2. Separating Hyperplane Theorems

Daisuke Oyama

Mathematical Economics

This version: June 19, 2023

Things to know from real analysis

- For $S \subset \mathbb{R}$,
- $\alpha=\max S$ if
- $\alpha \geq x$ for all S and
- $\alpha \in S$.
- $\alpha=\min S$ if
- $\alpha \leq x$ for all S and
- $\alpha \in S$.
- $\alpha=\sup S$ if
- $\alpha \geq x$ for all S and
- if $\beta \geq x$ for all S, then $\beta \geq \alpha$.
- $\alpha=\inf S$ if
- $\alpha \leq x$ for all S and
- if $\beta \leq x$ for all S, then $\beta \leq \alpha$.
$-\sup S$ exists if S is bounded above; inf S exists if S is bounded below.
- Euclidean norm: for $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, $\|x\|=\sqrt{\sum_{i=1}^{n}\left(x_{i}\right)^{2}}$.
- Euclidean distance: for $x, y \in \mathbb{R}^{n}, d(x, y)=\|x-y\|$.
- A sequence $\left\{x^{k}\right\}$ in \mathbb{R}^{n} converges to $x^{0} \in \mathbb{R}^{n}$ if for any $\varepsilon>0$, there exists a natural number K such that $d\left(x^{k}, x^{0}\right)<\varepsilon$ for all $k \geq K$.
In this case,
- $\left\{x^{k}\right\}$ is said to be convergent,
- x^{0} is called the limit of $\left\{x^{k}\right\}$, and
- we write $\lim _{k \rightarrow \infty} x^{k}=x^{0}$ or $x^{k} \rightarrow x^{0}$ as $k \rightarrow \infty$.
- A sequence $\left\{x^{k}\right\}$ in \mathbb{R}^{n} is called a Cauchy sequence if for any $\varepsilon>0$, there exists a natural number K such that $d\left(x^{k}, x^{\ell}\right)<\varepsilon$ for all $k, \ell \geq K$.
- A sequence $\left\{x^{k}\right\}$ in \mathbb{R}^{n} is convergent if and only if it is a Cauchy sequence.
- $S \subset \mathbb{R}^{n}$ is closed if for any convergent sequence in $\left\{x^{k}\right\}$ in S with $x^{k} \rightarrow x^{*}$, we have $x^{*} \in S$.
- $S \subset \mathbb{R}^{n}$ is open if for every $x \in S$, there exists $\varepsilon>0$ such that $B_{\varepsilon}(x) \subset S$,
where $B_{\varepsilon}(x)=\left\{y \in \mathbb{R}^{n} \mid d(y, x)<\varepsilon\right\}$.
- $S \subset \mathbb{R}^{n}$ is closed if and only if $\mathbb{R}^{n} \backslash S$ is open.
- Basic properties:
- \emptyset and \mathbb{R}^{n} are both closed and open.
- The union of any family of open sets is open.
- The intersection of a finite number of open sets is open.
- The intersection of any family of closed sets is closed.
- The union of a finite number of closed sets is closed.
- $x \in S$ is an interior point of S if there exists $\varepsilon>0$ such that $B_{\varepsilon}(x) \subset S$.
The set of all interior points of S is called the interior of S and denoted int S.
- int S is the largest open set that is contained in S.
- $x \in \mathbb{R}^{n}$ is a boundary point of S if for any $\varepsilon>0$, $B_{\varepsilon}(x) \cap S \neq \emptyset$ and $B_{\varepsilon}(x) \cap\left(\mathbb{R}^{n} \backslash S\right) \neq \emptyset$.
The set of all boundary points of S is called the boundary of S and denoted bd S.
- The closure of $S \subset \mathbb{R}^{n}$ is the set of all points that are the limits of convergent sequences of points in S and denoted $\operatorname{cl} S$.
- $\mathrm{cl} S$ is the smallest closed set that contains S.
- Relationships:
- $\operatorname{cl} S=\mathbb{R}^{n} \backslash \operatorname{int}\left(\mathbb{R}^{n} \backslash S\right)$
- $\operatorname{int} S=\mathbb{R}^{n} \backslash \operatorname{cl}\left(\mathbb{R}^{n} \backslash S\right)$
- $\operatorname{bd} S=\operatorname{cl} S \backslash \operatorname{int} S$
- $S \subset \mathbb{R}^{n}$ is bounded if there exists $r>0$ such that $S \subset B_{r}(0)$.
- $S \subset \mathbb{R}^{n}$ is compact if it is closed and bounded.
- If $S \subset \mathbb{R}$ is compact, then $\sup S \in S$ and $\inf S \in S$ (and hence $\sup S=\max S$ and $\inf S=\min S$).
- If $S \subset \mathbb{R}^{n}$ is bounded, then any sequence in S has a convergent subsequence.

If in addition S is closed (i.e., S is compact), then any sequence in S has a convergent subsequence and its limit is in S.

- Conversely, if every sequence in S has a convergent subsequence whose limit is in S, then S is compact.
- A family of subsets of \mathbb{R}^{n} is said to have the finite intersection property if the intersection of any finite subfamily of it is nonempty.
- For $S \subset \mathbb{R}^{n}$, the following conditions are equivalent:
- S is compact.
- For any family $\left(F_{\lambda}\right)_{\lambda \in \Lambda}$ of closed subsets of S that has the finite intersection property, we have $\bigcap_{\lambda \in \Lambda} F_{\lambda} \neq \emptyset$.
- Let $S \subset \mathbb{R}^{n}, S \neq \emptyset$.

