6. Matroids and Polymatroids

Daisuke Oyama

Mathematical Economics

This version: July 14, 2023

- We first study polymatroids,
- and then study matroids as a special case of polymatroids.

Submodular Functions

- $E=\{1, \ldots, n\}$: Finite set

Definition 6.1
Let $f: 2^{E} \rightarrow \mathbb{R}$.

- f is non-decreasing if $S \subset T \Longrightarrow f(S) \leq f(T)$.
- f is submodular if $-f$ is supermodular (with respect to \subset), i.e.,

$$
f(S)+f(T) \geq f(S \cup T)+f(S \cap T)
$$

for all $S, T \subset E$.

Proposition 6.1

For $f: 2^{E} \rightarrow \mathbb{R}$, the following statements are equivalent:

1. f is submodular.
2. $f(S \cup\{i\})-f(S) \geq f(T \cup\{i\})-f(T)$ for all $i \in E$ and all $S \subset T \subset E \backslash\{i\}$.
3. $f(S)+\sum_{i \in T \backslash S}(f(S \cup\{i\})-f(S)) \geq f(T)$ for all $S \subset T \subset E$.
4. $f(S \cup\{i\})-f(S) \geq f(S \cup\{i, j\})-f(S \cup\{j\})$ for all $i, j \in E, i \neq j$, and all $S \subset E \backslash\{i, j\}$.

- If f and g are submodular, then for $\alpha, \beta \geq 0, \alpha f+\beta g$ is submodular.
- If f is submodular and non-decreasing, then for any $k \in \mathbb{R}$, $g(S)=\min \{f(S), k\}$ is submodular.
- If f is submodular, then $g(S)=f(E \backslash S)$ is submodular.
- If f is submodular, then $g(S)=\min _{T \supset S} f(T)$ is submodular and non-decreasing.

Polymatroids

- For $x=\left(x_{e}\right)_{e \in E} \in \mathbb{R}^{E}$, we write $x(S)=\sum_{e \in S} x_{e}$ for $S \subset E$.

Definition 6.2
Let $f: 2^{E} \rightarrow \mathbb{R}$ be a submodular function.
The set

$$
P(f)=\left\{x \in \mathbb{R}^{E} \mid x \geq 0, x(S) \leq f(S) \text { for all } S \subset E\right\}
$$

is called the polymatroid associated with (E, f).

- $P(f) \neq \emptyset$ if and only if $f(S) \geq 0$ for all $S \subset E$, in particular, if $f(\emptyset)=0$ and f is non-decreasing.
- The set

$$
P^{*}(f)=\left\{x \in \mathbb{R}^{E} \mid x(S) \leq f(S) \text { for all } S \subset E\right\}
$$

is called the extended polymatroid associated with (E, f).

$$
\left(P(f)=P^{*}(f) \cap \mathbb{R}_{+}^{E}\right)
$$

- The set

$$
B(f)=\left\{x \in \mathbb{R}^{E} \mid x(S) \leq f(S) \text { for all } S \subset E, x(E)=f(E)\right\}
$$

is called the base polytope of $P^{*}(f)$.
$\left(B(f)=P^{*}(f) \cap\left\{x \in \mathbb{R}^{E} \mid x(E)=f(E)\right\}\right)$

- In the following, we assume that $f(\emptyset)=0$, and that f is non-decreasing when we talk about $P(f)$.

Cores of Convex Games

- The core of a cooperative game $v: 2^{E} \rightarrow \mathbb{R}$ is the set

$$
C(v)=\left\{x \in \mathbb{R}^{E} \mid x(S) \geq v(S) \text { for all } S \subset E, x(E)=v(E)\right\}
$$

- $v: 2^{E} \rightarrow \mathbb{R}$ is a convex game if v is supermodular and $v(\emptyset)=0$.
- For v, define $v^{\#}: 2^{E} \rightarrow \mathbb{R}$ by

$$
v^{\#}(S)=v(E)-v(E \backslash S)
$$

- $v^{\#}$ is submodular if and only if v is supermodular.
- $x(E)=v(E) \Longleftrightarrow x(E)=v^{\#}(E)$.
- Since $v(S)=v^{\#}(E)-v^{\#}(E \backslash S)=x(E)-v^{\#}(E \backslash S)$, $x(S) \geq v(S)$ for all $S \subset E \Longleftrightarrow x(S) \leq v^{\#}(S)$ for all $S \subset E$.
- Therefore, $C(v)=B\left(v^{\#}\right)$.

Pareto Frontier of a Polymatroid

- Let $f: 2^{E} \rightarrow \mathbb{R}$ be a submodular function.

Proposition 6.2
$P^{*}(f)=\left\{x \in \mathbb{R}^{E} \mid x \leq y\right.$ for some $\left.y \in B(f)\right\}$.

Corollary 6.3
$B(f) \neq \emptyset$.
(Alternative proof of the nonemptiness of the core)

Corollary 6.4
$\max \left\{x(E) \mid x \in P^{*}(f)\right\}=\max \{x(E) \mid x \in B(f)\}=f(E)$.

Proof of Proposition 6.2

- Take any $x \in P^{*}(f)$.
- Then $\arg \max \left\{y(E) \mid y \in P^{*}(f), x \leq y\right\} \neq \emptyset$, since $\left\{y \in \mathbb{R}^{E} \mid y \in P^{*}(f), x \leq y\right\}$ is a nonempty compact set.
- Take any y in this argmax set.
- Denote $\mathcal{S}_{y}=\{S \subset E \mid y(S)=f(S)\}$, which is closed under \cup and \cap.
- By the optimality of y, for each $e \in E$, there exists $S^{e} \in \mathcal{S}_{y}$ such that $e \in S^{e}$.
- Then $E=\bigcup_{e \in E} S^{e} \in \mathcal{S}_{y}$, i.e., $y(E)=f(E)$. Hence $y \in B(f)$.

