3. Structure of Polyhedra

Daisuke Oyama

Mathematical Economics

This version: June 26, 2023

Extreme Points, Vertices

Definition 3.1 For $S \subset \mathbb{R}^n$, $\bar{x} \in S$ is an *extreme point* of S if

$$\bar{x} = \lambda y + (1 - \lambda)z, \ y, z \in S, \ \lambda \in (0, 1) \implies y = z = \bar{x}.$$

Definition 3.2

For $S \subset \mathbb{R}^n$, $\bar{x} \in S$ is a vertex of S if there exists $c \in \mathbb{R}^n$ such that $\arg \max\{cx \mid x \in S\} = \{\bar{x}\}.$

Proposition 3.1

For any $S \subset \mathbb{R}^n$, if $\bar{x} \in S$ is a vertex of S, then it is an extreme point of S.

Proof

- Suppose that $\arg \max\{cx \mid x \in S\} = \{\bar{x}\}$, and suppose that $\bar{x} = \lambda y + (1 \lambda)z$, $y, z \in S$, $\lambda \in (0, 1)$.
- ► Then $\lambda cy \leq \lambda c\bar{x}$ and $(1 \lambda)cz \leq (1 \lambda)c\bar{x}$, and therefore $c\bar{x} = \lambda cy + (1 \lambda)cz \leq c\bar{x}$.
- Hence, $cy = c\bar{x}$ and $cz = c\bar{x}$, and therefore $y = z = \bar{x}$.
- ▶ The converse does not hold *in general*.

Basic Feasible Solutions of Polyhedra

For
$$A = \begin{bmatrix} a^1 & \cdots & a^m \end{bmatrix} \in \mathbb{R}^{n \times m}$$
 and $b \in \mathbb{R}^m$, consider the polyhedron

$$P = \{ x \in \mathbb{R}^n \mid A^{\mathrm{T}} x \le b \}.$$

Definition 3.3

For $P = \{x \in \mathbb{R}^n \mid A^T x \leq b\}$, $\bar{x} \in P$ is a basic feasible solution of P if there exists a subset B of A with $\operatorname{rank}(B) = n$ such that $B^T \bar{x} = b^B$ (where $b^B = (b_j)_{j \in B}$).

Proposition 3.2

For $P = \{x \in \mathbb{R}^n \mid A^{\mathrm{T}}x \leq b\}$, the following statements are equivalent:

- 1. $\bar{x} \in P$ is a vertex of P.
- 2. $\bar{x} \in P$ is an extreme point of P.
- 3. $\bar{x} \in P$ is a basic feasible solution of P.

Proof

▶ $1 \Rightarrow 2$: By Proposition 3.1.

▶ 2 ⇒ 3 (not 3 ⇒ not 2): Suppose that $\bar{x} \in P$ is not a basic feasible solution of P.

• Let
$$B = \{a^j \in A \mid a^j \overline{x} = b_j\}.$$

By assumption, rank(B) < n.

- Take any w ∈ ker(B), w ≠ 0 (where ker(B) ≠ {0} since rank(ker(B)) = n rank(B) > 0).
- Let $\varepsilon > 0$ be such that $a^j(\bar{x} \pm \varepsilon w) < b_j$ for all $j \in A \setminus B$, and let $y = \bar{x} + \varepsilon w$ and $z = \bar{x} \varepsilon w$.

▶ Then,
$$y \neq \bar{x}$$
, $z \neq \bar{x}$, $y, z \in P$, and $\bar{x} = \frac{1}{2}y + \frac{1}{2}z$,
which means that \bar{x} is not an extreme point of P .

▶ 3 ⇒ 1:
Let
$$\bar{x} \in P$$
 be a basic feasible solution of P , and let $B \subset A$ be such that $B^{\mathrm{T}}\bar{x} = b^{B}$ and $\operatorname{rank}(B) = n$.

• Let
$$c = \sum_{j \in B} a^j$$
.

▶ Then we have
$$c\bar{x} = \sum_{j \in B} a^j \bar{x} = \sum_{j \in B} b_j$$
, and
if $Ax \leq b$, then $cx = \sum_{j \in B} a^j x \leq \sum_{j \in B} b_j = c\bar{x}$.

Linear Programs

Standard form:

(*)
$$\max_{x \in \mathbb{R}^n} cx$$

s.t. $Ax = b$
 $x \ge 0$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and $c \in \mathbb{R}^n$.

