6. Matroids and Polymatroids

Daisuke Oyama

Mathematical Economics

This version: July 14, 2023

- We first study polymatroids,
- > and then study matroids as a special case of polymatroids.

Submodular Functions

• $E = \{1, \ldots, n\}$: Finite set

Definition 6.1 Let $f: 2^E \to \mathbb{R}$.

• f is non-decreasing if $S \subset T \implies f(S) \leq f(T)$.

 f is submodular if −f is supermodular (with respect to ⊂), i.e.,

 $f(S) + f(T) \ge f(S \cup T) + f(S \cap T)$

for all $S, T \subset E$.

Proposition 6.1

For $f: 2^E \to \mathbb{R}$, the following statements are equivalent:

1. f is submodular.

2.
$$f(S \cup \{i\}) - f(S) \ge f(T \cup \{i\}) - f(T)$$

for all $i \in E$ and all $S \subset T \subset E \setminus \{i\}$.

- 3. $f(S) + \sum_{i \in T \setminus S} (f(S \cup \{i\}) f(S)) \ge f(T)$ for all $S \subset T \subset E$.
- 4. $f(S \cup \{i\}) f(S) \ge f(S \cup \{i, j\}) f(S \cup \{j\})$ for all $i, j \in E$, $i \ne j$, and all $S \subset E \setminus \{i, j\}$.

- ▶ If f and g are submodular, then for $\alpha, \beta \ge 0$, $\alpha f + \beta g$ is submodular.
- ▶ If f is submodular and non-decreasing, then for any $k \in \mathbb{R}$, $g(S) = \min\{f(S), k\}$ is submodular.
- ▶ If f is submodular, then $g(S) = f(E \setminus S)$ is submodular.
- ▶ If f is submodular, then $g(S) = \min_{T \supset S} f(T)$ is submodular and non-decreasing.

Polymatroids

• For
$$x = (x_e)_{e \in E} \in \mathbb{R}^E$$
, we write $x(S) = \sum_{e \in S} x_e$ for $S \subset E$.

Definition 6.2 Let $f: 2^E \to \mathbb{R}$ be a submodular function. The set

$$P(f) = \{ x \in \mathbb{R}^E \mid x \ge 0, \ x(S) \le f(S) \text{ for all } S \subset E \}$$

is called the *polymatroid* associated with (E, f).

The set

$$P^*(f) = \{ x \in \mathbb{R}^E \mid x(S) \le f(S) \text{ for all } S \subset E \}$$

is called the extended polymatroid associated with (E, f). $(P(f) = P^*(f) \cap \mathbb{R}^E_+)$

The set

 $B(f) = \{ x \in \mathbb{R}^E \mid x(S) \le f(S) \text{ for all } S \subset E, \ x(E) = f(E) \}$

is called the *base polytope* of $P^*(f)$. $(B(f) = P^*(f) \cap \{x \in \mathbb{R}^E \mid x(E) = f(E)\})$

In the following, we assume that f(∅) = 0, and that f is non-decreasing when we talk about P(f).

Cores of Convex Games

• The core of a cooperative game $v: 2^E \to \mathbb{R}$ is the set

 $C(v) = \{ x \in \mathbb{R}^E \mid x(S) \ge v(S) \text{ for all } S \subset E, \ x(E) = v(E) \}.$

 v: 2^E → ℝ is a convex game if v is supermodular and v(Ø) = 0.

For
$$v$$
, define $v^{\#} \colon 2^{E} \to \mathbb{R}$ by

$$v^{\#}(S) = v(E) - v(E \setminus S).$$

- $v^{\#}$ is submodular if and only if v is supermodular.
- $\blacktriangleright \ x(E) = v(E) \iff x(E) = v^{\#}(E).$
- Since $v(S) = v^{\#}(E) v^{\#}(E \setminus S) = x(E) v^{\#}(E \setminus S)$, $x(S) \ge v(S)$ for all $S \subset E \iff x(S) \le v^{\#}(S)$ for all $S \subset E$.

▶ Therefore,
$$C(v) = B(v^{\#})$$
.

Pareto Frontier of a Polymatroid

• Let $f: 2^E \to \mathbb{R}$ be a submodular function.

 $\begin{array}{l} \mbox{Proposition 6.2} \\ P^*(f) = \{ x \in \mathbb{R}^E \mid x \leq y \mbox{ for some } y \in B(f) \}. \end{array}$

Corollary 6.3 $B(f) \neq \emptyset$.

(Alternative proof of the nonemptiness of the core)

Corollary 6.4 $\max\{x(E) \mid x \in P^*(f)\} = \max\{x(E) \mid x \in B(f)\} = f(E).$

Proof of Proposition 6.2

• Take any
$$x \in P^*(f)$$
.

▶ Then $\arg \max\{y(E) \mid y \in P^*(f), x \le y\} \ne \emptyset$, since $\{y \in \mathbb{R}^E \mid y \in P^*(f), x \le y\}$ is a nonempty compact set.

