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▶ We first study polymatroids,

▶ and then study matroids as a special case of polymatroids.
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Submodular Functions

▶ E = {1, . . . , n}: Finite set

Definition 6.1
Let f : 2E → R.
▶ f is non-decreasing if S ⊂ T =⇒ f(S) ≤ f(T ).

▶ f is submodular if −f is supermodular (with respect to ⊂),
i.e.,

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T )

for all S, T ⊂ E.
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Proposition 6.1

For f : 2E → R, the following statements are equivalent:

1. f is submodular.

2. f(S ∪ {i})− f(S) ≥ f(T ∪ {i})− f(T )
for all i ∈ E and all S ⊂ T ⊂ E \ {i}.

3. f(S) +
∑

i∈T\S(f(S ∪ {i})− f(S)) ≥ f(T )
for all S ⊂ T ⊂ E.

4. f(S ∪ {i})− f(S) ≥ f(S ∪ {i, j})− f(S ∪ {j})
for all i, j ∈ E, i ̸= j, and all S ⊂ E \ {i, j}.

3 / 63



▶ If f and g are submodular, then for α, β ≥ 0, αf + βg is
submodular.

▶ If f is submodular and non-decreasing, then for any k ∈ R,
g(S) = min{f(S), k} is submodular.

▶ If f is submodular, then g(S) = f(E \ S) is submodular.

▶ If f is submodular, then g(S) = minT⊃S f(T ) is submodular
and non-decreasing.
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Polymatroids

▶ For x = (xe)e∈E ∈ RE , we write x(S) =
∑

e∈S xe for S ⊂ E.

Definition 6.2
Let f : 2E → R be a submodular function.
The set

P (f) = {x ∈ RE | x ≥ 0, x(S) ≤ f(S) for all S ⊂ E}

is called the polymatroid associated with (E, f).

▶ P (f) ̸= ∅ if and only if f(S) ≥ 0 for all S ⊂ E,

in particular, if f(∅) = 0 and f is non-decreasing.
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▶ The set

P ∗(f) = {x ∈ RE | x(S) ≤ f(S) for all S ⊂ E}

is called the extended polymatroid associated with (E, f).

(P (f) = P ∗(f) ∩ RE
+)

▶ The set

B(f) = {x ∈ RE | x(S) ≤ f(S) for all S ⊂ E, x(E) = f(E)}

is called the base polytope of P ∗(f).

(B(f) = P ∗(f) ∩ {x ∈ RE | x(E) = f(E)})

▶ In the following, we assume that f(∅) = 0, and that f is
non-decreasing when we talk about P (f).
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Cores of Convex Games
▶ The core of a cooperative game v : 2E → R is the set

C(v) = {x ∈ RE | x(S) ≥ v(S) for all S ⊂ E, x(E) = v(E)}.

▶ v : 2E → R is a convex game if v is supermodular and
v(∅) = 0.

▶ For v, define v# : 2E → R by

v#(S) = v(E)− v(E \ S).

▶ v# is submodular if and only if v is supermodular.

▶ x(E) = v(E) ⇐⇒ x(E) = v#(E).

▶ Since v(S) = v#(E)− v#(E \ S) = x(E)− v#(E \ S),
x(S) ≥ v(S) for all S ⊂ E ⇐⇒ x(S) ≤ v#(S) for all S ⊂ E.

▶ Therefore, C(v) = B(v#).
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Pareto Frontier of a Polymatroid

▶ Let f : 2E → R be a submodular function.

Proposition 6.2

P ∗(f) = {x ∈ RE | x ≤ y for some y ∈ B(f)}.

Corollary 6.3

B(f) ̸= ∅.

(Alternative proof of the nonemptiness of the core)

Corollary 6.4

max{x(E) | x ∈ P ∗(f)} = max{x(E) | x ∈ B(f)} = f(E).
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Proof of Proposition 6.2

▶ Take any x ∈ P ∗(f).

▶ Then argmax{y(E) | y ∈ P ∗(f), x ≤ y} ̸= ∅, since
{y ∈ RE | y ∈ P ∗(f), x ≤ y} is a nonempty compact set.

▶ Take any y in this argmax set.

