m_{++}$ and $x^i \in \mathbb{R}^m_+$.
- Is there a utility function that rationalizes D?

A function $u \colon \mathbb{R}^m_+ \to \mathbb{R}$ is a utility function that rationalizes \mathcal{D} if for all $i = 1, \dots, n$,

$$p^i x \le p^i x^i \implies u(x) \le u(x^i)$$

(i.e., $x^i \in \arg \max\{u(x) \mid p^i x \leq p^i x^i\}$).

- ▶ The answer is trivially yes: let *u* be a constant function.
- ▶ Is there a locally insatiable utility function that rationalizes D?

• *u* is *locally insatiable* if for any $x \in \mathbb{R}^m_+$ and $\varepsilon > 0$, there exists $x' \in \mathbb{R}^m_+$ such that $d(x', x) < \varepsilon$ and u(x') > u(x).

For a locally insatiable utility function u, if x* ∈ arg max{u(x) | px ≤ I}, then px* = I.

Necessary Condition

Suppose that a locally insatiable u rationalizes \mathcal{D} .

Then

$$\begin{array}{l} \bullet \quad p^{i}x^{j} \leq p^{i}x^{i} \implies u(x^{j}) \leq u(x^{i});\\ \bullet \quad p^{i}x^{j} < p^{i}x^{i} \implies u(x^{j}) < u(x^{i}) \text{ (by local insatiability).} \end{array}$$

$$\begin{array}{l} \bullet \quad \text{Denote } a_{ij} = p^{i}(x^{j} - x^{i}). \qquad (a_{ij} \leq 0 \iff p^{i}x^{j} \leq p^{i}x^{i})\\ \bullet \quad \text{If we have a cycle}\\ a_{i_{1}i_{2}} \leq 0, a_{i_{2}i_{3}} \leq 0, \dots, a_{i_{k-1}i_{k}} \leq 0, a_{i_{k}i_{1}} \leq 0, \end{array}$$

then $u(x^{i_1}) \le u(x^{i_2}) \le \dots \le u(x^{i_{k-1}}) \le u(x^{i_k}) \le u(x^{i_1})$, and therefore, $a_{i_1i_2} = 0, a_{i_2i_3} = 0, \dots, a_{i_{k-1}i_k} = 0, a_{i_ki_1} = 0$.

Call this necessary condition "Afriat Condition" (AC).

Afriat Condition

▶ Dataset D = {(p¹, x¹), ..., (pⁿ, xⁿ)} is said to satisfy AC if there exists no cycle (i₁, i₂, ..., i_k, i₁) such that

$$a_{i_1i_2} \le 0, a_{i_2i_3} \le 0, \dots, a_{i_{k-1}i_k} \le 0, a_{i_ki_1} \le 0$$

with at least one " \leq " holding with "<".

- (This is equivalent to the following: for any cycle $(i_1, i_2, \ldots, i_k, i_1)$ such that $\sum_{\ell=1}^k a_{i_\ell i_{\ell+1}} < 0$, there exists some ℓ such that $a_{i_\ell i_{\ell+1}} > 0$.)
- AC is a necessary condition for the rationalizability of D.
 Afriat's theorem shows that it is also sufficient.

Afriat's Theorem

Proposition 1.11

 \mathcal{D} is rationalized by a locally insatiable utility function if and only if it satisfies AC.

Consider the following system of inequalities:

$$\begin{array}{ll} (\mathsf{P}) & s_i \geq 1 & \qquad \qquad \text{for all } i, \\ & y_i + a_{ij}s_i - y_j \geq 0 & \qquad \qquad \text{for all } (i,j), \ i \neq j. \end{array}$$

The alternative:

$$\begin{aligned} z_i + \sum_j a_{ij} w_{ij} &= 0 & \text{for all } i, \\ \sum_j w_{ij} - \sum_k w_{ki} &= 0 & \text{for all } i, \\ \sum_i z_i &> 0, \\ z_i &\geq 0 & \text{for all } i, \\ w_{ij} &\geq 0 & \text{for all } i, \\ \end{bmatrix}$$

► This is equivalent to:

(D)
$$\sum_{j} a_{ij} w_{ij} \leq 0$$
$$\sum_{j} a_{ij} w_{ij} < 0$$
$$\sum_{j} w_{ij} = \sum_{k} w_{kj}$$
$$w_{ij} \geq 0$$

for all i,

for some i,

for all i,

for all (i, j), $i \neq j$.