Extreme Points of a Base Polytope

- Suppose that $f: 2^{E} \rightarrow \mathbb{R}$ is a submodular function with $f(\emptyset)=0$, where $E=\{1, \ldots, n\}$.
- Consider the base polytope:

$$
B(f)=\left\{x \in \mathbb{R}^{n} \mid x(S) \leq f(S) \text { for all } S \subset E, x(E)=f(E)\right\}
$$

- For a permutation $\sigma=\left(i_{1}, \ldots, i_{n}\right)$ of $\{1, \ldots, n\}$, define $x^{\sigma} \in \mathbb{R}^{n}$ by

$$
x_{i_{k}}^{\sigma}=f\left(\left\{1, \ldots, i_{k}\right\}\right)-f\left(\left\{1, \ldots, i_{k-1}\right\}\right) \quad(k=1, \ldots, n) .
$$

Proposition 6.5

The points written as x^{σ} are precisely the extreme points of $B(f)$.

- Proposition 5.3

Extreme Points of an Extended Polymatroid

Proposition 6.6

The points written as x^{σ} are precisely the extreme points of $P^{*}(f)$.

Proof

- First, the basic feasible points x^{σ} of $B(f)$ are basic feasible points, hence extreme points, of $P^{*}(f)$.
- Second, for any $x \in P^{*}(f) \backslash B(f)$, there exists $y \in B(f)$ such that $x \leq y$.

Therefore, any extreme point of $P^{*}(f)$ is contained in $B(f)$.

- Thus, x^{σ} are precisely the extreme points of $P^{*}(f)$.

Extreme Points of a Polymatroid

- Suppose in addition that f is non-decreasing.
- For any sequence $\gamma=\left(i_{1}, \ldots, i_{m}\right)$ of distinct elements of E, define $x^{\gamma} \in \mathbb{R}_{+}^{n}$ by

$$
x_{i_{k}}^{\gamma}= \begin{cases}f\left(\left\{1, \ldots, i_{k}\right\}\right)-f\left(\left\{1, \ldots, i_{k-1}\right\}\right) & \text { if } k=1, \ldots, m \\ 0 & \text { if } k=m+1, \ldots, n\end{cases}
$$

Proposition 6.7
The points written as x^{γ} are precisely the extreme points of $P(f)$.

- By a similar argument as in the proof of Proposition 5.3.

Integrality of Extreme Points

Proposition 6.8
If f is integer-valued, then all the extreme points of $B(f), P^{*}(f)$, and $P(f)$ are integral.

Linear Programming on Polymatroids

- Given $f: 2^{E} \rightarrow \mathbb{R}$, let $P(f)$ be the polymatroid associated with (E, f).
A vector $w=\left(w_{e}\right)_{e \in E} \in \mathbb{R}^{n}$ is given.
- Consider the linear program:

$$
\max _{x \in P(f)} w x
$$

or explicitly,

$$
\begin{array}{lll}
\max & \sum_{e \in E} w_{e} x_{e} & \\
\text { s.t. } & x(S) \leq f(S) & \text { for all } S \subset E \\
& x_{e} \geq 0 & \text { for all } e \in E .
\end{array}
$$

- Label the elements of E as $\{1, \ldots, n\}$ so that $w_{1} \geq \cdots \geq w_{k}>0 \geq w_{k+1} \geq \cdots \geq w_{n}$.
- Define $S^{0}=\emptyset$, and $S^{\ell}=\{1, \ldots, \ell\}, \ell=1, \ldots, n$.
- Define $x^{*} \in \mathbb{R}^{n}$ by

$$
\begin{array}{ll}
x_{i}^{*}=f\left(S^{i}\right)-f\left(S^{i-1}\right) & \\
x_{i}^{*}=0 & (1 \leq i \leq k) \\
(k+1 \leq i \leq n)
\end{array}
$$

Proposition 6.9
Suppose that f is a non-decreasing and submodular function with $f(\emptyset)=0$.
Then x^{*} is an optimal solution to $\max _{x \in P(f)} w x$.

Proof

- Feasibility: By Proposition 6.7.
- To prove the optimality, consider the dual problem:

$$
\begin{aligned}
\min & \sum_{S \subset E} y_{S} f(S) \\
\text { s.t. } & \sum_{S \ni e} y_{S} \geq w_{e} \quad \text { for all } e \in E
\end{aligned}
$$

$$
y_{S} \geq 0 \quad \text { for all } S \subset E
$$

- Define $y^{*}=\left(y_{S}^{*}\right)_{S \subset E}$ by
- $y_{S^{\ell}}^{*}=w_{\ell}-w_{\ell+1}$ for $\ell=1, \ldots, k-1$;
- $y_{S^{k}}^{*}=w_{k}$; and
- $y_{S}^{*}=0$ for $S \neq S^{1}, \ldots, S^{k}$.
- Then y^{*} is feasible and satisfies $\sum_{S \subset E} y_{S}^{*} f(S)=\sum_{e \in E} w_{e} x_{e}^{*}$.

Proposition 6.10

Suppose that f is a submodular function with $f(\emptyset)=0$ and that $w_{e}>0$ for all $e \in E$ (so that $k=n$).
Then x^{*} is an optimal solution to $\max _{x \in B(f)} w x$ and $\max _{x \in P^{*}(f)} w x$.