• Denote
$$S_y = \{S \subset E \mid y(S) = f(S)\},\$$

which is closed under \cup and \cap .

▶ By the optimality of y, for each $e \in E$, there exists $S^e \in S_y$ such that $e \in S^e$.

▶ Then
$$E = \bigcup_{e \in E} S^e \in S_y$$
, i.e., $y(E) = f(E)$.
Hence $y \in B(f)$.

Extreme Points of a Base Polytope

- Suppose that $f: 2^E \to \mathbb{R}$ is a submodular function with $f(\emptyset) = 0$, where $E = \{1, \ldots, n\}$.
- Consider the base polytope:

 $B(f)=\{x\in \mathbb{R}^n\mid x(S)\leq f(S) \text{ for all } S\subset E, \ x(E)=f(E)\}.$

For a permutation $\sigma = (i_1, \ldots, i_n)$ of $\{1, \ldots, n\}$, define $x^{\sigma} \in \mathbb{R}^n$ by

$$x_{i_k}^{\sigma} = f(\{1, \dots, i_k\}) - f(\{1, \dots, i_{k-1}\}) \quad (k = 1, \dots, n).$$

Proposition 6.5

The points written as x^{σ} are precisely the extreme points of B(f).

Proposition 5.3

Extreme Points of an Extended Polymatroid

Proposition 6.6

The points written as x^{σ} are precisely the extreme points of $P^*(f)$.

Proof

- First, the basic feasible points x^σ of B(f) are basic feasible points, hence extreme points, of P*(f).
- Second, for any $x \in P^*(f) \setminus B(f)$, there exists $y \in B(f)$ such that $x \leq y$.

Therefore, any extreme point of $P^*(f)$ is contained in B(f).

• Thus, x^{σ} are precisely the extreme points of $P^*(f)$.

Extreme Points of a Polymatroid

- Suppose in addition that *f* is non-decreasing.
- For any sequence $\gamma = (i_1, \dots, i_m)$ of distinct elements of E, define $x^{\gamma} \in \mathbb{R}^n_+$ by

$$x_{i_k}^{\gamma} = \begin{cases} f(\{1, \dots, i_k\}) - f(\{1, \dots, i_{k-1}\}) & \text{if } k = 1, \dots, m, \\ 0 & \text{if } k = m+1, \dots, n. \end{cases}$$

Proposition 6.7

The points written as x^{γ} are precisely the extreme points of P(f).

By a similar argument as in the proof of Proposition 5.3.

Integrality of Extreme Points

Proposition 6.8

If f is integer-valued, then all the extreme points of B(f), $P^*(f)$, and P(f) are integral.

Linear Programming on Polymatroids

• Given $f: 2^E \to \mathbb{R}$, let P(f) be the polymatroid associated with (E, f).

A vector $w = (w_e)_{e \in E} \in \mathbb{R}^n$ is given.

Consider the linear program:

```
\max_{x \in P(f)} wx,
```

or explicitly,

$$\begin{array}{ll} \max & \displaystyle \sum_{e \in E} w_e x_e \\ \text{s. t.} & \displaystyle x(S) \leq f(S) \quad \text{for all } S \subset E \\ & \displaystyle x_e \geq 0 \qquad \qquad \text{for all } e \in E. \end{array}$$

- ▶ Label the elements of E as $\{1, ..., n\}$ so that $w_1 \ge \cdots \ge w_k > 0 \ge w_{k+1} \ge \cdots \ge w_n$.
- Define $S^0 = \emptyset$, and $S^{\ell} = \{1, \dots, \ell\}$, $\ell = 1, \dots, n$.

• Define
$$x^* \in \mathbb{R}^n$$
 by

$$\begin{aligned} x_i^* &= f(S^i) - f(S^{i-1}) & (1 \le i \le k), \\ x_i^* &= 0 & (k+1 \le i \le n). \end{aligned}$$

Proposition 6.9

Suppose that f is a non-decreasing and submodular function with $f(\emptyset) = 0$. Then x^* is an optimal solution to $\max_{x \in P(f)} wx$.

Proof

• Feasibility: By Proposition 6.7.

► To prove the optimality, consider the dual problem:

$$\begin{array}{ll} \min & \displaystyle \sum_{S \subset E} y_S f(S) \\ \text{s.t.} & \displaystyle \sum_{S \ni e} y_S \geq w_e \quad \text{for all } e \in E \\ & \displaystyle y_S \geq 0 \qquad \quad \text{for all } S \subset E. \end{array}$$

Define
$$y^* = (y^*_S)_{S \subset E}$$
 by
 $y^*_{S^{\ell}} = w_{\ell} - w_{\ell+1}$ for $\ell = 1, \ldots, k-1$;
 $y^*_{S^k} = w_k$; and
 $y^*_S = 0$ for $S \neq S^1, \ldots, S^k$.