> Any linear program can be converted into the standard form:

- If x_j is unrestricted, then substitute $x_j = x_j^+ x_j^-$ with $x_j^+, x_j^- \ge 0.$
- ▶ If a constraint is $\sum_{j=1}^{n} a_{ij}x_j \leq b_i$, then add a slack variable $s_i \geq 0$ so that $\sum_{j=1}^{n} a_{ij}x_j + s_i = b_i$.

• If the objective is $\min cx$, then replace it with $\max(-c)x$.

- ▶ x^* is a feasible solution of (*) if $x^* \in \{x \mid Ax = b, x \ge 0\}$.
- x* is an optimal solution of (*) if it is a feasible solution of
 (*) such that cx* = max{cx | Ax = b, x ≥ 0}.
- (*) is feasible (resp. infeasible) if {x | Ax = b, x ≥ 0} ≠ Ø (resp. = Ø).
- (*) is unbounded if $\{cx \mid Ax = b, x \ge 0\}$ is unbounded above.

Basic Solutions

- Consider the linear program (*) $(A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m)$.
- We assume throughout that rank(A) = m (and thus m ≤ n). (If rank(A) < m, remove redundant rows.)</p>

Definition 3.4

Any set B of m LI columns of A (also considered as an $m \times m$ matrix) is called a *basis* of A.

Definition 3.5

 $x \in \mathbb{R}^n$ is called a *basic solution* of (*) if it is a solution to Ax = b such that there exists a basis B of A such that $x_j \neq 0$ only if $j \in B$.

Definition 3.6

 $x \in \mathbb{R}^n$ is called a *basic feasible solution* of (*) if it is a basic solution such that $x \ge 0$.

Proposition 3.3

 \bar{x} is a basic feasible solution of (*) if and only if it is a basic feasible solution of $\{x \mid Ax \leq b, -Ax \leq -b, -Ix \leq 0\}$.

Therefore, by Proposition 3.2 we have the following.

Proposition 3.4

Denote $P = \{x \mid Ax = b, x \ge 0\}$. The following statements are equivalent:

1. $\bar{x} \in P$ is a vertex of P.

2. $\bar{x} \in P$ is an extreme point of P.

3. $\bar{x} \in P$ is a basic feasible solution of (*).

Proposition 3.5

If $\{x \mid Ax = b, x \ge 0\} \ne \emptyset$, then there exists a basic feasible solution, hence an extreme point.

 By Proposition 2.6, part 1 (cone version of Carathéodory's Theorem), and Proposition 3.4.

Fundamental Theorem of Linear Programming

Proposition 3.6

If $\max\{cx \mid Ax = b, x \ge 0\}$ has an optimal solution, then there exists an optimal solution that is an extreme point of $\{x \mid Ax = b, x \ge 0\}.$

Proof

Then by Proposition 3.5 applied to
$$P$$
,
 P has an extreme point, which is an optimal solution.

• Let $x^* \in P^*$ be an extreme point of P^* .

We want to show that it is an extreme point of P.

• Let
$$x^* = \lambda y + (1 - \lambda)z$$
, $y, z \in P$, $\lambda \in (0, 1)$.

- ► Then $v^* = cx^* = \lambda cy + (1 \lambda)cz$ while $cy \le v^*$ and $cz \le v^*$. Thus we must have $cy = cz = v^*$, i.e., $y, z \in P^*$.
- But since x* is an extreme point of P*, we must have y = z = x*.

Duality

Given the linear program

 $\begin{array}{ll} \max & cx\\ \text{s.t.} & Ax = b\\ & x \ge 0, \end{array}$

multiply both sides of Ax = b by y from the left:

$$yAx = yb.$$

• If y satisfies $c \leq yA$, then, since $x \geq 0$, we have

 $cx \le yAx = yb.$

▶ Thus, for any y such that $c \le yA$, yb is an upper bound of $\{cx \mid Ax = b, x \ge 0\}$.

Primal problem:

(P)
$$\max_{x \in \mathbb{R}^n} cx$$

s.t. $Ax = b$
 $x \ge 0$

Dual problem:

(D)
$$\min_{y \in \mathbb{R}^m} yb$$

s.t. $yA \ge c$
 $(y : unrestricted)$

Weak Duality

Proposition 3.7

If x and y are feasible solutions of (P) and (D), respectively, then $cx \leq yb$.

▶ Therefore, if feasible solutions x^* and y^* satisfy $cx^* = y^*b$, then they are optimal solutions of (P) and (D), respectively.