Proposition 1.12

The following conditions are equivalent:

- 1. ${\mathcal D}$ is rationalized by a locally insatiable utility function.
- 2. (P) is feasible.
- 3. (D) is infeasible.
- 4. \mathcal{D} satisfies AC.

Proof

- $1 \Rightarrow 4$: Already verified.
- ▶ 2 \Leftrightarrow 3: By Proposition 1.8 (Gale's Theorem).

Proof of "2 \Rightarrow 1"

Suppose that (P) is feasible, i.e., there exist y_i and s_i such that

$$y_j \le y_i + p^i (x^j - x^i) s_i, \quad s_i \ge 1$$

for all i and j.

• Define
$$u \colon \mathbb{R}^m_+ \to \mathbb{R}$$
 by
 $u(x) = \min\{y_1 + p^1(x - x^1)s_1, \dots, y_n + p^n(x - x^n)s_n\},$

which is strictly increasing (and hence locally insatiable).

(In fact, it is also continuous and concave).

Then,

$$u(x^{j}) = \min\{y_{j}, y_{i} + p^{i}(x^{j} - x^{i})s_{i}, i \neq j\}$$

= y_{j} (by (P)).

► Therefore, if
$$p^j x \le p^j x^j$$
 (or $p^j (x - x^j) \le 0$), then
 $u(x) \le y^j + p^j (x - x^j) s^j$
 $\le y^j = u(x^j).$

• This shows that the function u rationalizes \mathcal{D} .

Proof of "4 \Rightarrow 3" ("not 3 \Rightarrow not 4")

Lemma 1.13

If (D) is feasible, then there exists a feasible solution (w_{ij}) such that there exists no cycle (i_1, \ldots, i_k, i_1) such that $a_{i_\ell i_{\ell+1}} = 0$ and $w_{i_\ell i_{\ell+1}} > 0$ for all $\ell = 1, \ldots, k$.

- ▶ Let (w_{ij}) be a feasible solution of (D): $\sum_j a_{ij}w_{ij} \leq 0$ for all *i* with "<" for some *i*, $\sum_j w_{ij} = \sum_k w_{ki}$ for all *i*, and $w_{ij} \geq 0$ for all *i*, *j*.
- Suppose that there exists a cycle (i_1, \ldots, i_k, i_1) such that $a_{i_\ell i_{\ell+1}} = 0$ and $w_{i_\ell i_{\ell+1}} > 0$ for all $\ell = 1, \ldots, k$. Write $C = \{(i_1, i_2), \ldots, (i_{k-1}, i_k), (i_k, i_1)\}.$

• Let $\varepsilon = \min_{\ell} w_{i_{\ell}i_{\ell+1}}$, and define (w'_{ij}) by

$$w_{ij}' = \begin{cases} w_{ij} - \varepsilon & \text{if } (i,j) \in C, \\ w_{ij} & \text{if } (i,j) \notin C. \end{cases}$$

- Then, (w'_{ij}) also is a feasible solution of (D):
 - $w'_{ij} \ge 0$ for all i, j;
 - $a_{ij}w'_{ij} = a_{ij}w_{ij}$, so that $\sum_j a_{ij}w'_{ij} \le 0$ for all i, with "<" for some i;
 - ▶ for each $i \in \{i_1, \ldots, i_k\}$, there are exactly one j such that $(i, j) \in C$ and exactly one k such that $(k, i) \in C$, so that $\sum_j w'_{ij} \sum_k w'_{ki} = \sum_j w_{ij} \sum_k w_{ki} = 0.$
- By construction, $w'_{i_{\ell}i_{\ell+1}} = 0$ for some ℓ .
- Since there are finitely many possible cycles, by repeating this procedure we obtain a desired feasible solution.

[End of Lemma 1.13]

Now suppose that (D) is feasible.

Let (w_{ij}) be a feasible solution of (D) as in Lemma 1.13:

▶
$$\sum_{j} a_{ij} w_{ij} \leq 0$$
 for all *i* with "<" for some *i*,
 $\sum_{j} w_{ij} = \sum_{k} w_{ki}$ for all *i*, and $w_{ij} \geq 0$ for all *i*, *j*, and

• if $a_{i_{\ell}i_{\ell+1}} \leq 0$ and $w_{i_{\ell}i_{\ell+1}} > 0$ for all $\ell = 1, \ldots, k$, then $a_{i_{\ell}i_{\ell+1}} < 0$ for some ℓ .