A function $f: S \rightarrow \mathbb{R}^{m}$ is continuous at $\bar{x} \in S$ if for any $\varepsilon>0$, there exists $\delta>0$ such that

$$
d(x, \bar{x})<\delta, x \in S \Rightarrow d(f(x), f(\bar{x}))<\varepsilon
$$

- $f: S \rightarrow \mathbb{R}^{m}$ is continuous on $T \subset S$ if it is continuous at every $x \in T$.
- $f: S \rightarrow \mathbb{R}^{m}$ is continuous if it is continuous on S.
- $f: S \rightarrow \mathbb{R}^{m}$ is continuous at $\bar{x} \in S$ if and only if for any sequence $\left\{x^{k}\right\}$ in S such that $x^{k} \rightarrow \bar{x}$, we have $f\left(x^{k}\right) \rightarrow f(\bar{x})$.
- Examples:
- $(x, y) \mapsto d(x, y)$ is continuous.
- For $A \in \mathbb{R}^{m \times n}, x \mapsto A x$ is continuous.

Proposition 2.1 (Weierstrass' Theorem)

Suppose that $S \subset \mathbb{R}^{n}, S \neq \emptyset$, is compact and $f: S \rightarrow \mathbb{R}$ is continuous. Then $\max _{x \in S} f(x)$ and $\min _{x \in S} f(x)$ exist, i.e., there exist $x^{*}, x^{* *} \in S$ such that $f\left(x^{* *}\right) \leq f(x) \leq f\left(x^{*}\right)$ for all $x \in S$.

Convex Sets

Definition 2.1
$C \subset \mathbb{R}^{n}$ is convex if for any $x, y \in C$ and $\lambda \in[0,1]$, we have $\lambda x+(1-\lambda) y \in C$.

Properties of Convex Sets

Proposition 2.2
Suppose that $C, D \subset \mathbb{R}^{n}$ are convex.

- $C+D=\{x+y \mid x \in C, y \in D\}$ is convex.
- For $\alpha \in \mathbb{R}, \alpha C=\{\alpha x \mid x \in C\}$ is convex.

Proposition 2.3

The intersection of any family of convex sets is convex.

Proposition 2.4
If $C \subset \mathbb{R}^{n}$ is convex, then $\mathrm{cl} C$ is also convex.
Proof

- $B_{\varepsilon}(0)=\left\{y \in \mathbb{R}^{n} \mid\|y\|<\varepsilon\right\}$ is convex.
- Then $\mathrm{cl} C=\bigcap_{\varepsilon>0}\left(C+B_{\varepsilon}(0)\right)$ is convex if C is convex.

Proposition 2.5

If $C \subset \mathbb{R}^{n}$ is convex, then $\operatorname{int} C$ is also convex.

- For $S \subset \mathbb{R}^{n}$, the set of all convex combinations of finite subsets of S is called the convex hull of S and denoted by $\operatorname{conv}(S)$.
- $\operatorname{conv}(S)$ is the smallest convex set that contains S.

Carathéodory's Theorem

Proposition 2.6 (Carathéodory's Theorem)

1. For $S \subset \mathbb{R}^{n}, S \neq\{0\}$, each $x \in \operatorname{cone}(S)$ is written as a conic combination of linear independent elements of S.
2. For $S \subset \mathbb{R}^{n}$, each $x \in \operatorname{conv}(S)$ is written as a convex combination of at most $n+1$ elements of S.

Proof of Part 1

- Immediate from Proposition 1.6 (Fundamental Theorem of Linear Inequalities).

Proof of Part 2

- Let $x \in \operatorname{conv}(S)$.

Then we have $x=\sum_{j=1}^{J} \lambda_{j} x^{j}$ for some $x^{1}, \ldots, x^{J} \in S$ and $\lambda_{1}, \ldots, \lambda_{J} \geq 0, \sum_{j=1}^{J} \lambda_{j}=1$.

- Consider $T=\left\{\left(x^{1}, 1\right), \ldots,\left(x^{J}, 1\right)\right\} \subset \mathbb{R}^{n+1}$.

Then $(x, 1) \in \operatorname{cone}(T)$.

- By part 1 , there is an LI subset $T^{\prime} \subset T$ such that $(x, 1)=\sum_{j \in T^{\prime}} \mu_{j}\left(x^{j}, 1\right)$ with $\mu_{j} \geq 0$, where $\left|T^{\prime}\right| \leq n+1$.
- From the 1st through nth coordinates we have $x=\sum_{j \in T^{\prime}} \mu_{j} x^{j}$, while from the $(n+1)$ st coordinate we have $\sum_{j \in T^{\prime}} \mu_{j}=1$.

Convex Hull of a Compact Set

Proposition 2.7
If $S \subset \mathbb{R}^{n}$ is bounded, then $\operatorname{cl}(\operatorname{conv}(S))=\operatorname{conv}(\mathrm{cl}(S))$.
In particular, if S is compact, then $\operatorname{conv}(S)$ is compact.

