2. Separating Hyperplane Theorems

Daisuke Oyama

Mathematical Economics

This version: June 19, 2023

Things to know from real analysis

For $S \subset \mathbb{R}$. $\triangleright \alpha = \max S$ if $\triangleright \alpha > x$ for all S and $\triangleright \alpha \in S.$ $\triangleright \alpha = \min S$ if $\triangleright \alpha < x$ for all S and $\land \alpha \in S$ $\triangleright \alpha = \sup S$ if $\triangleright \ \alpha \geq x$ for all S and • if $\beta \ge x$ for all S, then $\beta \ge \alpha$. $\triangleright \alpha = \inf S$ if $\blacktriangleright \alpha < x$ for all S and • if $\beta \leq x$ for all S, then $\beta \leq \alpha$. \triangleright sup S exists if S is bounded above;

 $\inf S$ exists if S is bounded below.

• Euclidean norm: for
$$x = (x_1, \dots, x_n) \in \mathbb{R}^n$$
,
 $||x|| = \sqrt{\sum_{i=1}^n (x_i)^2}$.

- Euclidean distance: for $x, y \in \mathbb{R}^n$, d(x, y) = ||x y||.
- ► A sequence $\{x^k\}$ in \mathbb{R}^n converges to $x^0 \in \mathbb{R}^n$ if for any $\varepsilon > 0$, there exists a natural number K such that $d(x^k, x^0) < \varepsilon$ for all $k \ge K$.

In this case,

- $\{x^k\}$ is said to be *convergent*,
- x^0 is called the *limit* of $\{x^k\}$, and

• we write $\lim_{k\to\infty} x^k = x^0$ or $x^k \to x^0$ as $k \to \infty$.

- A sequence {x^k} in ℝⁿ is called a Cauchy sequence if for any ε > 0, there exists a natural number K such that d(x^k, x^ℓ) < ε for all k, ℓ ≥ K.</p>
- A sequence {x^k} in ℝⁿ is convergent if and only if it is a Cauchy sequence.

- $S \subset \mathbb{R}^n$ is *closed* if for any convergent sequence in $\{x^k\}$ in S with $x^k \to x^*$, we have $x^* \in S$.
- ▶ $S \subset \mathbb{R}^n$ is *open* if for every $x \in S$, there exists $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subset S$,

where $B_{\varepsilon}(x) = \{y \in \mathbb{R}^n \mid d(y, x) < \varepsilon\}.$

- $S \subset \mathbb{R}^n$ is closed if and only if $\mathbb{R}^n \setminus S$ is open.
- Basic properties:
 - \emptyset and \mathbb{R}^n are both closed and open.
 - The union of any family of open sets is open.
 - The intersection of a finite number of open sets is open.
 - ▶ The intersection of any family of closed sets is closed.
 - The union of a finite number of closed sets is closed.

• $x \in S$ is an *interior point* of S if there exists $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subset S$.

The set of all interior points of S is called the *interior* of S and denoted $\operatorname{int} S.$

• $\operatorname{int} S$ is the largest open set that is contained in S.

► $x \in \mathbb{R}^n$ is a *boundary point* of *S* if for any $\varepsilon > 0$, $B_{\varepsilon}(x) \cap S \neq \emptyset$ and $B_{\varepsilon}(x) \cap (\mathbb{R}^n \setminus S) \neq \emptyset$.

The set of all boundary points of S is called the *boundary* of S and denoted $\operatorname{bd} S.$

- The closure of S ⊂ ℝⁿ is the set of all points that are the limits of convergent sequences of points in S and denoted cl S.
- $\operatorname{cl} S$ is the smallest closed set that contains S.

Relationships:

$$\blacktriangleright \ \mathrm{cl}\, S = \mathbb{R}^n \setminus \mathrm{int}(\mathbb{R}^n \setminus S)$$

• int
$$S = \mathbb{R}^n \setminus \operatorname{cl}(\mathbb{R}^n \setminus S)$$

$$\blacktriangleright \operatorname{bd} S = \operatorname{cl} S \setminus \operatorname{int} S$$

- $S \subset \mathbb{R}^n$ is bounded if there exists r > 0 such that $S \subset B_r(0)$.
- $S \subset \mathbb{R}^n$ is *compact* if it is closed and bounded.
- ▶ If $S \subset \mathbb{R}$ is compact, then $\sup S \in S$ and $\inf S \in S$ (and hence $\sup S = \max S$ and $\inf S = \min S$).
- If S ⊂ ℝⁿ is bounded, then any sequence in S has a convergent subsequence.