• Let
$$i_1$$
 be such that $\sum_j a_{i_1j} w_{i_1j} < 0$.

. . .

- ▶ Then there is some i_2 such that $a_{i_1i_2} < 0$ and $w_{i_1i_2} > 0$. Then $\sum_j w_{i_2j} = \sum_k w_{ki_2} > 0$, so that $w_{i_2j} > 0$ for some j.
- ▶ Then there is some i_3 such that $a_{i_2i_3} \leq 0$ and $w_{i_2i_3} > 0$. (Otherwise, we would have $\sum_j a_{i_2j} w_{i_2j} > 0$.)

Proceeding this way, we have a sequence:

$$a_{i_1i_2} < 0, \ w_{i_1i_2} > 0$$

$$a_{i_2i_3} \le 0, \ w_{i_2i_3} > 0$$

$$a_{i_3i_4} \le 0, \ w_{i_3i_4} > 0$$

$$\vdots$$

- Since there are finitely many indices, we eventually repeat an index.
- If the repeated index is i_1 , then we have a violation of AC.
- Otherwise, we have a cycle of nonpositive a_{ij}'s, but by the choice of (w_{ij}), there must be a negative a_{ij}, which is again a violation of AC.

Proposition 1.14

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Either

1. $Ax \ll b$ has a solution, or

2. yA = 0, $yb \le 0$, $y \ge 0$, $y \ne 0$ has a solution, but not both.

Proof

Condition 2 is rewritten as: $\exists y \in \mathbb{R}^m : yA = 0, yb < 0, y > 0, y \neq 0$ $\iff \exists y \in \mathbb{R}^m, s \in \mathbb{R}:$ yA = 0, yb + s = 0, s > 0, y > 0, y1 = 1(1 is the vector of ones) $\iff \exists y \in \mathbb{R}^m, s \in \mathbb{R}:$ $\begin{bmatrix} y & s \end{bmatrix} \begin{bmatrix} A & b & \mathbf{1} \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} y & s \end{bmatrix} \ge 0$ By Farkas' Lemma, its alternative is: $\exists r \in \mathbb{R}^n \ \gamma \in \mathbb{R} \ w \in \mathbb{R}$

$$\begin{bmatrix} A & b & \mathbf{1} \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ z \\ w \end{bmatrix} \ge 0, \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ z \\ w \end{bmatrix} < 0$$

$$\begin{split} & \longleftrightarrow \ \exists x \in \mathbb{R}^n, z \in \mathbb{R}, w \in \mathbb{R} : \\ & Ax + zb + w\mathbf{1} \ge 0, \ z \ge 0, \ w < 0 \\ & \Longleftrightarrow \ \exists x \in \mathbb{R}^n, z \in \mathbb{R}, w \in \mathbb{R} : \\ & Ax + zb \ge (-w)\mathbf{1}, \ z \ge 0, \ -w > 0 \\ & \Longleftrightarrow \ \exists x \in \mathbb{R}^n, z \in \mathbb{R} : Ax + zb \gg 0, \ z \ge 0 \\ & \Longleftrightarrow \ \exists x \in \mathbb{R}^n : Ax \ll b \end{split}$$

The last equivalence holds because:

▶ If z = 0, then $\exists x : Ax \gg 0$. $A(-tx) \ll 0$ can be arbitrarily small as $t \to \infty$. Hence, $\exists x' : Ax' \ll b$.

If
$$z > 0$$
, then $\exists x, z : A\left(\frac{x}{-z}\right) \ll b$.

Hence, $\exists x' : Ax' \ll b$.

For the converse, let x = -x' and z = 1.

Proposition 1.15 (Gordan's Theorem) Let $A \in \mathbb{R}^{m \times n}$. Either 1. $Ax = 0, x \ge 0, x \ne 0$ has a solution, or

2. $yA \gg 0$ has a solution, but not both.

► Special case of Problem 2.9: Let b = 0 (and replace A with -A^T).

Proposition 1.16

Let $A \in \mathbb{R}^{m \times n}$. Either

1. Ax = 0, $x \ge 0$, $\mathbf{1}x = 1$ has a solution, or

2. $yA \gg 0$ has a solution,

but not both.