Strong Duality

Proposition 3.8

If (P) and (D) are feasible, then both (P) and (D) have optimal solutions, and

$$\max\{cx \mid Ax = b, \ x \ge 0\} = \min\{yb \mid yA \ge c\}.$$

Proof

▶ (P) and (D) have optimal solutions if and only if there exist x and y such that Ax = b, $x \ge 0$, $yA \ge c$, $cx \ge yb$, i.e.,

$$\begin{bmatrix} A & 0 \\ 0 & -A^{\mathrm{T}} \\ -c^{\mathrm{T}} & b^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \stackrel{=}{\leq} \begin{bmatrix} b \\ -c \\ 0 \end{bmatrix}, \ x \ge 0.$$

The alternative is:

$$\begin{bmatrix} \lambda & \mu & \eta \end{bmatrix} \begin{bmatrix} A & 0 \\ 0 & -A^{\mathrm{T}} \\ -c^{\mathrm{T}} & b^{\mathrm{T}} \end{bmatrix} \ge = \begin{bmatrix} 0 & 0 \end{bmatrix},$$
$$\begin{bmatrix} \lambda & \mu & \eta \end{bmatrix} \begin{bmatrix} b \\ -c \\ 0 \end{bmatrix} < 0, \ \mu \ge 0, \eta \ge 0.$$

We want to show that, whenever (P) and (D) are feasible,

$$\lambda A - \eta c \ge 0, \ -\mu A^{\mathrm{T}} + \eta b^{\mathrm{T}} = 0, \ \mu \ge 0, \ \eta \ge 0$$
 (1)

implies

$$\lambda b - \mu c \ge 0. \tag{2}$$

For $\eta > 0$, (1) implies that μ/η and λ/η are feasible solutions, and hence by weak duality, $(\mu/\eta)c \leq (\lambda/\eta)b$, or $\mu c \leq \lambda b$.

Infeasibility and unboundedness

Lemma 3.9

- 1. If (P) is infeasible, then (D) is either infeasible or unbounded.
- 2. If (P) is unbounded, then (D) is infeasible.

- ▶ Thus, if (D) is feasible and bounded, then so is (P).
- ▶ The same results hold with (P) and (D) interchanged.

Proof

Part 1:

If (P) is infeasible, then by Farkas' Lemma, there exists \hat{y} such that $\hat{y}A \geq 0$ and $\hat{y}b < 0.$

- ▶ If (D) is feasible, i.e., there exists y^0 such that $y^0A \ge c$, then for t > 0, $y^0 + t\hat{y}$ is feasible (since $(y^0 + t\hat{y})A \ge c$), and $(y^0 + t\hat{y})b = y^0b + t(\hat{y}b) \rightarrow -\infty$ as $t \rightarrow \infty$.
- Part 2: By weak duality.

Strong Duality

Proposition 3.10 If either (P) or (D) has an optimal solution, then the other also has an optimal solution, and

 $\max\{cx \mid Ax = b, \ x \ge 0\} = \min\{yb \mid yA \ge c\}.$

Proof

- If either (P) or (D) has an optimal solution, then the other is feasible by Lemma 3.9(1).
- ▶ Then by Proposition 3.8, it also has an optimal solution.

Complementary Slackness

Proposition 3.11

If x^* and y^* are optimal solutions of (P) or (D), respectively, then $(y^*A - c)x^* = 0$.

Proof

• Since
$$cx^* = y^*b$$
, we have
 $(y^*A - c)x^* = y^*Ax^* - cx^*$
 $= y^*b - cx^* = 0.$

Primal and Dual Problems in Various Forms

$$\max cx \text{ s.t. } Ax \le b$$

$$\rightarrow \max c(x^{+} - x^{-}) + 0s \text{ s.t. } A(x^{+} - x^{-}) + s = x^{+} \ge 0, \ x^{-} \ge 0, \ s \ge 0$$

Dual:

$$\min yb \text{ s.t. } y \begin{bmatrix} A & -A & I \end{bmatrix} \ge \begin{bmatrix} c & -c & 0 \end{bmatrix} \\ \iff yA = c, \ y \ge 0$$

b,

Primal	Dual
$\max cx$	$\min yb$
Ax = b	y: unrestricted
$Ax \leq b$	$y \ge 0$
$x \ge 0$	$yA \ge c$
x: unrestricted	yA = c

Farkas' Lemma from Duality Theorem

• Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.