▶ Denote Sy = {S ⊂ E | y(S) = f(S)},

which is closed under ∪ and ∩.

▶ By the optimality of y, for each e ∈ E, there exists Se ∈ Sy

such that e ∈ Se.

▶ Then E =
⋃

e∈E Se ∈ Sy, i.e., y(E) = f(E).

Hence y ∈ B(f).
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Extreme Points of a Base Polytope

▶ Suppose that f : 2E → R is a submodular function with
f(∅) = 0, where E = {1, . . . , n}.

▶ Consider the base polytope:

B(f) = {x ∈ Rn | x(S) ≤ f(S) for all S ⊂ E, x(E) = f(E)}.

▶ For a permutation σ = (i1, . . . , in) of {1, . . . , n}, define
xσ ∈ Rn by

xσik = f({1, . . . , ik})− f({1, . . . , ik−1}) (k = 1, . . . , n).

Proposition 6.5

The points written as xσ are precisely the extreme points of B(f).

▶ Proposition 5.3

10 / 63



Extreme Points of an Extended Polymatroid

Proposition 6.6

The points written as xσ are precisely the extreme points of P ∗(f).

Proof

▶ First, the basic feasible points xσ of B(f) are basic feasible
points, hence extreme points, of P ∗(f).

▶ Second, for any x ∈ P ∗(f) \B(f), there exists y ∈ B(f) such
that x ≤ y.

Therefore, any extreme point of P ∗(f) is contained in B(f).

▶ Thus, xσ are precisely the extreme points of P ∗(f).
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Extreme Points of a Polymatroid

▶ Suppose in addition that f is non-decreasing.

▶ For any sequence γ = (i1, . . . , im) of distinct elements of E,
define xγ ∈ Rn

+ by

xγik =

{
f({1, . . . , ik})− f({1, . . . , ik−1}) if k = 1, . . . ,m,

0 if k = m+ 1, . . . , n.

Proposition 6.7

The points written as xγ are precisely the extreme points of P (f).

▶ By a similar argument as in the proof of Proposition 5.3.
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Integrality of Extreme Points

Proposition 6.8

If f is integer-valued, then all the extreme points of B(f), P ∗(f),
and P (f) are integral.
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Linear Programming on Polymatroids

▶ Given f : 2E → R, let P (f) be the polymatroid associated
with (E, f).

A vector w = (we)e∈E ∈ Rn is given.

▶ Consider the linear program:

max
x∈P (f)

wx,

or explicitly,

max
∑
e∈E

wexe

s. t. x(S) ≤ f(S) for all S ⊂ E

xe ≥ 0 for all e ∈ E.
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▶ Label the elements of E as {1, . . . , n} so that
w1 ≥ · · · ≥ wk > 0 ≥ wk+1 ≥ · · · ≥ wn.

▶ Define S0 = ∅, and Sℓ = {1, . . . , ℓ}, ℓ = 1, . . . , n.

▶ Define x∗ ∈ Rn by

x∗i = f(Si)− f(Si−1) (1 ≤ i ≤ k),

x∗i = 0 (k + 1 ≤ i ≤ n).

Proposition 6.9

Suppose that f is a non-decreasing and submodular function with
f(∅) = 0.
Then x∗ is an optimal solution to maxx∈P (f)wx.
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Proof

▶ Feasibility: By Proposition 6.7.

▶ To prove the optimality, consider the dual problem:

min
∑
S⊂E

ySf(S)

s. t.
∑
S∋e

yS ≥ we for all e ∈ E

yS ≥ 0 for all S ⊂ E.

▶ Define y∗ = (y∗S)S⊂E by

▶ y∗Sℓ = wℓ − wℓ+1 for ℓ = 1, . . . , k − 1;

▶ y∗Sk = wk; and

▶ y∗S = 0 for S ̸= S1, . . . , Sk.

▶ Then y∗ is feasible and satisfies
∑

S⊂E y∗Sf(S) =
∑

e∈E wex
∗
e.
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Proposition 6.10

Suppose that f is a submodular function with f(∅) = 0 and that
we > 0 for all e ∈ E (so that k = n).
Then x∗ is an optimal solution to maxx∈B(f)wx and
maxx∈P ∗(f)wx.
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Extreme Points of a Polymatroid (Alternative Proof)

▶ Suppose that x̄ is an extreme point of P (f).

