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Things to know from linear algebra
▶ For S = {x1, x2, . . .} ⊂ Rn,

we also use S to denote the index set, i.e., S = {1, 2, . . .}.

▶ For a finite set S = {x1, x2, . . . , xJ} ⊂ Rn, the vector∑
j∈S

λjx
j

with λ1, . . . , λJ ∈ R is called a linear combination of S.

▶ For S ⊂ Rn, the set of all linear combinations of finite subsets
of S is called the span of S and denoted by span(S).

▶ A finite set S ⊂ Rn is linearly independent (LI) if∑
j∈S

λjx
j = 0⇒ λj = 0 for all j ∈ S.

▶ A finite set S ⊂ Rn is linearly dependent (LD) if it is not
linearly independent.
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▶ For S ⊂ Rn, a finite B ⊂ S is a maximal LI subset of S if
B ∪ {x} is LD for any x ∈ S \B.

A maximal LI subset of S is called a basis of S.

▶ Write ei for the ith standard unit vector of Rn, i.e.,
ei = (0, . . . , 1

i
, . . . , 0).

{e1, . . . , en} is a basis of Rn.

Proposition 1.1

If B is a basis of S ⊂ Rn, then span(S) = span(B).
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Proposition 1.2

1. If a finite S ⊂ Rn is LI, then |S| ≤ n.

2. Any S ⊂ Rn, S ̸= ∅, has a basis.

3. Suppose that B is a basis of S ⊂ Rn and B′ is a finite LI
subset of S.

▶ |B′| ≤ |B|.
▶ B′ is a basis of S if and only if |B′| = |B|.

▶ The rank of S ⊂ Rn, denoted rank(S), is the cardinality |B|
of any basis B of S.

▶ The dimension of span(S), denoted dim[span(S)], is the rank
of S, rank(S).
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▶ Rm×n: Set of m× n matrices

▶ For A ∈ Rm×n, we write aj for the jth column vector of A.

▶ We often identify A ∈ Rm×n with the set of its column
vectors, i.e., A = {a1, . . . , an} ⊂ Rm.

▶ For A ∈ Rm×n, AT ∈ Rn×m denotes the transpose of A.

▶ For x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn, we write
xy =

∑n
j=1 xjyj (instead of x · y or xTy).

▶ For A ∈ Rm×n, x ∈ Rn, y ∈ Rm:

▶ Ax =
∑n

j=1 xja
j ∈ Rm

· · · linear combination of column vectors a1, . . . , an with
coefficients x1, . . . , xn

▶ yA = (ya1, . . . , yan) ∈ Rn (instead of yTA)
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▶ The span of A: span(A) = {Ax ∈ Rm | x ∈ Rn}.

▶ The kernel (or null space) of A: ker(A) = {x ∈ Rn | Ax = 0}.

(ker(AT) = {y ∈ Rm | yA = 0})

Proposition 1.3

For A ∈ Rm×n,

rank(A) = rank(AT).

Proposition 1.4

For A ∈ Rm×n,

rank[span(A)] + rank[ker(AT)] = m.
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▶ A square matrix A ∈ Rn×n is non-singular if rank(A) = n,
i.e., the columns of A are LI.

▶ For A ∈ Rn×n, B ∈ Rn×n such that AB = BA = I is called
the inverse of A and denoted A−1.

▶ A ∈ Rn×n is invertible if A−1 exists.

▶ A ∈ Rn×n is invertible if and only if it is non-singular.
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Fundamental Theorem of Linear Algebra

Proposition 1.5

Let A ∈ Rm×n and b ∈ Rm. Either

1. Ax = b has a solution, or

2. yA = 0, yb ̸= 0 has a solution,

but not both.

▶ A theorem of the form “Either . . . , or . . . , but not both” is
called a “theorem of the alternative”.

▶ Condition 1 is equivalent to “b ∈ span(A)”.
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Proof

▶ Write [A|b] = (a1, . . . , an, b) ∈ Rm×(n+1).

▶ Recall

span(A) = {Ax ∈ Rm | x ∈ Rn},
span([A|b]) = {Ax+ λb ∈ Rm | x ∈ Rn, λ ∈ R},
ker(AT) = {y ∈ Rm | yA = 0},
ker([A|b]T) = {y ∈ Rm | yA = 0, yb = 0}.

Clearly, span(A) ⊆ span([A|b]), b ∈ span([A|b]), and
ker(AT) ⊇ ker([A|b]T).
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▶ By Proposition 1.4, we have

rank[span(A)] + rank[ker(AT)]

= m = rank[span([A|b])] + rank[ker([A|b]T)].

▶ Therefore, we have

b ∈ span(A)

⇐⇒ span(A) = span([A|b])
⇐⇒ rank[span(A)] = rank[span([A|b])]
⇐⇒ rank[ker(AT)] = rank[ker([A|b]T)]
⇐⇒ ker(AT) = ker([A|b]T)
⇐⇒ yb = 0 whenever yA = 0.
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Cones

Definition 1.1
C ⊂ Rn is a cone if

x ∈ C, λ > 0⇒ λx ∈ C.

▶ Some textbooks define cones with “λ ≥ 0”.
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▶ For a finite set S = {x1, x2, . . . , xJ} ⊂ Rn, a non-negative
linear combination∑

j∈S
λjx

j

with λ1, . . . , λJ ≥ 0 is called a conic combination of S.

▶ For S ⊂ Rn, the set of all conic combinations of finite subsets
of S is called the conic hull of S and denoted by cone(S).