• Then y^* is feasible and satisfies $\sum_{S \subset E} y^*_S f(S) = \sum_{e \in E} w_e x^*_e$.

Proposition 6.10

Suppose that f is a submodular function with $f(\emptyset) = 0$ and that $w_e > 0$ for all $e \in E$ (so that k = n). Then x^* is an optimal solution to $\max_{x \in B(f)} wx$ and $\max_{x \in P^*(f)} wx$.

Extreme Points of a Polymatroid (Alternative Proof)

- Suppose that \bar{x} is an extreme point of P(f).
- Since it is a vertex of P(f), there exists $w \in \mathbb{R}^n$ such that $\arg \max_{x \in P(f)} wx = \{\bar{x}\}.$
- Without loss, assume $w_1 \ge \cdots \ge w_k > 0 \ge w_{k+1} \ge \cdots \ge w_n$.
- By Proposition 6.9, x^{*} is an optimal solution to max_{x∈P(f)} wx.

▶ Thus, $\bar{x} = x^*$.

Polymatroid Intersection Theorem

• Given $f: 2^E \to \mathbb{R}$ and $g: 2^E \to \mathbb{R}$, define the function $f|g: 2^E \to \mathbb{R}$ by

$$(f|g)(S) = \min_{T \subset S} f(T) + g(S \setminus T).$$

- If f and g are submodular, then so is f|g.
 If f(∅) = g(∅) = 0, then (f|g)(∅) = 0.
 If f and g are non-decreasing, then so is f|g.
 If f and g are integer-valued, then so is f|g.
- Proposition 6.11 $P(f) \cap P(g) = P(f|g)$ and $P^*(f) \cap P^*(g) = P^*(f|g)$.

Proof

- Suppose that $x(S) \le f(S)$ and $x(S) \le g(S)$ for all $S \subset E$. Then for any $S \subset E$ and $T \subset S$, from $x(T) \le f(T)$ and $x(S \setminus T) \le g(S \setminus T)$, it follows that $x(S) \le f(T) + g(S \setminus T)$.
- ▶ If $x(S) \leq f(T) + g(S \setminus T)$ for all $S \subset E$ and $T \subset S$, then for any $S \subset E$, $x(S) \leq f(S)$ and $x(S) \leq g(S)$.

Proposition 6.12

If f and g are integer-valued, then all the extreme points of $P(f) \cap P(g)$ and $P^*(f) \cap P^*(g)$ are integral.

Discrete Separation Theorem

Proposition 6.13

Suppose that $f: 2^E \to \mathbb{R}$ and $g: 2^E \to \mathbb{R}$ are submodular and supermodular functions, respectively.

- If g(S) ≤ f(S) for all S ⊂ E, then there exists x ∈ ℝ^E such that g(S) ≤ x(S) ≤ f(S) for all S ⊂ E.
- ▶ If in addition f and g are integer-valued, then there exists $x \in \mathbb{Z}^E$ such that $g(S) \leq x(S) \leq f(S)$ for all $S \subset E$.

Proof

▶ Define the function $g^{\#}: 2^E \to \mathbb{R}$ by $g^{\#}(S) = g(E) - g(E \setminus S)$, which is submodular.

► Take any
$$z \in B(f|g^{\#}) (\neq \emptyset)$$
, where
 $(f|g^{\#})(S) = \min_{T \subset S} f(T) + g^{\#}(S \setminus T).$

Then

and therefore,

- ▶ $z(S) \le z(E) g(E \setminus S)$ for all $S \subset E$, and hence $z(S) \ge g(S)$ for all $S \subset E$.
- If f and g are integer-valued, then we can take an integer vector as z ∈ B(f|g[#]).

Sum of Base Polytopes/Polymatroids

Proposition 6.14

1.
$$B(f) + B(g) = B(f+g)$$
.

2.
$$P(f) + P(g) = P(f+g)$$
.

Proof

- We only prove part 1; the proof of part 2 is similar.
- "⊂": Immediate.
- "⊃": Any extreme point of B(f + g) is written as z^σ for some permutation σ = (i₁,..., i_n) where z^σ_{ik} = (f + g)({i₁,..., i_k}) (f + g)({i₁,..., i_{k-1}}).

►
$$z^{\sigma}$$
 is written as $z^{\sigma} = x^{\sigma} + y^{\sigma}$, where
 $x_{i_k}^{\sigma} = f(\{i_1, \dots, i_k\}) - f(\{i_1, \dots, i_{k-1}\}) \in B(f)$, and
 $y_{i_k}^{\sigma} = g(\{i_1, \dots, i_k\}) - g(\{i_1, \dots, i_{k-1}\}) \in B(g)$, so that
 $z^{\sigma} \in B(f) + B(g)$.