▶ Since it is a vertex of P (f), there exists w ∈ Rn such that
argmaxx∈P (f)wx = {x̄}.

▶ Without loss, assume w1 ≥ · · · ≥ wk > 0 ≥ wk+1 ≥ · · · ≥ wn.

▶ By Proposition 6.9, x∗ is an optimal solution to
maxx∈P (f)wx.

▶ Thus, x̄ = x∗.
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Polymatroid Intersection Theorem

▶ Given f : 2E → R and g : 2E → R, define the function
f |g : 2E → R by

(f |g)(S) = min
T⊂S

f(T ) + g(S \ T ).

▶ If f and g are submodular, then so is f |g.
▶ If f(∅) = g(∅) = 0, then (f |g)(∅) = 0.

▶ If f and g are non-decreasing, then so is f |g.
▶ If f and g are integer-valued, then so is f |g.

Proposition 6.11

P (f) ∩ P (g) = P (f |g) and P ∗(f) ∩ P ∗(g) = P ∗(f |g).
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Proof

▶ Suppose that x(S) ≤ f(S) and x(S) ≤ g(S) for all S ⊂ E.

Then for any S ⊂ E and T ⊂ S, from x(T ) ≤ f(T ) and
x(S \ T ) ≤ g(S \ T ), it follows that x(S) ≤ f(T ) + g(S \ T ).

▶ If x(S) ≤ f(T ) + g(S \ T ) for all S ⊂ E and T ⊂ S, then for
any S ⊂ E, x(S) ≤ f(S) and x(S) ≤ g(S).
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Proposition 6.12

If f and g are integer-valued, then all the extreme points of
P (f) ∩ P (g) and P ∗(f) ∩ P ∗(g) are integral.
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Discrete Separation Theorem

Proposition 6.13

Suppose that f : 2E → R and g : 2E → R are submodular and
supermodular functions, respectively.

▶ If g(S) ≤ f(S) for all S ⊂ E, then there exists x ∈ RE

such that g(S) ≤ x(S) ≤ f(S) for all S ⊂ E.

▶ If in addition f and g are integer-valued, then there exists
x ∈ ZE such that g(S) ≤ x(S) ≤ f(S) for all S ⊂ E.
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Proof
▶ Define the function g# : 2E → R by

g#(S) = g(E)− g(E \ S), which is submodular.

▶ Take any z ∈ B(f |g#) (̸= ∅), where
(f |g#)(S) = minT⊂S f(T ) + g#(S \ T ).

▶ Then

▶ z(S) ≤ f(S) for all S ⊂ E;

▶ z(S) ≤ g#(S) = g(E)− g(E \ S) for all S ⊂ E; and

▶ z(E) = minT⊂E f(T ) + g(E)− g(T ) = g(E), since
f(T )− g(T ) ≥ 0 for all T and f(∅)− g(∅) = 0;

and therefore,

▶ z(S) ≤ z(E)− g(E \ S) for all S ⊂ E, and hence z(S) ≥ g(S)
for all S ⊂ E.

▶ If f and g are integer-valued, then we can take an integer
vector as z ∈ B(f |g#).

23 / 63



Sum of Base Polytopes/Polymatroids

Proposition 6.14

1. B(f) +B(g) = B(f + g).

2. P (f) + P (g) = P (f + g).
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Proof

▶ We only prove part 1; the proof of part 2 is similar.

▶ “⊂”: Immediate.

▶ “⊃”: Any extreme point of B(f + g) is written as zσ for
some permutation σ = (i1, . . . , in) where
zσik = (f + g)({i1, . . . , ik})− (f + g)({i1, . . . , ik−1}).

▶ zσ is written as zσ = xσ + yσ, where
xσik = f({i1, . . . , ik})− f({i1, . . . , ik−1}) ∈ B(f), and
yσik = g({i1, . . . , ik})− g({i1, . . . , ik−1}) ∈ B(g), so that
zσ ∈ B(f) +B(g).