▶ cone(S) is a cone.

Definition 1.2
For A ∈ Rm×n, the conic hull of the column vectors of A is called
the finite cone generated by the columns of A and denoted by
cone(A), i.e.,

cone(A) = {Ax ∈ Rm | x ≥ 0}.
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Farkas’ Lemma

▶ In Mathematics II, we proved Farkas’ Lemma by the separating
hyperplane theorem + the closedness of a finite cone.

▶ Here we prove Farkas’ Lemma by an algebraic argument.

▶ We will later prove separating hyperplane theorems from
Farkas’ Lemma.
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Fundamental Theorem of Linear Inequalities

Proposition 1.6

Let A ∈ Rm×n and b ∈ Rm. Let r = rank(A). Either

1. b is written as a conic combination of LI columns of A, or

2. there exist an LI set of r − 1 columns of A, {aj1 , . . . , ajr−1},
and y ∈ Rm such that yajt = 0 for all t = 1, . . . , r − 1,
yA ≥ 0, and yb < 0.

but not both.

▶ From Schrijver, Theory of Linear and Integer Programming,
Theorem 7.1.
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Proof

▶ Both conditions cannot hold simultaneously:

If b = Ax for some x ≥ 0 and there is y as in Condition 2,
then we would have

0 > yb = y(Ax) = (yA)x ≥ 0.

▶ If b /∈ span(A), then by the Fundamental Theorem of Linear
Algebra (Proposition 1.5), there is y such that yA = 0 and
yb < 0. → Condition 2

▶ In the following, we assume that b ∈ span(A).
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▶ Consider the following procedure (recall r = rank(A)):

0. Let D = {aj1 , . . . , ajr} be any linearly independent set of
r column vectors of A.

1. Write b =
∑

j∈D λja
j .

If λj ≥ 0 for all j ∈ D, then stop. → Condition 1

2. Otherwise, choose the smallest index h among {j1, . . . , jr}
with λh < 0.

Let y be such that ya = 0 for all a ∈ D \ {ah} and yah ̸= 0.
(Such y exists by Proposition 1.5 since ah /∈ span(D \ {ah}).)
Normalize y so that yah = 1.

Observe that yb = y
(∑

j∈D λja
j
)
= λh < 0.

3. If ya ≥ 0 for all a ∈ A, then stop. → Condition 2

4. Otherwise, choose the smallest index w such that yaw < 0.

Let D ← (D \ {ah}) ∪ {aw}, which is linearly independent
(since aw /∈ span(D \ {ah})), and go to Step 1.
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▶ Let Dk denote the set D at the start of the kth iteration of
this procedure.

▶ We want to show that this procedure stops with finitely many
iterations.

▶ Assume the contrary.

Then, since there are finitely many linearly independent sets
of columns of A, we have Dk = Dℓ for some k and ℓ, k < ℓ.

▶ Let s be the largest index for which as is removed at one of
the iterations k, k + 1, . . . , ℓ− 1, say iteration p.

▶ Since Dℓ = Dk, as is inserted in D at some iteration q,
k ≤ q ≤ ℓ− 1.
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▶ Write Dp = {aj1 , . . . , ajr}.

▶ At iteration p (where as is removed): b =
∑

j∈Dp λ
p
ja

j , where

▶ λp
s < 0; and

▶ λp
jt
≥ 0 for all jt < s.

▶ At iteration q (where as is inserted): Let yq be as in Step 2.
Then

▶ yqas < 0; and

▶ yqaj ≥ 0 for all j < s.

▶ For all jt > s, we have ajt ∈ Dℓ, hence ajt ∈ Dk, and hence
ajt ∈ Dq. Therefore,

▶ yqajt = 0 for all jt > s.

▶ Therefore, we have

yqb = yq
(∑

j∈Dp λ
p
ja

j
)
=
∑

j∈Dp λ
p
j (y

qaj) > 0,

which contradicts yqb < 0.
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Farkas’ Lemma

Proposition 1.7 (Farkas’ Lemma)

Let A ∈ Rm×n and b ∈ Rm. Either

1. Ax = b, x ≥ 0 has a solution, or

2. yA ≥ 0, yb < 0 has a solution,

but not both.

▶ Condition 1 is equivalent to “b ∈ cone(A)”.

Proof

▶ Both conditions cannot hold simultaneously.

▶ If Condition 1 does not hold, then by Proposition 1.6,
Condition 2 holds.
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Example 6

▶ A =

[
4 1 −5
1 0 2

]
, b =

[
1
1

]
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Example 7

▶ A =


1 1 0
0 1 1
1 0 1
1 1 1

, b =

2
2
2
1


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Variant of Farkas’ Lemma

Proposition 1.8 (Gale’s Theorem)

Let A ∈ Rm×n and b ∈ Rm. Either

1. Ax ≤ b has a solution, or

2. yA = 0, y ≥ 0, yb < 0 has a solution,

but not both.
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Proof

▶ ∃x : Ax ≤ b

⇐⇒ ∃x, s : Ax+ s = b, s ≥ 0

⇐⇒ ∃ z, z′, s : A(z − z′) + s = b, z ≥ 0, z′ ≥ 0, s ≥ 0

⇐⇒ ∃ z, z′, s :
[
A −A I

] zz′
s

 = b,

zz′
s

 ≥ 0

▶ The Farkas alternative is

y
[
A −A I

]
≥ 0, yb < 0, or

yA ≥ 0, −yA ≥ 0, yI ≥ 0, yb < 0, i.e.,

yA = 0, y ≥ 0, yb < 0.
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Variant of Farkas’ Lemma

Proposition 1.9 (Farkas’ Lemma: Inequality version)

Let A ∈ Rm×n and b ∈ Rm. Either

1. Ax ≤ b, x ≥ 0 has a solution, or

2. yA ≥ 0, y ≥ 0, yb < 0 has a solution,

but not both.
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Proof

▶ Condition 1 is written as ∃x :

[
A
−I

]
x ≤

[
b
0

]
.