Suppose that $yA \ge 0$, yb < 0 has no solution, i.e.,

$$yA \ge 0 \implies yb \ge 0.$$
 (*)

We want to show that Ax = b, $x \ge 0$ has a solution.

- Consider the linear program: $\max 0x$ s.t. Ax = b, $x \ge 0$.
- lts dual problem is: $\min yb$ s.t. $yA \ge 0$.
- By (*), y = 0 is an optimal solution of the dual problem.
- Therefore, by Proposition 3.10, the primal problem has a feasible solution.

Application: Zero-Sum Games

Definition 3.7

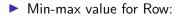
A zero-sum game is given by an $m \times n$ matrix $A = (a_{ij})$, where when Row player plays strategy $i \in \{1, \ldots, m\}$ and Column player plays strategy $j \in \{1, \ldots, n\}$, Row's payoff is a_{ij} and Column's payoff is $-a_{ij}$.

The set of mixed strategies for Row:

$$\Delta^m = \{ x \in \mathbb{R}^m \mid x \ge 0, \ \sum_{i=1}^m x_i = 1 \}.$$

The set of mixed strategies for Column:

$$\Delta^{n} = \{ y \in \mathbb{R}^{n} \mid y \ge 0, \ \sum_{j=1}^{n} y_{j} = 1 \}.$$



$$\min_{y \in \Delta^n} \max_i (Ay)_i \ (= \min_{y \in \Delta^n} \max_{x \in \Delta^m} xAy)$$

Max-min value for Column:

$$\max_{x \in \Delta^m} \min_j (xA)_j \ (= \max_{x \in \Delta^m} \min_{y \in \Delta^n} xAy)$$

Consider the following linear programs:

(LP-R) min
$$_{y,R}$$
 R
s.t. $Ay - \mathbf{1}R \le 0$
 $\mathbf{1}y = 1, y \ge 0$

(LP-C)
$$\max_{\substack{x,C\\ \\ \textbf{s.t.}}} C$$

s.t. $xA - C\mathbf{1} \ge 0$
 $x\mathbf{1} = 1, \ x \ge 0$

 (LP-R) and (LP-C) are duals to each other.
 Both are feasible, and therefore by strong duality (Proposition 3.8), these have optimal solutions (x*, R*) and (y*, C*), and R* = C*.

Minimax Theorem

Proposition 3.12

 $\min_{y \in \Delta^n} \max_{x \in \Delta^m} xAy = \max_{x \in \Delta^m} \min_{y \in \Delta^n} xAy.$

Proof

• Clearly, LHS \geq RHS.

We want to show LHS \leq RHS.

Let (y*, R*) and (x*, C*) be optimal solutions of (LP-R) and (LP-C), respectively, where R* = C*.

Then we have $Ay^* \leq \mathbf{1}R^*$, and hence $xAy^* \leq R^*$ for all $x \in \Delta^m$, i.e., $\max_x xAy^* \leq R^*$.

Hence $\min_y \max_x xAy \le R^*$.

• Similarly, we have $\max_x \min_y xAy \ge C^*$.

Since $R^* = C^*$, we have LHS \leq RHS.

$$x^*Ay^* \le \max_x xAy^* \le R^* = C^* \le \min_y x^*Ay \le x^*Ay^*,$$

which holds as equality.)

Definition 3.8

A profile $(x^*,y^*)\in \Delta^m\times \Delta^n$ is a Nash equilibrium of the zero-sum game A if

 $x^*Ay^* \ge xAy^*$ for all $x \in \Delta^m$, $x^*Ay^* \le x^*Ay$ for all $y \in \Delta^n$.

Proposition 3.13

 (x^*, y^*) is a Nash equilibrium of A and $x^*Ay^* = R^* = C^*$ if and only if (x^*, R^*) and (y^*, C^*) are optimal solutions of (LP-R) and (LP-C), respectively.

Proof

- "If": By the Minimax Theorem.
- ► "Only if": (y, R) = (y*, x*Ay*) and (x, C) = (x*, x*Ay*) are feasible solutions of (LP-R) and (LP-C) and give the same value (x*Ay*), hence they are optimal solutions.

Integrality

- ▶ We discuss sufficient conditions under which
 - all extreme points of a polyhedron are integral (integer valued); and
 - ▶ a linear program has an integral optimal solution.

Unimodular Matrices

A square integer matrix A ∈ Z^{m×m} is called unimodular if det A = 1 or -1.