Proof

- Since $\operatorname{conv}(S) \supset S$, we have $\operatorname{cl}(\operatorname{conv}(S)) \supset \operatorname{cl}(S)$. Since $\operatorname{cl}(\operatorname{conv}(S))$ is convex (Proposition 2.4), we have $\operatorname{cl}(\operatorname{conv}(S)) \supset \operatorname{conv}(\operatorname{cl}(S))$.
- Since $S \subset \operatorname{cl}(S)$, we have $\operatorname{conv}(S) \subset \operatorname{conv}(\operatorname{cl}(S))$.

We want to show that $\operatorname{conv}(\operatorname{cl}(S))$ is closed if S is bounded.

- Let $\left\{x^{k}\right\} \subset \operatorname{conv}(\operatorname{cl}(S))$, and assume $x^{k} \rightarrow \bar{x}$.
- By Carathéodory's Theorem (Proposition 2.6 part 2), each x^{k} is written as

$$
x^{k}=\alpha_{1}^{k} x^{k, 1}+\cdots+\alpha_{n+1}^{k} x^{k, n+1}
$$

where

- $\left(\alpha_{1}^{k}, \ldots, \alpha_{n+1}^{k}\right) \in \Delta=\left\{\alpha \in \mathbb{R}^{n+1} \mid \alpha_{i} \geq 0, \sum_{i} \alpha_{i}=1\right\}$,
- $x^{k, 1}, \ldots, x^{k, n+1} \in \operatorname{cl}(S)$.
- Since Δ and $\operatorname{cl}(S)$ are compact, there exists a sequence $\{k(\ell)\}$ such that the limits $\bar{\alpha}_{i}=\lim _{\ell \rightarrow \infty} \alpha_{i}^{k(\ell)}$ and $\bar{x}^{i}=\lim _{\ell \rightarrow \infty} x^{k(\ell), i}$ exist where $\left(\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{n+1}\right) \in \Delta$ and $\bar{x}^{1}, \ldots, \bar{x}^{n+1} \in \operatorname{cl}(S)$.
- Hence,

$$
\bar{x}=\bar{\alpha}_{1} \bar{x}^{1}+\cdots+\bar{\alpha}_{n+1} \bar{x}^{n+1}
$$

so that $\bar{x} \in \operatorname{conv}(\operatorname{cl}(S))$.

Separating Hyperplane Theorems

- The textbook proves the strict separating hyperplane theorem from scratch.
- It then states the weak separating hyperplane theorem without proof, saying "The proof is similar to the previous one." (In fact, the proof is far from "similar".)
- Here, we prove the weak separating hyperplane theorem by Farkas' Lemma (which we proved by an algebraic argument).
- Then we prove the strict version from the weak version.

Weak Separating Hyperplane Theorem

Proposition 2.8 (Weak Separating Hyperplane Theorem)

Suppose that $C \subset \mathbb{R}^{n}$ is a convex set, and that $b \notin C$.
Then there exists $h \in \mathbb{R}^{n}, h \neq 0$ such that

$$
h x \leq h b \text { for all } x \in C
$$

- The proof below is an adoption of a proof in some lecture notes by Atsushi Kajii (which proves this theorem from the strict version).
- A similar argument (similar to Kajii's) is also found in Berkovitz, Convexity and Optimization in \mathbb{R}^{n}, Chapter II, Theorem 3.2.

Proof

- Write $P^{0}=\left\{h \in \mathbb{R}^{n} \mid\|h\|=1\right\}$, which is compact.
- Let $C \subset \mathbb{R}^{n}$ be convex and $b \notin C$.
- For each $x \in C$, let

$$
P_{x}=\left\{h \in P^{0} \mid h x \leq h b\right\},
$$

which is a closed subset of P^{0}.
We want to show that $\bigcap_{x \in C} P_{x} \neq \emptyset$.

- We show that the family $\left\{P_{x}\right\}_{x \in C}$ of closed subsets of compact set P^{0} has the finite intersection property.
Take any $x^{1}, \ldots, x^{m} \in C$.
Write $A=\left[x^{1} \cdots x^{m}\right] \in \mathbb{R}^{n \times m}$.
- Since $b \notin \operatorname{conv}(A)(\subset C)$, there exists no $\alpha \in \mathbb{R}^{m}$ such that $b=A \alpha, \mathbf{1} \alpha=1$, and $\alpha \geq 0$ (where $\mathbf{1} \in \mathbb{R}^{m}$ is the vector of ones), or such that $\left[\begin{array}{l}b \\ 1\end{array}\right]=\left[\begin{array}{c}A \\ \mathbf{1}^{\mathrm{T}}\end{array}\right] \alpha$ and $\alpha \geq 0$.
- Then by Farkas' Lemma, there exist $h \in \mathbb{R}^{n}$ and $k \in \mathbb{R}$ such that $\left[\begin{array}{ll}h & k\end{array}\right]\left[\begin{array}{c}A \\ \mathbf{1}^{\mathrm{T}}\end{array}\right] \leq 0$ and $\left[\begin{array}{ll}h & k\end{array}\right]\left[\begin{array}{l}b \\ 1\end{array}\right]>0$, or $h x^{j} \leq-k<h b$ for all $j=1, \ldots, m$, so that $h \in \bigcap_{j=1}^{m} P_{x^{j}}$.
- Thus, $\bigcap_{j=1}^{m} P_{x^{j}} \neq \emptyset$.
- Hence, by the compactness of P^{0}, we have $\bigcap_{x \in C} P_{x} \neq \emptyset$, as desired.

