3. Structure of Polyhedra

Daisuke Oyama

Mathematical Economics

This version: June 26, 2023

Extreme Points, Vertices

Definition 3.1
For $S \subset \mathbb{R}^{n}, \bar{x} \in S$ is an extreme point of S if

$$
\bar{x}=\lambda y+(1-\lambda) z, y, z \in S, \lambda \in(0,1) \Longrightarrow y=z=\bar{x}
$$

Definition 3.2
For $S \subset \mathbb{R}^{n}, \bar{x} \in S$ is a vertex of S if there exists $c \in \mathbb{R}^{n}$ such that $\arg \max \{c x \mid x \in S\}=\{\bar{x}\}$.

Proposition 3.1

For any $S \subset \mathbb{R}^{n}$, if $\bar{x} \in S$ is a vertex of S, then it is an extreme point of S.

Proof

- Suppose that $\arg \max \{c x \mid x \in S\}=\{\bar{x}\}$, and suppose that $\bar{x}=\lambda y+(1-\lambda) z, y, z \in S, \lambda \in(0,1)$.
- Then $\lambda c y \leq \lambda c \bar{x}$ and $(1-\lambda) c z \leq(1-\lambda) c \bar{x}$, and therefore $c \bar{x}=\lambda c y+(1-\lambda) c z \leq c \bar{x}$.
- Hence, $c y=c \bar{x}$ and $c z=c \bar{x}$, and therefore $y=z=\bar{x}$.
- The converse does not hold in general.

Basic Feasible Solutions of Polyhedra

- For $A=\left[\begin{array}{lll}a^{1} & \cdots & a^{m}\end{array}\right] \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}^{m}$, consider the polyhedron

$$
P=\left\{x \in \mathbb{R}^{n} \mid A^{\mathrm{T}} x \leq b\right\}
$$

Definition 3.3

For $P=\left\{x \in \mathbb{R}^{n} \mid A^{\mathrm{T}} x \leq b\right\}, \bar{x} \in P$ is a basic feasible solution of P if there exists a subset B of A with $\operatorname{rank}(B)=n$ such that $B^{\mathrm{T}} \bar{x}=b^{B}\left(\right.$ where $\left.b^{B}=\left(b_{j}\right)_{j \in B}\right)$.

Proposition 3.2
For $P=\left\{x \in \mathbb{R}^{n} \mid A^{\mathrm{T}} x \leq b\right\}$, the following statements are equivalent:

1. $\bar{x} \in P$ is a vertex of P.
2. $\bar{x} \in P$ is an extreme point of P.
3. $\bar{x} \in P$ is a basic feasible solution of P.

Proof

- $1 \Rightarrow$ 2: By Proposition 3.1.
- $2 \Rightarrow 3$ (not $3 \Rightarrow$ not 2):

Suppose that $\bar{x} \in P$ is not a basic feasible solution of P.

- Let $B=\left\{a^{j} \in A \mid a^{j} \bar{x}=b_{j}\right\}$.

By assumption, $\operatorname{rank}(B)<n$.

- Take any $w \in \operatorname{ker}(B), w \neq 0$ (where $\operatorname{ker}(B) \neq\{0\}$ since $\operatorname{rank}(\operatorname{ker}(B))=n-\operatorname{rank}(B)>0)$.
- Let $\varepsilon>0$ be such that $a^{j}(\bar{x} \pm \varepsilon w)<b_{j}$ for all $j \in A \backslash B$, and let $y=\bar{x}+\varepsilon w$ and $z=\bar{x}-\varepsilon w$.
- Then, $y \neq \bar{x}, z \neq \bar{x}, y, z \in P$, and $\bar{x}=\frac{1}{2} y+\frac{1}{2} z$, which means that \bar{x} is not an extreme point of P.
- $3 \Rightarrow 1$:

Let $\bar{x} \in P$ be a basic feasible solution of P, and let $B \subset A$ be such that $B^{\mathrm{T}} \bar{x}=b^{B}$ and $\operatorname{rank}(B)=n$.