▶ Then B(f + g) = conv{zσ | σ ∈ Π} ⊂ B(f) +B(g) since
B(f) +B(g) is a convex set.
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Sum of Extended Polymatroids

Proposition 6.15

P ∗(f) + P ∗(g) = P ∗(f + g).

Proof

▶ “⊂”: Immediate.

▶ Suppose that z ∈ P ∗(f + g).

Then there exists z′ ∈ B(f + g) = B(f) +B(g) such that
z ≤ z′, where z′ = x′ + y′ for some x′ ∈ B(f) and y′ ∈ B(g).

▶ Then z = x′ + (z − x′), where x′ ∈ P ∗(f) and z − x′ ∈ P ∗(g)
since z − x′ ≤ y′.

▶ Thus z ∈ P ∗(f) + P ∗(g).
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Matroids

Definition 6.3
For a finite set E and a family I ⊂ 2E of subsets of E,
(E, I) is called an independence system if

1. ∅ ∈ I; and
2. A ⊂ B ∈ I =⇒ A ∈ I.

▶ Elements in I are called independent sets.

▶ Elements in 2E \ I are called dependent sets.
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Definition 6.4
For an independence system (E, I) and for T ⊂ E,
B ⊂ T is called a basis of T or maximal in T if B ∈ I and
B ∪ {j} /∈ I for any j ∈ T \B.

Definition 6.5
An independence system (E, I) is called a matroid if
for all T ⊂ E, all bases of T have the same size, i.e., |B| = |B′|
whenever B and B′ are bases of T .
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Examples

▶ E = {1, 2, 3}

I = {∅, {1}, {2}, {3}, {2, 3}}

(E, I) is an independence system that is not a matroid.

∵ {1} and {2, 3} are bases of E with different cardinality.

▶ E = {1, 2, 3}

I = {∅, {1}, {2}, {3}, {2, 3}, {1, 3}}

(E, I) is a matroid.

▶ E: Finite set of n-dimensional vectors

I: All linearly independent subsets of E

(E, I) is a matroid.
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Lemma 6.16
Let (E, I) be an independence system.
For any T ⊂ E and an independent set S ⊂ T , there exists a basis
B of T such that S ⊂ B.
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Proposition 6.17

Let (E, I) be an independence system.
(E, I) is a matroid if and only if for any A,B ∈ I with |A| < |B|,
there exists j ∈ B \A such that A ∪ {j} ∈ I.

▶ “Only if”:

If there exist A,B ∈ I such that |A| < |B| and A ∪ {j} /∈ I
for any j ∈ B \A, then A is a basis of A ∪B,
while there is a basis of A∪B that contains B, that is, (E, I)
is not a matroid.

▶ “If”:

If (E, I) is not a matroid, then there exist S ⊂ E and bases
A,B of S such that |A| < |B|, where A ∪ {j} /∈ I for
any j ∈ S \A, in particular, for any j ∈ B \A.
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Rank Functions

Definition 6.6
For an independence system (E, I), the function r : 2E → R
defined by

r(S) = max{|T | | T ∈ I, T ⊂ S}

is called the rank function of (E, I).

▶ If (E, I) is a matroid, r(S) equals the cardinality of any basis
of S.

▶ If r is a rank function of (E, I), then I = {T | r(T ) = |T |}.

Therefore, we can write (E, r) for (E, I).
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Proposition 6.18

The rank function r of an independence system satisfies
the following properties:

▶ r is integer valued, and r(∅) = 0.

▶ 0 ≤ r(S ∪ {j})− r(S) ≤ 1 for any S ⊂ E and j ∈ E \ S.

Proposition 6.19

An independence system (E, I) is a matroid if and only if
its rank function r is submodular.

33 / 63



Proof

▶ Suppose that (E, I) is a matroid.

▶ We want to show that
r(S ∪ {j})− r(S) ≥ r(S ∪ {k, j})− r(S ∪ {k}) for any j ̸= k
and S ⊂ E \ {k, j}.

It suffices to consider the case where r(S ∪ {j})− r(S) = 0.

▶ Let B ⊂ S be a basis of S, so that r(S) = |B|, and either
r(S ∪ {k}) = |B| or r(S ∪ {k}) = |B|+ 1.