▶ By Proposition 1.8, its alternative is:

∃ y, z :
[
y z

] [ A
−I

]
= 0,

[
y z

]
≥ 0,

[
y z

] [b
0

]
< 0, or

∃ y, z : yA = z, y ≥ 0, z ≥ 0, yb < 0

⇐⇒ ∃ y : yA ≥ 0, y ≥ 0, yb < 0.
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Application: No Arbitrage

▶ Assets: 1, . . . ,m

▶ States: Ω = {1, . . . , n}

▶ aij : payoff to asset i in state j

A = (aij) ∈ Rm×n

▶ y ∈ Rm: portfolio

▶ yi > 0: long position in asset i

▶ yi < 0: short position in asset i

▶ Ex post wealth vector of y:

yA =

(
m∑
i=1

yiaij

)
j∈Ω
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▶ p ∈ Rm, p ≥ 0, p ̸= 0: vector of asset prices

▶ p satisfies the no arbitrage condition if there exists no y ∈ Rm

such that

yA ≥ 0, yp < 0.

▶ By Farkas’ Lemma, the no arbitrage condition is equivalent to
the condition that there exists π̂ ∈ Rn such that

p = Aπ̂, π̂ ≥ 0.

▶ By p ̸= 0, we have π̂ ̸= 0. So by normalization we have

p∗ = Aπ,

where p∗ = p∑
j π̂j

and π = π̂∑
j π̂j

.

▶ π ∈ Rn: risk-neutral probability distribution
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Option Pricing

▶ States: Ω = {g, b}

▶ Assets

▶ Stock (risky asset): (uS0, dS0), u > 1 > d

▶ Bond (safe asset): (rB, rB), r > 1

Assume u > r (> 1 > d)

▶ Call option (derivative asset):
(max{0, uS0 −K},max{0, dS0 −K})
K: strike price

option to buy the stock at price K

▶ Asset price vector: p = (S0, B, p3)

Determine p3 so that p satisfies the no arbitrage condition.
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▶ Payoff matrix:

A =

 uS0 dS0

rB rB
max{0, uS0 −K} max{0, dS0 −K}


▶ (Un-normalized) risk-neutral probability distribution π̂:

Aπ̂ = p
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▶ From the first two equations:

uS0π̂1 + dS0π̂2 = S0,

rBπ̂1 + rBπ̂2 = B.

This system has a unique solution

π̂1 =
r − d

r(u− d)
, π̂2 =

u− r

r(u− d)
(> 0 by u > r > d).

▶ For no arbitrage,

p3 = π̂1max{0, uS0 −K}+ π̂2max{0, dS0 −K}.
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Application: Cooperative Games

▶ A cooperative game (with transferable utility) is a pair (v,N)
where

▶ N = {1, . . . , n}: finite set of players; and

▶ v : 2N → R, where

for S ⊂ N , v(S) represents the monetary value of coalition S.
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Definition 1.3
The core of game (v,N) is the set

C(v,N) =

x ∈ Rn

∣∣∣∣ ∑
j∈N

xj = v(N),
∑
j∈S

xj ≥ v(S) for all S ⊂ N

 .

▶ That is, the core is the set of allocations x ∈ Rn such that

▶ the value v(N) of the grand coalition N is allocated without
waste; and

▶ there is no coalition that “blocks” x,

i.e., there is no coalition S such that
∑

j∈S xj < v(S).

▶ The core may be empty.

In what games is the core non-empty?
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▶ Let B(N) be the set of vectors (yS)S⊂N ∈ R2n such that∑
S:i∈S

yS = 1 for all i ∈ N,

yS ≥ 0 for all S ⊂ N.

▶ For example, the vector (yS)S⊂N ∈ R2n such that

yN = 1

yS = 0 for all S ̸= N

is in B(N).

Thus, B(N) ̸= ∅.
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Proposition 1.10 (Bondareva-Shapley)

C(v,N) ̸= ∅ if and only if

v(N) ≥
∑
S⊂N

v(S)yS for all (yS)S⊂N ∈ B(N). (∗)

▶ Game (v,N) is said to be balanced if (∗) holds.

(Or equivalently, (v,N) is balanced if C(v,N) ̸= ∅.)

33 / 83



Proof

▶ The condition C(v,N) ̸= ∅ is written as

∃x ∈ Rn :
∑

j∈N xj ≤ v(N),
∑

j∈S(−xj) ≤ −v(S) ∀S ⊂ N

⇐⇒ ∃x ∈ Rn : Ax ≤ b, where

A =


1 · · · 1

...
0 · · · −1 · · · − 1︸ ︷︷ ︸

S

· · · 0

...

 ∈ R(1+2n)×n,

b =


v(N)
...

−v(S)
...


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▶ By Proposition 1.8 (Gale’s Theorem), its alternative is:

∃ y ∈ R1+2n : yA = 0, y ≥ 0, yb < 0

⇐⇒ ∃ y = (y0, . . . , yS . . .) ∈ R1+2n :

y0 −
∑
S:i∈S

yS = 0 ∀ i ∈ N

y0 ≥ 0, yS ≥ 0 ∀S ⊂ N

y0v(N)−
∑
S⊂N

ySv(S) < 0

(For such y, y0 > 0, so let y0 = 1.)

