Homework 5

Due on July 10

1. Let (X, \precsim) be a lattice, and $f: X \rightarrow \mathbb{R}$ and $g: X \rightarrow \mathbb{R}$ supermodular. Prove the following.
(1) For $\alpha, \beta \geq 0$, the function $\alpha f+\beta g$ is supermodular.
(2) Suppose that

$$
\begin{aligned}
& f(x)+g(y) \leq f(x \vee y)+g(x \wedge y) \\
& g(x)+f(y) \leq g(x \vee y)+f(x \wedge y)
\end{aligned}
$$

for all $x, y \in X$. Then the function $h(x)=\max \{f(x), g(x)\}$ is supermodular.
(3) Suppose that $f-g$ is non-decreasing, i.e., $f\left(x^{\prime}\right)-g\left(x^{\prime}\right) \leq f\left(x^{\prime \prime}\right)-g\left(x^{\prime \prime}\right)$ whenever $x^{\prime} \precsim x^{\prime \prime}$. Then the function $h(x)=\max \{f(x), g(x)\}$ is supermodular.
2. Prove the equivalence among 2-4 in Proposition 5.1.