Extreme Points of a Polymatroid (Alternative Proof)

- Suppose that \bar{x} is an extreme point of $P(f)$.
- Since it is a vertex of $P(f)$, there exists $w \in \mathbb{R}^{n}$ such that $\arg \max _{x \in P(f)} w x=\{\bar{x}\}$.
- Without loss, assume $w_{1} \geq \cdots \geq w_{k}>0 \geq w_{k+1} \geq \cdots \geq w_{n}$.
- By Proposition 6.9, x^{*} is an optimal solution to $\max _{x \in P(f)} w x$.
- Thus, $\bar{x}=x^{*}$.

Polymatroid Intersection Theorem

- Given $f: 2^{E} \rightarrow \mathbb{R}$ and $g: 2^{E} \rightarrow \mathbb{R}$, define the function $f \mid g: 2^{E} \rightarrow \mathbb{R}$ by

$$
(f \mid g)(S)=\min _{T \subset S} f(T)+g(S \backslash T)
$$

- If f and g are submodular, then so is $f \mid g$.
- If $f(\emptyset)=g(\emptyset)=0$, then $(f \mid g)(\emptyset)=0$.
- If f and g are non-decreasing, then so is $f \mid g$.
- If f and g are integer-valued, then so is $f \mid g$.

Proposition 6.11
$P(f) \cap P(g)=P(f \mid g)$ and $P^{*}(f) \cap P^{*}(g)=P^{*}(f \mid g)$.

Proof

- Suppose that $x(S) \leq f(S)$ and $x(S) \leq g(S)$ for all $S \subset E$. Then for any $S \subset E$ and $T \subset S$, from $x(T) \leq f(T)$ and $x(S \backslash T) \leq g(S \backslash T)$, it follows that $x(S) \leq f(T)+g(S \backslash T)$.
- If $x(S) \leq f(T)+g(S \backslash T)$ for all $S \subset E$ and $T \subset S$, then for any $S \subset E, x(S) \leq f(S)$ and $x(S) \leq g(S)$.

Proposition 6.12

If f and g are integer-valued, then all the extreme points of $P(f) \cap P(g)$ and $P^{*}(f) \cap P^{*}(g)$ are integral.

Discrete Separation Theorem

Proposition 6.13

Suppose that $f: 2^{E} \rightarrow \mathbb{R}$ and $g: 2^{E} \rightarrow \mathbb{R}$ are submodular and supermodular functions, respectively.

- If $g(S) \leq f(S)$ for all $S \subset E$, then there exists $x \in \mathbb{R}^{E}$ such that $g(S) \leq x(S) \leq f(S)$ for all $S \subset E$.
- If in addition f and g are integer-valued, then there exists $x \in \mathbb{Z}^{E}$ such that $g(S) \leq x(S) \leq f(S)$ for all $S \subset E$.

Proof

- Define the function $g^{\#}: 2^{E} \rightarrow \mathbb{R}$ by $g^{\#}(S)=g(E)-g(E \backslash S)$, which is submodular.
- Take any $z \in B\left(f \mid g^{\#}\right)(\neq \emptyset)$, where $\left(f \mid g^{\#}\right)(S)=\min _{T \subset S} f(T)+g^{\#}(S \backslash T)$.
- Then
- $z(S) \leq f(S)$ for all $S \subset E$;
- $z(S) \leq g^{\#}(S)=g(E)-g(E \backslash S)$ for all $S \subset E$; and
- $z(E)=\min _{T \subset E} f(T)+g(E)-g(T)=g(E)$, since $f(T)-g(T) \geq 0$ for all T and $f(\emptyset)-g(\emptyset)=0$;
and therefore,
- $z(S) \leq z(E)-g(E \backslash S)$ for all $S \subset E$, and hence $z(S) \geq g(S)$ for all $S \subset E$.
- If f and g are integer-valued, then we can take an integer vector as $z \in B\left(f \mid g^{\#}\right)$.

Sum of Base Polytopes/Polymatroids

Proposition 6.14

1. $B(f)+B(g)=B(f+g)$.
2. $P(f)+P(g)=P(f+g)$.

Proof

- We only prove part 1 ; the proof of part 2 is similar.
- " \subset ": Immediate.
- " \supset ": Any extreme point of $B(f+g)$ is written as z^{σ} for some permutation $\sigma=\left(i_{1}, \ldots, i_{n}\right)$ where $z_{i_{k}}^{\sigma}=(f+g)\left(\left\{i_{1}, \ldots, i_{k}\right\}\right)-(f+g)\left(\left\{i_{1}, \ldots, i_{k-1}\right\}\right)$.
- z^{σ} is written as $z^{\sigma}=x^{\sigma}+y^{\sigma}$, where $x_{i_{k}}^{\sigma}=f\left(\left\{i_{1}, \ldots, i_{k}\right\}\right)-f\left(\left\{i_{1}, \ldots, i_{k-1}\right\}\right) \in B(f)$, and $y_{i_{k}}^{\sigma}=g\left(\left\{i_{1}, \ldots, i_{k}\right\}\right)-g\left(\left\{i_{1}, \ldots, i_{k-1}\right\}\right) \in B(g)$, so that $z^{\sigma} \in B(f)+B(g)$.
- Then $B(f+g)=\operatorname{conv}\left\{z^{\sigma} \mid \sigma \in \Pi\right\} \subset B(f)+B(g)$ since $B(f)+B(g)$ is a convex set.

Sum of Extended Polymatroids

Proposition 6.15
$P^{*}(f)+P^{*}(g)=P^{*}(f+g)$.

Proof

- " \subset ": Immediate.
- Suppose that $z \in P^{*}(f+g)$.

Then there exists $z^{\prime} \in B(f+g)=B(f)+B(g)$ such that $z \leq z^{\prime}$, where $z^{\prime}=x^{\prime}+y^{\prime}$ for some $x^{\prime} \in B(f)$ and $y^{\prime} \in B(g)$.

