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> We first study polymatroids,

» and then study matroids as a special case of polymatroids.
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Submodular Functions

» E={1,...,n}: Finite set

Definition 6.1
Let f: 2F - R.
» fis non-decreasing if S C T = f(S) < f(T).

» fis submodular if —f is supermodular (with respect to C),

i.e.,
f(S)+ f(T) = f(SUT) + f(SNT)

forall ST C E.
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Proposition 6.1
For f: 2F — R, the following statements are equivalent:
1. f is submodular.

2. f(SU{i}) = f(5) = F(TU{i}) - F(T)
foralli e E and all S C T C E\ {i}.

3. F(9) + Xiens(f(SU{i}) = f(5)) = f(T)
forallSCcT CE.

4 f(SUudi}) = f(S) = fF(SU{i,j}) — F(SU{i})
foralli,j € E,i+# j,and all S C E\{i,j}.
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If f and g are submodular, then for o, 8 > 0, af + Bg is
submodular.

If f is submodular and non-decreasing, then for any k£ € R,
g(S) = min{ f(S), k} is submodular.

If f is submodular, then ¢(S) = f(E \ S) is submodular.

If f is submodular, then ¢(S) = miny~g f(7") is submodular
and non-decreasing.
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Polymatroids

> For z = (z¢)ecr € RE, we write 2(5) = Y gz for S C E.

Definition 6.2
Let f: 2P — R be a submodular function.
The set

P(f)={z e R¥ |2 >0, 2(5) < f(S) forall S C E}

is called the polymatroid associated with (E, f).

» P(f)#0if and only if f(S) >0 forall S C E,
in particular, if f()) =0 and f is non-decreasing.
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> The set
P*(f) ={z ¢ R¥ | 2(S) < f(S) for all S C F}
is called the extended polymatroid associated with (E, f).
(P(f) = P*(f)NRY)
> The set
B(f) = {z € R¥ | 2(S) < f(S) forall S C E, z(E) = f(E)}
is called the base polytope of P*(f).
(B(f) = P*(f) n{z e RF | z(E) = f(E)})

» In the following, we assume that f({)) = 0, and that f is
non-decreasing when we talk about P(f).
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Cores of Convex Games

» The core of a cooperative game v: 2 — R is the set

C(v) ={z e RF | 2(S) > v(S) forall S C E, z(E) = v(E)}.

» v: 2P 5 Ris a convex game if v is supermodular and

v(0) = 0.
» For v, define v#: 28 — R by
v#(S) = v(E) —v(E\ S).
» v# is submodular if and only if v is supermodular.

> 2(E) =v(E) — z(E)=v*(E).
» Since v(S) = v#(E) —v#(E\ S) = 2(E) —v#(E\ S),

z(9) > v(9) forall S C E <= (S5) < v#(S) forall S C E.

» Therefore, C(v) = B(v?).
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Pareto Frontier of a Polymatroid

> Let f: 2 — R be a submodular function.

Proposition 6.2
P*(f)={z € RF |z <y for some y € B(f)}.

Corollary 6.3
B(f) #0.

(Alternative proof of the nonemptiness of the core)

Corollary 6.4
max{z(E) | = € P*(f)} = max{z(E) | « € B(f)} = f(E).
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Proof of Proposition 6.2

» Take any z € P*(f).

» Then argmax{y(F) |y € P*(f),xz <y} # 0, since
{y e R¥ |y € P*(f),x < y} is a nonempty compact set.

» Take any y in this argmax set.
» Denote Sy = {S C E|y(S) = f(9)}
which is closed under U and N.

» By the optimality of y, for each e € E, there exists 5S¢ € S,
such that e € S°.

» Then E =J 5S¢ €Sy, ie, y(E) = f(E).
Hence y € B(f).
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Extreme Points of a Base Polytope

» Suppose that f: 2¥ — R is a submodular function with
f(@®) =0, where E = {1,...,n}.

» Consider the base polytope:

B(f) = {z € R" | 2(S) < f(S) for all S C E, 2(E) = f(E)}.

» For a permutation o = (i1,...,4,) of {1,...,n}, define
z% € R™ by

o = f{L i) = F({L i) (k=1,...,n).

Proposition 6.5
The points written as x° are precisely the extreme points of B(f).

» Proposition 5.3
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Extreme Points of an Extended Polymatroid

Proposition 6.6
The points written as x° are precisely the extreme points of P*(f).

Proof

» First, the basic feasible points 27 of B(f) are basic feasible
points, hence extreme points, of P*(f).