Condition 1 is equivalent to Condition 1 in Problem 2.7.

- A = (a_{ij}) ∈ ℝ^{n×n} is a column Markov matrix (or column stochastic matrix) if a_{ij} ≥ 0 for all i, j, and ∑ⁿ_{i=1} a_{ij} = 1 for all j.
- It represents the transition probabilities of a Markov chain: a_{ij}: probability that the random variable changes from j to i.
- $x \in \mathbb{R}^n$ is a *probability vector* if $x_j \ge 0$ for all j, and $\sum_{j=1}^n x_j = 1$.
- A probability vector x is a steady state vector (or stationary distribution) of a column Markov matrix A if Ax = x.

Proposition 1.17

Every Markov matrix has a steady state vector.

Proof

- Let $A \in \mathbb{R}^{n \times n}$ be a column Markov matrix.
- We want to show that A has a steady state vector x.
 This is rewritten as:

$$\exists x : Ax = x, \ x \ge 0, \ \mathbf{1}x = 1$$

$$\iff \exists \, x: (A-I)x=0, \ x\geq 0, \ \mathbf{1}x=1$$

By Problem 2.6, its alternative is:

$$\exists y: y(A-I) \gg 0$$

$$\iff \exists \, y : yA \gg y$$

It suffices to show that this condition does not hold.

▶ Take any $y \in \mathbb{R}^n$.

Let j^* be such that $y_{j^*} \ge y_j$ for all j.

Then we have

$$(yA)_{j^*} = \sum_{i=1}^n y_i a_{ij^*}$$

$$\leq \sum_{i=1}^n y_{j^*} a_{ij^*} \quad (\because a_{ij^*} \ge 0 \text{ for all } i)$$

$$= y_{j^*} \sum_{i=1}^n a_{ij^*}$$

$$= y_{j^*}. \quad (\because \sum_{i=1}^n a_{ij^*} = 1)$$

▶ Therefore, $yA \gg y$ cannot hold.

Variant of Farkas' Lemma

Proposition 1.18 (Ville's Theorem) Let $A \in \mathbb{R}^{m \times n}$. Either 1. $Ax \gg 0$, $x \ge 0$ has a solution, or 2. $yA \le 0$, $y \ge 0$, $y \ne 0$ has a solution, but not both.

Proof

First,

 $\exists x : Ax \gg 0, \ x \ge 0$ $\iff \exists x' : Ax' \gg 0, \ x' \gg 0$

: Given x such that $Ax \gg 0$, $x \ge 0$, let $x' = x + \varepsilon \mathbf{1}$ for sufficiently small $\varepsilon > 0$.

 Therefore, by Gordan's Theorem (Proposition 1.15), its alternative is

$$\exists y, z : \begin{bmatrix} y & z \end{bmatrix} \begin{bmatrix} A \\ I \end{bmatrix} = 0, \begin{bmatrix} y & z \end{bmatrix} \ge 0, \begin{bmatrix} y & z \end{bmatrix} \ne \begin{bmatrix} 0 & 0 \end{bmatrix} \\ \iff \exists y, z : yA = -z, \ y \ge 0, \ z \ge 0, \ y \ne 0 \\ \iff \exists y : yA \le 0, \ y \ge 0, \ y \ne 0$$

Hyperplanes and Half-Spaces

Definition 1.4

- ▶ A hyperplane is a set of the form $\{x \in \mathbb{R}^n \mid hx = \beta\}$ with $h \in \mathbb{R}^n$, $h \neq 0$, and $\beta \in \mathbb{R}$.
- ▶ A half-space is a set of the form $\{x \in \mathbb{R}^n \mid hx \leq \beta\}$ with $h \in \mathbb{R}^n$, $h \neq 0$, and $\beta \in \mathbb{R}$.

Polyhedral Cones

Definition 1.5

A cone $C \subset \mathbb{R}^m$ is *polyhedral* if there exists $A \in \mathbb{R}^{m \times n}$ such that $C = \{x \in \mathbb{R}^m \mid A^{\mathrm{T}}x \leq 0\}.$

- That is, cone C is polyhedral if it is the intersection of finitely many half spaces.
- $\triangleright \mathbb{R}^m$ is polyhedral by letting A be an " $m \times 0$ matrix".
- A cone C ⊂ ℝ^m is *finitely generated* if there exists A ∈ ℝ^{m×n} such that C = cone(A).

