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Extreme Points, Vertices

Definition 3.1
For S ⊂ Rn, x̄ ∈ S is an extreme point of S if

x̄ = λy + (1− λ)z, y, z ∈ S, λ ∈ (0, 1) =⇒ y = z = x̄.

Definition 3.2
For S ⊂ Rn, x̄ ∈ S is a vertex of S if there exists c ∈ Rn such that
argmax{cx | x ∈ S} = {x̄}.
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Proposition 3.1

For any S ⊂ Rn, if x̄ ∈ S is a vertex of S, then it is an extreme
point of S.

Proof

▶ Suppose that argmax{cx | x ∈ S} = {x̄}, and suppose that
x̄ = λy + (1− λ)z, y, z ∈ S, λ ∈ (0, 1).

▶ Then λcy ≤ λcx̄ and (1− λ)cz ≤ (1− λ)cx̄, and therefore
cx̄ = λcy + (1− λ)cz ≤ cx̄.

▶ Hence, cy = cx̄ and cz = cx̄, and therefore y = z = x̄.

▶ The converse does not hold in general.
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Basic Feasible Solutions of Polyhedra

▶ For A =
[
a1 · · · am

]
∈ Rn×m and b ∈ Rm,

consider the polyhedron

P = {x ∈ Rn | ATx ≤ b}.

Definition 3.3
For P = {x ∈ Rn | ATx ≤ b}, x̄ ∈ P is a basic feasible solution of
P if there exists a subset B of A with rank(B) = n such that
BTx̄ = bB (where bB = (bj)j∈B).
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Proposition 3.2

For P = {x ∈ Rn | ATx ≤ b}, the following statements are
equivalent:

1. x̄ ∈ P is a vertex of P .

2. x̄ ∈ P is an extreme point of P .

3. x̄ ∈ P is a basic feasible solution of P .
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Proof

▶ 1 ⇒ 2: By Proposition 3.1.

▶ 2 ⇒ 3 (not 3 ⇒ not 2):
Suppose that x̄ ∈ P is not a basic feasible solution of P .

▶ Let B = {aj ∈ A | aj x̄ = bj}.

By assumption, rank(B) < n.

▶ Take any w ∈ ker(B), w ̸= 0 (where ker(B) ̸= {0} since
rank(ker(B)) = n− rank(B) > 0).

▶ Let ε > 0 be such that aj(x̄± εw) < bj for all j ∈ A \B, and
let y = x̄+ εw and z = x̄− εw.

▶ Then, y ̸= x̄, z ̸= x̄, y, z ∈ P , and x̄ = 1
2y +

1
2z,

which means that x̄ is not an extreme point of P .
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▶ 3 ⇒ 1:
Let x̄ ∈ P be a basic feasible solution of P , and let B ⊂ A be
such that BTx̄ = bB and rank(B) = n.

▶ Let c =
∑

j∈B aj .

▶ Then we have cx̄ =
∑

j∈B aj x̄ =
∑

j∈B bj , and

if Ax ≤ b, then cx =
∑

j∈B ajx ≤
∑

j∈B bj = cx̄.

▶ If cx = cx̄, then ajx = bj for all j ∈ B,

but since rank(B) = n, this implies that x = x̄.

▶ Hence, x̄ is a vertex of P .
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Linear Programs

▶ Standard form:

max
x∈Rn

cx(∗)

s. t. Ax = b

x ≥ 0

where A ∈ Rm×n, b ∈ Rm, and c ∈ Rn.

▶ Any linear program can be converted into the standard form:

▶ If xj is unrestricted, then substitute xj = x+
j − x−

j with

x+
j , x

−
j ≥ 0.

▶ If a constraint is
∑n

j=1 aijxj ≤ bi, then add a slack variable

si ≥ 0 so that
∑n

j=1 aijxj + si = bi.

▶ If the objective is min cx, then replace it with max(−c)x.
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▶ x∗ is a feasible solution of (∗) if x∗ ∈ {x | Ax = b, x ≥ 0}.