» Second, for any x € P*(f)\ B(f), there exists y € B(f) such
that x < y.

Therefore, any extreme point of P*(f) is contained in B(f).

» Thus, 27 are precisely the extreme points of P*(f).
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Extreme Points of a Polymatroid

» Suppose in addition that f is non-decreasing.

» For any sequence v = (i1, ..., %) of distinct elements of E,
define 27 € R by

2y = f({1772k‘})_f({1aazk—l}) ifk=1,...,m,
0 fk=m+1,. .. .n

Proposition 6.7
The points written as z7 are precisely the extreme points of P(f).

» By a similar argument as in the proof of Proposition 5.3.
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Integrality of Extreme Points

Proposition 6.8

If f is integer-valued, then all the extreme points of B(f), P*(f),
and P(f) are integral.
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Linear Programming on Polymatroids

» Given f: 2F — R, let P(f) be the polymatroid associated
with (E, f).

A vector w = (we)ecr € R™ is given.

» Consider the linear program:

max wex,
zEP(f)
or explicitly,
max Zwexe
eck
s.t. z(S) < f(S) forall SCFE
Te >0 forall e € E.
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» Label the elements of FE as {1,...,n} so that
wy > > wp > 02> wepq > > wy.

» Define S =0, and S* = {1,...,¢}, £ =1,...,n.

» Define * € R" by
*
(2
*
(2

Proposition 6.9
Suppose that f is a non-decreasing and submodular function with

f(@)=o.

Then x* is an optimal solution to max,cp(y) wx.
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Proof
» Feasibility: By Proposition 6.7.

» To prove the optimality, consider the dual problem:

min Y ysf(S)

SCE

s. t. Zys >w, forallee F
S3e
ys >0 forall S C E.

> Define y* = (y5)sce by
> Yyl =we—weyy for b=1,... k-1,
> Yy = wy; and
> yt=0for S#£S5 ... 5"
» Then y* is feasible and satisfies > ¢y f(S) = D cp wex?.
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Proposition 6.10
Suppose that f is a submodular function with () = 0 and that

we > 0 for alle € E (so that k =n).
Then x* is an optimal solution to max,ep(s) wr and

maXg,ecpx* f) wx.
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Extreme Points of a Polymatroid (Alternative Proof)

» Suppose that Z is an extreme point of P(f).

» Since it is a vertex of P(f), there exists w € R™ such that
arg max,e p(py wr = {Z}.

> Without loss, assume wy > -+ > wg > 02> wp1 > -+ > Wy

» By Proposition 6.9, z* is an optimal solution to
manep(f) wx.

» Thus, T = z*.
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Polymatroid Intersection Theorem

» Given f: 2F — R and g: 2P — R, define the function
flg: 2 — R by

(flg)(S) = rTnCigf(T) +9g(S\T).

» If f and g are submodular, then so is flg.

> If £(0) = g(0) = 0, then (f1g)(0) = 0.

> If f and g are non-decreasing, then so is f|g.
> If f and g are integer-valued, then so is f|g.

Proposition 6.11
P(f) N P(g) = P(flg) and P*(f) N P*(g) = P*(flg).
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Proof

» Suppose that z(S) < f(S) and z(S) < g(95) forall S C E.

Then forany S C Eand T' C S, from z(T') < f(T) and
x(S\T) < g(S\T), it follows that z(S) < f(T) + g(S\T).

> If 2(S) < f(T)+g(S\T) forall SC E and T C S, then for
any S C E, z(S) < f(S5) and z(S) < g(9).
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Proposition 6.12

If f and g are integer-valued, then all the extreme points of
P(f)N P(g) and P*(f) N P*(g) are integral.
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Discrete Separation Theorem

Proposition 6.13
Suppose that f: 2F — R and g: 2 — R are submodular and
supermodular functions, respectively.

> If g(S) < f(9) for all S C E, then there exists v € R¥
such that g(S) < x(S) < f(S) forall S C E.

» [f in addition f and g are integer-valued, then there exists
x € ZF such that g(S) < 2(S) < f(S) forall S C E.
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Proof

Define the function g#: 2F — R by
g7 (S) = g(E) — g(E \ S), which is submodular.

Take any z € B(f|g") (# (), where
(flg?)(S) = minpcs f(T) + g#(S\ T).