► Then $B(f + g) = \operatorname{conv} \{ z^{\sigma} \mid \sigma \in \Pi \} \subset B(f) + B(g) \text{ since } B(f) + B(g) \text{ is a convex set.}$

Sum of Extended Polymatroids

Proposition 6.15 $P^*(f) + P^*(g) = P^*(f+g).$

Proof

"⊂": Immediate.

Suppose that $z \in P^*(f+g)$.

Then there exists $z' \in B(f+g) = B(f) + B(g)$ such that $z \leq z'$, where z' = x' + y' for some $x' \in B(f)$ and $y' \in B(g)$.

Then
$$z = x' + (z - x')$$
, where $x' \in P^*(f)$ and $z - x' \in P^*(g)$
since $z - x' \le y'$.

• Thus
$$z \in P^*(f) + P^*(g)$$
.

Matroids

Definition 6.3

For a finite set E and a family $\mathcal{I}\subset 2^E$ of subsets of E, (E,\mathcal{I}) is called an independence system if

1. $\emptyset \in \mathcal{I}$; and

2.
$$A \subset B \in \mathcal{I} \implies A \in \mathcal{I}$$
.

- Elements in *I* are called *independent sets*.
- Elements in $2^E \setminus \mathcal{I}$ are called *dependent sets*.

Definition 6.4

For an independence system (E, \mathcal{I}) and for $T \subset E$, $B \subset T$ is called a *basis* of T or *maximal* in T if $B \in \mathcal{I}$ and $B \cup \{j\} \notin \mathcal{I}$ for any $j \in T \setminus B$.

Definition 6.5

An independence system (E, \mathcal{I}) is called a *matroid* if for all $T \subset E$, all bases of T have the same size, i.e., |B| = |B'|whenever B and B' are bases of T.

Examples

E: Finite set of n-dimensional vectors
 I: All linearly independent subsets of E
 (E, I) is a matroid.

Lemma 6.16

Let (E, \mathcal{I}) be an independence system. For any $T \subset E$ and an independent set $S \subset T$, there exists a basis B of T such that $S \subset B$.

Proposition 6.17

Let (E, \mathcal{I}) be an independence system. (E, \mathcal{I}) is a matroid if and only if for any $A, B \in \mathcal{I}$ with |A| < |B|, there exists $j \in B \setminus A$ such that $A \cup \{j\} \in \mathcal{I}$.

"Only if":

If there exist $A, B \in \mathcal{I}$ such that |A| < |B| and $A \cup \{j\} \notin \mathcal{I}$ for any $j \in B \setminus A$, then A is a basis of $A \cup B$, while there is a basis of $A \cup B$ that contains B, that is, (E, \mathcal{I}) is not a matroid.

▶ "If":

If (E, \mathcal{I}) is not a matroid, then there exist $S \subset E$ and bases A, B of S such that |A| < |B|, where $A \cup \{j\} \notin \mathcal{I}$ for any $j \in S \setminus A$, in particular, for any $j \in B \setminus A$.

Rank Functions

Definition 6.6

For an independence system $(E,\mathcal{I}),$ the function $r\colon 2^E\to\mathbb{R}$ defined by

$$r(S) = \max\{|T| \mid T \in \mathcal{I}, \ T \subset S\}$$

is called the *rank function* of (E, \mathcal{I}) .

- If (E, I) is a matroid, r(S) equals the cardinality of any basis of S.
- ▶ If r is a rank function of (E, \mathcal{I}) , then $\mathcal{I} = \{T \mid r(T) = |T|\}$. Therefore, we can write (E, r) for (E, \mathcal{I}) .

Proposition 6.18

The rank function r of an independence system satisfies the following properties:

• r is integer valued, and $r(\emptyset) = 0$.

▶
$$0 \le r(S \cup \{j\}) - r(S) \le 1$$
 for any $S \subset E$ and $j \in E \setminus S$.

Proposition 6.19

An independence system (E, \mathcal{I}) is a matroid if and only if its rank function r is submodular.

Proof

- Suppose that (E, \mathcal{I}) is a matroid.
- We want to show that $r(S \cup \{j\}) r(S) \ge r(S \cup \{k, j\}) r(S \cup \{k\})$ for any $j \ne k$ and $S \subset E \setminus \{k, j\}$.

It suffices to consider the case where $r(S \cup \{j\}) - r(S) = 0$.

- ▶ Let $B \subset S$ be a basis of S, so that r(S) = |B|, and either $r(S \cup \{k\}) = |B|$ or $r(S \cup \{k\}) = |B| + 1$. Note that $B \cup \{j\} \notin \mathcal{I}$, since $r(S \cup \{j\}) = r(S) = |B|$. Therefore $B \cup \{k, j\} \notin \mathcal{I}$ as well.
- If $r(S \cup \{k\}) = |B|$, then $B \cup \{k\} \notin \mathcal{I}$, and hence $r(S \cup \{k, j\}) = |B|$.
- If $r(S \cup \{k\}) = |B| + 1$, then $B \cup \{k\} \in \mathcal{I}$, and hence $r(S \cup \{k, j\}) = |B| + 1$.