▶ x∗ is an optimal solution of (∗) if it is a feasible solution of
(∗) such that cx∗ = max{cx | Ax = b, x ≥ 0}.

▶ (∗) is feasible (resp. infeasible) if {x | Ax = b, x ≥ 0} ̸= ∅
(resp. = ∅).

▶ (∗) is unbounded if {cx | Ax = b, x ≥ 0} is unbounded
above.

8 / 53



Basic Solutions

▶ Consider the linear program (∗) (A ∈ Rm×n, b ∈ Rm).

▶ We assume throughout that rank(A) = m (and thus m ≤ n).

(If rank(A) < m, remove redundant rows.)

Definition 3.4
Any set B of m LI columns of A (also considered as an m×m
matrix) is called a basis of A.

Definition 3.5
x ∈ Rn is called a basic solution of (∗) if it is a solution to Ax = b
such that there exists a basis B of A such that xj ̸= 0 only if
j ∈ B.

Definition 3.6
x ∈ Rn is called a basic feasible solution of (∗) if it is a basic
solution such that x ≥ 0.
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Proposition 3.3

x̄ is a basic feasible solution of (∗) if and only if it is a basic
feasible solution of {x | Ax ≤ b,−Ax ≤ −b,−Ix ≤ 0}.

▶ Therefore, by Proposition 3.2 we have the following.

Proposition 3.4

Denote P = {x | Ax = b, x ≥ 0}. The following statements are
equivalent:

1. x̄ ∈ P is a vertex of P .

2. x̄ ∈ P is an extreme point of P .

3. x̄ ∈ P is a basic feasible solution of (∗).
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Proposition 3.5

If {x | Ax = b, x ≥ 0} ̸= ∅, then there exists a basic feasible
solution, hence an extreme point.

▶ By Proposition 2.6, part 1 (cone version of Carathéodory’s
Theorem), and Proposition 3.4.
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Fundamental Theorem of Linear Programming

Proposition 3.6

If max{cx | Ax = b, x ≥ 0} has an optimal solution,
then there exists an optimal solution that is an extreme point of
{x | Ax = b, x ≥ 0}.
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Proof

▶ Denote P = {x | Ax = b, x ≥ 0} (̸= ∅).

▶ Let v∗ = max{cx | x ∈ P} and

P ∗ =

{
x
∣∣∣ [A

cT

]
x =

[
b
v∗

]
, x ≥ 0

}
( ̸= ∅),

where rank

([
A
cT

])
= m or m+ 1.

▶ If rank

([
A
cT

])
= m, then P ∗ = P .

Then by Proposition 3.5 applied to P ,
P has an extreme point, which is an optimal solution.

13 / 53



▶ If rank

([
A
cT

])
= m+ 1,

by Proposition 3.5 applied to P ∗,
P ∗ has an extreme point.

▶ Let x∗ ∈ P ∗ be an extreme point of P ∗.

We want to show that it is an extreme point of P .

▶ Let x∗ = λy + (1− λ)z, y, z ∈ P , λ ∈ (0, 1).

▶ Then v∗ = cx∗ = λcy + (1− λ)cz while cy ≤ v∗ and cz ≤ v∗.

Thus we must have cy = cz = v∗, i.e., y, z ∈ P ∗.

▶ But since x∗ is an extreme point of P ∗, we must have
y = z = x∗.
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Duality

▶ Given the linear program

max cx

s. t. Ax = b

x ≥ 0,

multiply both sides of Ax = b by y from the left:

yAx = yb.

▶ If y satisfies c ≤ yA, then, since x ≥ 0, we have

cx ≤ yAx = yb.

▶ Thus, for any y such that c ≤ yA, yb is an upper bound of
{cx | Ax = b, x ≥ 0}.
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▶ Primal problem:

max
x∈Rn

cx(P)

s. t. Ax = b

x ≥ 0

▶ Dual problem:

min
y∈Rm

yb(D)

s. t. yA ≥ c

(y : unrestricted)
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Weak Duality

Proposition 3.7

If x and y are feasible solutions of (P) and (D), respectively,
then cx ≤ yb.