Proposition 3.14

For $A \in \mathbb{Z}^{m \times m}$, A^{-1} exists and is an integer matrix if and only if it is unimodular.

• Example:
$$A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$$
 is a unimodular matrix (det $A = -1$).
 $\rightarrow A^{-1} = \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix}$

Proof

If A⁻¹ exists and is an integer matrix, then (det A) × (det A⁻¹) = det I = 1.

Then by the integrality of A and A^{-1} , we must have $(\det A, \det A^{-1}) = (1, 1)$ or (-1, -1).

If A is unimodular, then A⁻¹ = A*/(det A) = A* × 1 or (−1) for some A* called the adjoint of A, which is constructed with +, -, and × of the entries of A, so is an integer matrix.

Totally Unimodular Matrices

Definition 3.9 $A \in \mathbb{Z}^{m \times n}$ is totally unimodular (TUM) if det B = 1, -1, or 0 for every square submatrix B of A.

•
$$A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$$
: not TUM
• $A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ -1 & 0 & -1 & 0 \\ 0 & -1 & 0 & -1 \end{bmatrix}$: TUM

Integral Extreme Points

Proposition 3.15

Let $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^m$, and assume that rank A = m. If A is TUM, then every extreme point of $\{x \in \mathbb{R}^n \mid Ax = b, x \ge 0\}$ is integral.

Proof

- By Proposition 3.4, every extreme point w of {x ∈ ℝⁿ | Ax = b, x ≥ 0} is a basic feasible solution, i.e., there exists a basis B of A such that w^B = B⁻¹b (where w = [w^B|0]).
- Since A is TUM, any such B is unimodular.
- Therefore, by Proposition 3.14, B^{-1} is integral, and so is w.

A Sufficient Condition for TUM

Proposition 3.16

Suppose that $A \in \mathbb{Z}^{m \times n}$ satisfies the following property:

- 1. each entry is 0, 1, or -1;
- 2. each column contains at most two non-zero entries; and
- 3. if a column contains two non-zero entries, then they are of opposite sign (i.e., 1 and -1).

Then A is TUM.

Proof

It suffices to show that for any B ∈ Z^{k×k}, if B satisfies the property in the proposition, then det B = 1, -1, or 0.

Prove by induction.

The claim obviously holds for k = 1.

Suppose that the claim holds for k − 1.
 Let B ∈ Z^{k×k} satisfy the property in the proposition.

There are three cases:

- 1. There is a column whose entries are all zero. In this case, $\det B = 0$.
- 2. There is a column that has exactly one non-zero entry (which is 1 or -1).

In this case, suppose that j is such a column and $b_{ij} = 1$ or -1.

Let $C \in \mathbb{R}^{(k-1) \times (k-1)}$ be the submatrix of B obtained by removing row i and column j.

Then

det $B = (\det C) \times b_{ij} = (\det C) \times 1$ or (-1) = 1, -1, or 0 by the induction hypothesis.

3. All columns have two non-zero entries (which are 1 and -1). In this case, the sum of all the row vectors is the zero vector, and hence det B = 0.

Application: Doubly Stochastic Matrices

• $A = (x_{ij}) \in \mathbb{R}^{n \times n}$ is called a *doubly stochastic matrix* if

$$\begin{split} \sum_{j=1}^n x_{ij} &= 1 \quad \text{for all } i = 1, \dots, n, \\ \sum_{i=1}^n x_{ij} &= 1 \quad \text{for all } j = 1, \dots, n, \\ x_{ij} &\geq 0 \qquad \qquad \text{for all } i, j = 1, \dots, n. \end{split}$$

Example:

$$\begin{bmatrix} 0.7 & 0.3 & 0 \\ 0 & 0.2 & 0.8 \\ 0.3 & 0.5 & 0.2 \end{bmatrix}$$

- A doubly stochastic matrix that consists only of 0 and 1 is called a *permutation matrix*.
- A convex combination of doubly stochastic matrices is a doubly stochastic matrix.

Proposition 3.17 (Birkhoff-von Neumann Theorem)

Any doubly stochastic matrix is written as a convex combination of permutation matrices.

