5. Cores of Convex Games

Daisuke Oyama

Mathematical Economics

This version: July 7, 2023

Reference

 L. S. Shapley, "Cores of Convex Games," International Journal of Game Theory 1, 11-26, 1971.

Cooperative Games

- $N = \{1, \ldots, n\}$: Set of players
- A (cooperative) game is a function v: 2^N → ℝ with v(Ø) = 0 (or pair (v, N)).
- A game v is additive if $v(S) + v(T) = v(S \cup T)$ for all $S, T \subset N$ with $S \cap T = \emptyset$.

A game v is superadditive if
 v(S) + v(T) ≤ v(S ∪ T) for all S, T ⊂ N with S ∩ T = Ø.
 (A game v is subadditive if -v is superadditive.)

• For a vector $x \in \mathbb{R}^n$, we write $x(S) = \sum_{i \in S} x_i$ for $S \subset N$.

• With a game v fixed, we write $H_S = \{x \in \mathbb{R}^n \mid x(S) = v(S)\}$ for $S \subset N$.

Convex Games

- A game v is *convex* if it is supermodular with respect to \subset : $v(S) + v(T) \le v(S \cup T) + v(S \cap T)$ for all $S, T \subset N$.
- A game v is strictly convex if it is strictly supermodular with respect to ⊂:

 $v(S) + v(T) < v(S \cup T) + v(S \cap T)$ whenever neither $S \subset T$ nor $T \subset S.$

Proposition 5.1

For $v: 2^N \to \mathbb{R}$, the following statements are equivalent:

- 1. v is convex.
- 2. $v(S \cup \{i\}) v(S) \le v(T \cup \{i\}) v(T)$ for all $i \in N$ and all $S \subset T \subset N \setminus \{i\}$.
- 3. $v(S) + \sum_{i \in T \setminus S} (v(S \cup \{i\}) v(S)) \le v(T)$ for all $S \subset T \subset N$.
- 4. $v(S \cup \{i\}) v(S) \le v(S \cup \{i, j\}) v(S \cup \{j\})$ for all $i, j \in N$, $i \ne j$, and all $S \subset N \setminus \{i, j\}$.

Proof

▶ 1 ⇒ 2:

$$v(S \cup \{i\}) + v(T) \le v((S \cup \{i\}) \cup T) + v((S \cup \{i\}) \cap T)$$

 $= v(T \cup \{i\}) + v(S).$

$$\begin{array}{l} 2 \Rightarrow 1: \\ \text{Write } S \setminus T = \{i_1, \dots, i_K\}. \text{ Then we have} \\ v(S) - v(S \cap T) \\ = \sum_{k=1}^{K} [v((S \cap T) \cup \{i_1, \dots, i_k\}) - v((S \cap T) \cup \{i_1, \dots, i_{k-1}\})] \\ \leq \sum_{k=1}^{K} [v(T \cup \{i_1, \dots, i_k\}) - v(T \cup \{i_1, \dots, i_{k-1}\})] \\ = v(S \cup T) - v(T). \end{array}$$

Other equivalences: Homework exercise

Core

Definition 5.1 The core of a game $v\colon 2^N\to \mathbb{R}$ is the set

$$C(v) = \{ x \in \mathbb{R}^n \mid x(N) = v(N), \ x(S) \ge v(S) \text{ for all } S \subset N \}.$$

For
$$S \subset N$$
, write $C_S = C(v) \cap H_S$
 $(= \{x \in C(v) \mid x(S) = v(S)\}).$
 $(C_N = C(v))$

Example: n = 2

▶
$$v(\emptyset) = 0$$
, $v(\{1\}) = v(\{2\}) = 1$, $v(\{1,2\}) = 3$

Example: n = 3

Fig. 1: Core configuration of a 3-person convex game

(Shapley 1971, page 17)

Example: n = 4

Fig. 2: Core of a four-person convex game

(Shapley 1971, page 17)

1432

Key to vertices and faces:

(Shapley 1971, page 17)

Nonemptiness of the Core

• Write Π for the set of all permutations of $N = \{1, \ldots, n\}$. • For $\sigma = (i_1, \ldots, i_n) \in \Pi$, define $\alpha^{\sigma} \in \mathbb{R}^n$ by $\alpha_{i_k}^{\sigma} = v(\{i_1, \ldots, i_k\}) - v(\{i_1, \ldots, v_{k-1}\}).$

• α^{σ} is called the *marginal contribution vector* associated with σ .

Proposition 5.2

Let v be a convex game. Then $\alpha^{\sigma} \in C(v)$ for any $\sigma \in \Pi$. In particular, $C(v) \neq \emptyset$.