▶ Therefore, if feasible solutions x∗ and y∗ satisfy cx∗ = y∗b,
then they are optimal solutions of (P) and (D), respectively.
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Strong Duality

Proposition 3.8

If (P) and (D) are feasible,
then both (P) and (D) have optimal solutions, and

max{cx | Ax = b, x ≥ 0} = min{yb | yA ≥ c}.
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Proof

▶ (P) and (D) have optimal solutions if and only if there exist x
and y such that Ax = b, x ≥ 0, yA ≥ c, cx ≥ yb, i.e., A 0

0 −AT

−cT bT

[
x
y

] =
≤
≤

 b
−c
0

 , x ≥ 0.

▶ The alternative is:

[
λ µ η

]  A 0
0 −AT

−cT bT

 ≥ =
[
0 0

]
,

[
λ µ η

]  b
−c
0

 < 0, µ ≥ 0, η ≥ 0.
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▶ We want to show that, whenever (P) and (D) are feasible,

λA− ηc ≥ 0, −µAT + ηbT = 0, µ ≥ 0, η ≥ 0 (1)

implies

λb− µc ≥ 0. (2)

▶ For η > 0, (1) implies that µ/η and λ/η are feasible solutions,
and hence by weak duality, (µ/η)c ≤ (λ/η)b, or µc ≤ λb.

▶ For η = 0, let x and y be feasible solution.

Then from (1) we have λb− µc ≥ λAx− µATy ≥ 0.
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Infeasibility and unboundedness

Lemma 3.9

1. If (P) is infeasible, then (D) is either infeasible or unbounded.

2. If (P) is unbounded, then (D) is infeasible.

▶ Thus, if (D) is feasible and bounded, then so is (P).

▶ The same results hold with (P) and (D) interchanged.
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Proof

▶ Part 1:

If (P) is infeasible, then by Farkas’ Lemma, there exists ŷ
such that ŷA ≥ 0 and ŷb < 0.

▶ If (D) is feasible, i.e., there exists y0 such that y0A ≥ c, then
for t > 0, y0 + tŷ is feasible (since (y0 + tŷ)A ≥ c), and
(y0 + tŷ)b = y0b+ t(ŷb) → −∞ as t → ∞.

▶ Part 2: By weak duality.
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Strong Duality

Proposition 3.10

If either (P) or (D) has an optimal solution,
then the other also has an optimal solution, and

max{cx | Ax = b, x ≥ 0} = min{yb | yA ≥ c}.

Proof

▶ If either (P) or (D) has an optimal solution,
then the other is feasible by Lemma 3.9(1).

▶ Then by Proposition 3.8, it also has an optimal solution.
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Complementary Slackness

Proposition 3.11

If x∗ and y∗ are optimal solutions of (P) or (D), respectively, then
(y∗A− c)x∗ = 0.

Proof

▶ Since cx∗ = y∗b, we have

(y∗A− c)x∗ = y∗Ax∗ − cx∗

= y∗b− cx∗ = 0.

24 / 53



Primal and Dual Problems in Various Forms

▶ max cx s.t. Ax ≤ b, x ≥ 0

▶ → max cx+ 0s s.t. Ax+ s = b, x ≥ 0, s ≥ 0

▶ Dual:

min yb s.t. y
[
A I

]
≥

[
c 0

]
⇐⇒ yA ≥ c, y ≥ 0

▶ max cx s.t. Ax = b

▶ → max c(x+ − x−) s.t. A(x+ − x−) = b, x+ ≥ 0, x− ≥ 0

▶ Dual:

min yb s.t. y
[
A −A

]
≥

[
c −c

]
⇐⇒ yA = c
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▶ max cx s.t. Ax ≤ b

▶ → max c(x+ − x−) + 0s s.t. A(x+ − x−) + s = b,
x+ ≥ 0, x− ≥ 0, s ≥ 0

▶ Dual:

min yb s.t. y
[
A −A I

]
≥

[
c −c 0

]
⇐⇒ yA = c, y ≥ 0
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Primal Dual

max cx min yb
Ax = b y: unrestricted
Ax ≤ b y ≥ 0
x ≥ 0 yA ≥ c

x: unrestricted yA = c
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Farkas’ Lemma from Duality Theorem

▶ Let A ∈ Rm×n and b ∈ Rm.