• Example: $\begin{bmatrix} 0.7 & 0.3 & 0 \\ 0 & 0.2 & 0.8 \\ 0.3 & 0.5 & 0.2 \end{bmatrix}$ $= 0.2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + 0.3 \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} + 0.5 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$

Proof

The set D of doubly stochastic matrices is the polyhedron defined by

$$\begin{split} \sum_{j=1}^n x_{ij} &= 1 & \text{for all } i = 1, \dots, n, \\ \sum_{i=1}^n (-x_{ij}) &= -1 & \text{for all } j = 1, \dots, n-1, \\ x_{ij} &\geq 0 & \text{for all } i, j = 1, \dots, n. \end{split}$$

(One equation is implied by the others.)

▶ $D \neq \emptyset$ has an extreme point (Proposition 3.5).

• Written in a matrix form Ax = b, $x \ge 0$, A is TUM:

- The column for x_{ij}, j ≠ n, has exactly one 1 and exactly one −1; and
- The column for x_{in} has exactly one 1.
- Therefore, by Proposition 3.15, all the extreme points of D are integral, and hence are permutation matrices.
- Thus, by the Krein-Milman Theorem, every doubly stochastic matrix (i.e., element of D) is written as a convex combination of permutation matrices (i.e., extreme points of D).

Application: Efficient Assignment of Indivisible Goods

- $\blacktriangleright \text{ Indivisible objects } i \in M$
- Agents $j \in N$
- ▶ $v_{ij} \ge 0$: monetary value of one unit of object *i* for agent *j*
- Each agent consumes at most one object.
- Assume $|M| \ge |N|$.
- Assignment: $(x_{ij})_{i \in M, j \in N}$ where $x_{ij} \in \{0, 1\}$

 $x_{ij} = 1 \iff i \text{ is consumed by } j.$

Efficient assignment problem:

$$\begin{array}{ll} (\mathsf{P}^*) & \max & \sum_{i \in M, j \in N} v_{ij} x_{ij} \\ \text{s.t.} & \sum_{j \in N} x_{ij} \leq 1 \quad \text{for all } i \in M \\ & \sum_{i \in M} x_{ij} \leq 1 \quad \text{for all } j \in N \\ & x_{ij} \in \{0, 1\} \quad \text{for all } i \in M, j \in N \end{array}$$

- Since there are finitely many feasible solutions, (P*) has an optimal solution (x^{*}_{ii}).
- Is there a price vector p* that "supports" the assignment (x*ij) (i.e., agents optimize against p* and demand and supply balance)?

Consider the relaxed problem where the 0-1 constraint is removed (converted into the standard form):

(P) max
$$\sum_{i \in M, j \in N} v_{ij} x_{ij}$$

s.t.
$$\sum_{j \in N} x_{ij} + s_i = 1 \qquad \text{for all } i \in M$$
$$\sum_{i \in M} (-x_{ij}) - t_j = -1 \quad \text{for all } j \in N$$
$$x_{ij} \ge 0, s_i \ge 0, t_j \ge 0 \quad \text{for all } i \in M, j \in N$$

Written in a matrix form, the constraint matrix is TUM:

• The column for x_{ij} has exactly one 1 and exactly one -1;

- The column for s_i has exactly one 1; and
- The column for t_j has exactly one -1.

- Since the feasible region is nonempty, it has extreme points, which are all integral by Proposition 3.15.
- Since there is an optimal solution that is an extreme point by Proposition 3.6, (P) has an integral optimal solution (x^{*}_{ij}, s^{*}_i, t^{*}_j).
- Clearly, (x_{ij}^*) is an optimal solution of (P*).

Now consider the dual problem of (P):

$$\begin{array}{lll} \text{(D)} & \min & \displaystyle \sum_{i \in M} p_i + \sum_{j \in N} \lambda_j \\ & \text{s.t.} & p_i + \lambda_j \geq v_{ij} & \text{ for all } i \in M, j \in N \\ & p_i \geq 0, \lambda_j \geq 0 & \text{ for all } i \in M, j \in N \end{array}$$

• Let (p_i^*, λ_i^*) be an optimal solution of (D).

▶ Then
$$(p_i^*)$$
 supports (x_{ij}^*) :

• By optimality,
$$\lambda_j^* = \max_{i \in M} (v_{ij} - p_i^*)$$
.

• By complementary slackness, $(p_i^* + \lambda_j^* - v_{ij})x_{ij}^* = 0.$

► Therefore, if
$$x_{ij}^* = 1$$
, then
 $v_{ij} - p_i^* = \lambda_j^* = \max_{h \in M} (v_{hj} - p_h^*)$,
i.e., *i* maximizes $v_{hj} - p_h^*$, $h \in M$.