- Let $c=\sum_{j \in B} a^{j}$.
- Then we have $c \bar{x}=\sum_{j \in B} a^{j} \bar{x}=\sum_{j \in B} b_{j}$, and
if $A x \leq b$, then $c x=\sum_{j \in B} a^{j} x \leq \sum_{j \in B} b_{j}=c \bar{x}$.
- If $c x=c \bar{x}$, then $a^{j} x=b_{j}$ for all $j \in B$, but since $\operatorname{rank}(B)=n$, this implies that $x=\bar{x}$.
- Hence, \bar{x} is a vertex of P.

Linear Programs

- Standard form:
(*) $\max _{x \in \mathbb{R}^{n}} c x$
s. t. $\quad A x=b$

$$
x \geq 0
$$

where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, and $c \in \mathbb{R}^{n}$.

- Any linear program can be converted into the standard form:
- If x_{j} is unrestricted, then substitute $x_{j}=x_{j}^{+}-x_{j}^{-}$with $x_{j}^{+}, x_{j}^{-} \geq 0$.
- If a constraint is $\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}$, then add a slack variable $s_{i} \geq 0$ so that $\sum_{j=1}^{n} a_{i j} x_{j}+s_{i}=b_{i}$.
- If the objective is $\min c x$, then replace it with $\max (-c) x$.
- x^{*} is a feasible solution of $(*)$ if $x^{*} \in\{x \mid A x=b, x \geq 0\}$.
- x^{*} is an optimal solution of $(*)$ if it is a feasible solution of $(*)$ such that $c x^{*}=\max \{c x \mid A x=b, x \geq 0\}$.
- $(*)$ is feasible (resp. infeasible) if $\{x \mid A x=b, x \geq 0\} \neq \emptyset$ (resp. $=\emptyset$).
- (*) is unbounded if $\{c x \mid A x=b, x \geq 0\}$ is unbounded above.

Basic Solutions

- Consider the linear program $(*)\left(A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}\right)$.
- We assume throughout that $\operatorname{rank}(A)=m$ (and thus $m \leq n$).
(If $\operatorname{rank}(A)<m$, remove redundant rows.)
Definition 3.4
Any set B of $m \mathrm{LI}$ columns of A (also considered as an $m \times m$ matrix) is called a basis of A.

Definition 3.5
$x \in \mathbb{R}^{n}$ is called a basic solution of $(*)$ if it is a solution to $A x=b$ such that there exists a basis B of A such that $x_{j} \neq 0$ only if $j \in B$.

Definition 3.6
$x \in \mathbb{R}^{n}$ is called a basic feasible solution of $(*)$ if it is a basic solution such that $x \geq 0$.

Proposition 3.3

\bar{x} is a basic feasible solution of $(*)$ if and only if it is a basic feasible solution of $\{x \mid A x \leq b,-A x \leq-b,-I x \leq 0\}$.

- Therefore, by Proposition 3.2 we have the following.

Proposition 3.4
Denote $P=\{x \mid A x=b, x \geq 0\}$. The following statements are equivalent:

1. $\bar{x} \in P$ is a vertex of P.
2. $\bar{x} \in P$ is an extreme point of P.
3. $\bar{x} \in P$ is a basic feasible solution of (*).

Proposition 3.5
If $\{x \mid A x=b, x \geq 0\} \neq \emptyset$, then there exists a basic feasible solution, hence an extreme point.

- By Proposition 2.6, part 1 (cone version of Carathéodory's Theorem), and Proposition 3.4.

Fundamental Theorem of Linear Programming

Proposition 3.6
If $\max \{c x \mid A x=b, x \geq 0\}$ has an optimal solution, then there exists an optimal solution that is an extreme point of $\{x \mid A x=b, x \geq 0\}$.