Then
z(S) < f(S) for all S C E;
> 2(S) < g7 (S)=g(E)—g(E\S) forall S C E; and
2(E) = minrcp f(T) + g(E) — g(T) = g(E), since

F(T) = g(T) > 0 for all T and f(0) — g(0) = 0;
and therefore,

> 2(S) < z(E)—g(E\S) forall S C E, and hence z(S) > ¢(S)
forall S C E.

If f and g are integer-valued, then we can take an integer
vector as z € B(f|g").
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Sum of Base Polytopes/Polymatroids

Proposition 6.14
L. B(f) + B(g) = B(f +9).

2. P(f)+ P(g) = P(f+9)
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Proof

» We only prove part 1; the proof of part 2 is similar.
> “C": Immediate.

» “D": Any extreme point of B(f + g) is written as 27 for
some permutation o = (i1, ...,%,) where

z, = (F+ i, vin}) = (f +9)({in, - iea}).

P> 27 is written as 27 = x% 4 y?, where
xf = f({ir, .. ix}) — f({ir, ... ir—1}) € B(f), and
yo =g, ik}) —g({i1, ... ig-1}) € B(g), so that
2% € B(f) + B(g).

» Then B(f +g) = conv{z? | ¢ € II} C B(f) + B(g) since
B(f)+ B(g) is a convex set.
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Sum of Extended Polymatroids

Proposition 6.15
P*(f)+P*(g) = P*(f +9)

Proof
> “C": Immediate.

» Suppose that z € P*(f + g).

Then there exists 2’ € B(f 4+ g) = B(f) + B(g) such that
z < 2/, where 2/ = 2’ 4+ y/ for some 2’ € B(f) and ¥/ € B(g).

» Then z =2’ + (2 — 2’), where 2/ € P*(f) and z — 2’ € P*(g)
since z — 2’ <v/.

» Thus z € P*(f) + P*(g).
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Matroids

Definition 6.3
For a finite set E and a family Z C 2 of subsets of E,
(E,Z) is called an independence system if

1. ) € Z; and
2. AcBel = AcT.

» Elements in Z are called independent sets.

» Elements in 27 \ T are called dependent sets.
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Definition 6.4
For an independence system (E,Z) and for T' C E,
B C T is called a basis of T or maximal in T if B € Z and

BU{j} ¢Zforany j €T\ B.

Definition 6.5

An independence system (E,Z) is called a matroid if

for all T'C E, all bases of T' have the same size, i.e., |B| = |B’|
whenever B and B’ are bases of T'.
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Examples

» £ ={1,2,3}
7= {0,{1},{2}, {3}, (2.3}
(E,T) is an independence system that is not a matroid.
- {1} and {2,3} are bases of E with different cardinality.
> E=1{1,2,3}
7= {0, {1}, {2}, {3}, {2,3}, {1,3}}
(E,T) is a matroid.

> E: Finite set of n-dimensional vectors
Z: All linearly independent subsets of
(E,T) is a matroid.
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Lemma 6.16
Let (E,Z) be an independence system.
For any T C E and an independent set S C T, there exists a basis

B of T such that S C B.
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Proposition 6.17

Let (E,Z) be an independence system.

(E,Z) is a matroid if and only if for any A, B € T with |A| < |B
there exists j € B\ A such that AU{j} € T.

’

> “Only if":
If there exist A, B € T such that |A| < |B| and AU{j} ¢ T
for any j € B\ A, then A is a basis of AU B,
while there is a basis of AU B that contains B, that is, (E,Z)
is not a matroid.

>

If (E,Z) is not a matroid, then there exist S C E and bases
A, B of S such that |A| < |B|, where AU {j} ¢ Z for
any j € S\ A, in particular, for any j € B\ A.
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Rank Functions

Definition 6.6
For an independence system (E,T), the function r: 28 — R
defined by

r(S)=max{|T|| T €Z, T CS}

is called the rank function of (E,T).

» If (E,7) is a matroid, r(S) equals the cardinality of any basis
of S.

» If r is a rank function of (E,Z), then Z ={T | »(T) = |T|}.
Therefore, we can write (E, ) for (E,Z).
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Proposition 6.18

The rank function r of an independence system satisfies
the following properties:

> 1 is integer valued, and () = 0.

> 0<r(Su{j})—r(S)<1foranySC Eandjec E\S.

Proposition 6.19

An independence system (E,Z) is a matroid if and only if
its rank function r is submodular.
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Proof
» Suppose that (F,Z) is a matroid.

» We want to show that
r(SU{j}) —7r(S) > r(SU{k,j}) —r(SU{k}) forany j # k
and S C E\ {k,j}.