Proposition 2.9

Suppose $C, D \subset \mathbb{R}^{n}, C, D \neq \emptyset$, are convex, and that $C \cap D=\emptyset$.
Then there exists $h \in \mathbb{R}^{n}, h \neq 0$ such that

$$
h x \leq h y \text { for all } x \in C \text { and } y \in D .
$$

Proof

- Let $K=C-D(=\{x-y \mid x \in C, y \in D\})$. Then
- $K \neq \emptyset(\because C, D \neq \emptyset)$;
- K is convex ($\because C$ and D convex);
- $0 \notin K(\because C \cap D=\emptyset)$.
- Therefore, by the weak separating hyperplane theorem, there exists $h \in \mathbb{R}^{n}, h \neq 0$, such that

$$
h z \leq h 0 \text { for all } z \in K,
$$

or

$$
h x \leq h y \text { for all } x \in C \text { and } y \in D .
$$

Strict Separating Hyperplane Theorem

Proposition 2.10 (Strict Separating Hyperplane Theorem) Suppose that $C \subset \mathbb{R}^{n}$ is a closed convex set, and that $b \notin C$. Then there exist $h \in \mathbb{R}^{n}, h \neq 0$, and $\beta \in \mathbb{R}$ such that

$$
h x \leq \beta<h b \text { for all } x \in C .
$$

Proof

- Let $b \notin C$.
- By the closedness of C, there exists $\bar{\varepsilon}>0$ such that $C \cap B_{\bar{\varepsilon}}(b)=\emptyset$.
- By the convexity of C (and $B_{\bar{\varepsilon}}(b)$), it follows from Proposition 2.9 that there exists $h \in \mathbb{R}^{n}, h \neq 0$ such that $h x \leq h y$ for all C and all $y \in B_{\bar{\varepsilon}}(b)$.

Normalize h so that $\|h\|=1$.

- Letting $y=b-\frac{\bar{\varepsilon}}{2} h$, we have $h x \leq h b-\frac{\bar{\varepsilon}}{2}$ for all $x \in C$, where $h b-\frac{\bar{\varepsilon}}{2}<h b$.
- Finally, let $\beta=h b-\frac{\bar{\varepsilon}}{2}$.

Proposition 2.11

Suppose $C, D \subset \mathbb{R}^{n}, C, D \neq \emptyset$, are convex and closed, and that $C \cap D=\emptyset$. If C or D is bounded, then there exist $h \in \mathbb{R}^{n}, h \neq 0$, and $\beta \in \mathbb{R}$ such that
$h x<\beta<h y$ for all $x \in C$ and $y \in D$.

- The boundedness of C or D is indispensable.

Proof

- Let $K=C-D(=\{x-y \mid x \in C, y \in D\})$. Then
- $K \neq \emptyset(\because C, D \neq \emptyset)$;
- K is convex ($\because C$ and D convex);
- $0 \notin K(\because C \cap D=\emptyset)$.
- Suppose that C is bounded and hence is compact by the closedness of C.

We want to show that K is closed.

- Take any sequence $\left\{z^{k}\right\}$ in K, and assume that $z^{k} \rightarrow z^{*}$.
- For each k, let $x^{k} \in C$ and $y^{k} \in D$ be such that $z^{k}=x^{k}-y^{k}$.
- By the compactness of C, there are a subsequence of $\left\{x^{k}\right\}$ (again denoted $\left\{x^{k}\right\}$) and $x^{*} \in C$ such that $x^{k} \rightarrow x^{*}$.
- Then $y^{k}=x^{k}-z^{k}$ converges to some y^{*}, where $y^{*} \in D$ by the closedness of D.
- Then we have $z^{k}=x^{k}-y^{k} \rightarrow z^{*}=x^{*}-y^{*}$, and hence $z^{*} \in K$.
- This proves that K is closed.
- Therefore, by the strict separating hyperplane theorem, there exist $h \in \mathbb{R}^{n}, h \neq 0$, and $\beta^{\prime} \in \mathbb{R}$ such that

$$
h z<\beta^{\prime}<h 0 \text { for all } z \in K,
$$

or

$$
h x<h y+\beta^{\prime}<h y \text { for all } x \in C \text { and } y \in D .
$$

- Then let, for example, $\beta=\inf _{y \in D} h y+\frac{\beta^{\prime}}{2}$.

Extreme Points and Extreme Rays

Definition 2.2
For $S \subset \mathbb{R}^{n}, x \in S$ is an extreme point of S if

$$
x=\lambda y+(1-\lambda) z, y, z \in S, \lambda \in(0,1) \Longrightarrow y=z=x
$$

Definition 2.3
For $S \subset \mathbb{R}^{n}$,
$r \in S, r \neq 0$, is a ray of S if $x+\lambda r \in S$ for all $x \in S$ and $\lambda \geq 0$;
$r \in S$ is an extreme ray of S if

$$
\begin{aligned}
& r=\lambda u+(1-\lambda) v, u, v: \text { rays of } S, \lambda \in(0,1) \\
& \quad \Longrightarrow u=\alpha v \text { for some } \alpha>0
\end{aligned}
$$

Krein-Milman Theorem

- Denote the set of extreme points of C by $\operatorname{ext}(C)$.