Proof

- Denote $P=\{x \mid A x=b, x \geq 0\}(\neq \emptyset)$.
- Let $v^{*}=\max \{c x \mid x \in P\}$ and
$P^{*}=\left\{x \left\lvert\,\left[\begin{array}{c}A \\ c^{\mathrm{T}}\end{array}\right] x=\left[\begin{array}{c}b \\ v^{*}\end{array}\right]\right., x \geq 0\right\}(\neq \emptyset)$,
where $\operatorname{rank}\left(\left[\begin{array}{c}A \\ c^{\mathrm{T}}\end{array}\right]\right)=m$ or $m+1$.
- If $\operatorname{rank}\left(\left[\begin{array}{c}A \\ c^{\mathrm{T}}\end{array}\right]\right)=m$, then $P^{*}=P$.

Then by Proposition 3.5 applied to P, P has an extreme point, which is an optimal solution.

- If $\operatorname{rank}\left(\left[\begin{array}{c}A \\ c^{\mathrm{T}}\end{array}\right]\right)=m+1$,
by Proposition 3.5 applied to P^{*}, P^{*} has an extreme point.
- Let $x^{*} \in P^{*}$ be an extreme point of P^{*}.

We want to show that it is an extreme point of P.

- Let $x^{*}=\lambda y+(1-\lambda) z, y, z \in P, \lambda \in(0,1)$.
- Then $v^{*}=c x^{*}=\lambda c y+(1-\lambda) c z$ while $c y \leq v^{*}$ and $c z \leq v^{*}$.

Thus we must have $c y=c z=v^{*}$, i.e., $y, z \in P^{*}$.

- But since x^{*} is an extreme point of P^{*}, we must have $y=z=x^{*}$.

Duality

- Given the linear program

$$
\begin{aligned}
\max & c x \\
\text { s.t. } & A x=b \\
& x \geq 0
\end{aligned}
$$

multiply both sides of $A x=b$ by y from the left:

$$
y A x=y b .
$$

- If y satisfies $c \leq y A$, then, since $x \geq 0$, we have

$$
c x \leq y A x=y b
$$

- Thus, for any y such that $c \leq y A, y b$ is an upper bound of $\{c x \mid A x=b, x \geq 0\}$.
- Primal problem:
(P) $\max _{x \in \mathbb{R}^{n}} c x$

$$
\begin{array}{ll}
\text { s.t. } & A x=b \\
& x \geq 0
\end{array}
$$

- Dual problem:
(D) $\min _{y \in \mathbb{R}^{m}} y b$
s. t. $y A \geq c$
(y : unrestricted)

Weak Duality

> Proposition 3.7
> If x and y are feasible solutions of (P) and (D), respectively, then $c x \leq y$ b.

- Therefore, if feasible solutions x^{*} and y^{*} satisfy $c x^{*}=y^{*} b$, then they are optimal solutions of (P) and (D), respectively.

Strong Duality

Proposition 3.8
If (P) and (D) are feasible,
then both (P) and (D) have optimal solutions, and

$$
\max \{c x \mid A x=b, x \geq 0\}=\min \{y b \mid y A \geq c\} .
$$

Proof

- (P) and (D) have optimal solutions if and only if there exist x and y such that $A x=b, x \geq 0, y A \geq c, c x \geq y b$, i.e.,

$$
\left[\begin{array}{cc}
A & 0 \\
0 & -A^{\mathrm{T}} \\
-c^{\mathrm{T}} & b^{\mathrm{T}}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \begin{gathered}
=\left[\begin{array}{c}
b \\
\leq-c \\
\leq
\end{array}\right], x \geq 0 . .
\end{gathered}
$$

- The alternative is:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
\lambda & \mu & \eta
\end{array}\right]\left[\begin{array}{cc}
A & 0 \\
0 & -A^{\mathrm{T}} \\
-c^{\mathrm{T}} & b^{\mathrm{T}}
\end{array}\right] \geq=\left[\begin{array}{ll}
0 & 0
\end{array}\right],} \\
& {\left[\begin{array}{lll}
\lambda & \mu & \eta
\end{array}\right]\left[\begin{array}{c}
b \\
-c \\
0
\end{array}\right]<0, \mu \geq 0, \eta \geq 0}
\end{aligned}
$$