⇐⇒ ∃ (yS)S⊂N ∈ R2n :∑
S:i∈S

yS = 1 ∀ i ∈ N

yS ≥ 0 ∀S ⊂ N

v(N)−
∑
S⊂N

ySv(S) < 0
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▶ ⇐⇒ ∃ (yS)S⊂N ∈ B(N) : v(N) <
∑

S⊂N ySv(S)

▶ The negation of this condition is:

∀ (yS)S⊂N ∈ B(N) : v(N) ≥
∑

S⊂N ySv(S)
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Example

▶ N = {1, 2, 3}

▶ v(S) =

{
1 if |S| = 2

0 if |S| ≤ 1

▶ Determine the condition for v(N) under which C(v,N) ̸= ∅.
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Necessity

▶ C(v,N) ̸= ∅ means that there exists x = (x1, x2, x3) ∈ R3

such that

x1 + x2 + x3 = v(N), (1)

x1 + x2 ≥ v({1, 2}) = 1, (2)

x2 + x3 ≥ v({2, 3}) = 1, (3)

x3 + x1 ≥ v({3, 1}) = 1, (4)

x1 ≥ v({1}) = 0,

x2 ≥ v({2}) = 0,

x3 ≥ v({3}) = 0.

▶ Adding (2)–(4) and applying (1), we have
2v(N) = 2(x1 + x2 + x3) = 3, or v(N) ≥ 3

2 .
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Sufficiency
▶ Conversely, suppose that v(N) ≥ 3

2 .

We want to show that the balancedness condition is satisfied.

▶ Let (yS) ∈ B(N), i.e., yS ≥ 0 for all S ⊂ N and∑
S:i∈S yS = 1 for all i ∈ N .

▶ Then we have

y{1,2}v({1, 2}) + y{2,3}v({2, 3}) + y{3,1}v({3, 1}) + yNv(N)

=
1

2
[(y{1,2} + y{2,3}) + (y{2,3} + y{3,1}) + (y{3,1} + y{1,2})] + yNv(N)

≤ 1

2
[(1− yN ) + (1− yN ) + (1− yN )] + yNv(N)

=
3

2
+ yN︸︷︷︸

≤1

(
v(N)− 3

2

)
︸ ︷︷ ︸

≥0

≤ v(N).

▶ Thus, C(v,N) ̸= ∅ if and only if v(N) ≥ 3
2 .
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Application: Afriat’s Theorem

▶ We are given a dataset of price vector-consumption vector
pairs: D = {(p1, x1), . . . , (pn, xn)}, where pi ∈ Rm

++ and
xi ∈ Rm

+ .

▶ Is there a utility function that rationalizes D?

A function u : Rm
+ → R is a utility function that rationalizes D

if for all i = 1, . . . , n,

pix ≤ pixi =⇒ u(x) ≤ u(xi)

(i.e., xi ∈ argmax{u(x) | pix ≤ pixi}).

▶ The answer is trivially yes: let u be a constant function.

▶ Is there a locally insatiable utility function that rationalizes D?
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▶ u is locally insatiable if for any x ∈ Rm
+ and ε > 0,

there exists x′ ∈ Rm
+ such that d(x′, x) < ε and u(x′) > u(x).

▶ For a locally insatiable utility function u,

if x∗ ∈ argmax{u(x) | px ≤ I}, then px∗ = I.
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Necessary Condition

▶ Suppose that a locally insatiable u rationalizes D.

▶ Then

▶ pixj ≤ pixi =⇒ u(xj) ≤ u(xi);

▶ pixj < pixi =⇒ u(xj) < u(xi) (by local insatiability).

▶ Denote aij = pi(xj − xi). (aij ≤ 0 ⇐⇒ pixj ≤ pixi)

▶ If we have a cycle

ai1i2 ≤ 0, ai2i3 ≤ 0, . . . , aik−1ik ≤ 0, aiki1 ≤ 0,

then u(xi1) ≤ u(xi2) ≤ · · · ≤ u(xik−1) ≤ u(xik) ≤ u(xi1),
and therefore, ai1i2 = 0, ai2i3 = 0, . . . , aik−1ik = 0, aiki1 = 0.

▶ Call this necessary condition “Afriat Condition” (AC).
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Afriat Condition

▶ Dataset D = {(p1, x1), . . . , (pn, xn)} is said to satisfy AC if
there exists no cycle (i1, i2, . . . , ik, i1) such that

ai1i2 ≤ 0, ai2i3 ≤ 0, . . . , aik−1ik ≤ 0, aiki1 ≤ 0

with at least one “≤” holding with “<”.

▶ (This is equivalent to the following:

for any cycle (i1, i2, . . . , ik, i1) such that
∑k

ℓ=1 aiℓiℓ+1
< 0,

there exists some ℓ such that aiℓiℓ+1
> 0.)

▶ AC is a necessary condition for the rationalizability of D.

Afriat’s theorem shows that it is also sufficient.
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Afriat’s Theorem

Proposition 1.11

D is rationalized by a locally insatiable utility function
if and only if it satisfies AC.
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▶ Consider the following system of inequalities:

si ≥ 1 for all i,(P)

yi + aijsi − yj ≥ 0 for all (i, j), i ̸= j.