Suppose that *r* is submodular.

• Let $S \subset E$.

We want to show that |B| = r(S) for any basis B of S.

For
$$A \subset S$$
, $A \in \mathcal{I}$, suppose that $|A| < r(S)$.

Then by submodularity of r, $r(A) = |A| < r(S) \le r(A) + \sum_{j \in S \setminus A} (r(A \cup \{j\}) - r(A)),$ which implies that $r(A \cup \{j\}) > r(A)$ for some $j \in S \setminus A$.

- ► This implies that A ∪ {j} ∈ I for some j ∈ S \ A, so that A is not a basis of S.
- Thus, if B is a basis of S, then |B| = r(S); in particular, any basis of S has the same cardinality. This shows that (E, I) is a matroid.

Matroid Rank Functions

Definition 6.7

A function $r: 2^E \to \mathbb{R}$ is called a *matroid rank function* if it satisfies the following properties:

• r is integer valued, and $r(\emptyset) = 0$.

▶
$$0 \le r(S \cup \{j\}) - r(S) \le 1$$
 for any $S \subset E$ and $j \in E \setminus S$.

r is submodular.

Proposition 6.19 implies that if r is a matroid rank function, then the independence system (E, r) is a matroid.

Matroids and Polymatroids

▶ Let $r: 2^E \to \mathbb{R}$ be a matroid rank function: i.e., an integer-valued submodular function with $r(\emptyset) = 0$ such that $0 \le r(S \cup \{i\}) - r(S) \le 1$ for all $S \subset E$.

• Let
$$\mathcal{I} = \{T \subset E \mid |T| = r(T)\}.$$

Then (E, \mathcal{I}) is a matroid with r as its rank function (Proposition 6.19).

• Identify 2^E and $\{0,1\}^E$:

Identify $S \subset E$ with $x = (x_e)_{e \in E} \in \{0, 1\}^E$ such that $x_e = 1$ if and only if $e \in S$, and vice versa.

 Then I is identified with the set of integer points in P(r): {x ∈ {0,1}^E | x(S) ≤ r(S) for all S ⊂ E}.
 (Note r({e}) ≤ 1 for any e ∈ E.) For $T \in \mathcal{I}$, let $x^T \in \{0,1\}^E$ be such that $x_e = 1$ if and only if $e \in T$.

Then for any $S \subset E$, $x^T(S) = |S \cap T| = r(S \cap T) \leq r(S)$ since $S \cap T \in \mathcal{I}$, hence $x^T \in P(r)$.

For $x \in P(r) \cap \{0,1\}^E$, let $T^x \subset E$ be such that $e \in T$ if and only if $x_e = 1$.

Then $|T^x| \leq r(T^x)$, hence $T^x \in \mathcal{I}$ ($|S| \geq r(S)$ by definition).

Matroid Intersection Theorem

Proposition 6.20

Let $M_1 = (E, \mathcal{I}_1)$ and $M_2 = (E, \mathcal{I}_2)$ be matroids with rank functions r_1 and r_2 , respectively. Then

$$\max\{|J| \mid J \in \mathcal{I}_1 \cap \mathcal{I}_2\} = \min_{S \subset E} r_1(S) + r_2(E \setminus S).$$

Proof

- Write $P^{\mathbb{Z}}(f)$ for the set of integer points in P(f).
- ▶ \mathcal{I}_1 , \mathcal{I}_2 , and $\mathcal{I}_1 \cap \mathcal{I}_2$ can be identified with $P^{\mathbb{Z}}(r_1)$, $P^{\mathbb{Z}}(r_2)$, and $P^{\mathbb{Z}}(r_1) \cap P^{\mathbb{Z}}(r_2)$, respectively.
- ▶ By the Polymatroid Intersection Theorem, $P^{\mathbb{Z}}(r_1) \cap P^{\mathbb{Z}}(r_2) = P^{\mathbb{Z}}(r_1|r_2)$, where $(r_1|r_2)(S) = \min_{T \subset S} r_1(T) + r_2(S \setminus T)$, which is a matroid rank function.

Hence,

$$\max\{|J| \mid J \in \mathcal{I}_1 \cap \mathcal{I}_2\}$$

= max{ $z(E) \mid z \in P^{\mathbb{Z}}(r_1) \cap P^{\mathbb{Z}}(r_2)$ }
= max{ $z(E) \mid z \in P^{\mathbb{Z}}(r_1|r_2)$ } = $(r_1|r_2)(E)$.