- We want to show that, whenever (P) and (D) are feasible,

$$
\begin{equation*}
\lambda A-\eta c \geq 0,-\mu A^{\mathrm{T}}+\eta b^{\mathrm{T}}=0, \mu \geq 0, \eta \geq 0 \tag{1}
\end{equation*}
$$

implies

$$
\begin{equation*}
\lambda b-\mu c \geq 0 \tag{2}
\end{equation*}
$$

- For $\eta>0$, (1) implies that μ / η and λ / η are feasible solutions, and hence by weak duality, $(\mu / \eta) c \leq(\lambda / \eta) b$, or $\mu c \leq \lambda b$.
- For $\eta=0$, let x and y be feasible solution.

Then from (1) we have $\lambda b-\mu c \geq \lambda A x-\mu A^{\mathrm{T}} y \geq 0$.

Infeasibility and unboundedness

Lemma 3.9

1. If (P) is infeasible, then (D) is either infeasible or unbounded.
2. If (P) is unbounded, then (D) is infeasible.

- Thus, if (D) is feasible and bounded, then so is (P).
- The same results hold with (P) and (D) interchanged.

Proof

- Part 1:

If (P) is infeasible, then by Farkas' Lemma, there exists \hat{y} such that $\hat{y} A \geq 0$ and $\hat{y} b<0$.

- If (D) is feasible, i.e., there exists y^{0} such that $y^{0} A \geq c$, then for $t>0, y^{0}+t \hat{y}$ is feasible (since $\left(y^{0}+t \hat{y}\right) A \geq c$), and $\left(y^{0}+t \hat{y}\right) b=y^{0} b+t(\hat{y} b) \rightarrow-\infty$ as $t \rightarrow \infty$.
- Part 2: By weak duality.

Strong Duality

Proposition 3.10

If either (P) or (D) has an optimal solution, then the other also has an optimal solution, and

$$
\max \{c x \mid A x=b, x \geq 0\}=\min \{y b \mid y A \geq c\}
$$

Proof

- If either (P) or (D) has an optimal solution, then the other is feasible by Lemma 3.9(1).
- Then by Proposition 3.8, it also has an optimal solution.

Complementary Slackness

Proposition 3.11
If x^{*} and y^{*} are optimal solutions of (P) or (D), respectively, then $\left(y^{*} A-c\right) x^{*}=0$.

Proof

- Since $c x^{*}=y^{*} b$, we have

$$
\begin{aligned}
\left(y^{*} A-c\right) x^{*} & =y^{*} A x^{*}-c x^{*} \\
& =y^{*} b-c x^{*}=0
\end{aligned}
$$

Primal and Dual Problems in Various Forms

$-\max c x$ s.t. $A x \leq b, x \geq 0$
$\rightarrow \rightarrow \max c x+0 s$ s.t. $A x+s=b, x \geq 0, s \geq 0$

- Dual:
$\min y b$ s.t. $y\left[\begin{array}{ll}A & I\end{array}\right] \geq\left[\begin{array}{ll}c & 0\end{array}\right]$

$$
\Longleftrightarrow y A \geq c, y \geq 0
$$

- $\max c x$ s.t. $A x=b$
$-\rightarrow \max c\left(x^{+}-x^{-}\right)$s.t. $A\left(x^{+}-x^{-}\right)=b, x^{+} \geq 0, x^{-} \geq 0$
- Dual:
$\min y b$ s.t. $y\left[\begin{array}{ll}A & -A\end{array}\right] \geq\left[\begin{array}{ll}c & -c\end{array}\right]$

$$
\Longleftrightarrow y A=c
$$

- max $c x$ s.t. $A x \leq b$
$-\rightarrow \max c\left(x^{+}-x^{-}\right)+0 s$ s.t. $A\left(x^{+}-x^{-}\right)+s=b$, $x^{+} \geq 0, x^{-} \geq 0, s \geq 0$
- Dual:
$\min y b$ s.t. $y\left[\begin{array}{lll}A & -A & I\end{array}\right] \geq\left[\begin{array}{lll}c & -c & 0\end{array}\right]$
$\Longleftrightarrow y A=c, y \geq 0$