Farkas-Minkowski-Weyl Theorem

Proposition 1.19 (Farkas-Minkowski-Weyl Theorem) A cone is polyhedral if and only if it is finitely generated.

Proof

- Suppose that a cone $C \subset \mathbb{R}^m$ is finitely generated, i.e., $C = \operatorname{cone}(A)$ for some $A = [a^1, \dots, a^n] \in \mathbb{R}^{m \times n}$.
- We first consider the case where rank(A) = m (so $m \le n$).
- For each LI subset S of m-1 columns of A, define

$$\begin{split} F^S &= \{y \in \mathbb{R}^m \mid \|y\| = 1, \\ ya^j &= 0 \text{ for all } j \in S, \\ ya^j &\leq 0 \text{ for all } j \notin S \}. \end{split}$$

- For each such S, since $rank[ker(S^T)] = 1$, there are only two y's such that ||y|| = 1 and yS = 0, and hence $|F^S| \le 2$.
- Let $F = \bigcup F^S$ where the union is taken over all LI subsets S of m-1 columns of A.

Then F is a finite set, since there are finitely many such S's.

• Consider F as the $m \times |F|$ matrix that consists of the vectors in F as columns.

Write $D = \{x \in \mathbb{R}^m \mid F^{\mathrm{T}}x \leq 0\}.$

- ▶ By construction, $ya^j \leq 0$ for all $a^j \in A$ and all $y \in F$. Hence, $cone(A) \subset D$.
- If b ∉ cone(A), then by Proposition 1.6 (Fundamental Theorem of Linear Inequalities), there exists y ∈ ℝ^m such that yA ≤ 0, yS = 0 for some LI subset S of m − 1 columns of A, and yb > 0, where by normalization we can assume ||y|| = 1.

I.e., there is some $y \in F$ such that yb > 0, which implies that $b \notin D$.

▶ This shows that cone(A) = D, i.e., cone(A) is polyhedral.

• Then consider the case where $r = \operatorname{rank}(A) < m$.

Let $A' \in \mathbb{R}^{r \times n}$ be the matrix that consists the first r rows of A, and assume without loss of generality that rank(A') = r.

- By the previous case, there exists a finite set F' ⊂ ℝ^r (considered as an r × |F'| matrix) such that cone(A') = {x' ∈ ℝ^r | (F')^Tx ≤ 0}.
- Fix any basis F'' = {z¹,..., z^{m-r}} of ker(A^T) (note that rank[ker(A^T)] = m r).
 Let D = {x ∈ ℝ^m | (F')^Tx ≤ 0, (F'')^Tx = 0}.

▶ By construction, $ya^j \leq 0$ for all $a^j \in A$ and all $y \in F$. Hence, $cone(A) \subset D$.

Suppose that $b \in \operatorname{span}(A) \setminus \operatorname{cone}(A)$.

Then $b' \notin \operatorname{cone}(A')$, where $b' \in \mathbb{R}^r$ is the vector that consists of the first r components of b.

Then there is some $y \in F'$ such that yb > 0, and hence, $b \notin D$.

Suppose that $b \notin \operatorname{span}(A)$.

Then there exists $z \in \mathbb{R}^m$ such that zA = 0 and $zb \neq 0$.

Then there must be some $z^j \in F''$ such that $z^j b \neq 0$, and hence, $b \notin D$.

• This shows that
$$\operatorname{cone}(A) = D$$
.

Finally, let
$$F = F' \cup F'' \cup (-F'')$$
. Then we have $D = \{x \in \mathbb{R}^m \mid F^T x \leq 0\}$, and thus $\operatorname{cone}(A)$ is polyhedral.
- For the converse, suppose that C is polyhedral, i.e., $C = \{x \in \mathbb{R}^m \mid B^T x \leq 0\}$ for some $B = [b^1, \dots, b^n] \in \mathbb{R}^{m \times n}$.
- ▶ By the "if" part, there exists $G = [z^1, \ldots, z^\ell] \in \mathbb{R}^{m \times \ell}$ such that $\operatorname{cone}(B) = \{x \in \mathbb{R}^m \mid G^T x \leq 0\}.$

We want to show that $C = \operatorname{cone}(G)$.

