Mathematical Economics Daisuke Oyama July 3, 2023

Homework 5

Due on July 10

1. Let (X, \preceq) be a lattice, and $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ supermodular. Prove the following.

- (1) For $\alpha, \beta \geq 0$, the function $\alpha f + \beta g$ is supermodular.
- (2) Suppose that

$$f(x) + g(y) \le f(x \lor y) + g(x \land y)$$

$$g(x) + f(y) \le g(x \lor y) + f(x \land y)$$

for all $x, y \in X$. Then the function $h(x) = \max\{f(x), g(x)\}$ is supermodular.

- (3) Suppose that f g is non-decreasing, i.e., $f(x') g(x') \leq f(x'') g(x'')$ whenever $x' \preceq x''$. Then the function $h(x) = \max\{f(x), g(x)\}$ is supermodular.
- 2. Prove the equivalence among 2–4 in Proposition 5.1.