Application: Hall's Marriage Theorem

- ► A: Set of agents
- ► G: Set of goods
- $\blacktriangleright |A| = |G| = n$
- ▶ $D_i \subset G$: Set of acceptable goods for agent $i \in A$
- An assignment is a set $T \subset A \times G$ such that |T| = n, and if $(i, j), (i', j') \in T$, then $i \neq i'$ and $j \neq j'$.
- A *feasible assignment* is an assignment T such that $j \in D_i$ for all $(i, j) \in T$.
- ▶ If a feasible assignment exists, then clearly it is necessary that $|B| \leq \left|\bigcup_{i \in B} D_i\right|$ for all $B \subset A$.
- In fact, this condition is also sufficient.

Proposition 6.21

A feasible assignment exists if and only if

$$|B| \le \left| \bigcup_{i \in B} D_i \right| \text{ for all } B \subset A.$$
(*)

Proof

▶ We show the sufficiency of condition (*).

• Let
$$E = \{(i, j) \in A \times G \mid j \in D_i\}.$$

- Define $\mathcal{I}_A = \{T \subset E \mid (i, j), (i', j') \in T \implies i \neq i'\}.$ Then $M_A = (E, \mathcal{I}_A)$ is a matroid. Let r_A be its rank function.
- Define $\mathcal{I}_G = \{T \subset E \mid (i, j), (i', j') \in T \implies j \neq j'\}.$ Then $M_G = (E, \mathcal{I}_G)$ is a matroid.

Let r_G be its rank function.

- ▶ $T \subset A \times G$ is a feasible assignment if and only if $T \in \mathcal{I}_A \cap \mathcal{I}_G$ and |T| = n.
- ▶ In light of the Matroid Intersection Theorem, it suffices to show that $\min_{S \subset E} r_A(S) + r_G(E \setminus S) \ge n$.

▶ Take any $S \subset E$.

• We have
$$r_A(S) = |S \cap A|$$

 $(S \cap A = \{i \in A \mid (i, j) \in S \text{ for some } j \in G\}),$

and

$$r_{G}(E \setminus S) = |\{j \in G \mid (i, j) \in E \setminus S \text{ for some } i \in A\}|$$

= $|\{j \in G \mid j \in D_{i} \text{ and } (i, j) \notin S \text{ for some } i \in A\}|$
 $\geq |\{j \in G \mid j \in D_{i} \text{ for some } i \notin S \cap A\}|$
= $|\bigcup_{i \notin S \cap A} D_{i}|$
 $\geq |A \setminus (S \cap A)|$ (by (*))
= $|A| - |S \cap A|.$

▶ Therefore, we have $r_A(S) + r_G(E \setminus S) \ge |A| = n$ as desired.

Matroid Partition Theorem

Definition 6.8 Let $M_i = (E, \mathcal{I}_i)$, i = 1, ..., k, be a collection of matroids. $J \subset E$ is partitionable with respect to $\{M_i\}_{i=1}^k$ if there exists a partition $\{J^1, ..., J^k\}$ of J such that $J^i \in \mathcal{I}_i$ for all $i \in 1, ..., k$.

Proposition 6.22 Let $M_i = (E, \mathcal{I}_i)$, i = 1, ..., k, be a collection of matroids, with corresponding rank functions r_i . Then

$$\max\{|J| \mid J: \text{ partitionable}\} = \min_{S \subset E} |E \setminus S| + \sum_{i=1}^{k} r_i(S).$$

Proof

- ▶ J^1, \ldots, J^k are disjoint if and only if $(\mathbf{1}_{J^1} + \cdots + \mathbf{1}_{J^k})_e \leq 1$ for all $e \in E$, where $\mathbf{1}_S \in \mathbb{R}^E$ is such that $(\mathbf{1}_S)_e = 1$ if $e \in S$ and $(\mathbf{1}_S)_e = 0$ if $e \notin S$.
- ▶ This condition is equivalent to $\mathbf{1}_{J^1} + \cdots + \mathbf{1}_{J^k} \in P(r_0)$, where $r_0(S) = |S|$.
- Therefore, J is partitionable if and only if $\mathbf{1}_J \in P(r_0) \cap \sum_{i=1}^k P(r_i)$.
- ▶ But by the Polymatroid Intersection Theorem, $P(r_0) \cap \sum_{i=1}^k P(r_i) = P(r_0 | \sum_{i=1}^k r_i)$, where $(r_0 | \sum_{i=1}^k r_i)(S) = \min_{T \subset S} |T| + \sum_{i=1}^k r_i(S \setminus T)$, which is a matroid rank function.

$$\max\{|J| \mid J: \text{ partitionable}\}\$$

$$= \max\{z(E) \mid z \in P^{\mathbb{Z}}(r_0) \cap \sum_{i=1}^k P^{\mathbb{Z}}(r_i)\}\$$

$$= \max\{z(E) \mid z \in P(r_0|\sum_{i=1}^k r_i)\}\$$

$$= (r_0|\sum_{i=1}^k r_i)(E).$$

Matroid Packing Theorem

Definition 6.9

A collection of matroids $M_i = (E, \mathcal{I}_i)$, $i = 1, \ldots, k$, can be *packed* into E if there exist disjoint sets B_1, \ldots, B_k such that B_i is basis in M_i for each i.