- Then $z=x^{\prime}+\left(z-x^{\prime}\right)$, where $x^{\prime} \in P^{*}(f)$ and $z-x^{\prime} \in P^{*}(g)$ since $z-x^{\prime} \leq y^{\prime}$.
- Thus $z \in P^{*}(f)+P^{*}(g)$.

Matroids

Definition 6.3

For a finite set E and a family $\mathcal{I} \subset 2^{E}$ of subsets of E,
(E, \mathcal{I}) is called an independence system if

1. $\emptyset \in \mathcal{I}$; and
2. $A \subset B \in \mathcal{I} \Longrightarrow A \in \mathcal{I}$.

- Elements in \mathcal{I} are called independent sets.
- Elements in $2^{E} \backslash \mathcal{I}$ are called dependent sets.

Definition 6.4

For an independence system (E, \mathcal{I}) and for $T \subset E$, $B \subset T$ is called a basis of T or maximal in T if $B \in \mathcal{I}$ and $B \cup\{j\} \notin \mathcal{I}$ for any $j \in T \backslash B$.

Definition 6.5

An independence system (E, \mathcal{I}) is called a matroid if for all $T \subset E$, all bases of T have the same size, i.e., $|B|=\left|B^{\prime}\right|$ whenever B and B^{\prime} are bases of T.

Examples

- $E=\{1,2,3\}$
$\mathcal{I}=\{\emptyset,\{1\},\{2\},\{3\},\{2,3\}\}$
(E, \mathcal{I}) is an independence system that is not a matroid.
$\because\{1\}$ and $\{2,3\}$ are bases of E with different cardinality.
- $E=\{1,2,3\}$
$\mathcal{I}=\{\emptyset,\{1\},\{2\},\{3\},\{2,3\},\{1,3\}\}$
(E, \mathcal{I}) is a matroid.
- E : Finite set of n-dimensional vectors
\mathcal{I} : All linearly independent subsets of E
(E, \mathcal{I}) is a matroid.

Lemma 6.16
Let (E, \mathcal{I}) be an independence system.
For any $T \subset E$ and an independent set $S \subset T$, there exists a basis B of T such that $S \subset B$.

Proposition 6.17

Let (E, \mathcal{I}) be an independence system.
(E, \mathcal{I}) is a matroid if and only if for any $A, B \in \mathcal{I}$ with $|A|<|B|$, there exists $j \in B \backslash A$ such that $A \cup\{j\} \in \mathcal{I}$.

- "Only if":

If there exist $A, B \in \mathcal{I}$ such that $|A|<|B|$ and $A \cup\{j\} \notin \mathcal{I}$ for any $j \in B \backslash A$, then A is a basis of $A \cup B$, while there is a basis of $A \cup B$ that contains B, that is, (E, \mathcal{I}) is not a matroid.

- "If":

If (E, \mathcal{I}) is not a matroid, then there exist $S \subset E$ and bases
A, B of S such that $|A|<|B|$, where $A \cup\{j\} \notin \mathcal{I}$ for any $j \in S \backslash A$, in particular, for any $j \in B \backslash A$.

Rank Functions

Definition 6.6

For an independence system (E, \mathcal{I}), the function $r: 2^{E} \rightarrow \mathbb{R}$ defined by

$$
r(S)=\max \{|T| \mid T \in \mathcal{I}, T \subset S\}
$$

is called the rank function of (E, \mathcal{I}).

- If (E, \mathcal{I}) is a matroid, $r(S)$ equals the cardinality of any basis of S.
- If r is a rank function of (E, \mathcal{I}), then $\mathcal{I}=\{T|r(T)=|T|\}$. Therefore, we can write (E, r) for (E, \mathcal{I}).

Proposition 6.18

The rank function r of an independence system satisfies the following properties:

- r is integer valued, and $r(\emptyset)=0$.
- $0 \leq r(S \cup\{j\})-r(S) \leq 1$ for any $S \subset E$ and $j \in E \backslash S$.

Proposition 6.19
An independence system (E, \mathcal{I}) is a matroid if and only if its rank function r is submodular.

Proof

- Suppose that (E, \mathcal{I}) is a matroid.
- We want to show that
$r(S \cup\{j\})-r(S) \geq r(S \cup\{k, j\})-r(S \cup\{k\})$ for any $j \neq k$ and $S \subset E \backslash\{k, j\}$.
It suffices to consider the case where $r(S \cup\{j\})-r(S)=0$.
- Let $B \subset S$ be a basis of S, so that $r(S)=|B|$, and either $r(S \cup\{k\})=|B|$ or $r(S \cup\{k\})=|B|+1$.
Note that $B \cup\{j\} \notin \mathcal{I}$, since $r(S \cup\{j\})=r(S)=|B|$. Therefore $B \cup\{k, j\} \notin \mathcal{I}$ as well.
- If $r(S \cup\{k\})=|B|$, then $B \cup\{k\} \notin \mathcal{I}$, and hence $r(S \cup\{k, j\})=|B|$.
- If $r(S \cup\{k\})=|B|+1$, then $B \cup\{k\} \in \mathcal{I}$, and hence $r(S \cup\{k, j\})=|B|+1$.
- Suppose that r is submodular.
- Let $S \subset E$.

We want to show that $|B|=r(S)$ for any basis B of S.

- For $A \subset S, A \in \mathcal{I}$, suppose that $|A|<r(S)$.

Then by submodularity of r, $r(A)=|A|<r(S) \leq r(A)+\sum_{j \in S \backslash A}(r(A \cup\{j\})-r(A))$, which implies that $r(A \cup\{j\})>r(A)$ for some $j \in S \backslash A$.