It suffices to consider the case where (S U {j}) —r(S) = 0.

» Let B C S be a basis of S, so that 7(S) = | B|, and either
r(SU{k}) =|B|or r(SU{k}) =|B| + 1.

Note that BU{j} ¢ Z, since r(SU{j}) = r(S) = |B].
Therefore BU {k,j} ¢ T as well.

> If r(SU{k}) = |B]|, then BU{k} ¢ Z, and hence
r(SU{k,j}) = |Bl.

> If r(SU{k}) =|B|+1, then BU{k} € Z, and hence
r(SU{k,j})=|B|+1.
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Suppose that 7 is submodular.

Let SC E.

We want to show that | B| = r(.S) for any basis B of S.
For AC S, A €Z, suppose that |[A] < r(S).

Then by submodularity of r,

r(A) = [A] <r(S) <r(A) + X jeq\a(r(AU{G}) — r(4)),
which implies that 7(A U {j}) > r(A) for some j € S\ A.

This implies that AU {j} € Z for some j € S\ A, so that A
is not a basis of S.

Thus, if B is a basis of S, then |B| = r(S5);
in particular, any basis of S has the same cardinality.

This shows that (E,Z) is a matroid.
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Matroid Rank Functions

Definition 6.7
A function r: 2¥ — R is called a matroid rank function if it
satisfies the following properties:

» 7 is integer valued, and 7()) = 0.
> 0<r(SuU{j})—r(S)<1lforany SC Fandjec E\S.

» 7 is submodular.

» Proposition 6.19 implies that if 7 is a matroid rank function,
then the independence system (E,r) is a matroid.
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Matroids and Polymatroids

» Let r: 28 — R be a matroid rank function:
i.e., an integer-valued submodular function with 7(0)) = 0 such
that 0 < r(SU{i}) —r(S) <1forall SCE.

> Let 7= {T C E||T| =r(T)}.

Then (E,Z) is a matroid with r as its rank function
(Proposition 6.19).

> Identify 2% and {0,1}%:

Identify S C E with = (2¢)eer € {0,1}¥ such that z, = 1
if and only if e € S, and vice versa.

» Then Z is identified with the set of integer points in P(r):
{z € {0,1}F | 2(S) < r(S) for all S C E}.

(Note r({e}) <1 foranyec E.)
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» For T € Z, let 21 € {0,1}* be such that x. = 1 if and only if
ecT.

Then forany S C E, 27(S) = |SNT|=7(SNT) < r(9)
since SNT € Z, hence 2z € P(r).

» For z € P(r)N{0,1}¥, let T C E be such that e € T if and
only if x. = 1.

Then |T%| < r(T%), hence T* € Z (|S| > r(S) by definition).
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Matroid Intersection Theorem

Proposition 6.20
Let M, = (FE,I;) and My = (E,I2) be matroids with rank
functions r1 and ro, respectively. Then

max{|J| | J €1 NIy} = glcigrl(S) +ra(EN\S5).

39/63



Proof

» Write PZ(f) for the set of integer points in P(f).

» 71, I, and Z; N T, can be identified with PZ(ry), P%(rs),
and PZ(ry) N PZ(ry), respectively.

» By the Polymatroid Intersection Theorem,
PZ(r1) N P%(ry) = P%(ry|r2), where
(r1|r2)(8) = minpcgs ri(T) +r2(S\ T),
which is a matroid rank function.

> Hence,
max{|J| | J € T NIy}
— max{z(E) | z € P%(r1) N P%(ry)}
= max{z(E) | z € P¥(r1|ra)} = (r1|r2)(E).
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Application: Hall's Marriage Theorem

> A: Set of agents
> (: Set of goods

> [Al =G| =n

» D; C G: Set of acceptable goods for agent i € A

» An assignment is a set 7' C A x G such that |T| = n, and
if (i,7), (¢,5') € T, then i # i and j # 7.

» A feasible assignment is an assignment 1" such that j € D; for
all (i,7) € T.

P If a feasible assignment exists, then clearly it is necessary that
|B| < |U;ep Di forall B C A.

» In fact, this condition is also sufficient.
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Proposition 6.21

A feasible assignment exists if and only if

U

i€B

|B| < for all B C A. (*)
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Proof

We show the sufficiency of condition (x).

Let £ ={(i,j) € Ax G| je€ D;}.

Define Zy ={T' C E | (1,5),(¢',j) e T = i #'}.
Then M4 = (E,Z4) is a matroid.