Proposition 2.12 (Krein-Milman Theorem)
Let $C \subset \mathbb{R}^{n}, C \neq \emptyset$, be a compact convex set.
Then $C=\operatorname{conv}(\operatorname{ext}(C))$.

- In the proof given in the textbook, I could not prove the closedness of K from the induction hypothesis (rather than proving the Krein-Milman Theorem itself by a different proof).
- We prove the theorem in a stronger form.

Proposition 2.13 (Krein-Milman Theorem)

Let $C \subset \mathbb{R}^{n}, C \neq \emptyset$, be a compact convex set. Then each $x \in C$ is written as a convex combination of at most $n+1$ extreme points of C.

- The proof is by induction on the dimension of C.

Dimension of a set

Definition 2.4

$\left\{x^{0}, \ldots, x^{m}\right\} \subset \mathbb{R}^{n}$ is affinely independent if $\left\{x^{1}-x^{0}, \ldots, x^{m}-x^{0}\right\}$ is LI .

Definition 2.5

For $S \subset \mathbb{R}^{n}$, the dimension of S, $\operatorname{dim} S$, is the largest number m for which S contains some affinely independent vectors x^{0}, \ldots, x^{m}.

- For any $x^{0} \in S, \operatorname{dim}(S)=\operatorname{rank}\left(S-\left\{x^{0}\right\}\right)$.
- $\operatorname{dim} \mathbb{R}^{n}=n$ (take 0 and the unit vectors e^{1}, \ldots, e^{n}).
- For a hyperplane $H \subset \mathbb{R}^{n}$, i.e., $H=\left\{x \in \mathbb{R}^{n} \mid h x=\beta\right\}$ for some $h \in \mathbb{R}^{n}, h \neq 0$, and $\beta \in \mathbb{R}, \operatorname{dim} H=n-1$.
- For any $x^{0} \in H$, let $H^{0}=H-\left\{x^{0}\right\}=\left\{x \in \mathbb{R}^{n} \mid h x=0\right\}$.
- $H^{0}=\operatorname{ker}\left(h^{\mathrm{T}}\right)$ and $\operatorname{rank}(\operatorname{span}(h))=1$, and hence $\operatorname{dim}(H)=\operatorname{rank}\left(H^{0}\right)=n-1$.

Proof of Proposition 2.13

- We prove by induction on the dimension of C.
- If $\operatorname{dim}(C)=0$, where C is a singleton set, the statement is obviously true.
- Assume that the statement is true for any compact convex set C with $\operatorname{dim}(C) \leq m-1$.
- Suppose that $\operatorname{dim}(C)=m$. Denote $K=\operatorname{conv}(\operatorname{ext}(C))$.

We can embed C into \mathbb{R}^{m}, so that we can assume $C \subset \mathbb{R}^{m}$ (where the structure of convex combinations does not change).

Claim 1

Each $x \in \mathrm{bd} C$ is written as a convex combination of at most m extreme points of C.

Proof

- Take any $\bar{x} \in \operatorname{bd} C$.

By the weak separating hyperplane theorem (applied to int C which is convex), there exists a hyperplane $H=\left\{x \in \mathbb{R}^{m} \mid h x=h \bar{x}\right\}$ such that $h y \leq h \bar{x}$ for all $y \in C$.

- Since $C \cap H$ is compact and convex and $\operatorname{dim}(C \cap H) \leq m-1$, by the induction hypothesis there are m extreme points y^{1}, \ldots, y^{m} of $C \cap H$ such that $\bar{x} \in \operatorname{conv}\left(\left\{y^{1}, \ldots, y^{m}\right\}\right)$.
- We want to show that y^{1}, \ldots, y^{m} are extreme points of C.
- Let $y^{i}=\lambda z+(1-\lambda) w, z, w \in C$, and $\lambda \in(0,1)$.
- Then we have

$$
\begin{aligned}
h \bar{x}=h y^{i} & =\lambda h z+(1-\lambda) h w \\
& \leq \lambda h \bar{x}+(1-\lambda) h \bar{x}=h \bar{x} .
\end{aligned}
$$

Thus, the inequality in fact holds with equality, and hence, $h z=h w=h \bar{x}$, meaning that $z, w \in H$.

- Since y^{i} is an extreme point of $C \cap H$, it must be that $z=w=y^{i}$.

This proves that each y^{i} is an extreme point of C.
[End of the proof of Claim 1]

- Claim 1 in particular implies that $\operatorname{ext}(C) \neq \emptyset$.

Fix any $x^{0} \in \operatorname{ext}(C)$.

- Take any $x \in C$.

If $x=x^{0}$, we are done, so assume that $x \neq x^{0}$.

- Let $\alpha_{0}=\max \left\{\alpha \in \mathbb{R} \mid x^{0}+\alpha\left(x-x^{0}\right) \in C\right\} \geq 1$, which is well defined by the compactness of C.
Then $y=x^{0}+\alpha_{0}\left(x-x^{0}\right) \in \operatorname{bd} C$.
- Then by Claim 1, there exist $x^{1}, \ldots, x^{m} \in \operatorname{ext}(C)$ such that $y=\sum_{i=1}^{m} \alpha_{i} x^{i}$ for some $\alpha_{1}, \ldots, \alpha_{m} \geq 0$ with $\sum_{i=1}^{m} \alpha_{i}=1$.
- Then we have

$$
\begin{aligned}
x & =x^{0}+\frac{1}{\alpha_{0}}\left(y-x^{0}\right) \\
& =\frac{\alpha_{0}-1}{\alpha_{0}} x^{0}+\frac{1}{\alpha^{0}} y=\frac{\alpha_{0}-1}{\alpha_{0}} x^{0}+\frac{1}{\alpha^{0}} \sum_{i=1}^{m} \alpha_{i} x^{i},
\end{aligned}
$$

where $\frac{\alpha_{0}-1}{\alpha_{0}}, \frac{1}{\alpha^{0}} \alpha_{i} \geq 0$ and $\frac{\alpha_{0}-1}{\alpha_{0}}+\frac{1}{\alpha^{0}} \sum_{i=1}^{m} \alpha_{i}=1$, as desired.