For all z ∈ G and all b ∈ B (⊂ cone(B)), zb ≤ 0.
 Hence, for all z ∈ G, z ∈ C, and therefore, cone(G) ⊂ C.

Suppose that
$$x \notin \operatorname{cone}(G)$$
.

Then by Farkas' Lemma, there exists $y\in \mathbb{R}^m$ such that $yG\leq 0$ and yx>0,

i.e., there exists $y \in \operatorname{cone}(B)$ such that yx > 0.

- ▶ Then there must be $b^j \in B$ such that $b^j x > 0$, i.e., $x \notin C$.
- This shows that $C \subset \operatorname{cone}(G)$.

Polyhedra and Polytopes

Definition 1.6

 $P \subset \mathbb{R}^m$ is called a *polyhedron* if there exist $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^n$ such that $P = \{x \in \mathbb{R}^m \mid A^T x \leq b\}.$

I.e., it is the intersection of finitely many half-spaces.

Definition 1.7 For a finite set $S = \{x^1, x^2, \dots, x^J\} \subset \mathbb{R}^n$, the vector

$$\sum_{j \in S} \lambda_j x^j$$

with $\lambda_1, \ldots, \lambda_J \ge 0$, $\sum_{j=1}^J \lambda_j = 1$ is called a *convex combination* of S.

Definition 1.8

For $S \subset \mathbb{R}^n$, the set of all convex combinations of finite subsets of S is called the *convex hull* of S and denoted by $\operatorname{conv}(S)$.

Definition 1.9

 $P \subset \mathbb{R}^n$ is called a *polytope* if there exists a finite $S \subset \mathbb{R}^n$ such that P = conv(S).

Resolution Theorem

Proposition 1.20 (Resolution Theorem)

 $P \subset \mathbb{R}^m$, $P \neq \emptyset$, is a polyhedron if and only if P = Q + C for some polytope Q and some finitely generated cone C.

•
$$(Q + C = \{q + c \mid q \in Q, c \in C\})$$

• As a corollary, we have the following (let $C = \{0\}$):

Proposition 1.21

 $P \subset \mathbb{R}^m$, $P \neq \emptyset$, is a bounded polyhedron if and only if it is a polytope.

Proof of Proposition 1.20

The "only if" part:

Suppose that $P = \{x \in \mathbb{R}^m \mid Ax \leq b\}$ for some $A \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}^n$.

- Consider the polyhedral cone $\hat{P} = \{(x, u) \in \mathbb{R}^m \times \mathbb{R} \mid u \ge 0, Ax - ub \le 0\}.$
- ▶ By Proposition 1.19, it is finitely generated, i.e., $\hat{P} = \operatorname{cone}(\{(x^1, u_1), \dots, (x^J, u_J)\})$ for some $(x^1, u_1), \dots, (x^J, u_J) \in \mathbb{R}^m \times \mathbb{R}$, where $u^j \ge 0$.

• Let
$$J^+ = \{j \mid u_j > 0\}$$
 and $J^0 = \{j \mid u_j = 0\}.$

By normalization, we let $u_j = 1$ for $j \in J^+$.

• Let $Q = \operatorname{conv}(\{x^j \mid j \in J^+\})$ and $C = \operatorname{cone}(\{x^j \mid j \in J^0\})$. We want to show that P = Q + C.

$$\begin{split} x \in P \iff (x,1) \in \hat{P} \\ \iff (x,1) &= \sum_{j \in J^+} \lambda_j (x^j,1) + \sum_{j \in J^0} \lambda_j (x^j,0) \\ &\text{ for some } \lambda_1, \dots, \lambda_J \geq 0 \\ \iff x &= \sum_{j \in J^+} \lambda_j x^j + \sum_{j \in J^0} \lambda_j x^j \\ &\text{ for some } \lambda_1, \dots, \lambda_J \geq 0 \text{ with } \sum_{j \in J^+} \lambda_j = 1 \\ \iff x \in \operatorname{conv}(\{x^j \mid j \in J^+\}) + \operatorname{cone}(\{x^j \mid j \in J^0\}). \end{split}$$

► The "if" part:

Suppose that $P = \operatorname{conv}(\{x^1, \dots, x^J\}) + \operatorname{cone}(\{y^1, \dots, y^K\})$ for some $x^1, \dots, x^J, y^1, \dots, y^K \in \mathbb{R}^m$.