Primal	Dual
$\max c x$	$\min y b$
$A x=b$	$y:$ unrestricted
$A x \leq b$	$y \geq 0$
$x \geq 0$	$y A \geq c$
$x:$ unrestricted	$y A=c$

Farkas' Lemma from Duality Theorem

- Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$.
- Suppose that $y A \geq 0, y b<0$ has no solution, i.e.,

$$
\begin{equation*}
y A \geq 0 \Longrightarrow y b \geq 0 \tag{*}
\end{equation*}
$$

We want to show that $A x=b, x \geq 0$ has a solution.

- Consider the linear program: $\max 0 x$ s.t. $A x=b, x \geq 0$.
- Its dual problem is: $\min y b$ s.t. $y A \geq 0$.
- By $(*), y=0$ is an optimal solution of the dual problem.
- Therefore, by Proposition 3.10, the primal problem has a feasible solution.

Application: Zero-Sum Games

Definition 3.7
A zero-sum game is given by an $m \times n$ matrix $A=\left(a_{i j}\right)$, where when Row player plays strategy $i \in\{1, \ldots, m\}$ and Column player plays strategy $j \in\{1, \ldots, n\}$, Row's payoff is $a_{i j}$ and Column's payoff is $-a_{i j}$.

- The set of mixed strategies for Row:

$$
\Delta^{m}=\left\{x \in \mathbb{R}^{m} \mid x \geq 0, \sum_{i=1}^{m} x_{i}=1\right\}
$$

- The set of mixed strategies for Column:

$$
\Delta^{n}=\left\{y \in \mathbb{R}^{n} \mid y \geq 0, \sum_{j=1}^{n} y_{j}=1\right\}
$$

- Min-max value for Row:

$$
\min _{y \in \Delta^{n}} \max _{i}(A y)_{i}\left(=\min _{y \in \Delta^{n}} \max _{x \in \Delta^{m}} x A y\right)
$$

- Max-min value for Column:

$$
\max _{x \in \Delta^{m}} \min _{j}(x A)_{j}\left(=\max _{x \in \Delta^{m}} \min _{y \in \Delta^{n}} x A y\right)
$$

- Consider the following linear programs:

$$
\begin{array}{lll}
\text { (LP-R) } & \min _{y, R} & R \\
& \text { s.t. } & A y-\mathbf{1} R \leq 0 \\
& & \mathbf{1} y=1, y \geq 0 \\
& & \\
\text { (LP-C) } & \max _{x, C} & C \\
& \text { s.t. } & x A-C \mathbf{1} \geq 0 \\
& x \mathbf{1}=1, x \geq 0
\end{array}
$$

- (LP-R) and (LP-C) are duals to each other.

Both are feasible, and therefore by strong duality (Proposition 3.8), these have optimal solutions $\left(x^{*}, R^{*}\right)$ and $\left(y^{*}, C^{*}\right)$, and $R^{*}=C^{*}$.

Minimax Theorem

Proposition 3.12
$\min _{y \in \Delta^{n}} \max _{x \in \Delta^{m}} x A y=\max _{x \in \Delta^{m}} \min _{y \in \Delta^{n}} x A y$.

Proof

- Clearly, LHS \geq RHS.

We want to show LHS \leq RHS .

- Let $\left(y^{*}, R^{*}\right)$ and $\left(x^{*}, C^{*}\right)$ be optimal solutions of (LP-R) and (LP-C), respectively, where $R^{*}=C^{*}$.

Then we have $A y^{*} \leq 1 R^{*}$, and hence $x A y^{*} \leq R^{*}$ for all $x \in \Delta^{m}$, i.e., $\max _{x} x A y^{*} \leq R^{*}$.