Proposition 6.23

A collection of matroids $M_i = (E, \mathcal{I}_i)$, i = 1, ..., k, with the corresponding rank functions r_i can be packed into E if and only if

$$\min_{S \subset E} |E \setminus S| + \sum_{i=1}^{k} r_i(S) = \sum_{i=1}^{k} r_i(E) \text{ for all } S \subset E.$$
 (**)

• Recall $r_i(E) = |B_i|$ for any basis in M_i .

Proof

By the Matroid Partition Theorem, (**) holds if and only if there exists a partitionable J with respect to {M_i}_i such that |J| = ∑_i |B_i| for any basis B_i in M_i for all i,

or equivalently, there exist disjoint sets $F_i \in \mathcal{I}_i$ such that $\sum_i |F_i| = \sum_i |B_i|$ for any basis B_i in M_i , in particular for a basis $B_i \supset F_i$, for all i.

The above equality holds if and only if F_i = B_i, thus this condition holds if and only if there exist disjoint bases B_i in M_i.

Application: Efficient Assignment of Indivisible Goods

- ▶ *M*: Set of indivisible objects
- ► N: Set of agents
- ▶ $v_j(S)$: monetary value of $S \subset M$ for $j \in N$ Assume:
 - $v_j(\emptyset) = 0$ (normalization)
 - ► v_j is non-decreasing.

• Demand correspondence of $j \in N$:

$$\begin{split} D_j(p) &= \{S \subset M \mid v_j(S) - p(S) \geq v_j(T) - p(T) \text{ for all } T \subset M\} \\ & (p(S) = \sum_{i \in S} p_i) \end{split}$$

Assignment: $(y_j(S))_{S \subset M, j \in N}$ where $y_j(S) \in \{0, 1\}$ $y_j(S) = 1 \iff S \subset M$ is consumed by $j \in N$.

Substitutes Condition (Condition S)

Definition 6.10

v satisfies condition (S) if for any p, p' with $p \leq p'$ and any $S \in D(p)$, there exists $B \in D(p')$ such that $\{i \in S \mid p_i = p'_i\} \subset B$.

Unit demand case:

For each $j \in N$, fix $a^j \in \mathbb{R}^M_+$ and let $v_j(S) = \max_{i \in S} a_i^j$. Then v_j satisfies condition (S).

Proposition 6.24

Suppose that v is non-decreasing. If v satisfies condition (S), then it is submodular.

Single Improvement Property (Condition SI)

Definition 6.11

v satisfies condition (SI) if for any p and any $S\notin D(p),$ there exists $B\subset M$ such that

v(B) - p(B) > v(S) - p(S)

and $|S \setminus B|, |B \setminus S| \le 1$.

Proposition 6.25

Suppose that v is non-decreasing. v satisfies condition (S) if and only if it satisfies condition (SI).

In the following, we assume that each v_j satisfies condition (SI).

Efficient Assignment Problem

Integer program:

 $\begin{array}{ll} (\mathsf{P}^*) & \max & \displaystyle\sum_{S \subset M, j \in N} v_j(S) y_j(S) \\ \text{s.t.} & \displaystyle\sum_{S \ni i, j \in N} y_j(S) \leq 1 \quad \text{for all } i \in M \\ & \displaystyle\sum_{S \subset M} y_j(S) \leq 1 \quad \text{for all } j \in N \\ & y_j(S) \in \{0, 1\} \quad \text{for all } S \subset M, j \in N \end{array}$

- Since there are finitely many feasible solutions, (P*) has an optimal solution (y^{*}_i(S)).
- ▶ Is there a price vector p^* that "supports" the assignment $(y_j^*(S))$?

$$\begin{array}{lll} (\mathsf{P}) & \max & \displaystyle\sum_{S \subset M, j \in N} v_j(S) y_j(S) \\ & \mathsf{s.t.} & \displaystyle\sum_{S \ni i, j \in N} y_j(S) \leq 1 & \text{ for all } i \in M \\ & \displaystyle\sum_{S \subset M} y_j(S) \leq 1 & \text{ for all } j \in N \\ & y_j(S) \geq 0 & \text{ for all } S \subset M, j \in N \end{array}$$

- If (P) has an integral optimal solution, then it is an optimal solution of (P*).
- Let $V_{\rm LP}$ denote the optimal value of (P).

$$\begin{array}{ll} \text{(D)} & \min & \sum_{i \in M} p_i + \sum_{j \in N} \lambda_j \\ & \text{s.t.} & \sum_{i \in S} p_i + \lambda_j \geq v_j(S) & \text{for all } S \subset M, j \in N \\ & p_i \geq 0, \lambda_j \geq 0 & \text{for all } i \in M, j \in N \end{array}$$

Given (p_i), it is optimal to set λ_j = max_{S⊂M}(v_j(S) − p(S)).
Let

$$V_p = p(M) + \sum_{j \in N} \max_{S \subset M} (v_j(S) - p(S)).$$

▶ By the Duality Theorem, $V_{LP} = \min_{p \ge 0} V_p$.