If in addition S is closed (i.e., S is compact), then any sequence in S has a convergent subsequence and its limit is in S.

Conversely, if every sequence in S has a convergent subsequence whose limit is in S, then S is compact.

- ► A family of subsets of ℝⁿ is said to have the *finite intersection* property if the intersection of any finite subfamily of it is nonempty.
- For $S \subset \mathbb{R}^n$, the following conditions are equivalent:
 - S is compact.
 - For any family (F_λ)_{λ∈Λ} of closed subsets of S that has the finite intersection property, we have ∩_{λ∈Λ} F_λ ≠ Ø.

• Let $S \subset \mathbb{R}^n$, $S \neq \emptyset$.

A function $f: S \to \mathbb{R}^m$ is *continuous* at $\bar{x} \in S$ if for any $\varepsilon > 0$, there exists $\delta > 0$ such that

 $d(x,\bar{x}) < \delta, \ x \in S \Rightarrow d(f(x),f(\bar{x})) < \varepsilon.$

- $f: S \to \mathbb{R}^m$ is continuous on $T \subset S$ if it is continuous at every $x \in T$.
- $f: S \to \mathbb{R}^m$ is continuous if it is continuous on S.
- $f: S \to \mathbb{R}^m$ is continuous at $\bar{x} \in S$ if and only if for any sequence $\{x^k\}$ in S such that $x^k \to \bar{x}$, we have $f(x^k) \to f(\bar{x})$.

Examples:

- ▶ $(x,y) \mapsto d(x,y)$ is continuous.
- For $A \in \mathbb{R}^{m \times n}$, $x \mapsto Ax$ is continuous.

Proposition 2.1 (Weierstrass' Theorem) Suppose that $S \subset \mathbb{R}^n$, $S \neq \emptyset$, is compact and $f: S \to \mathbb{R}$ is continuous. Then $\max_{x \in S} f(x)$ and $\min_{x \in S} f(x)$ exist, i.e., there exist $x^*, x^{**} \in S$ such that $f(x^{**}) \leq f(x) \leq f(x^*)$ for all $x \in S$.

Convex Sets

Definition 2.1 $C \subset \mathbb{R}^n$ is *convex* if for any $x, y \in C$ and $\lambda \in [0, 1]$, we have $\lambda x + (1 - \lambda)y \in C$.

Properties of Convex Sets

Proposition 2.2

Suppose that $C, D \subset \mathbb{R}^n$ are convex.

• $C + D = \{x + y \mid x \in C, y \in D\}$ is convex.

For
$$\alpha \in \mathbb{R}$$
, $\alpha C = \{\alpha x \mid x \in C\}$ is convex.

Proposition 2.3

The intersection of any family of convex sets is convex.

Proposition 2.4 If $C \subset \mathbb{R}^n$ is convex, then cl C is also convex.

Proof

►
$$B_{\varepsilon}(0) = \{y \in \mathbb{R}^n \mid ||y|| < \varepsilon\}$$
 is convex.

▶ Then
$$cl C = \bigcap_{\varepsilon > 0} (C + B_{\varepsilon}(0))$$
 is convex if C is convex.

Proposition 2.5

If $C \subset \mathbb{R}^n$ is convex, then $\operatorname{int} C$ is also convex.

- For S ⊂ ℝⁿ, the set of all convex combinations of finite subsets of S is called the *convex hull* of S and denoted by conv(S).
- $\operatorname{conv}(S)$ is the smallest convex set that contains S.

Carathéodory's Theorem

Proposition 2.6 (Carathéodory's Theorem)

- 1. For $S \subset \mathbb{R}^n$, $S \neq \{0\}$, each $x \in \text{cone}(S)$ is written as a conic combination of linear independent elements of S.
- 2. For $S \subset \mathbb{R}^n$, each $x \in \text{conv}(S)$ is written as a convex combination of at most n + 1 elements of S.

Proof of Part 1

 Immediate from Proposition 1.6 (Fundamental Theorem of Linear Inequalities).

Proof of Part 2

Let x ∈ conv(S). Then we have x = ∑_{j=1}^J λ_j x^j for some x¹,..., x^J ∈ S and λ₁,..., λ_J ≥ 0, ∑_{j=1}^J λ_j = 1.
Consider T = {(x¹, 1), ..., (x^J, 1)} ⊂ ℝⁿ⁺¹.