Note that B ∪ {j} /∈ I, since r(S ∪ {j}) = r(S) = |B|.
Therefore B ∪ {k, j} /∈ I as well.

▶ If r(S ∪ {k}) = |B|, then B ∪ {k} /∈ I, and hence
r(S ∪ {k, j}) = |B|.

▶ If r(S ∪ {k}) = |B|+ 1, then B ∪ {k} ∈ I, and hence
r(S ∪ {k, j}) = |B|+ 1.
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▶ Suppose that r is submodular.

▶ Let S ⊂ E.

We want to show that |B| = r(S) for any basis B of S.

▶ For A ⊂ S, A ∈ I, suppose that |A| < r(S).

Then by submodularity of r,
r(A) = |A| < r(S) ≤ r(A) +

∑
j∈S\A(r(A ∪ {j})− r(A)),

which implies that r(A ∪ {j}) > r(A) for some j ∈ S \A.

▶ This implies that A ∪ {j} ∈ I for some j ∈ S \A, so that A
is not a basis of S.

▶ Thus, if B is a basis of S, then |B| = r(S);
in particular, any basis of S has the same cardinality.

This shows that (E, I) is a matroid.
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Matroid Rank Functions

Definition 6.7
A function r : 2E → R is called a matroid rank function if it
satisfies the following properties:

▶ r is integer valued, and r(∅) = 0.

▶ 0 ≤ r(S ∪ {j})− r(S) ≤ 1 for any S ⊂ E and j ∈ E \ S.

▶ r is submodular.

▶ Proposition 6.19 implies that if r is a matroid rank function,
then the independence system (E, r) is a matroid.
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Matroids and Polymatroids

▶ Let r : 2E → R be a matroid rank function:
i.e., an integer-valued submodular function with r(∅) = 0 such
that 0 ≤ r(S ∪ {i})− r(S) ≤ 1 for all S ⊂ E.

▶ Let I = {T ⊂ E | |T | = r(T )}.

Then (E, I) is a matroid with r as its rank function
(Proposition 6.19).

▶ Identify 2E and {0, 1}E :

Identify S ⊂ E with x = (xe)e∈E ∈ {0, 1}E such that xe = 1
if and only if e ∈ S, and vice versa.

▶ Then I is identified with the set of integer points in P (r):
{x ∈ {0, 1}E | x(S) ≤ r(S) for all S ⊂ E}.

(Note r({e}) ≤ 1 for any e ∈ E.)
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▶ For T ∈ I, let xT ∈ {0, 1}E be such that xe = 1 if and only if
e ∈ T .

Then for any S ⊂ E, xT (S) = |S ∩ T | = r(S ∩ T ) ≤ r(S)
since S ∩ T ∈ I, hence xT ∈ P (r).

▶ For x ∈ P (r) ∩ {0, 1}E , let T x ⊂ E be such that e ∈ T if and
only if xe = 1.

Then |T x| ≤ r(T x), hence T x ∈ I (|S| ≥ r(S) by definition).
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Matroid Intersection Theorem

Proposition 6.20

Let M1 = (E, I1) and M2 = (E, I2) be matroids with rank
functions r1 and r2, respectively. Then

max{|J | | J ∈ I1 ∩ I2} = min
S⊂E

r1(S) + r2(E \ S).
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Proof

▶ Write PZ(f) for the set of integer points in P (f).

▶ I1, I2, and I1 ∩ I2 can be identified with PZ(r1), P
Z(r2),

and PZ(r1) ∩ PZ(r2), respectively.

▶ By the Polymatroid Intersection Theorem,
PZ(r1) ∩ PZ(r2) = PZ(r1|r2), where
(r1|r2)(S) = minT⊂S r1(T ) + r2(S \ T ),
which is a matroid rank function.

▶ Hence,

max{|J | | J ∈ I1 ∩ I2}
= max{z(E) | z ∈ PZ(r1) ∩ PZ(r2)}
= max{z(E) | z ∈ PZ(r1|r2)} = (r1|r2)(E).
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Application: Hall’s Marriage Theorem

▶ A: Set of agents

▶ G: Set of goods

▶ |A| = |G| = n

▶ Di ⊂ G: Set of acceptable goods for agent i ∈ A

▶ An assignment is a set T ⊂ A×G such that |T | = n, and
if (i, j), (i′, j′) ∈ T , then i ̸= i′ and j ≠ j′.