▶ The alternative:

zi +
∑
j

aijwij = 0 for all i,

∑
j

wij −
∑
k

wki = 0 for all i,

∑
i

zi > 0,

zi ≥ 0 for all i,

wij ≥ 0 for all (i, j), i ̸= j.
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▶ This is equivalent to:∑
j

aijwij ≤ 0 for all i,(D)

∑
j

aijwij < 0 for some i,

∑
j

wij =
∑
k

wkj for all i,

wij ≥ 0 for all (i, j), i ̸= j.
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Proposition 1.12

The following conditions are equivalent:

1. D is rationalized by a locally insatiable utility function.

2. (P) is feasible.

3. (D) is infeasible.

4. D satisfies AC.

Proof

▶ 1 ⇒ 4: Already verified.

▶ 2 ⇔ 3: By Proposition 1.8 (Gale’s Theorem).
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Proof of “2 ⇒ 1”
▶ Suppose that (P) is feasible, i.e., there exist yi and si such

that

yj ≤ yi + pi(xj − xi)si, si ≥ 1

for all i and j.

▶ Define u : Rm
+ → R by

u(x) = min{y1 + p1(x− x1)s1, . . . , yn + pn(x− xn)sn},

which is strictly increasing (and hence locally insatiable).

(In fact, it is also continuous and concave).

▶ Then,

u(xj) = min{yj , yi + pi(xj − xi)si, i ̸= j}
= yj (by (P)).

48 / 83



▶ Therefore, if pjx ≤ pjxj (or pj(x− xj) ≤ 0), then

u(x) ≤ yj + pj(x− xj)sj

≤ yj = u(xj).

▶ This shows that the function u rationalizes D.
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Proof of “4 ⇒ 3” (“not 3 ⇒ not 4”)

Lemma 1.13
If (D) is feasible, then there exists a feasible solution (wij) such
that there exists no cycle (i1, . . . , ik, i1) such that aiℓiℓ+1

= 0 and
wiℓiℓ+1

> 0 for all ℓ = 1, . . . , k.
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▶ Let (wij) be a feasible solution of (D):
∑

j aijwij ≤ 0 for all i
with “<” for some i,

∑
j wij =

∑
k wki for all i, and wij ≥ 0

for all i, j.

▶ Suppose that there exists a cycle (i1, . . . , ik, i1) such that
aiℓiℓ+1

= 0 and wiℓiℓ+1
> 0 for all ℓ = 1, . . . , k.

Write C = {(i1, i2), . . . , (ik−1, ik), (ik, i1)}.

▶ Let ε = minℓwiℓiℓ+1
, and define (w′

ij) by

w′
ij =

{
wij − ε if (i, j) ∈ C,

wij if (i, j) /∈ C.

51 / 83



▶ Then, (w′
ij) also is a feasible solution of (D):

▶ w′
ij ≥ 0 for all i, j;

▶ aijw
′
ij = aijwij , so that

∑
j aijw

′
ij ≤ 0 for all i, with “<” for

some i;

▶ for each i ∈ {i1, . . . , ik}, there are exactly one j such that
(i, j) ∈ C and exactly one k such that (k, i) ∈ C, so that∑

j w
′
ij −

∑
k w

′
ki =

∑
j wij −

∑
k wki = 0.

▶ By construction, w′
iℓiℓ+1

= 0 for some ℓ.

▶ Since there are finitely many possible cycles, by repeating this
procedure we obtain a desired feasible solution.

[End of Lemma 1.13]
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▶ Now suppose that (D) is feasible.

Let (wij) be a feasible solution of (D) as in Lemma 1.13:

▶ ∑
j aijwij ≤ 0 for all i with “<” for some i,∑
j wij =

∑
k wki for all i, and wij ≥ 0 for all i, j, and

▶ if aiℓiℓ+1
≤ 0 and wiℓiℓ+1

> 0 for all ℓ = 1, . . . , k,
then aiℓiℓ+1

< 0 for some ℓ.

▶ Let i1 be such that
∑

j ai1jwi1j < 0.

▶ Then there is some i2 such that ai1i2 < 0 and wi1i2 > 0.

Then
∑

j wi2j =
∑

k wki2 > 0, so that wi2j > 0 for some j.

▶ Then there is some i3 such that ai2i3 ≤ 0 and wi2i3 > 0.

(Otherwise, we would have
∑

j ai2jwi2j > 0.)

· · ·
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▶ Proceeding this way, we have a sequence:

ai1i2 < 0, wi1i2 > 0

ai2i3 ≤ 0, wi2i3 > 0

ai3i4 ≤ 0, wi3i4 > 0

...

▶ Since there are finitely many indices, we eventually repeat an
index.

▶ If the repeated index is i1, then we have a violation of AC.

