5. Cores of Convex Games

Daisuke Oyama

Mathematical Economics

This version: July 7, 2023

Reference

- L. S. Shapley, "Cores of Convex Games," International Journal of Game Theory 1, 11-26, 1971.

Cooperative Games

- $N=\{1, \ldots, n\}$: Set of players
- A (cooperative) game is a function $v: 2^{N} \rightarrow \mathbb{R}$ with $v(\emptyset)=0$ (or pair (v, N)).
- A game v is additive if $v(S)+v(T)=v(S \cup T)$ for all $S, T \subset N$ with $S \cap T=\emptyset$.
- A game v is superadditive if $v(S)+v(T) \leq v(S \cup T)$ for all $S, T \subset N$ with $S \cap T=\emptyset$.
(A game v is subadditive if $-v$ is superadditive.)
- For a vector $x \in \mathbb{R}^{n}$, we write $x(S)=\sum_{i \in S} x_{i}$ for $S \subset N$.
- With a game v fixed, we write $H_{S}=\left\{x \in \mathbb{R}^{n} \mid x(S)=v(S)\right\}$ for $S \subset N$.

Convex Games

- A game v is convex if it is supermodular with respect to C : $v(S)+v(T) \leq v(S \cup T)+v(S \cap T)$ for all $S, T \subset N$.
- A game v is strictly convex if it is strictly supermodular with respect to \subset :
$v(S)+v(T)<v(S \cup T)+v(S \cap T)$ whenever neither $S \subset T$ nor $T \subset S$.

Proposition 5.1

For $v: 2^{N} \rightarrow \mathbb{R}$, the following statements are equivalent:

1. v is convex.
2. $v(S \cup\{i\})-v(S) \leq v(T \cup\{i\})-v(T)$ for all $i \in N$ and all $S \subset T \subset N \backslash\{i\}$.
3. $v(S)+\sum_{i \in T \backslash S}(v(S \cup\{i\})-v(S)) \leq v(T)$ for all $S \subset T \subset N$.
4. $v(S \cup\{i\})-v(S) \leq v(S \cup\{i, j\})-v(S \cup\{j\})$ for all $i, j \in N, i \neq j$, and all $S \subset N \backslash\{i, j\}$.

Proof

- $1 \Rightarrow 2$:

$$
\begin{aligned}
v(S \cup\{i\})+v(T) & \leq v((S \cup\{i\}) \cup T)+v((S \cup\{i\}) \cap T) \\
& =v(T \cup\{i\})+v(S) .
\end{aligned}
$$

- $2 \Rightarrow 1$:

Write $S \backslash T=\left\{i_{1}, \ldots, i_{K}\right\}$. Then we have
$v(S)-v(S \cap T)$

$$
\begin{aligned}
& =\sum_{k=1}^{K}\left[v\left((S \cap T) \cup\left\{i_{1}, \ldots, i_{k}\right\}\right)-v\left((S \cap T) \cup\left\{i_{1}, \ldots, i_{k-1}\right\}\right)\right] \\
& \leq \sum_{k=1}^{K}\left[v\left(T \cup\left\{i_{1}, \ldots, i_{k}\right\}\right)-v\left(T \cup\left\{i_{1}, \ldots, i_{k-1}\right\}\right)\right] \\
& =v(S \cup T)-v(T) .
\end{aligned}
$$

- Other equivalences: Homework exercise

Core

Definition 5.1

The core of a game $v: 2^{N} \rightarrow \mathbb{R}$ is the set

$$
C(v)=\left\{x \in \mathbb{R}^{n} \mid x(N)=v(N), x(S) \geq v(S) \text { for all } S \subset N\right\} .
$$

- For $S \subset N$, write $C_{S}=C(v) \cap H_{S}$ $(=\{x \in C(v) \mid x(S)=v(S)\})$. $\left(C_{N}=C(v)\right)$

Example: $n=2$

- $v(\emptyset)=0, v(\{1\})=v(\{2\})=1, v(\{1,2\})=3$

Example: $n=3$

Fig. 1: Core configuration of a 3-person convex game
(Shapley 1971, page 17)

Example: $n=4$

Characteristic function:
$v(S)=\binom{\sum_{i}}{i e S}^{2}$

Fig. 2: Core of a four-person convex game
(Shapley 1971, page 17)

Key to vertices and faces:
Front:

Back:

(Shapley 1971, page 17)

Nonemptiness of the Core

- Write Π for the set of all permutations of $N=\{1, \ldots, n\}$.
- For $\sigma=\left(i_{1}, \ldots, i_{n}\right) \in \Pi$, define $\alpha^{\sigma} \in \mathbb{R}^{n}$ by

$$
\alpha_{i_{k}}^{\sigma}=v\left(\left\{i_{1}, \ldots, i_{k}\right\}\right)-v\left(\left\{i_{1}, \ldots, v_{k-1}\right\}\right)
$$

- α^{σ} is called the marginal contribution vector associated with σ.

Proposition 5.2
Let v be a convex game. Then $\alpha^{\sigma} \in C(v)$ for any $\sigma \in \Pi$. In particular, $C(v) \neq \emptyset$.

Proof

- Without loss, consider $\sigma=(1, \ldots, n) \in \Pi$.
- Take any $S \subset N$, and denote $S=\left\{i_{1}, \ldots, i_{m}\right\}$, where $i_{1}<\cdots<i_{m}$.