Let r4 be its rank function.

Define Zg ={T' C E | (4,5),(#,j) e T = j#j'}.
Then Mg = (E,Zg) is a matroid.

Let ro be its rank function.

T C A X G is a feasible assignment if and only if T' € T NZq
and |T'| = n.

In light of the Matroid Intersection Theorem, it suffices to
show that mingcg7r4(S) + rg(E\ S) > n.
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» Takeany S C E.
> We have r4(S) = |S N A|
(SNA={ic A|(i,j) € S for some j € G}),
> and
re(E\S)={je G| (i,j) € E\S for some i € A}|
=|{jeG|je D;and (i,j) ¢ S for some i € A}|
>H{jeG|je D, forsomei¢ SN A}

= ‘UiiSﬂADi}
> [AN(SNnA)  (by (x))
=|A| - |SNA|

» Therefore, we have 74(S) +r¢(E \ S) > |A| = n as desired.
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Matroid Partition Theorem

Definition 6.8

Let M; = (E,Z;), i =1,...,k, be a collection of matroids.

J C E is partitionable with respect to {M;}¥_, if there exists

a partition {J!,..., J¥} of J such that J' € T; foralli € 1,... k.

Proposition 6.22

Let M; = (E,Z;), i = 1,...,k, be a collection of matroids, with
corresponding rank functions r;.

Then

k
max{|J| | J: partitionable} = glclg |E\ S|+ Zri(S).

i=1
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Proof

JY, ..., JF are disjoint if and only if (1,1 +--- + 1) <1
for all e € E, where 15 € R¥ is such that (15). =1ife€ S
and (1) =0ife ¢ S.

This condition is equivalent to 1,1 + -+ + 1 € P(ry),
where 7¢(S) = |S].

Therefore, J is partitionable if and only if
1€ P(ro) N YK, P(ry).

But by the Polymatroid Intersection Theorem,
P(ro) N K P(r;) = P(ro) 5, ), where

(rol X1 76)(S) = minges [T + S0 ri(S\ T),
which is a matroid rank function.
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» Therefore,

max{|J| | J: partitionable}
= max{z(E) | z € PZ(ro) N 25, P2(r;)}
=max{z(FE) | z € P(ro E?:l ri)}

k
=1
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Matroid Packing Theorem

Definition 6.9

A collection of matroids M; = (E,Z;), i =1,...,k, can be packed
into E if there exist disjoint sets Bi, ..., By such that B; is basis
in M; for each 1.

Proposition 6.23
A collection of matroids M; = (E,Z;), i = 1,..., k, with the
corresponding rank functions r; can be packed into E if and only if

k

k
in | B i(S) =S " ri(E) forall S C E.
min | \S|+;T(S) ;T( ) for all S C (%)

» Recall 7;(E) = |B;| for any basis in M.
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Proof

» By the Matroid Partition Theorem, (xx) holds if and only if
there exists a partitionable J with respect to {M;}; such that
|J| = >, |Bj| for any basis B; in M; for all 4,

or equivalently, there exist disjoint sets F; € Z; such that
> i |Eil = >, | Bi| for any basis B; in M;,
in particular for a basis B; D Fj, for all 1.

» The above equality holds if and only if F; = B;,

thus this condition holds if and only if there exist disjoint
bases B; in M;.
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Application: Efficient Assignment of Indivisible Goods
> M: Set of indivisible objects
> N: Set of agents

» v;(S): monetary value of S C M for j € N
Assume:
» v;(0) =0 (normalization)

» v; is non-decreasing.

» Demand correspondence of j € N:
D;(p) = {S € M | v;(S)=p(S) > v;(T)—=p(T) for all T € M}

(p(S) = ZieSpi)
> Assignment: (y;(S))scm jen where y;(S) € {0,1}
yj(S) =1 <= S C M is consumed by j € N.
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Substitutes Condition (Condition S)

Definition 6.10

v satisfies condition (S) if

for any p,p’ with p < p’ and any S € D(p),

there exists B € D(p') such that {i € S | p; = p}} C B.

» Unit demand case:

For each j € N, fix a/ € RY and let v;(S) = max;eg ag.

Then v; satisfies condition (S).
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Proposition 6.24

Suppose that v is non-decreasing.
If v satisfies condition (S), then it is submodular.
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Single Improvement Property (Condition SI)

Definition 6.11
v satisfies condition (SI) if
for any p and any S ¢ D(p), there exists B C M such that

v(B) —p(B) > v(S) — p(5)
and |S\ B|,|B\ S| < 1.