- This implies that $A \cup\{j\} \in \mathcal{I}$ for some $j \in S \backslash A$, so that A is not a basis of S.
- Thus, if B is a basis of S, then $|B|=r(S)$; in particular, any basis of S has the same cardinality.

This shows that (E, \mathcal{I}) is a matroid.

Matroid Rank Functions

Definition 6.7
A function $r: 2^{E} \rightarrow \mathbb{R}$ is called a matroid rank function if it satisfies the following properties:

- r is integer valued, and $r(\emptyset)=0$.
- $0 \leq r(S \cup\{j\})-r(S) \leq 1$ for any $S \subset E$ and $j \in E \backslash S$.
- r is submodular.
- Proposition 6.19 implies that if r is a matroid rank function, then the independence system (E, r) is a matroid.

Matroids and Polymatroids

- Let $r: 2^{E} \rightarrow \mathbb{R}$ be a matroid rank function:
i.e., an integer-valued submodular function with $r(\emptyset)=0$ such that $0 \leq r(S \cup\{i\})-r(S) \leq 1$ for all $S \subset E$.
- Let $\mathcal{I}=\{T \subset E| | T \mid=r(T)\}$.

Then (E, \mathcal{I}) is a matroid with r as its rank function (Proposition 6.19).

- Identify 2^{E} and $\{0,1\}^{E}$:

Identify $S \subset E$ with $x=\left(x_{e}\right)_{e \in E} \in\{0,1\}^{E}$ such that $x_{e}=1$ if and only if $e \in S$, and vice versa.

- Then \mathcal{I} is identified with the set of integer points in $P(r)$: $\left\{x \in\{0,1\}^{E} \mid x(S) \leq r(S)\right.$ for all $\left.S \subset E\right\}$.
(Note $r(\{e\}) \leq 1$ for any $e \in E$.)
- For $T \in \mathcal{I}$, let $x^{T} \in\{0,1\}^{E}$ be such that $x_{e}=1$ if and only if $e \in T$.

Then for any $S \subset E, x^{T}(S)=|S \cap T|=r(S \cap T) \leq r(S)$ since $S \cap T \in \mathcal{I}$, hence $x^{T} \in P(r)$.

- For $x \in P(r) \cap\{0,1\}^{E}$, let $T^{x} \subset E$ be such that $e \in T$ if and only if $x_{e}=1$.

Then $\left|T^{x}\right| \leq r\left(T^{x}\right)$, hence $T^{x} \in \mathcal{I}(|S| \geq r(S)$ by definition $)$.

Matroid Intersection Theorem

Proposition 6.20
Let $M_{1}=\left(E, \mathcal{I}_{1}\right)$ and $M_{2}=\left(E, \mathcal{I}_{2}\right)$ be matroids with rank functions r_{1} and r_{2}, respectively. Then

$$
\max \left\{|J| \mid J \in \mathcal{I}_{1} \cap \mathcal{I}_{2}\right\}=\min _{S \subset E} r_{1}(S)+r_{2}(E \backslash S)
$$

Proof

- Write $P^{\mathbb{Z}}(f)$ for the set of integer points in $P(f)$.
- $\mathcal{I}_{1}, \mathcal{I}_{2}$, and $\mathcal{I}_{1} \cap \mathcal{I}_{2}$ can be identified with $P^{\mathbb{Z}}\left(r_{1}\right), P^{\mathbb{Z}}\left(r_{2}\right)$, and $P^{\mathbb{Z}}\left(r_{1}\right) \cap P^{\mathbb{Z}}\left(r_{2}\right)$, respectively.
- By the Polymatroid Intersection Theorem, $P^{\mathbb{Z}}\left(r_{1}\right) \cap P^{\mathbb{Z}}\left(r_{2}\right)=P^{\mathbb{Z}}\left(r_{1} \mid r_{2}\right)$, where $\left(r_{1} \mid r_{2}\right)(S)=\min _{T \subset S} r_{1}(T)+r_{2}(S \backslash T)$, which is a matroid rank function.
- Hence,

$$
\begin{aligned}
& \max \left\{|J| \mid J \in \mathcal{I}_{1} \cap \mathcal{I}_{2}\right\} \\
& =\max \left\{z(E) \mid z \in P^{\mathbb{Z}}\left(r_{1}\right) \cap P^{\mathbb{Z}}\left(r_{2}\right)\right\} \\
& =\max \left\{z(E) \mid z \in P^{\mathbb{Z}}\left(r_{1} \mid r_{2}\right)\right\}=\left(r_{1} \mid r_{2}\right)(E) .
\end{aligned}
$$

Application: Hall's Marriage Theorem

- A: Set of agents
- G: Set of goods
- $|A|=|G|=n$
- $D_{i} \subset G$: Set of acceptable goods for agent $i \in A$
- An assignment is a set $T \subset A \times G$ such that $|T|=n$, and if $(i, j),\left(i^{\prime}, j^{\prime}\right) \in T$, then $i \neq i^{\prime}$ and $j \neq j^{\prime}$.
- A feasible assignment is an assignment T such that $j \in D_{i}$ for all $(i, j) \in T$.
- If a feasible assignment exists, then clearly it is necessary that $|B| \leq\left|\bigcup_{i \in B} D_{i}\right|$ for all $B \subset A$.
- In fact, this condition is also sufficient.