▶ Otherwise, we have a cycle of nonpositive aij ’s,
but by the choice of (wij), there must be a negative aij ,
which is again a violation of AC.
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Problem 2.9

Proposition 1.14

Let A ∈ Rm×n and b ∈ Rm. Either

1. Ax≪ b has a solution, or

2. yA = 0, yb ≤ 0, y ≥ 0, y ̸= 0 has a solution,

but not both.
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Proof

▶ Condition 2 is rewritten as:

∃ y ∈ Rm : yA = 0, yb ≤ 0, y ≥ 0, y ̸= 0

⇐⇒ ∃ y ∈ Rm, s ∈ R :
yA = 0, yb+ s = 0, s ≥ 0, y ≥ 0, y1 = 1

(1 is the vector of ones)

⇐⇒ ∃ y ∈ Rm, s ∈ R :[
y s

] [A b 1
0 1 0

]
=
[
0 0 1

]
,
[
y s

]
≥ 0

▶ By Farkas’ Lemma, its alternative is:

∃x ∈ Rn, z ∈ R, w ∈ R :[
A b 1
0 1 0

]xz
w

 ≥ 0,
[
0 0 1

] xz
w

 < 0
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▶ ⇐⇒ ∃x ∈ Rn, z ∈ R, w ∈ R :
Ax+ zb+ w1 ≥ 0, z ≥ 0, w < 0

⇐⇒ ∃x ∈ Rn, z ∈ R, w ∈ R :
Ax+ zb ≥ (−w)1, z ≥ 0, −w > 0

⇐⇒ ∃x ∈ Rn, z ∈ R : Ax+ zb≫ 0, z ≥ 0

⇐⇒ ∃x ∈ Rn : Ax≪ b

▶ The last equivalence holds because:

▶ If z = 0, then ∃x : Ax≫ 0.

A(−tx)≪ 0 can be arbitrarily small as t→∞.

Hence, ∃x′ : Ax′ ≪ b.

▶ If z > 0, then ∃x, z : A
(

x
−z

)
≪ b.

Hence, ∃x′ : Ax′ ≪ b.

▶ For the converse, let x = −x′ and z = 1.
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Problem 2.7

Proposition 1.15 (Gordan’s Theorem)

Let A ∈ Rm×n. Either

1. Ax = 0, x ≥ 0, x ̸= 0 has a solution, or

2. yA≫ 0 has a solution,

but not both.

▶ Special case of Problem 2.9:

Let b = 0 (and replace A with −AT).
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Problem 2.6

Proposition 1.16

Let A ∈ Rm×n. Either

1. Ax = 0, x ≥ 0, 1x = 1 has a solution, or

2. yA≫ 0 has a solution,

but not both.

▶ Condition 1 is equivalent to Condition 1 in Problem 2.7.
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Problem 2.8

▶ A = (aij) ∈ Rn×n is a column Markov matrix (or column
stochastic matrix) if aij ≥ 0 for all i, j, and

∑n
i=1 aij = 1 for

all j.

▶ It represents the transition probabilities of a Markov chain:

aij : probability that the random variable changes from j to i.

▶ x ∈ Rn is a probability vector if xj ≥ 0 for all j, and∑n
j=1 xj = 1.

▶ A probability vector x is a steady state vector (or stationary
distribution) of a column Markov matrix A if Ax = x.

Proposition 1.17

Every Markov matrix has a steady state vector.
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Proof

▶ Let A ∈ Rn×n be a column Markov matrix.

▶ We want to show that A has a steady state vector x.

This is rewritten as:

∃x : Ax = x, x ≥ 0, 1x = 1

⇐⇒ ∃x : (A− I)x = 0, x ≥ 0, 1x = 1

▶ By Problem 2.6, its alternative is:

∃ y : y(A− I)≫ 0

⇐⇒ ∃ y : yA≫ y

It suffices to show that this condition does not hold.
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▶ Take any y ∈ Rn.

Let j∗ be such that yj∗ ≥ yj for all j.

▶ Then we have

(yA)j∗ =

n∑
i=1

yiaij∗

≤
n∑

i=1

yj∗aij∗ (∵ aij∗ ≥ 0 for all i)

= yj∗
n∑

i=1

aij∗

= yj∗ . (∵
n∑

i=1

aij∗ = 1)

▶ Therefore, yA≫ y cannot hold.
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Variant of Farkas’ Lemma

Proposition 1.18 (Ville’s Theorem)

Let A ∈ Rm×n. Either

1. Ax≫ 0, x ≥ 0 has a solution, or

2. yA ≤ 0, y ≥ 0, y ̸= 0 has a solution,

but not both.
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Proof

▶ First,

∃x : Ax≫ 0, x ≥ 0

⇐⇒ ∃x′ : Ax′ ≫ 0, x′ ≫ 0

∵ Given x such that Ax≫ 0, x ≥ 0, let x′ = x+ ε1 for
sufficiently small ε > 0.

▶ Therefore, by Gordan’s Theorem (Proposition 1.15), its
alternative is

∃ y, z :
[
y z

] [A
I

]
= 0,

[
y z

]
≥ 0,

[
y z

]
̸=
[
0 0

]
⇐⇒ ∃ y, z : yA = −z, y ≥ 0, z ≥ 0, y ̸= 0

⇐⇒ ∃ y : yA ≤ 0, y ≥ 0, y ̸= 0
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Hyperplanes and Half-Spaces

Definition 1.4
▶ A hyperplane is a set of the form {x ∈ Rn | hx = β} with

h ∈ Rn, h ̸= 0, and β ∈ R.

▶ A half-space is a set of the form {x ∈ Rn | hx ≤ β} with
h ∈ Rn, h ̸= 0, and β ∈ R.
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Polyhedral Cones

Definition 1.5
A cone C ⊂ Rm is polyhedral if there exists A ∈ Rm×n such that
C = {x ∈ Rm | ATx ≤ 0}.

▶ That is, cone C is polyhedral if it is the intersection of finitely
many half spaces.

▶ Rm is polyhedral by letting A be an “m× 0 matrix”.

▶ A cone C ⊂ Rm is finitely generated if there exists A ∈ Rm×n

such that C = cone(A).
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Farkas-Minkowski-Weyl Theorem

Proposition 1.19 (Farkas-Minkowski-Weyl Theorem)

A cone is polyhedral if and only if it is finitely generated.