Application: Walrasian Equilibrium in Exchange Economies

- Goods $1, \ldots, n$
- Agents $A=\{1, \ldots, m\}$
- For each agent $i \in A$:
- Endowment $w^{i} \in \mathbb{R}_{+}^{n}$

Assume $w^{i} \gg 0$.

- Utility function $U^{i}: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$

Assumed to be

- continuous;
- strictly quasi-concave; and
- strictly increasing: i.e., if $y \geq x$ and $y \neq x$, then $U^{i}(y)>U^{i}(x)$.
- Let $M \in \mathbb{R}_{+}^{n}$ be such that $M \geq \sum_{i \in A} w^{i}$. (In particular, $M \gg w^{i}$ for all $i \in A$.)
- $p \in \mathbb{R}_{+}^{n}$: Price vector (to be determined in equilibrium)
- Demand function of agent i :

$$
d^{i}(p)=\arg \max \left\{U^{i}(x) \mid x \in \mathbb{R}_{+}^{n}, p x \leq p w^{i}, x \leq M\right\}
$$

- " $x \leq M$ " is a non-standard constraint, which makes the domain compact even when the prices of some goods are zero.
- By the continuity of U^{i}, the right-hand side is nonempty.
- By the strict quasi-concavity of U^{i}, the right-hand side is a singleton set.
\rightarrow We regard $d^{i}(p)$ as a function (instead of correspondence).

Observation 1
For any $p \in \mathbb{R}_{+}^{n}$, if $p x<p w^{i}$ and $x \leq M$, then $U^{i}(x)<U^{i}\left(d^{i}(p)\right)$; in particular, $p d^{i}(p)=p w^{i}$.

- This holds if U^{i} satisfies local insatiability within $\left\{x \in \mathbb{R}_{+}^{n} \mid x \leq M\right\}$ (denote this set by M),
i.e., the property that for any $x \in M$ and any $\varepsilon>0$, there exists $x^{\prime} \in M$ such that $\left\|x^{\prime}-x\right\|<\varepsilon$ and $U^{i}\left(x^{\prime}\right)>U^{i}(x)$.
(Local insatiability within \mathbb{R}_{+}^{n} is not sufficient.)

Proof

- Let $p \neq 0$.
- Let $x \in \mathbb{R}_{+}^{n}$ be such that $p x<p w^{i}$ and $x \leq M$.

We want to show that such an x is not optimal.

- By $M \gg w^{i}$, there must exist j such that $p_{j}>0$ and $x_{j}<M_{j}$ (otherwise we would have $p x>p w^{i}$).
- Let $x^{\prime} \in \mathbb{R}_{+}^{n}$ be such that x_{j}^{\prime} is slightly larger than x_{j} (while $x_{k}^{\prime}=x_{k}$ for all $k \neq j$) so that we still have $p x^{\prime} \leq p w^{i}$ and $x_{j}^{\prime} \leq M_{j}$.
- By strict monotonicity of U^{i}, we have $U^{i}\left(x^{\prime}\right)>U^{i}(x)$.

This means that x is not optimal.

Observation 2
$d^{i}(t p)=d^{i}(p)$ for any $t>0$.

Observation 3
If $U^{i}(x)>U^{i}\left(d^{i}(p)\right)$ and $x \leq M$, then $p x>p w^{i}$.

- We normalize a price vector $p \geq 0, p \neq 0$, so that $\sum_{j} p_{j}=1$, or consider p as an element of $\Delta=\left\{p \in \mathbb{R}_{+}^{n} \mid \sum_{j} p_{j}=1\right\}$.

Definition 2.6

A pair of price vector $p \in \mathbb{R}_{+}^{n}$ and allocation $X=\left(x^{1}, \ldots, x^{m}\right) \in\left(\mathbb{R}_{+}^{n}\right)^{m}$ is a Walrasian equilibrium if

- [utility maximization]
$x^{i}=d^{i}(p)$ for all $i \in A$, and
- [market clearing] $\sum_{i \in A} x^{i}=\sum_{i \in A} w^{i}$.
- The market clearing condition should be imposed as an inequality (i.e., $\sum_{i \in A} x^{i} \leq \sum_{i \in A} w^{i}$) if we do not assume monotonicity of U^{i}.

Lemma 2.14
$d^{i}(p)$ is continuous on Δ.

- By the continuity of U^{i} and the "continuity" of the constraint correspondence $p \mapsto\left\{x \in \mathbb{R}_{+}^{n} \mid p x \leq p w^{i}, x \leq M\right\}$.

Proof

- Let $\left\{p^{k}\right\}$ be a sequence in Δ and assume that $p^{k} \rightarrow p^{*} \in \Delta$.
- Write $x^{k}=d^{i}\left(p^{k}\right)$.