▶ Suppose that yA ≥ 0, yb < 0 has no solution, i.e.,

yA ≥ 0 =⇒ yb ≥ 0. (∗)

We want to show that Ax = b, x ≥ 0 has a solution.

▶ Consider the linear program: max 0x s.t. Ax = b, x ≥ 0.

▶ Its dual problem is: min yb s.t. yA ≥ 0.

▶ By (∗), y = 0 is an optimal solution of the dual problem.

▶ Therefore, by Proposition 3.10, the primal problem has
a feasible solution.
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Application: Zero-Sum Games

Definition 3.7
A zero-sum game is given by an m× n matrix A = (aij), where
when Row player plays strategy i ∈ {1, . . . ,m} and Column player
plays strategy j ∈ {1, . . . , n}, Row’s payoff is aij and Column’s
payoff is −aij .

▶ The set of mixed strategies for Row:

∆m = {x ∈ Rm | x ≥ 0,
∑m

i=1 xi = 1}.

▶ The set of mixed strategies for Column:

∆n = {y ∈ Rn | y ≥ 0,
∑n

j=1 yj = 1}.
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▶ Min-max value for Row:

min
y∈∆n

max
i

(Ay)i (= min
y∈∆n

max
x∈∆m

xAy)

▶ Max-min value for Column:

max
x∈∆m

min
j

(xA)j (= max
x∈∆m

min
y∈∆n

xAy)
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▶ Consider the following linear programs:

min
y,R

R(LP-R)

s. t. Ay − 1R ≤ 0

1y = 1, y ≥ 0

max
x,C

C(LP-C)

s. t. xA− C1 ≥ 0

x1 = 1, x ≥ 0

▶ (LP-R) and (LP-C) are duals to each other.

Both are feasible, and therefore by strong duality
(Proposition 3.8), these have optimal solutions (x∗, R∗) and
(y∗, C∗), and R∗ = C∗.
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Minimax Theorem

Proposition 3.12

miny∈∆n maxx∈∆m xAy = maxx∈∆m miny∈∆n xAy.
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Proof
▶ Clearly, LHS ≥ RHS.

We want to show LHS ≤ RHS.

▶ Let (y∗, R∗) and (x∗, C∗) be optimal solutions of (LP-R) and
(LP-C), respectively, where R∗ = C∗.

Then we have Ay∗ ≤ 1R∗, and hence xAy∗ ≤ R∗ for all
x ∈ ∆m, i.e., maxx xAy

∗ ≤ R∗.

Hence miny maxx xAy ≤ R∗.

▶ Similarly, we have maxxminy xAy ≥ C∗.

▶ Since R∗ = C∗, we have LHS ≤ RHS.

▶ (The argument above in fact shows that

x∗Ay∗ ≤ max
x

xAy∗ ≤ R∗ = C∗ ≤ min
y

x∗Ay ≤ x∗Ay∗,

which holds as equality.)
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Definition 3.8
A profile (x∗, y∗) ∈ ∆m ×∆n is a Nash equilibrium of
the zero-sum game A if

x∗Ay∗ ≥ xAy∗ for all x ∈ ∆m,

x∗Ay∗ ≤ x∗Ay for all y ∈ ∆n.

Proposition 3.13

(x∗, y∗) is a Nash equilibrium of A and x∗Ay∗ = R∗ = C∗

if and only if (x∗, R∗) and (y∗, C∗) are optimal solutions of
(LP-R) and (LP-C), respectively.
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Proof

▶ “If”: By the Minimax Theorem.