Proposition 6.21
A feasible assignment exists if and only if

$$
\begin{equation*}
|B| \leq\left|\bigcup_{i \in B} D_{i}\right| \text { for all } B \subset A \tag{*}
\end{equation*}
$$

Proof

- We show the sufficiency of condition (*).
- Let $E=\left\{(i, j) \in A \times G \mid j \in D_{i}\right\}$.
- Define $\mathcal{I}_{A}=\left\{T \subset E \mid(i, j),\left(i^{\prime}, j^{\prime}\right) \in T \Longrightarrow i \neq i^{\prime}\right\}$.

Then $M_{A}=\left(E, \mathcal{I}_{A}\right)$ is a matroid.
Let r_{A} be its rank function.

- Define $\mathcal{I}_{G}=\left\{T \subset E \mid(i, j),\left(i^{\prime}, j^{\prime}\right) \in T \Longrightarrow j \neq j^{\prime}\right\}$.

Then $M_{G}=\left(E, \mathcal{I}_{G}\right)$ is a matroid.
Let r_{G} be its rank function.

- $T \subset A \times G$ is a feasible assignment if and only if $T \in \mathcal{I}_{A} \cap \mathcal{I}_{G}$ and $|T|=n$.
- In light of the Matroid Intersection Theorem, it suffices to show that $\min _{S \subset E} r_{A}(S)+r_{G}(E \backslash S) \geq n$.
- Take any $S \subset E$.
- We have $r_{A}(S)=|S \cap A|$
$(S \cap A=\{i \in A \mid(i, j) \in S$ for some $j \in G\})$,
- and

$$
\begin{aligned}
r_{G}(E \backslash S) & =\mid\{j \in G \mid(i, j) \in E \backslash S \text { for some } i \in A\} \mid \\
& =\mid\left\{j \in G \mid j \in D_{i} \text { and }(i, j) \notin S \text { for some } i \in A\right\} \mid \\
& \geq \mid\left\{j \in G \mid j \in D_{i} \text { for some } i \notin S \cap A\right\} \mid \\
& =\left|\bigcup_{i \notin S \cap A} D_{i}\right| \\
& \geq|A \backslash(S \cap A)| \quad(\text { by }(*)) \\
& =|A|-|S \cap A| .
\end{aligned}
$$

- Therefore, we have $r_{A}(S)+r_{G}(E \backslash S) \geq|A|=n$ as desired.

Matroid Partition Theorem

Definition 6.8

Let $M_{i}=\left(E, \mathcal{I}_{i}\right), i=1, \ldots, k$, be a collection of matroids.
$J \subset E$ is partitionable with respect to $\left\{M_{i}\right\}_{i=1}^{k}$ if there exists a partition $\left\{J^{1}, \ldots, J^{k}\right\}$ of J such that $J^{i} \in \mathcal{I}_{i}$ for all $i \in 1, \ldots, k$.

Proposition 6.22

Let $M_{i}=\left(E, \mathcal{I}_{i}\right), i=1, \ldots, k$, be a collection of matroids, with corresponding rank functions r_{i}.
Then

$$
\max \{|J| \mid J: \text { partitionable }\}=\min _{S \subset E}|E \backslash S|+\sum_{i=1}^{k} r_{i}(S)
$$

Proof

- J^{1}, \ldots, J^{k} are disjoint if and only if $\left(\mathbf{1}_{J^{1}}+\cdots+\mathbf{1}_{J^{k}}\right)_{e} \leq 1$ for all $e \in E$, where $\mathbf{1}_{S} \in \mathbb{R}^{E}$ is such that $\left(\mathbf{1}_{S}\right)_{e}=1$ if $e \in S$ and $\left(\mathbf{1}_{S}\right)_{e}=0$ if $e \notin S$.
- This condition is equivalent to $\mathbf{1}_{J^{1}}+\cdots+\mathbf{1}_{J^{k}} \in P\left(r_{0}\right)$, where $r_{0}(S)=|S|$.
- Therefore, J is partitionable if and only if $\mathbf{1}_{J} \in P\left(r_{0}\right) \cap \sum_{i=1}^{k} P\left(r_{i}\right)$.
- But by the Polymatroid Intersection Theorem, $P\left(r_{0}\right) \cap \sum_{i=1}^{k} P\left(r_{i}\right)=P\left(r_{0} \mid \sum_{i=1}^{k} r_{i}\right)$, where $\left(r_{0} \mid \sum_{i=1}^{k} r_{i}\right)(S)=\min _{T \subset S}|T|+\sum_{i=1}^{k} r_{i}(S \backslash T)$, which is a matroid rank function.
- Therefore,

$$
\begin{aligned}
& \max \{|J| \mid J: \text { partitionable }\} \\
& =\max \left\{z(E) \mid z \in P^{\mathbb{Z}}\left(r_{0}\right) \cap \sum_{i=1}^{k} P^{\mathbb{Z}}\left(r_{i}\right)\right\} \\
& =\max \left\{z(E) \mid z \in P\left(r_{0} \mid \sum_{i=1}^{k} r_{i}\right)\right\} \\
& =\left(r_{0} \mid \sum_{i=1}^{k} r_{i}\right)(E) .
\end{aligned}
$$

Matroid Packing Theorem

Definition 6.9

A collection of matroids $M_{i}=\left(E, \mathcal{I}_{i}\right), i=1, \ldots, k$, can be packed into E if there exist disjoint sets B_{1}, \ldots, B_{k} such that B_{i} is basis in M_{i} for each i.

Proposition 6.23
A collection of matroids $M_{i}=\left(E, \mathcal{I}_{i}\right), i=1, \ldots, k$, with the corresponding rank functions r_{i} can be packed into E if and only if

$$
\begin{equation*}
\min _{S \subset E}|E \backslash S|+\sum_{i=1}^{k} r_{i}(S)=\sum_{i=1}^{k} r_{i}(E) \text { for all } S \subset E \tag{**}
\end{equation*}
$$

- Recall $r_{i}(E)=\left|B_{i}\right|$ for any basis in M_{i}.