67 / 83



Proof
▶ Suppose that a cone C ⊂ Rm is finitely generated, i.e.,

C = cone(A) for some A = [a1, . . . , an] ∈ Rm×n.

▶ We first consider the case where rank(A) = m (so m ≤ n).

▶ For each LI subset S of m− 1 columns of A, define

FS = {y ∈ Rm | ∥y∥ = 1,

yaj = 0 for all j ∈ S,

yaj ≤ 0 for all j /∈ S}.

▶ For each such S, since rank[ker(ST)] = 1, there are only two
y’s such that ∥y∥ = 1 and yS = 0, and hence |FS | ≤ 2.

▶ Let F =
⋃
FS where the union is taken over all LI subsets S

of m− 1 columns of A.

Then F is a finite set, since there are finitely many such S’s.
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▶ Consider F as the m× |F | matrix that consists of the vectors
in F as columns.

Write D = {x ∈ Rm | FTx ≤ 0}.

▶ By construction, yaj ≤ 0 for all aj ∈ A and all y ∈ F .

Hence, cone(A) ⊂ D.

▶ If b /∈ cone(A), then by Proposition 1.6 (Fundamental
Theorem of Linear Inequalities), there exists y ∈ Rm such that
yA ≤ 0, yS = 0 for some LI subset S of m− 1 columns of A,
and yb > 0, where by normalization we can assume ∥y∥ = 1.

I.e., there is some y ∈ F such that yb > 0, which implies that
b /∈ D.

▶ This shows that cone(A) = D, i.e., cone(A) is polyhedral.
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▶ Then consider the case where r = rank(A) < m.

Let A′ ∈ Rr×n be the matrix that consists the first r rows of
A, and assume without loss of generality that rank(A′) = r.

▶ By the previous case, there exists a finite set F ′ ⊂ Rr

(considered as an r × |F ′| matrix) such that
cone(A′) = {x′ ∈ Rr | (F ′)Tx ≤ 0}.

▶ Extend the r-dimensional vectors in F ′ to m-dimensional
vectors by adding m− r zeros

(so

[
F ′

O(m−r)×|F ′|

]
is referred to again as F ′).

▶ Fix any basis F ′′ = {z1, . . . , zm−r} of ker(AT) (note that
rank[ker(AT)] = m− r).

Let D = {x ∈ Rm | (F ′)Tx ≤ 0, (F ′′)Tx = 0}.
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▶ By construction, yaj ≤ 0 for all aj ∈ A and all y ∈ F .

Hence, cone(A) ⊂ D.

▶ Suppose that b ∈ span(A) \ cone(A).

Then b′ /∈ cone(A′), where b′ ∈ Rr is the vector that consists
of the first r components of b.

Then there is some y ∈ F ′ such that yb > 0, and hence,
b /∈ D.

▶ Suppose that b /∈ span(A).

Then there exists z ∈ Rm such that zA = 0 and zb ̸= 0.

Then there must be some zj ∈ F ′′ such that zjb ̸= 0, and
hence, b /∈ D.

▶ This shows that cone(A) = D.

▶ Finally, let F = F ′ ∪ F ′′ ∪ (−F ′′). Then we have
D = {x ∈ Rm | FTx ≤ 0}, and thus cone(A) is polyhedral.
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▶ For the converse, suppose that C is polyhedral, i.e.,
C = {x ∈ Rm | BTx ≤ 0} for some B = [b1, . . . , bn] ∈ Rm×n.

▶ By the “if” part, there exists G = [z1, . . . , zℓ] ∈ Rm×ℓ such
that cone(B) = {x ∈ Rm | GTx ≤ 0}.

We want to show that C = cone(G).

▶ For all z ∈ G and all b ∈ B (⊂ cone(B)), zb ≤ 0.

Hence, for all z ∈ G, z ∈ C, and therefore, cone(G) ⊂ C.

▶ Suppose that x /∈ cone(G).

Then by Farkas’ Lemma, there exists y ∈ Rm such that
yG ≤ 0 and yx > 0,

i.e., there exists y ∈ cone(B) such that yx > 0.

▶ Then there must be bj ∈ B such that bjx > 0, i.e., x /∈ C.

▶ This shows that C ⊂ cone(G).
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Polyhedra and Polytopes

Definition 1.6
P ⊂ Rm is called a polyhedron if there exist A ∈ Rm×n and
b ∈ Rn such that P = {x ∈ Rm | ATx ≤ b}.

▶ I.e., it is the intersection of finitely many half-spaces.
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Definition 1.7
For a finite set S = {x1, x2, . . . , xJ} ⊂ Rn, the vector∑

j∈S
λjx

j

with λ1, . . . , λJ ≥ 0,
∑J

j=1 λj = 1 is called a convex combination
of S.

Definition 1.8
For S ⊂ Rn, the set of all convex combinations of finite subsets of
S is called the convex hull of S and denoted by conv(S).

Definition 1.9
P ⊂ Rn is called a polytope if there exists a finite S ⊂ Rn such
that P = conv(S).
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Resolution Theorem

Proposition 1.20 (Resolution Theorem)

P ⊂ Rm, P ̸= ∅, is a polyhedron if and only if P = Q+ C
for some polytope Q and some finitely generated cone C.