Since it is contained in the compact set $\left\{x \in \mathbb{R}_{+}^{n} \mid x \leq M\right\}$, we assume that $\left\{x^{k}\right\}$ is convergent with limit $x^{*} \in \mathbb{R}_{+}^{n}$, $x^{*} \leq M$.
We want to show that $d^{i}\left(p^{*}\right)=x^{*}$.

- First, since $p^{k} x^{k} \leq p^{k} w^{i}$ for all k, by $k \rightarrow \infty$ we have $p^{*} x^{*} \leq p^{*} w^{i}$.
- Second take any $z \in \mathbb{R}_{+}^{n}$ such that $p^{*} z \leq p^{*} w^{i}$ and $z \leq M$. We want to show that $U^{i}(z) \leq U^{i}\left(x^{*}\right)$.
- For any $\varepsilon>0$, let $z^{\varepsilon} \in \mathbb{R}_{+}^{n}$ be such that $\left\|z^{\varepsilon}-z\right\|<\varepsilon$, $p^{*} z^{\varepsilon}<p^{*} w^{i}$, and $z^{\varepsilon} \leq M$.
(Note that $p^{*} w^{i}>0$ since $w^{i} \gg 0$ by assumption.)
- Let K be such that $p^{k} z^{\varepsilon} \leq p^{k} w^{i}$ for all $k \geq K$.
- Then by optimality we have $U^{i}\left(z^{\varepsilon}\right) \leq U^{i}\left(x^{k}\right)$.
- Letting $k \rightarrow \infty$, we have $U^{i}\left(z^{\varepsilon}\right) \leq U^{i}\left(x^{*}\right)$ by continuity of U^{i}.
- Finally, letting $\varepsilon \rightarrow 0$, we have $U^{i}(z) \leq U^{i}\left(x^{*}\right)$ again by continuity of U^{i}.
- Define the function $E(p)=\sum_{i \in A} d^{i}(p)-\sum_{i \in A} w^{i}$.
... Excess demand function
Continuous by Lemma 2.14.

Lemma 2.15 (Walras' Law)
For any $p \in \mathbb{R}_{+}^{n}, p E(p)=0$.

- By Observation 1.

Existence of Walrasian equilibrium

Proposition 2.16
There exists a Walrasian equilibrium.

- $p \in \Delta$ is a Walrasian equilibrium price vector if and only if $E(p)=0$, or it is a fixed point of the function $p+E(p)$.
- But $p+E(p) \notin \Delta$ in general.

We will modify this function so that the value is in Δ.

- Then use Brouwer's Fixed Point Theorem.

Brouwer's Fixed Point Theorem

Proposition 2.17
Suppose that $X \subset \mathbb{R}^{N}$ is a nonempty, compact, and convex set, and that $f: X \rightarrow X$ is a continuous function from X into itself. Then f has a fixed point, i.e., there exists $x \in X$ such that $x=f(x)$.

Proof of Proposition 2.16

- Write $E_{j}^{+}(p)=\max \left\{E_{j}(p), 0\right\}$, which is continuous in p.
- Define the function $f: \Delta \rightarrow \Delta$ by

$$
f_{j}(p)=\frac{p_{j}+E_{j}^{+}(p)}{1+\sum_{j=1}^{m} E_{j}^{+}(p)}
$$

which is continuous, mapping the compact set Δ to itself.

- By Brouwer's Fixed Point Theorem, f has a fixed point $p \in \Delta$:

$$
p_{j}=\frac{p_{j}+E_{j}^{+}(p)}{1+\sum_{j=1}^{m} E_{j}^{+}(p)}
$$

- Then by Walras' Law $p E(p)=0$, we have

$$
\begin{aligned}
0=\sum_{j} p_{j} E_{j}(p) & =\frac{\sum_{j} p_{j} E_{j}(p)+\sum_{j} E_{j}^{+}(p) E_{j}(p)}{1+\sum_{j} E^{+} j(p)} \\
& =\frac{\sum_{j} E_{j}^{+}(p) E_{j}(p)}{1+\sum_{j} E^{+} j(p)}
\end{aligned}
$$

and therefore $\sum_{j} E_{j}^{+}(p) E_{j}(p)=0$.

- Since

$$
E_{j}^{+}(p) E_{j}(p)= \begin{cases}E_{j}(p)^{2} & \text { if } E_{j}(p)>0 \\ 0 & \text { if } E_{j}(p) \leq 0\end{cases}
$$

it must be that $E_{j}(p) \leq 0$ for all j.

- Finally, we want to show that $E_{j}(p)=0$ for all j (by strict monotonicity of U^{i}).
- By Walras' Law, $\sum_{j} p_{j} E_{j}(p)=0$, where $p_{j} E_{j}(p) \leq 0$ as shown.
- If $E_{j}(p)<0$, then $p_{j}=0$, but by monotonicity of U^{i}, we would have $d_{j}^{i}(p)=M_{j} \geq \sum_{h \in A} w_{j}^{h}(>0)$ for all $i \in A$, which violates $E_{j}(p) \leq 0$.