• Define $\overline{P} = \operatorname{cone}(\{(x^1, 1), \dots, (x^J, 1), (y^1, 0), \dots, (y^K, 0)\}).$

▶ By Proposition 1.19, the cone \overline{P} is polyhedral, i.e., $\overline{P} = \{(x, u) \in \mathbb{R}^m \times \mathbb{R} \mid Ax - ub \leq 0\}$ for some $A \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}^n$.

• Let
$$P' = \{x \in \mathbb{R}^m \mid Ax \le b\}.$$

We want to show that P = P'.

lndeed, $x \in P \iff (x,1) \in \overline{P} \iff Ax - b \leq 0$.

Application: Linear Production Model

▶ Inputs: $\{1, \ldots, m\}$

Input vector: $x \in \mathbb{R}^m_+$

• Outputs: $\{1, \ldots, n\}$

Output vector: $y \in \mathbb{R}^n$

- $P \in \mathbb{R}^{m \times n}$: Production matrix u = xP
- $b \in \mathbb{R}^k_+$: Resource/capacity vector

C ∈ ℝ^{m×k}₊: Consumption matrix (C ≠ O)
 Resource constraint: xC ≤ b

▶ Input space: $X = \{x \in \mathbb{R}^m \mid xC \le b, \ x \ge 0\}$

• Output space:
$$Y = \{y \in \mathbb{R}^n \mid y = xP, x \in X\}$$

Lemma 1.22 *Y* is a polyhedron, *i.e.*, $Y = \{y \in \mathbb{R}^n \mid yD \leq r\}$ for some $D \in \mathbb{R}^{n \times \ell}$ and $r \in \mathbb{R}^{\ell}$.

Proof

- X is a bounded polyhedron (since C ≥ 0 and X ⊂ ℝ^m₊), and hence is a polytope by the Resolution Theorem,
 i.e., X = conv(E) for some finite set E ⊂ ℝ^m.
- Then $Y = \operatorname{conv} \{ xP \mid x \in E \}$; thus Y is a polytope.
- ▶ By the Resolution Theorem, Y is a (bounded) polyhedron.

• $y \in Y$ is *efficient* if there is no $y' \in Y$ such that $y' \ge y$, $y' \ne y$.

Proposition 1.23

 $y^* \in Y$ is efficient if and only if there exists $p \gg 0$ such that $y^*p \ge yp$ for all $y \in Y$.

- With " $p \ge 0$, $p \ne 0$ " in place of " $p \gg 0$ ":
 - the "if" part is false;
 - the "only if" part holds whenever Y is a convex set (not only for polyhedron Y).

Proof

The "if" part:

If y^* is not efficient, i.e., $y' - y^* \ge 0$, $\ne 0$ for some $y' \in Y$, then for any $p \gg 0$, we have $(y' - y^*)p > 0$ or $y'p > y^*p$.

The "only if" part:

Suppose that $y^* \in Y$ is efficient.

- ▶ By Lemma 1.22, Y is written as $Y = \{y \in \mathbb{R}^n \mid yD \leq r\}$ for some $D \in \mathbb{R}^{n \times \ell}$ and $r \in \mathbb{R}^{\ell}$.
- Write D = [S|T] and $r = [r^S|r^T]$ so that $y^*S = r^S$ and $y^*T \ll r^T$.

►
$$S \neq \emptyset$$
 by the efficiency of y^* :
If $S = \emptyset$, i.e., $y^*D \ll r$, then $(y^* + \varepsilon \mathbf{1})D \leq r$ for sufficiently
small $\varepsilon > 0$, where $y^* + \varepsilon \mathbf{1} \geqq y^*$.

► $zS \leq 0$, $z \geq 0$, $z \neq 0$ has no solution by the efficiency of y^* : If there exists such z, then $(y^* + \varepsilon z)D \leq r$ for sufficiently small $\varepsilon > 0$, where $y^* + \varepsilon z \geqq y^*$.

By Ville's Theorem (Problem 5 in Homework 1), Sλ ≫ 0, λ ≥ 0 has a solution.

For a solution
$$\lambda$$
, let $p = S\lambda \ (\gg 0)$.

• Then for any
$$y \in Y$$
 (where $yS \leq r$), we have

$$y^*p = y^*S\lambda = r^S\lambda,$$

$$yp = yS\lambda \le r^S\lambda,$$

as desired.