▶ “Only if”: (y,R) = (y∗, x∗Ay∗) and (x,C) = (x∗, x∗Ay∗) are
feasible solutions of (LP-R) and (LP-C) and give the same
value (x∗Ay∗), hence they are optimal solutions.
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Integrality

▶ We discuss sufficient conditions under which

▶ all extreme points of a polyhedron are integral (integer
valued); and

▶ a linear program has an integral optimal solution.
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Unimodular Matrices

▶ A square integer matrix A ∈ Zm×m is called unimodular if
detA = 1 or −1.

Proposition 3.14

For A ∈ Zm×m, A−1 exists and is an integer matrix if and only if
it is unimodular.

▶ Example: A =

[
1 2
1 1

]
is a unimodular matrix (detA = −1).

→ A−1 =

[
−1 2
1 −1

]
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Proof

▶ If A−1 exists and is an integer matrix, then
(detA)× (detA−1) = det I = 1.

Then by the integrality of A and A−1, we must have
(detA,detA−1) = (1, 1) or (−1,−1).

▶ If A is unimodular, then A−1 = A∗/(detA) = A∗ × 1 or (−1)
for some A∗ called the adjoint of A, which is constructed with
+, −, and × of the entries of A, so is an integer matrix.
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Totally Unimodular Matrices

Definition 3.9
A ∈ Zm×n is totally unimodular (TUM) if detB = 1,−1, or 0 for
every square submatrix B of A.

▶ A =

[
1 2
1 1

]
: not TUM

▶ A =


1 1 0 0
0 0 1 1
−1 0 −1 0
0 −1 0 −1

: TUM
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Integral Extreme Points

Proposition 3.15

Let A ∈ Zm×n and b ∈ Zm, and assume that rankA = m.
If A is TUM, then every extreme point of
{x ∈ Rn | Ax = b, x ≥ 0} is integral.

Proof

▶ By Proposition 3.4, every extreme point w of
{x ∈ Rn | Ax = b, x ≥ 0} is a basic feasible solution, i.e.,
there exists a basis B of A such that wB = B−1b (where
w = [wB|0]).

▶ Since A is TUM, any such B is unimodular.

▶ Therefore, by Proposition 3.14, B−1 is integral, and so is w.
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A Sufficient Condition for TUM

Proposition 3.16

Suppose that A ∈ Zm×n satisfies the following property:

1. each entry is 0, 1, or −1;

2. each column contains at most two non-zero entries; and

3. if a column contains two non-zero entries, then they are of
opposite sign (i.e., 1 and −1).

Then A is TUM.
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Proof

▶ It suffices to show that for any B ∈ Zk×k, if B satisfies
the property in the proposition, then detB = 1,−1, or 0.

▶ Prove by induction.

The claim obviously holds for k = 1.

▶ Suppose that the claim holds for k − 1.

Let B ∈ Zk×k satisfy the property in the proposition.

42 / 53



▶ There are three cases:

1. There is a column whose entries are all zero.

In this case, detB = 0.

2. There is a column that has exactly one non-zero entry (which
is 1 or −1).

In this case, suppose that j is such a column and
bij = 1 or −1.

Let C ∈ R(k−1)×(k−1) be the submatrix of B obtained by
removing row i and column j.

Then
detB = (detC)× bij = (detC)× 1 or (−1) = 1,−1, or 0
by the induction hypothesis.

3. All columns have two non-zero entries (which are 1 and −1).

In this case, the sum of all the row vectors is the zero vector,
and hence detB = 0.
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Application: Doubly Stochastic Matrices

▶ A = (xij) ∈ Rn×n is called a doubly stochastic matrix if

n∑
j=1

xij = 1 for all i = 1, . . . , n,

n∑
i=1

xij = 1 for all j = 1, . . . , n,

xij ≥ 0 for all i, j = 1, . . . , n.

▶ Example:0.7 0.3 0
0 0.2 0.8
0.3 0.5 0.2
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▶ A doubly stochastic matrix that consists only of 0 and 1 is
called a permutation matrix.

▶ A convex combination of doubly stochastic matrices is
a doubly stochastic matrix.
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Proposition 3.17 (Birkhoff-von Neumann Theorem)

Any doubly stochastic matrix is written as a convex combination of
permutation matrices.