Matroids

We will show that for an optimal solution p^{*} to (D), there exist disjoint sets B_j, j ∈ N, such that B_j ∈ D_j(p^{*}).

Define

$$K_{j}(p) = \min\{|B| \mid B \in D_{j}(p)\},\ D_{j}^{*}(p) = \arg\min\{|B| \mid B \in D_{j}(p)\}.$$

For each $j \in N$ and p, define the independence system $(M, \mathcal{I}_j(p))$ by $T \in \mathcal{I}_j \iff T \subset B$ for some $B \in D_j^*(p)$.

• The rank function $r_j(\cdot|p)$:

$$r_j(S|p) = \max\{|T| \mid T \in \mathcal{I}, \ T \subset S\}$$

= max{|T| | T \cap B \cap S for some B \in D_j^*(p)}
= max{|B \cap S| | B \in D_j^*(p)}

Proposition 6.26

For each $j \in N$ and $p \in \mathbb{R}^M_+$, $(M, \mathcal{I}_j(p))$ is a matroid.

Matroid Packing

Proposition 6.27

Let p^* be an optimal solution to $\min_{p\geq 0} V_p$. Then there exist disjoint sets B_j , $j \in N$, such that $B_j \in D_j(p^*)$.

▶ I.e., matroids $(M, \mathcal{I}_j(p^*))$, $j \in N$, can be packed into M.

Proof

▶ In light of the Matroid Packing Theorem, it suffices to show that for all $S \subset M$,

$$|M \setminus S| + \sum_{j \in N} r_j(S|p^*) \ge \sum_{j \in N} r_j(M|p^*).$$

Since $r_j(S|p^*) = \max_{B \in D_j^*(p^*)} |B \cap S|$ and $r_j(M|p^*) = |B|$ for any $B \in D_j^*(p^*)$, this is equivalent to the condition: for all $S \subset M$,

$$|M \setminus S| + \sum_{j \in N} |B_j \cap S| \ge \sum_{j \in N} |B_j|.$$

for some $B_j \in D_j^*(p^*)$, $j \in N$.

▶ This is equivalent to the condition: for all $T \subset M$,

$$|T| \ge \sum_{j \in N} |B_j \cap T| \tag{***}$$

for some $B_j \in D_j^*(p^*)$, $j \in N$.

Fix any $T \subset M$, and for $\varepsilon > 0$, defined p' by $p'_i = p^*_i + \varepsilon$ for $i \in T$ and $p'_i = p^*_i$ for $i \notin T$.

For each
$$j \in N$$
, pick any $B'_j \in D_j(p')$.

Then we have

$$\begin{aligned} V_{p^*} &\leq V_{p'} = p'(M) + \sum_{j \in N} [v_j(B'_j) - p'(B'_j)] \\ &= p^*(M) + \varepsilon |T| + \sum_{j \in N} [v_j(B'_j) - (p^*(B'_j) + \varepsilon |B'_j \cap T|)] \\ &= p^*(M) + \sum_{j \in N} [v_j(B'_j) - p^*(B'_j)] + \varepsilon \left(|T| - \sum_{j \in N} |B'_j \cap T| \right) \\ &\leq p^*(M) + \sum_{j \in N} \max_{B} [v_j(B) - p^*(B)] + \varepsilon \left(|T| - \sum_{j \in N} |B'_j \cap T| \right) \\ &= V_{p^*} + \varepsilon \left(|T| - \sum_{j \in N} |B'_j \cap T| \right). \end{aligned}$$

• Therefore, we have $|T| \ge \sum_{j \in N} |B'_j \cap T|$.

Now let
$$\varepsilon \to 0$$
.

Then by continuity, we have $|T| \ge \sum_{j \in N} |B_j \cap T|$ for some $B_j \in D_j(p^*), j \in N$.

▶ Then by Lemma 8.35 in the textbook, we have $|T| \ge \sum_{j \in N} |B_j \cap T|$ for some $B_j \in D_j^*(p^*)$, $j \in N$, as desired.

Claim 1

There exists an optimal solution p^* to $\min_{p\geq 0} V_p$ such that

▶ there exist disjoint sets B_j , $j \in N$, such that $B_j \in D_j(p^*)$, and

$$\blacktriangleright p_i^* = 0 \text{ for all } i \notin \bigcup_{j \in N} B_j.$$

Proposition 6.28

Let p^* be as in the Claim.

Then the assignment $(y_j^*(S))$ defined by $y_j^*(B_j) = 1$ (and $y_j^*(S) = 0$ otherwise) is an optimal solution to (P*) and is supported by p^* .

By weak duality