Hence $\min _{y} \max _{x} x A y \leq R^{*}$.

- Similarly, we have $\max _{x} \min _{y} x A y \geq C^{*}$.
- Since $R^{*}=C^{*}$, we have LHS \leq RHS.
- (The argument above in fact shows that

$$
x^{*} A y^{*} \leq \max _{x} x A y^{*} \leq R^{*}=C^{*} \leq \min _{y} x^{*} A y \leq x^{*} A y^{*},
$$

which holds as equality.)

Definition 3.8

A profile $\left(x^{*}, y^{*}\right) \in \Delta^{m} \times \Delta^{n}$ is a Nash equilibrium of the zero-sum game A if

$$
\begin{array}{ll}
x^{*} A y^{*} \geq x A y^{*} & \text { for all } x \in \Delta^{m} \\
x^{*} A y^{*} \leq x^{*} A y & \text { for all } y \in \Delta^{n}
\end{array}
$$

Proposition 3.13

$\left(x^{*}, y^{*}\right)$ is a Nash equilibrium of A and $x^{*} A y^{*}=R^{*}=C^{*}$ if and only if $\left(x^{*}, R^{*}\right)$ and $\left(y^{*}, C^{*}\right)$ are optimal solutions of (LP-R) and (LP-C), respectively.

Proof

- "If": By the Minimax Theorem.
- "Only if": $(y, R)=\left(y^{*}, x^{*} A y^{*}\right)$ and $(x, C)=\left(x^{*}, x^{*} A y^{*}\right)$ are feasible solutions of (LP-R) and (LP-C) and give the same value $\left(x^{*} A y^{*}\right)$, hence they are optimal solutions.

Integrality

- We discuss sufficient conditions under which
- all extreme points of a polyhedron are integral (integer valued); and
- a linear program has an integral optimal solution.

Unimodular Matrices

- A square integer matrix $A \in \mathbb{Z}^{m \times m}$ is called unimodular if $\operatorname{det} A=1$ or -1 .

Proposition 3.14
For $A \in \mathbb{Z}^{m \times m}, A^{-1}$ exists and is an integer matrix if and only if it is unimodular.

- Example: $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right]$ is a unimodular matrix $(\operatorname{det} A=-1)$.

$$
\rightarrow A^{-1}=\left[\begin{array}{cc}
-1 & 2 \\
1 & -1
\end{array}\right]
$$

Proof

- If A^{-1} exists and is an integer matrix, then $(\operatorname{det} A) \times\left(\operatorname{det} A^{-1}\right)=\operatorname{det} I=1$.
Then by the integrality of A and A^{-1}, we must have $\left(\operatorname{det} A, \operatorname{det} A^{-1}\right)=(1,1)$ or $(-1,-1)$.
- If A is unimodular, then $A^{-1}=A^{*} /(\operatorname{det} A)=A^{*} \times 1$ or (-1) for some A^{*} called the adjoint of A, which is constructed with ,+- , and \times of the entries of A, so is an integer matrix.

Totally Unimodular Matrices

Definition 3.9
$A \in \mathbb{Z}^{m \times n}$ is totally unimodular (TUM) if $\operatorname{det} B=1,-1$, or 0 for every square submatrix B of A.

- $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right]:$ not TUM
- $A=\left[\begin{array}{cccc}1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ -1 & 0 & -1 & 0 \\ 0 & -1 & 0 & -1\end{array}\right]:$ TUM

Integral Extreme Points

Proposition 3.15

Let $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^{m}$, and assume that $\operatorname{rank} A=m$.
If A is TUM, then every extreme point of
$\left\{x \in \mathbb{R}^{n} \mid A x=b, x \geq 0\right\}$ is integral.