Proof

- By the Matroid Partition Theorem, $(* *)$ holds if and only if there exists a partitionable J with respect to $\left\{M_{i}\right\}_{i}$ such that $|J|=\sum_{i}\left|B_{i}\right|$ for any basis B_{i} in M_{i} for all i,
or equivalently, there exist disjoint sets $F_{i} \in \mathcal{I}_{i}$ such that $\sum_{i}\left|F_{i}\right|=\sum_{i}\left|B_{i}\right|$ for any basis B_{i} in M_{i}, in particular for a basis $B_{i} \supset F_{i}$, for all i.
- The above equality holds if and only if $F_{i}=B_{i}$, thus this condition holds if and only if there exist disjoint bases B_{i} in M_{i}.

Application: Efficient Assignment of Indivisible Goods

- M : Set of indivisible objects
- N : Set of agents
- $v_{j}(S)$: monetary value of $S \subset M$ for $j \in N$

Assume:

- $v_{j}(\emptyset)=0$ (normalization)
$-v_{j}$ is non-decreasing.
- Demand correspondence of $j \in N$:

$$
\begin{aligned}
& D_{j}(p)=\left\{S \subset M \mid v_{j}(S)-p(S) \geq v_{j}(T)-p(T) \text { for all } T \subset M\right\} \\
& \left(p(S)=\sum_{i \in S} p_{i}\right)
\end{aligned}
$$

- Assignment: $\left(y_{j}(S)\right)_{S \subset M, j \in N}$ where $y_{j}(S) \in\{0,1\}$

$$
y_{j}(S)=1 \Longleftrightarrow S \subset M \text { is consumed by } j \in N .
$$

Substitutes Condition (Condition S)

Definition 6.10
v satisfies condition (S) if
for any p, p^{\prime} with $p \leq p^{\prime}$ and any $S \in D(p)$,
there exists $B \in D\left(p^{\prime}\right)$ such that $\left\{i \in S \mid p_{i}=p_{i}^{\prime}\right\} \subset B$.

- Unit demand case:

For each $j \in N$, fix $a^{j} \in \mathbb{R}_{+}^{M}$ and let $v_{j}(S)=\max _{i \in S} a_{i}^{j}$.
Then v_{j} satisfies condition (S).

Proposition 6.24
Suppose that v is non-decreasing.
If v satisfies condition (S), then it is submodular.

Single Improvement Property (Condition SI)

Definition 6.11

v satisfies condition (SI) if
for any p and any $S \notin D(p)$, there exists $B \subset M$ such that

$$
v(B)-p(B)>v(S)-p(S)
$$

and $|S \backslash B|,|B \backslash S| \leq 1$.

Proposition 6.25
Suppose that v is non-decreasing.
v satisfies condition (S) if and only if it satisfies condition (SI).

- In the following, we assume that each v_{j} satisfies condition (SI).

Efficient Assignment Problem

- Integer program:

$$
\begin{array}{rll}
\left(\mathrm{P}^{*}\right) \quad \max & \sum_{S \subset M, j \in N} v_{j}(S) y_{j}(S) \\
\text { s.t. } & \sum_{S \ni i, j \in N} y_{j}(S) \leq 1 & \text { for all } i \in M \\
& \sum_{S \subset M} y_{j}(S) \leq 1 & \text { for all } j \in N \\
& y_{j}(S) \in\{0,1\} & \text { for all } S \subset M, j \in N
\end{array}
$$

- Since there are finitely many feasible solutions, $\left(\mathrm{P}^{*}\right)$ has an optimal solution $\left(y_{j}^{*}(S)\right)$.
- Is there a price vector p^{*} that "supports" the assignment $\left(y_{j}^{*}(S)\right)$?
- Relaxed problem:

$$
\begin{array}{rll}
\text { (P) } \max & \sum_{S \subset M, j \in N} v_{j}(S) y_{j}(S) \\
\text { s.t. } & \sum_{S \ni i, j \in N} y_{j}(S) \leq 1 & \text { for all } i \in M \\
& \sum_{S \subset M} y_{j}(S) \leq 1 & \text { for all } j \in N \\
& y_{j}(S) \geq 0 & \text { for all } S \subset M, j \in N
\end{array}
$$

- If (P) has an integral optimal solution, then it is an optimal solution of $\left(\mathrm{P}^{*}\right)$.
- Let V_{LP} denote the optimal value of (P).
- Dual problem:
(D) $\min \sum_{i \in M} p_{i}+\sum_{j \in N} \lambda_{j}$

$$
\begin{array}{lll}
\text { s.t. } & \sum_{i \in S} p_{i}+\lambda_{j} \geq v_{j}(S) & \text { for all } S \subset M, j \in N \\
& p_{i} \geq 0, \lambda_{j} \geq 0 & \text { for all } i \in M, j \in N
\end{array}
$$

- Given $\left(p_{i}\right)$, it is optimal to set $\lambda_{j}=\max _{S \subset M}\left(v_{j}(S)-p(S)\right)$.
- Let

$$
V_{p}=p(M)+\sum_{j \in N} \max _{S \subset M}\left(v_{j}(S)-p(S)\right)
$$

- By the Duality Theorem, $V_{\mathrm{LP}}=\min _{p \geq 0} V_{p}$.