Proof

- Without loss, consider $\sigma = (1, \ldots, n) \in \Pi$.
- ▶ Take any $S \subset N$, and denote $S = \{i_1, \ldots, i_m\}$, where $i_1 < \cdots < i_m$.

Note that $\{i_1, ..., i_{k-1}\} \subset \{1, ..., i_{k-1}\}.$

Then by convexity, we have

$$\alpha^{\sigma}(S) = \sum_{k=1}^{m} v(\{1, \dots, i_k\}) - v(\{1, \dots, i_{k-1}\})$$

$$\geq \sum_{k=1}^{m} v(\{i_1, \dots, i_k\}) - v(\{i_1, \dots, i_{k-1}\})$$

$$= v(\{i_1, \dots, i_m\}) - v(\emptyset) = v(S).$$

Binding Inequalities

- Let v be a convex game.
- For $x \in C(v)$, define $S_x = \{S \subset N \mid x(S) = v(S)\}.$
- S_x is closed under \cup and \cap .
 - ► $:: S_x = \arg \max\{v(S) x(S) \mid S \subset N\}$, where v x is supermodular, which is a sublattice of 2^N by Proposition 4.8.
- If v is strictly convex, then S_x is a chain.

Extreme Points of the Core

Proposition 5.3

Let v be a convex game. Then the points written as α^{σ} are precisely the extreme points of C(v).

Corollary 5.4 Let v be a convex game. Then $C(v) = \operatorname{conv}\{\alpha^{\sigma} \mid \sigma \in \Pi\}.$

Proof of Proposition 5.3

• Let
$$\sigma = (i_1, \ldots, i_n) \in \Pi$$
.

• $\alpha^{\sigma} \in C(v)$ is the solution to the LI system of n equations:

$$\begin{aligned} x(\{i_1\}) &= v(\{i_1\}) \\ x(\{i_1, i_2\}) &= v(\{i_1, i_2\}) \\ &\vdots \\ x(\{i_1, \dots, i_n\}) &= v(\{i_1, \dots, i_n\}). \end{aligned}$$

Thus, α^{σ} is a basic feasible solution of C(v).

• Therefore, by Proposition 3.2, α^{σ} is an extreme point of C(v).

Suppose that $x \in C(v)$ is an extreme point of C(v).

• Let
$$\emptyset = S^0 \subsetneq S^1 \cdots \subsetneq S^m = N$$
 be a maximal chain in S_x .
 $(S_x = \{S \subset N \mid x(S) = v(S)\}).$

• If
$$m = n$$
, then $x = \alpha^{\sigma}$ for some $\sigma \in \Pi$.

Assume that m < n.

▶ Then for some k = 1, ..., m, $S^k \setminus S^{k-1}$ contains at least two elements.

Take any $i, j \in S^k \setminus S^{k-1}$, $i \neq j$.

- ▶ If $i, j \in S$ for all $S \in S_x$, then $x + \varepsilon(e^i - e^j), x - \varepsilon(e^i - e^j) \in C(v)$ for some sufficiently small $\varepsilon > 0$, and hence x would not be an extreme point.
- Thus assume that there exists $S \in S_x$ such that $i \in S$ and $j \notin S$.

▶ Then let
$$T = (S^{k-1} \cup S) \cap S^k$$
.
Then $T \in S_x$ and $S^{k-1} \subsetneq T \gneqq S^k$ (since $i \in T$ and $j \notin T$).
This contradicts the maximality of m .

• Hence, m = n, and therefore $x = \alpha^{\sigma}$ for some $\sigma \in \Pi$.

Shapley Value

▶ The Shapley value of a game v is the vector $\varphi \in \mathbb{R}^n$ defined by

$$\varphi_i = \sum_{S \subset N \setminus \{i\}} \frac{|S|!(n-|S|+1)!}{n!} (v(S \cup \{i\}) - v(S)).$$

For i ∈ N and σ ∈ Π, write S(i, σ) ⊂ S \ {i} for the set of players that appear before i in σ.

Then φ_i is written as

$$\varphi_i = \frac{1}{n!} \sum_{S \subset N \setminus \{i\}} \sum_{\sigma \in \Pi: S(i,\sigma) = S} (v(S \cup \{i\}) - v(S))$$
$$= \frac{1}{n!} \sum_{\sigma \in \Pi} (v(S(i,\sigma) \cup \{i\}) - v(S(i,\sigma))),$$

and hence $\varphi = \frac{1}{n!} \sum_{\sigma \in \Pi} \alpha^{\sigma}$.

• Therefore, if v is convex, then $\varphi \in C(v)$.