▶ (Q+ C = {q + c | q ∈ Q, c ∈ C})

▶ As a corollary, we have the following (let C = {0}):

Proposition 1.21

P ⊂ Rm, P ̸= ∅, is a bounded polyhedron if and only if
it is a polytope.
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Proof of Proposition 1.20

▶ The “only if” part:

Suppose that P = {x ∈ Rm | Ax ≤ b} for some A ∈ Rn×m

and b ∈ Rn.

▶ Consider the polyhedral cone
P̂ = {(x, u) ∈ Rm × R | u ≥ 0, Ax− ub ≤ 0}.

▶ By Proposition 1.19, it is finitely generated, i.e.,
P̂ = cone({(x1, u1), . . . , (xJ , uJ)}) for some
(x1, u1), . . . , (x

J , uJ) ∈ Rm × R, where uj ≥ 0.

▶ Let J+ = {j | uj > 0} and J0 = {j | uj = 0}.

By normalization, we let uj = 1 for j ∈ J+.

▶ Let Q = conv({xj | j ∈ J+}) and C = cone({xj | j ∈ J0}).

We want to show that P = Q+ C.
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▶ Indeed,

x ∈ P ⇐⇒ (x, 1) ∈ P̂

⇐⇒ (x, 1) =
∑
j∈J+

λj(x
j , 1) +

∑
j∈J0

λj(x
j , 0)

for some λ1, . . . , λJ ≥ 0

⇐⇒ x =
∑
j∈J+

λjx
j +

∑
j∈J0

λjx
j

for some λ1, . . . , λJ ≥ 0 with
∑
j∈J+

λj = 1

⇐⇒ x ∈ conv({xj | j ∈ J+}) + cone({xj | j ∈ J0}).
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▶ The “if” part:

Suppose that P = conv({x1, . . . , xJ}) + cone({y1, . . . , yK})
for some x1, . . . , xJ , y1, . . . , yK ∈ Rm.

▶ Define P̄ = cone({(x1, 1), . . . , (xJ , 1), (y1, 0), . . . , (yK , 0)}).

▶ By Proposition 1.19, the cone P̄ is polyhedral, i.e.,
P̄ = {(x, u) ∈ Rm × R | Ax− ub ≤ 0} for some A ∈ Rn×m

and b ∈ Rn.

▶ Let P ′ = {x ∈ Rm | Ax ≤ b}.

We want to show that P = P ′.

▶ Indeed, x ∈ P ⇐⇒ (x, 1) ∈ P̄ ⇐⇒ Ax− b ≤ 0.
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Application: Linear Production Model

▶ Inputs: {1, . . . ,m}

Input vector: x ∈ Rm
+

▶ Outputs: {1, . . . , n}

Output vector: y ∈ Rn

▶ P ∈ Rm×n: Production matrix

y = xP

▶ b ∈ Rk
+: Resource/capacity vector

▶ C ∈ Rm×k
+ : Consumption matrix (C ̸= O)

Resource constraint: xC ≤ b

▶ Input space: X = {x ∈ Rm | xC ≤ b, x ≥ 0}

▶ Output space: Y = {y ∈ Rn | y = xP, x ∈ X}
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Lemma 1.22
Y is a polyhedron,
i.e., Y = {y ∈ Rn | yD ≤ r} for some D ∈ Rn×ℓ and r ∈ Rℓ.

Proof

▶ X is a bounded polyhedron (since C ≥ 0 and X ⊂ Rm
+ ), and

hence is a polytope by the Resolution Theorem,

i.e., X = conv(E) for some finite set E ⊂ Rm.

▶ Then Y = conv{xP | x ∈ E}; thus Y is a polytope.

▶ By the Resolution Theorem, Y is a (bounded) polyhedron.

80 / 83



▶ y ∈ Y is efficient if there is no y′ ∈ Y such that y′ ≥ y,
y′ ̸= y.

Proposition 1.23

y∗ ∈ Y is efficient if and only if there exists p≫ 0 such that
y∗p ≥ yp for all y ∈ Y .

▶ With “p ≥ 0, p ̸= 0” in place of “p≫ 0”:

▶ the “if” part is false;

▶ the “only if” part holds whenever Y is a convex set
(not only for polyhedron Y ).
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Proof

▶ The “if” part:

If y∗ is not efficient, i.e., y′ − y∗ ≥ 0, ̸= 0 for some y′ ∈ Y ,
then for any p≫ 0, we have (y′ − y∗)p > 0 or y′p > y∗p.

▶ The “only if” part:

Suppose that y∗ ∈ Y is efficient.

▶ By Lemma 1.22, Y is written as Y = {y ∈ Rn | yD ≤ r} for
some D ∈ Rn×ℓ and r ∈ Rℓ.

▶ Write D = [S|T ] and r = [rS |rT ] so that y∗S = rS and
y∗T ≪ rT .

▶ S ̸= ∅ by the efficiency of y∗:

If S = ∅, i.e., y∗D ≪ r, then (y∗ + ε1)D ≤ r for sufficiently
small ε > 0, where y∗ + ε1 ≩ y∗.
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▶ zS ≤ 0, z ≥ 0, z ̸= 0 has no solution by the efficiency of y∗:

If there exists such z, then (y∗ + εz)D ≤ r for sufficiently
small ε > 0, where y∗ + εz ≩ y∗.

▶ By Ville’s Theorem (Problem 5 in Homework 1),
Sλ≫ 0, λ ≥ 0 has a solution.

▶ For a solution λ, let p = Sλ (≫ 0).

▶ Then for any y ∈ Y (where yS ≤ r), we have

y∗p = y∗Sλ = rSλ,

yp = ySλ ≤ rSλ,

as desired.
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