Proof

- By Proposition 3.4, every extreme point w of $\left\{x \in \mathbb{R}^{n} \mid A x=b, x \geq 0\right\}$ is a basic feasible solution, i.e., there exists a basis B of A such that $w^{B}=B^{-1} b$ (where $\left.w=\left[w^{B} \mid 0\right]\right)$.
- Since A is TUM, any such B is unimodular.
- Therefore, by Proposition 3.14, B^{-1} is integral, and so is w.

A Sufficient Condition for TUM

Proposition 3.16
Suppose that $A \in \mathbb{Z}^{m \times n}$ satisfies the following property:

1. each entry is 0,1 , or -1 ;
2. each column contains at most two non-zero entries; and
3. if a column contains two non-zero entries, then they are of opposite sign (i.e., 1 and -1).
Then A is TUM.

Proof

- It suffices to show that for any $B \in \mathbb{Z}^{k \times k}$, if B satisfies the property in the proposition, then $\operatorname{det} B=1,-1$, or 0 .
- Prove by induction.

The claim obviously holds for $k=1$.

- Suppose that the claim holds for $k-1$.

Let $B \in \mathbb{Z}^{k \times k}$ satisfy the property in the proposition.

- There are three cases:

1. There is a column whose entries are all zero.

In this case, $\operatorname{det} B=0$.
2. There is a column that has exactly one non-zero entry (which is 1 or -1).
In this case, suppose that j is such a column and $b_{i j}=1$ or -1 .
Let $C \in \mathbb{R}^{(k-1) \times(k-1)}$ be the submatrix of B obtained by removing row i and column j.

Then
$\operatorname{det} B=(\operatorname{det} C) \times b_{i j}=(\operatorname{det} C) \times 1$ or $(-1)=1,-1$, or 0 by the induction hypothesis.
3. All columns have two non-zero entries (which are 1 and -1). In this case, the sum of all the row vectors is the zero vector, and hence $\operatorname{det} B=0$.

Application: Doubly Stochastic Matrices

- $A=\left(x_{i j}\right) \in \mathbb{R}^{n \times n}$ is called a doubly stochastic matrix if

$$
\begin{array}{ll}
\sum_{j=1}^{n} x_{i j}=1 & \text { for all } i=1, \ldots, n \\
\sum_{i=1}^{n} x_{i j}=1 & \text { for all } j=1, \ldots, n \\
x_{i j} \geq 0 & \text { for all } i, j=1, \ldots, n
\end{array}
$$

- Example:

$$
\left[\begin{array}{ccc}
0.7 & 0.3 & 0 \\
0 & 0.2 & 0.8 \\
0.3 & 0.5 & 0.2
\end{array}\right]
$$

- A doubly stochastic matrix that consists only of 0 and 1 is called a permutation matrix.
- A convex combination of doubly stochastic matrices is a doubly stochastic matrix.

Proposition 3.17 (Birkhoff-von Neumann Theorem)

Any doubly stochastic matrix is written as a convex combination of permutation matrices.

- Example:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
0.7 & 0.3 & 0 \\
0 & 0.2 & 0.8 \\
0.3 & 0.5 & 0.2
\end{array}\right]} \\
& =0.2\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+0.3\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]+0.5\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

Proof

- The set D of doubly stochastic matrices is the polyhedron defined by

$$
\begin{array}{ll}
\sum_{j=1}^{n} x_{i j}=1 & \text { for all } i=1, \ldots, n \\
\sum_{i=1}^{n}\left(-x_{i j}\right)=-1 & \text { for all } j=1, \ldots, n-1, \\
x_{i j} \geq 0 & \text { for all } i, j=1, \ldots, n
\end{array}
$$

(One equation is implied by the others.)

- $D \neq \emptyset$ has an extreme point (Proposition 3.5).
- Written in a matrix form $A x=b, x \geq 0, A$ is TUM:
- The column for $x_{i j}, j \neq n$, has exactly one 1 and exactly one -1 ; and
- The column for $x_{i n}$ has exactly one 1 .
- Therefore, by Proposition 3.15, all the extreme points of D are integral, and hence are permutation matrices.
- Thus, by the Krein-Milman Theorem, every doubly stochastic matrix (i.e., element of D) is written as a convex combination of permutation matrices (i.e., extreme points of D).