▶ A feasible assignment is an assignment T such that j ∈ Di for
all (i, j) ∈ T .

▶ If a feasible assignment exists, then clearly it is necessary that
|B| ≤

∣∣⋃
i∈B Di

∣∣ for all B ⊂ A.

▶ In fact, this condition is also sufficient.

41 / 63



Proposition 6.21

A feasible assignment exists if and only if

|B| ≤

∣∣∣∣∣⋃
i∈B

Di

∣∣∣∣∣ for all B ⊂ A. (∗)
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Proof
▶ We show the sufficiency of condition (∗).

▶ Let E = {(i, j) ∈ A×G | j ∈ Di}.

▶ Define IA = {T ⊂ E | (i, j), (i′, j′) ∈ T =⇒ i ̸= i′}.

Then MA = (E, IA) is a matroid.

Let rA be its rank function.

▶ Define IG = {T ⊂ E | (i, j), (i′, j′) ∈ T =⇒ j ̸= j′}.

Then MG = (E, IG) is a matroid.

Let rG be its rank function.

▶ T ⊂ A×G is a feasible assignment if and only if T ∈ IA ∩ IG
and |T | = n.

▶ In light of the Matroid Intersection Theorem, it suffices to
show that minS⊂E rA(S) + rG(E \ S) ≥ n.
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▶ Take any S ⊂ E.

▶ We have rA(S) = |S ∩A|

(S ∩A = {i ∈ A | (i, j) ∈ S for some j ∈ G}),

▶ and

rG(E \ S) = |{j ∈ G | (i, j) ∈ E \ S for some i ∈ A}|
= |{j ∈ G | j ∈ Di and (i, j) /∈ S for some i ∈ A}|
≥ |{j ∈ G | j ∈ Di for some i /∈ S ∩A}|
=

∣∣⋃
i/∈S∩ADi

∣∣
≥ |A \ (S ∩A)| (by (∗))
= |A| − |S ∩A|.

▶ Therefore, we have rA(S) + rG(E \ S) ≥ |A| = n as desired.
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Matroid Partition Theorem

Definition 6.8
Let Mi = (E, Ii), i = 1, . . . , k, be a collection of matroids.
J ⊂ E is partitionable with respect to {Mi}ki=1 if there exists
a partition {J1, . . . , Jk} of J such that J i ∈ Ii for all i ∈ 1, . . . , k.

Proposition 6.22

Let Mi = (E, Ii), i = 1, . . . , k, be a collection of matroids, with
corresponding rank functions ri.
Then

max{|J | | J : partitionable} = min
S⊂E

|E \ S|+
k∑

i=1

ri(S).
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Proof

▶ J1, . . . , Jk are disjoint if and only if (1J1 + · · ·+ 1Jk)e ≤ 1
for all e ∈ E, where 1S ∈ RE is such that (1S)e = 1 if e ∈ S
and (1S)e = 0 if e /∈ S.

▶ This condition is equivalent to 1J1 + · · ·+ 1Jk ∈ P (r0),
where r0(S) = |S|.

▶ Therefore, J is partitionable if and only if
1J ∈ P (r0) ∩

∑k
i=1 P (ri).

▶ But by the Polymatroid Intersection Theorem,
P (r0) ∩

∑k
i=1 P (ri) = P (r0|

∑k
i=1 ri), where

(r0|
∑k

i=1 ri)(S) = minT⊂S |T |+
∑k

i=1 ri(S \ T ),
which is a matroid rank function.
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▶ Therefore,

max{|J | | J : partitionable}
= max{z(E) | z ∈ PZ(r0) ∩

∑k
i=1 P

Z(ri)}
= max{z(E) | z ∈ P (r0|

∑k
i=1 ri)}

= (r0|
k∑

i=1

ri)(E).
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Matroid Packing Theorem

Definition 6.9
A collection of matroids Mi = (E, Ii), i = 1, . . . , k, can be packed
into E if there exist disjoint sets B1, . . . , Bk such that Bi is basis
in Mi for each i.