Pareto Efficiency of Walrasian equilibrium

- An allocation $X=\left(x^{1}, \ldots, x^{m}\right) \in\left(\mathbb{R}_{+}^{n}\right)^{m}$ is feasible if $\sum_{i \in A} x^{i} \leq \sum_{i \in A} w^{i}$.
- An allocation Y Pareto dominates an allocation X if
- $U^{i}\left(y^{i}\right) \geq U^{i}\left(x^{i}\right)$ for all $i \in A$, and
- $U^{i}\left(y^{i}\right)>U^{i}\left(x^{i}\right)$ for some $i \in A$.
- A feasible allocation X is Pareto efficient (or Pareto optimal) if there exists no feasible allocation Y that Pareto dominates X.

First Fundamental Theorem of Welfare Economics

Proposition 2.18
If (p, X) is a Walrasian equilibrium, then X is Pareto efficient.

- Uses only Observation 1.

Proof

- Suppose that an allocation Y Pareto dominates X, i.e.,

$$
\begin{align*}
& U^{i}\left(y^{i}\right) \geq U^{i}\left(x^{i}\right) \text { for all } i \in A \tag{1}\\
& U^{i}\left(y^{i}\right)>U^{i}\left(x^{i}\right) \text { for some } i \in A . \tag{2}
\end{align*}
$$

We want to show that Y is not feasible.

- If $y^{i} \not \leq M$ for some $i \in A$, then clearly Y is not feasible.

Suppose that $y^{i} \leq M$ for all $i \in A$.

- By (1) and Observation 1, we have

$$
p y^{i} \geq p w^{i} \text { for all } i \in A
$$

- By (2), we have

$$
p y^{i}>p w^{i} \text { for some } i \in A \text {. }
$$

- Therefore, we have

$$
p\left(\sum_{i \in A} y^{i}-\sum_{i \in A} w^{i}\right)=\sum_{i \in A}\left(p y^{i}-p w^{i}\right)>0 .
$$

- This implies that $\sum_{i \in A} y^{i} \leq \sum_{i \in A} w^{i}$ does not hold, i.e., Y is not feasible,
for, we would have $p\left(\sum_{i \in A} y^{i}-\sum_{i \in A} w^{i}\right) \leq 0$ otherwise.

Second Fundamental Theorem of Welfare Economics

Proposition 2.19

Suppose that $X=\left(w^{1}, \ldots, w^{m}\right)$ is Pareto efficient. Then there exists $p \in \mathbb{R}_{+}^{n}$ such that (p, X) is a Walrasian equilibrium.

- Uses
- quasi-concavity,
- local insatiability, and
- continuity of U^{i}; and
- $w^{i} \gg 0$.

Proof

- Define

$$
\hat{S}^{i}=\left\{y^{i} \in \mathbb{R}_{+}^{n} \mid U^{i}\left(y^{i}\right)>U^{i}\left(w^{i}\right)\right\},
$$

and define $\hat{S}=\sum_{i \in A} \hat{S}^{i}$, which is a convex set by the quasi-concavity of U^{i} 's.

- By the Pareto efficiency of $X=\left(w^{1}, \ldots, w^{m}\right)$, $\hat{S} \cap\left(\left\{\sum_{i \in A} w^{i}\right\}-\mathbb{R}_{+}^{n}\right)=\emptyset$.
- By the weak separating hyperplane theorem, there exists $p \in \mathbb{R}^{n}, p \neq 0$, such that

$$
p y \geq p\left(\sum_{i \in A} w^{i}-z\right) \text { for all } y \in \hat{S} \text { and } z \geq 0
$$

- Since this holds for all $z \geq 0$, it must be that $p \geq 0$.
- We want to show that (p, X) is a Walrasian equilibrium.
- Fix any $i \in A$.

Suppose that $y^{i} \in \mathbb{R}_{+}^{n}, U^{i}\left(y^{i}\right)>U^{i}\left(w^{i}\right)$, and $y^{i} \leq M$.

- For each $j \neq i$, by strict monotonicity of U^{j} (local insatiability is sufficient) we have y^{j} arbitrarily close to w^{j} such that $U^{j}\left(y^{j}\right)>U^{i}\left(w^{i}\right)$.
- Then $\sum_{j} y^{j} \in \hat{S}$, and therefore, $p\left(y^{i}+\sum_{j \neq i} y^{j}\right) \geq p\left(w^{i}+\sum_{j \neq i} w^{j}\right)$.
- Letting $y^{j} \rightarrow w^{j}$ for all $j \neq i$, we have $p y^{i} \geq p w^{i}$.
(We have shown that (p, X) is a "quasi-equilibrium".)
- We want to show that if $y^{i} \in \mathbb{R}_{+}^{n}, U^{i}\left(y^{i}\right)>U^{i}\left(w^{i}\right)$, and $y^{i} \leq M$, then $p y^{i}>p w^{i}$.
- Suppose that $y^{i} \in \mathbb{R}_{+}^{n}, U^{i}\left(y^{i}\right)>U^{i}\left(w^{i}\right)$, and $y^{i} \leq M$.
- By the continuity of $U^{i}, U^{i}\left(\alpha y^{i}\right)>U^{i}\left(w^{i}\right)$ for some $\alpha<1$. Then, as we have shown, we must have $p\left(\alpha y^{i}\right) \geq p w^{i}$.
- Since $w^{i} \gg 0$ and $p \geq 0, p \neq 0$, we have $0<p w^{i} \leq \alpha\left(p y^{i}\right)<p y^{i}$.