Matroids

- We will show that for an optimal solution p^{*} to (D), there exist disjoint sets $B_{j}, j \in N$, such that $B_{j} \in D_{j}\left(p^{*}\right)$.
- Define

$$
\begin{aligned}
& K_{j}(p)=\min \left\{|B| \mid B \in D_{j}(p)\right\} \\
& D_{j}^{*}(p)=\arg \min \left\{|B| \mid B \in D_{j}(p)\right\}
\end{aligned}
$$

- For each $j \in N$ and p, define the independence system $\left(M, \mathcal{I}_{j}(p)\right)$ by $T \in \mathcal{I}_{j} \Longleftrightarrow T \subset B$ for some $B \in D_{j}^{*}(p)$.
- The rank function $r_{j}(\cdot \mid p)$:

$$
\begin{aligned}
r_{j}(S \mid p) & =\max \{|T| \mid T \in \mathcal{I}, T \subset S\} \\
& =\max \left\{|T| \mid T \subset B \cap S \text { for some } B \in D_{j}^{*}(p)\right\} \\
& =\max \left\{|B \cap S| \mid B \in D_{j}^{*}(p)\right\}
\end{aligned}
$$

Proposition 6.26
For each $j \in N$ and $p \in \mathbb{R}_{+}^{M},\left(M, \mathcal{I}_{j}(p)\right)$ is a matroid.

Matroid Packing

Proposition 6.27
Let p^{*} be an optimal solution to $\min _{p \geq 0} V_{p}$.
Then there exist disjoint sets $B_{j}, j \in N$, such that $B_{j} \in D_{j}\left(p^{*}\right)$.

- I.e., matroids $\left(M, \mathcal{I}_{j}\left(p^{*}\right)\right), j \in N$, can be packed into M.

Proof

- In light of the Matroid Packing Theorem, it suffices to show that for all $S \subset M$,

$$
|M \backslash S|+\sum_{j \in N} r_{j}\left(S \mid p^{*}\right) \geq \sum_{j \in N} r_{j}\left(M \mid p^{*}\right)
$$

- Since $r_{j}\left(S \mid p^{*}\right)=\max _{B \in D_{j}^{*}\left(p^{*}\right)}|B \cap S|$ and $r_{j}\left(M \mid p^{*}\right)=|B|$ for any $B \in D_{j}^{*}\left(p^{*}\right)$, this is equivalent to the condition: for all $S \subset M$,

$$
|M \backslash S|+\sum_{j \in N}\left|B_{j} \cap S\right| \geq \sum_{j \in N}\left|B_{j}\right| .
$$

for some $B_{j} \in D_{j}^{*}\left(p^{*}\right), j \in N$.

- This is equivalent to the condition: for all $T \subset M$,

$$
\begin{equation*}
|T| \geq \sum_{j \in N}\left|B_{j} \cap T\right| \tag{***}
\end{equation*}
$$

for some $B_{j} \in D_{j}^{*}\left(p^{*}\right), j \in N$.

- Fix any $T \subset M$, and for $\varepsilon>0$, defined p^{\prime} by $p_{i}^{\prime}=p_{i}^{*}+\varepsilon$ for $i \in T$ and $p_{i}^{\prime}=p_{i}^{*}$ for $i \notin T$.
- For each $j \in N$, pick any $B_{j}^{\prime} \in D_{j}\left(p^{\prime}\right)$.
- Then we have

$$
\begin{aligned}
& V_{p^{*}} \leq V_{p^{\prime}}=p^{\prime}(M)+\sum_{j \in N}\left[v_{j}\left(B_{j}^{\prime}\right)-p^{\prime}\left(B_{j}^{\prime}\right)\right] \\
& =p^{*}(M)+\varepsilon|T|+\sum_{j \in N}\left[v_{j}\left(B_{j}^{\prime}\right)-\left(p^{*}\left(B_{j}^{\prime}\right)+\varepsilon\left|B_{j}^{\prime} \cap T\right|\right)\right] \\
& =p^{*}(M)+\sum_{j \in N}\left[v_{j}\left(B_{j}^{\prime}\right)-p^{*}\left(B_{j}^{\prime}\right)\right]+\varepsilon\left(|T|-\sum_{j \in N}\left|B_{j}^{\prime} \cap T\right|\right) \\
& \leq p^{*}(M)+\sum_{j \in N} \max _{B}\left[v_{j}(B)-p^{*}(B)\right]+\varepsilon\left(|T|-\sum_{j \in N}\left|B_{j}^{\prime} \cap T\right|\right) \\
& =V_{p^{*}}+\varepsilon\left(|T|-\sum_{j \in N}\left|B_{j}^{\prime} \cap T\right|\right) .
\end{aligned}
$$

- Therefore, we have $|T| \geq \sum_{j \in N}\left|B_{j}^{\prime} \cap T\right|$.
- Now let $\varepsilon \rightarrow 0$.

Then by continuity, we have $|T| \geq \sum_{j \in N}\left|B_{j} \cap T\right|$ for some $B_{j} \in D_{j}\left(p^{*}\right), j \in N$.

- Then by Lemma 8.35 in the textbook, we have $|T| \geq \sum_{j \in N}\left|B_{j} \cap T\right|$ for some $B_{j} \in D_{j}^{*}\left(p^{*}\right), j \in N$, as desired.

Claim 1

There exists an optimal solution p^{*} to $\min _{p \geq 0} V_{p}$ such that

- there exist disjoint sets $B_{j}, j \in N$, such that $B_{j} \in D_{j}\left(p^{*}\right)$, and
- $p_{i}^{*}=0$ for all $i \notin \bigcup_{j \in N} B_{j}$.

Proposition 6.28

Let p^{*} be as in the Claim.
Then the assignment $\left(y_{j}^{*}(S)\right)$ defined by $y_{j}^{*}\left(B_{j}\right)=1$ (and $y_{j}^{*}(S)=0$ otherwise) is an optimal solution to (P^{*}) and is supported by p^{*}.

- By weak duality