Proposition 6.23

A collection of matroids Mi = (E, Ii), i = 1, . . . , k, with the
corresponding rank functions ri can be packed into E if and only if

min
S⊂E

|E \ S|+
k∑

i=1

ri(S) =

k∑
i=1

ri(E) for all S ⊂ E. (∗∗)

▶ Recall ri(E) = |Bi| for any basis in Mi.
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Proof

▶ By the Matroid Partition Theorem, (∗∗) holds if and only if
there exists a partitionable J with respect to {Mi}i such that
|J | =

∑
i |Bi| for any basis Bi in Mi for all i,

or equivalently, there exist disjoint sets Fi ∈ Ii such that∑
i |Fi| =

∑
i |Bi| for any basis Bi in Mi,

in particular for a basis Bi ⊃ Fi, for all i.

▶ The above equality holds if and only if Fi = Bi,

thus this condition holds if and only if there exist disjoint
bases Bi in Mi.
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Application: Efficient Assignment of Indivisible Goods

▶ M : Set of indivisible objects

▶ N : Set of agents

▶ vj(S): monetary value of S ⊂ M for j ∈ N

Assume:

▶ vj(∅) = 0 (normalization)

▶ vj is non-decreasing.

▶ Demand correspondence of j ∈ N :

Dj(p) = {S ⊂ M | vj(S)−p(S) ≥ vj(T )−p(T ) for all T ⊂ M}

(p(S) =
∑

i∈S pi)

▶ Assignment: (yj(S))S⊂M,j∈N where yj(S) ∈ {0, 1}

yj(S) = 1 ⇐⇒ S ⊂ M is consumed by j ∈ N .
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Substitutes Condition (Condition S)

Definition 6.10
v satisfies condition (S) if
for any p, p′ with p ≤ p′ and any S ∈ D(p),
there exists B ∈ D(p′) such that {i ∈ S | pi = p′i} ⊂ B.

▶ Unit demand case:

For each j ∈ N , fix aj ∈ RM
+ and let vj(S) = maxi∈S aji .

Then vj satisfies condition (S).
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Proposition 6.24

Suppose that v is non-decreasing.
If v satisfies condition (S), then it is submodular.
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Single Improvement Property (Condition SI)

Definition 6.11
v satisfies condition (SI) if
for any p and any S /∈ D(p), there exists B ⊂ M such that

v(B)− p(B) > v(S)− p(S)

and |S \B|, |B \ S| ≤ 1.

Proposition 6.25

Suppose that v is non-decreasing.
v satisfies condition (S) if and only if it satisfies condition (SI).

▶ In the following, we assume that each vj satisfies condition
(SI).
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Efficient Assignment Problem

▶ Integer program:

max
∑

S⊂M,j∈N
vj(S)yj(S)(P∗)

s. t.
∑

S∋i,j∈N
yj(S) ≤ 1 for all i ∈ M

∑
S⊂M

yj(S) ≤ 1 for all j ∈ N

yj(S) ∈ {0, 1} for all S ⊂ M, j ∈ N

▶ Since there are finitely many feasible solutions,
(P∗) has an optimal solution (y∗j (S)).

▶ Is there a price vector p∗ that “supports” the assignment
(y∗j (S))?
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▶ Relaxed problem:

max
∑

S⊂M,j∈N
vj(S)yj(S)(P)

s. t.
∑

S∋i,j∈N
yj(S) ≤ 1 for all i ∈ M

∑
S⊂M

yj(S) ≤ 1 for all j ∈ N

yj(S) ≥ 0 for all S ⊂ M, j ∈ N

▶ If (P) has an integral optimal solution, then it is an optimal
solution of (P∗).

▶ Let VLP denote the optimal value of (P).
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▶ Dual problem:

min
∑
i∈M

pi +
∑
j∈N

λj(D)

s. t.
∑
i∈S

pi + λj ≥ vj(S) for all S ⊂ M, j ∈ N

pi ≥ 0, λj ≥ 0 for all i ∈ M, j ∈ N

▶ Given (pi), it is optimal to set λj = maxS⊂M (vj(S)− p(S)).

▶ Let

Vp = p(M) +
∑
j∈N

max
S⊂M

(vj(S)− p(S)).