▶ Example:0.7 0.3 0
0 0.2 0.8
0.3 0.5 0.2


= 0.2

1 0 0
0 1 0
0 0 1

+ 0.3

0 1 0
0 0 1
1 0 0

+ 0.5

1 0 0
0 0 1
0 1 0
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Proof

▶ The set D of doubly stochastic matrices is the polyhedron
defined by

n∑
j=1

xij = 1 for all i = 1, . . . , n,

n∑
i=1

(−xij) = −1 for all j = 1, . . . , n− 1,

xij ≥ 0 for all i, j = 1, . . . , n.

(One equation is implied by the others.)

▶ D ̸= ∅ has an extreme point (Proposition 3.5).
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▶ Written in a matrix form Ax = b, x ≥ 0, A is TUM:

▶ The column for xij , j ̸= n, has exactly one 1 and
exactly one −1; and

▶ The column for xin has exactly one 1.

▶ Therefore, by Proposition 3.15, all the extreme points of D
are integral, and hence are permutation matrices.

▶ Thus, by the Krein-Milman Theorem, every doubly stochastic
matrix (i.e., element of D) is written as a convex combination
of permutation matrices (i.e., extreme points of D).
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Application: Efficient Assignment of Indivisible Goods

▶ Indivisible objects i ∈ M

▶ Agents j ∈ N

▶ vij ≥ 0: monetary value of one unit of object i for agent j

▶ Each agent consumes at most one object.

▶ Assume |M | ≥ |N |.

▶ Assignment: (xij)i∈M,j∈N where xij ∈ {0, 1}

xij = 1 ⇐⇒ i is consumed by j.
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▶ Efficient assignment problem:

max
∑

i∈M,j∈N
vijxij(P∗)

s. t.
∑
j∈N

xij ≤ 1 for all i ∈ M

∑
i∈M

xij ≤ 1 for all j ∈ N

xij ∈ {0, 1} for all i ∈ M, j ∈ N

▶ Since there are finitely many feasible solutions,
(P∗) has an optimal solution (x∗ij).

▶ Is there a price vector p∗ that “supports” the assignment (x∗ij)

(i.e., agents optimize against p∗ and demand and supply
balance)?
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▶ Consider the relaxed problem where the 0-1 constraint is
removed (converted into the standard form):

max
∑

i∈M,j∈N
vijxij(P)

s. t.
∑
j∈N

xij + si = 1 for all i ∈ M

∑
i∈M

(−xij)− tj = −1 for all j ∈ N

xij ≥ 0, si ≥ 0, tj ≥ 0 for all i ∈ M, j ∈ N

▶ Written in a matrix form, the constraint matrix is TUM:

▶ The column for xij has exactly one 1 and exactly one −1;

▶ The column for si has exactly one 1; and

▶ The column for tj has exactly one −1.
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▶ Since the feasible region is nonempty, it has extreme points,
which are all integral by Proposition 3.15.

▶ Since there is an optimal solution that is an extreme point by
Proposition 3.6, (P) has an integral optimal solution
(x∗ij , s

∗
i , t

∗
j ).

▶ Clearly, (x∗ij) is an optimal solution of (P∗).
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▶ Now consider the dual problem of (P):

min
∑
i∈M

pi +
∑
j∈N

λj(D)

s. t. pi + λj ≥ vij for all i ∈ M, j ∈ N

pi ≥ 0, λj ≥ 0 for all i ∈ M, j ∈ N

▶ Let (p∗i , λ
∗
j ) be an optimal solution of (D).

▶ Then (p∗i ) supports (x
∗
ij):

▶ By optimality, λ∗
j = maxi∈M (vij − p∗i ).

▶ By complementary slackness, (p∗i + λ∗
j − vij)x

∗
ij = 0.

▶ Therefore, if x∗
ij = 1, then

vij − p∗i = λ∗
j = maxh∈M (vhj − p∗h),

i.e., i maximizes vhj − p∗h, h ∈ M .
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