Note that $\left\{i_{1}, \ldots, i_{k-1}\right\} \subset\left\{1, \ldots, i_{k-1}\right\}$.

- Then by convexity, we have

$$
\begin{aligned}
\alpha^{\sigma}(S) & =\sum_{k=1}^{m} v\left(\left\{1, \ldots, i_{k}\right\}\right)-v\left(\left\{1, \ldots, i_{k-1}\right\}\right) \\
& \geq \sum_{k=1}^{m} v\left(\left\{i_{1}, \ldots, i_{k}\right\}\right)-v\left(\left\{i_{1}, \ldots, i_{k-1}\right\}\right) \\
& =v\left(\left\{i_{1}, \ldots, i_{m}\right\}\right)-v(\emptyset)=v(S)
\end{aligned}
$$

Binding Inequalities

- Let v be a convex game.
- For $x \in C(v)$, define $\mathcal{S}_{x}=\{S \subset N \mid x(S)=v(S)\}$.
- \mathcal{S}_{x} is closed under \cup and \cap.
- $\because \mathcal{S}_{x}=\arg \max \{v(S)-x(S) \mid S \subset N\}$, where $v-x$ is supermodular, which is a sublattice of 2^{N} by Proposition 4.8.
- If v is strictly convex, then \mathcal{S}_{x} is a chain.

Extreme Points of the Core

Proposition 5.3

Let v be a convex game. Then the points written as α^{σ} are precisely the extreme points of $C(v)$.

Corollary 5.4
Let v be a convex game. Then $C(v)=\operatorname{conv}\left\{\alpha^{\sigma} \mid \sigma \in \Pi\right\}$.

Proof of Proposition 5.3

- Let $\sigma=\left(i_{1}, \ldots, i_{n}\right) \in \Pi$.
- $\alpha^{\sigma} \in C(v)$ is the solution to the LI system of n equations:

$$
\begin{aligned}
& x\left(\left\{i_{1}\right\}\right)=v\left(\left\{i_{1}\right\}\right) \\
& x\left(\left\{i_{1}, i_{2}\right\}\right)=v\left(\left\{i_{1}, i_{2}\right\}\right) \\
& \quad \vdots \\
& x\left(\left\{i_{1}, \ldots, i_{n}\right\}\right)=v\left(\left\{i_{1}, \ldots, i_{n}\right\}\right)
\end{aligned}
$$

Thus, α^{σ} is a basic feasible solution of $C(v)$.

- Therefore, by Proposition 3.2, α^{σ} is an extreme point of $C(v)$.
- Suppose that $x \in C(v)$ is an extreme point of $C(v)$.
- Let $\emptyset=S^{0} \varsubsetneqq S^{1} \ldots \varsubsetneqq S^{m}=N$ be a maximal chain in \mathcal{S}_{x}.
$\left(\mathcal{S}_{x}=\{S \subset N \mid x(S)=v(S)\}\right)$.
- If $m=n$, then $x=\alpha^{\sigma}$ for some $\sigma \in \Pi$.

Assume that $m<n$.

- Then for some $k=1, \ldots, m, S^{k} \backslash S^{k-1}$ contains at least two elements.
Take any $i, j \in S^{k} \backslash S^{k-1}, i \neq j$.
- If $i, j \in S$ for all $S \in \mathcal{S}_{x}$, then
$x+\varepsilon\left(e^{i}-e^{j}\right), x-\varepsilon\left(e^{i}-e^{j}\right) \in C(v)$ for some sufficiently small $\varepsilon>0$, and hence x would not be an extreme point.
- Thus assume that there exists $S \in \mathcal{S}_{x}$ such that $i \in S$ and $j \notin S$.
- Then let $T=\left(S^{k-1} \cup S\right) \cap S^{k}$.

Then $T \in \mathcal{S}_{x}$ and $S^{k-1} \varsubsetneqq T \varsubsetneqq S^{k}$ (since $i \in T$ and $j \notin T$).
This contradicts the maximality of m.

- Hence, $m=n$, and therefore $x=\alpha^{\sigma}$ for some $\sigma \in \Pi$.

Shapley Value

- The Shapley value of a game v is the vector $\varphi \in \mathbb{R}^{n}$ defined by

$$
\varphi_{i}=\sum_{S \subset N \backslash\{i\}} \frac{|S|!(n-|S|+1)!}{n!}(v(S \cup\{i\})-v(S)) .
$$

- For $i \in N$ and $\sigma \in \Pi$, write $S(i, \sigma) \subset S \backslash\{i\}$ for the set of players that appear before i in σ.

Then φ_{i} is written as

$$
\begin{aligned}
\varphi_{i} & =\frac{1}{n!} \sum_{S \subset N \backslash\{i\}} \sum_{\sigma \in \Pi: S(i, \sigma)=S}(v(S \cup\{i\})-v(S)) \\
& =\frac{1}{n!} \sum_{\sigma \in \Pi}(v(S(i, \sigma) \cup\{i\})-v(S(i, \sigma))),
\end{aligned}
$$

and hence $\varphi=\frac{1}{n!} \sum_{\sigma \in \Pi} \alpha^{\sigma}$.

- Therefore, if v is convex, then $\varphi \in C(v)$.