▶ By the Duality Theorem, VLP = minp≥0 Vp.
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Matroids

▶ We will show that for an optimal solution p∗ to (D),
there exist disjoint sets Bj , j ∈ N , such that Bj ∈ Dj(p

∗).

▶ Define

Kj(p) = min{|B| | B ∈ Dj(p)},
D∗

j (p) = argmin{|B| | B ∈ Dj(p)}.

▶ For each j ∈ N and p, define the independence system
(M, Ij(p)) by T ∈ Ij ⇐⇒ T ⊂ B for some B ∈ D∗

j (p).

▶ The rank function rj(·|p):

rj(S|p) = max{|T | | T ∈ I, T ⊂ S}
= max{|T | | T ⊂ B ∩ S for some B ∈ D∗

j (p)}
= max{|B ∩ S| | B ∈ D∗

j (p)}
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Proposition 6.26

For each j ∈ N and p ∈ RM
+ , (M, Ij(p)) is a matroid.
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Matroid Packing

Proposition 6.27

Let p∗ be an optimal solution to minp≥0 Vp.
Then there exist disjoint sets Bj , j ∈ N , such that Bj ∈ Dj(p

∗).

▶ I.e., matroids (M, Ij(p∗)), j ∈ N , can be packed into M .
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Proof
▶ In light of the Matroid Packing Theorem, it suffices to show

that for all S ⊂ M ,

|M \ S|+
∑
j∈N

rj(S|p∗) ≥
∑
j∈N

rj(M |p∗).

▶ Since rj(S|p∗) = maxB∈D∗
j (p

∗) |B ∩ S| and rj(M |p∗) = |B|
for any B ∈ D∗

j (p
∗), this is equivalent to the condition:

for all S ⊂ M ,

|M \ S|+
∑
j∈N

|Bj ∩ S| ≥
∑
j∈N

|Bj |.

for some Bj ∈ D∗
j (p

∗), j ∈ N .

▶ This is equivalent to the condition: for all T ⊂ M ,

|T | ≥
∑
j∈N

|Bj ∩ T | (∗∗∗)

for some Bj ∈ D∗
j (p

∗), j ∈ N .
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▶ Fix any T ⊂ M , and for ε > 0, defined p′ by p′i = p∗i + ε for
i ∈ T and p′i = p∗i for i /∈ T .

▶ For each j ∈ N , pick any B′
j ∈ Dj(p

′).

▶ Then we have

Vp∗ ≤ Vp′ = p′(M) +
∑
j∈N

[vj(B
′
j)− p′(B′

j)]

= p∗(M) + ε|T |+
∑
j∈N

[vj(B
′
j)− (p∗(B′

j) + ε|B′
j ∩ T |)]

= p∗(M) +
∑
j∈N

[vj(B
′
j)− p∗(B′

j)] + ε
(
|T | −

∑
j∈N |B′

j ∩ T |
)

≤ p∗(M) +
∑
j∈N

max
B

[vj(B)− p∗(B)] + ε
(
|T | −

∑
j∈N |B′

j ∩ T |
)

= Vp∗ + ε
(
|T | −

∑
j∈N |B′

j ∩ T |
)
.
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▶ Therefore, we have |T | ≥
∑

j∈N |B′
j ∩ T |.

▶ Now let ε → 0.

Then by continuity, we have |T | ≥
∑

j∈N |Bj ∩ T | for some
Bj ∈ Dj(p

∗), j ∈ N .

▶ Then by Lemma 8.35 in the textbook, we have
|T | ≥

∑
j∈N |Bj ∩ T | for some Bj ∈ D∗

j (p
∗), j ∈ N ,

as desired.
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Claim 1
There exists an optimal solution p∗ to minp≥0 Vp such that

▶ there exist disjoint sets Bj , j ∈ N , such that Bj ∈ Dj(p
∗),

and

▶ p∗i = 0 for all i /∈
⋃

j∈N Bj .

Proposition 6.28

Let p∗ be as in the Claim.
Then the assignment (y∗j (S)) defined by y∗j (Bj) = 1 (and
y∗j (S) = 0 otherwise) is an optimal solution to (P∗) and is
supported by p∗.

▶ By weak duality

63 / 63