Application: Efficient Assignment of Indivisible Goods

- Indivisible objects $i \in M$
- Agents $j \in N$
- $v_{i j} \geq 0$: monetary value of one unit of object i for agent j
- Each agent consumes at most one object.
- Assume $|M| \geq|N|$.
- Assignment: $\left(x_{i j}\right)_{i \in M, j \in N}$ where $x_{i j} \in\{0,1\}$

$$
x_{i j}=1 \Longleftrightarrow i \text { is consumed by } j
$$

- Efficient assignment problem:

$$
\begin{aligned}
\left(\mathrm{P}^{*}\right) \quad \max & \sum_{i \in M, j \in N} v_{i j} x_{i j} \\
\text { s.t. } & \sum_{j \in N} x_{i j} \leq 1 \quad \text { for all } i \in M \\
& \sum_{i \in M} x_{i j} \leq 1 \quad \text { for all } j \in N \\
& x_{i j} \in\{0,1\} \quad \text { for all } i \in M, j \in N
\end{aligned}
$$

- Since there are finitely many feasible solutions, (P^{*}) has an optimal solution $\left(x_{i j}^{*}\right)$.
- Is there a price vector p^{*} that "supports" the assignment $\left(x_{i j}^{*}\right)$ (i.e., agents optimize against p^{*} and demand and supply balance)?
- Consider the relaxed problem where the 0-1 constraint is removed (converted into the standard form):
(P) max $\sum_{i \in M, j \in N} v_{i j} x_{i j}$
s. t. $\quad \sum_{j \in N} x_{i j}+s_{i}=1 \quad$ for all $i \in M$

$$
\begin{aligned}
& \sum_{i \in M}\left(-x_{i j}\right)-t_{j}=-1 \quad \text { for all } j \in N \\
& x_{i j} \geq 0, s_{i} \geq 0, t_{j} \geq 0 \quad \text { for all } i \in M, j \in N
\end{aligned}
$$

- Written in a matrix form, the constraint matrix is TUM:
- The column for $x_{i j}$ has exactly one 1 and exactly one -1 ;
- The column for s_{i} has exactly one 1 ; and
- The column for t_{j} has exactly one -1 .
- Since the feasible region is nonempty, it has extreme points, which are all integral by Proposition 3.15.
- Since there is an optimal solution that is an extreme point by Proposition 3.6, (P) has an integral optimal solution $\left(x_{i j}^{*}, s_{i}^{*}, t_{j}^{*}\right)$.
- Clearly, $\left(x_{i j}^{*}\right)$ is an optimal solution of (P^{*}).
- Now consider the dual problem of (P):
(D) $\min \sum_{i \in M} p_{i}+\sum_{j \in N} \lambda_{j}$

$$
\begin{array}{lll}
\text { s. t. } & p_{i}+\lambda_{j} \geq v_{i j} & \text { for all } i \in M, j \in N \\
& p_{i} \geq 0, \lambda_{j} \geq 0 & \text { for all } i \in M, j \in N
\end{array}
$$

- Let $\left(p_{i}^{*}, \lambda_{j}^{*}\right)$ be an optimal solution of (D).
- Then $\left(p_{i}^{*}\right)$ supports $\left(x_{i j}^{*}\right)$:
- By optimality, $\lambda_{j}^{*}=\max _{i \in M}\left(v_{i j}-p_{i}^{*}\right)$.
- By complementary slackness, $\left(p_{i}^{*}+\lambda_{j}^{*}-v_{i j}\right) x_{i j}^{*}=0$.
- Therefore, if $x_{i j}^{*}=1$, then
$v_{i j}-p_{i}^{*}=\lambda_{j}^{*}=\max _{h \in M}\left(v_{h j}-p_{h}^{*}\right)$,
i.e., i maximizes $v_{h j}-p_{h}^{*}, h \in M$.