Proposition 6.25

Suppose that v is non-decreasing.
v satisfies condition (S) if and only if it satisfies condition (Sl).

» In the following, we assume that each v; satisfies condition

(Sh).
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Efficient Assignment Problem

» Integer program:

(P*) max > v;(S)y;(S)

SCM,jeN
st Y y(S) <1 forallie M
53ijEN
Z y;i(S) <1 forall je N
SCcM
y;(S) € {0,1} forall SC M,j€ N

» Since there are finitely many feasible solutions,
(P*) has an optimal solution (y;(.5)).

P Is there a price vector p* that “supports” the assignment

(45 (5))?
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» Relaxed problem:

(P) max > v;(9)y;(S)

SCM,jeN
s. t. Z yj(S) <1 forallie M
S3ijeN
Z y;i(S) <1 forall j e N
ScM
y;(S) >0 forall SC M,je€ N

» If (P) has an integral optimal solution, then it is an optimal
solution of (P*).

» Let Vip denote the optimal value of (P).
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» Dual problem:

(D) min Zpi—i- Z)\j

ieM JEN
st Y pit+ A >v(S) forall SCM,jeN
€S
pi >0, >0 forallie M,j € N

» Given (p;), it is optimal to set \; = maxgcar(v;(S) — p(9)).

> Let

Vo =p(M) + ) max(v;(S5) — p(S5)).
jEN

» By the Duality Theorem, Vi,p = min,>q V).
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Matroids

» We will show that for an optimal solution p* to (D),
there exist disjoint sets Bj, j € N, such that B; € D;(p*).

» Define

K;(p) = min{|B| | B € D;(p)},
D (p) = arg min{|B | B € D;(p)}.

» For each j € N and p, define the independence system
(M,Z;(p)) by T € Z; <= T C B for some B € Dj(p).

» The rank function 7;(-|p):

ri(Slp) = max{|T| | T € T, T 5}
=max{|T| | T C BN S for some B € D;(p)}
=max{|BNS|| B e D;(p)}
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Proposition 6.26
For each j € N and p € R}, (M, Z;(p)) is a matroid.
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Matroid Packing

Proposition 6.27

Let p* be an optimal solution to min,>q V.
Then there exist disjoint sets B;, j € N, such that B; € D;(p*).

» l.e., matroids (M,Z;(p*)), j € N, can be packed into M.
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Proof

In light of the Matroid Packing Theorem, it suffices to show
that for all S C M,

IMA S|+ > ri(SIp*) > Y ri(MlpY).
JEN JEN
Since r;(S|p*) = Maxpeps (p+) |BN S| and r;j(M|p*) = |B|

for any B € Dj(p"), this is equivalent to the condition:
forall S C M,

M\ S|+ [B;nS| > |Bl.
JEN JEN
for some B; € D} (p*), j € N.
This is equivalent to the condition: for all T' C M,
IT| > |B;NT| (sork)
JEN
for some B; € Dj(p*), j € N.
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» Fix any T'C M, and for € > 0, defined p’ by p, = p! + ¢ for
ie€T and p, =p;fori¢T.

» For each j € N, pick any B;- € Dj(p/)-
» Then we have
Ve < ‘/}), = p/(M) + Z[UJ(BQ) —p/(B})]
JEN
= p* (M) + 27| + S [0;(B)) — (0" (B}) + €| B, 0 T)
JEN
=y M)+ [0 (B) — 5 (B)) 2 (IT] - Syen 1B T)
jEN
<pr M)+ max[v;(B) = p*(B)] + ¢ <\TV — 2 jen IB;N T’)
jEN
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> Therefore, we have [T'| > >, |B; N T

> Now let € — 0.
Then by continuity, we have |T'| > 3.\ |B; N T for some
Bj € D;(p*), j € N.

» Then by Lemma 8.35 in the textbook, we have
IT| > > ;en |B;j N T| for some B; € Dj(p*), j € N,
as desired.

62/63



Claim 1
There exists an optimal solution p* to min,>g V), such that

» there exist disjoint sets Bj, j € N, such that B; € D;(p*),
and

> p; =0foralli¢ J;cn B

Proposition 6.28

Let p* be as in the Claim.

Then the assignment (y;(S)) defined by y;(B;) =1 (and
y; (S) = 0 otherwise) is an optimal solut/on to (P*) and is
supported by p*.

> By weak duality
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