Then $(x, 1) \in \operatorname{cone}(T)$.

- ▶ By part 1, there is an LI subset $T' \subset T$ such that $(x, 1) = \sum_{j \in T'} \mu_j(x^j, 1)$ with $\mu_j \ge 0$, where $|T'| \le n + 1$.
- From the 1st through *n*th coordinates we have $x = \sum_{j \in T'} \mu_j x^j$, while from the (n + 1)st coordinate we have $\sum_{j \in T'} \mu_j = 1$.

Convex Hull of a Compact Set

Proposition 2.7

If $S \subset \mathbb{R}^n$ is bounded, then cl(conv(S)) = conv(cl(S)). In particular, if S is compact, then conv(S) is compact.

Proof

- Since conv(S) ⊃ S, we have cl(conv(S)) ⊃ cl(S).
 Since cl(conv(S)) is convex (Proposition 2.4), we have cl(conv(S)) ⊃ conv(cl(S)).
- Since $S \subset cl(S)$, we have $conv(S) \subset conv(cl(S))$.

We want to show that $\operatorname{conv}(\operatorname{cl}(S))$ is closed if S is bounded.

• Let
$$\{x^k\} \subset \operatorname{conv}(\operatorname{cl}(S))$$
, and assume $x^k \to \bar{x}$.

 By Carathéodory's Theorem (Proposition 2.6 part 2), each x^k is written as

$$x^{k} = \alpha_{1}^{k} x^{k,1} + \dots + \alpha_{n+1}^{k} x^{k,n+1},$$

where

$$\begin{aligned} & \bullet \quad (\alpha_1^k, \dots, \alpha_{n+1}^k) \in \Delta = \{ \alpha \in \mathbb{R}^{n+1} \mid \alpha_i \ge 0, \ \sum_i \alpha_i = 1 \}, \\ & \bullet \quad x^{k,1}, \dots, x^{k,n+1} \in \mathrm{cl}(S). \end{aligned}$$

• Since Δ and $\operatorname{cl}(S)$ are compact, there exists a sequence $\{k(\ell)\}$ such that the limits $\bar{\alpha}_i = \lim_{\ell \to \infty} \alpha_i^{k(\ell)}$ and $\bar{x}^i = \lim_{\ell \to \infty} x^{k(\ell),i}$ exist where $(\bar{\alpha}_1, \ldots, \bar{\alpha}_{n+1}) \in \Delta$ and $\bar{x}^1, \ldots, \bar{x}^{n+1} \in \operatorname{cl}(S)$.

► Hence,

$$\bar{x} = \bar{\alpha}_1 \bar{x}^1 + \dots + \bar{\alpha}_{n+1} \bar{x}^{n+1},$$

so that $\bar{x} \in \operatorname{conv}(\operatorname{cl}(S))$.

Separating Hyperplane Theorems

- The textbook proves the strict separating hyperplane theorem from scratch.
- It then states the weak separating hyperplane theorem without proof, saying "The proof is similar to the previous one."

(In fact, the proof is far from "similar".)

- Here, we prove the weak separating hyperplane theorem by Farkas' Lemma (which we proved by an algebraic argument).
- Then we prove the strict version from the weak version.

Weak Separating Hyperplane Theorem

Proposition 2.8 (Weak Separating Hyperplane Theorem) Suppose that $C \subset \mathbb{R}^n$ is a convex set, and that $b \notin C$. Then there exists $h \in \mathbb{R}^n$, $h \neq 0$ such that

 $hx \leq hb$ for all $x \in C$.

- The proof below is an adoption of a proof in some lecture notes by Atsushi Kajii (which proves this theorem from the strict version).
- A similar argument (similar to Kajii's) is also found in Berkovitz, Convexity and Optimization in ℝⁿ, Chapter II, Theorem 3.2.

Proof

• Write $P^0 = \{h \in \mathbb{R}^n \mid ||h|| = 1\}$, which is compact.

• Let
$$C \subset \mathbb{R}^n$$
 be convex and $b \notin C$.

For each $x \in C$, let

$$P_x = \{h \in P^0 \mid hx \le hb\},\$$

which is a closed subset of P^0 .

We want to show that $\bigcap_{x \in C} P_x \neq \emptyset$.

► We show that the family {P_x}_{x∈C} of closed subsets of compact set P⁰ has the finite intersection property.

Take any
$$x^1, \ldots, x^m \in C$$
.

Write
$$A = \begin{bmatrix} x^1 \cdots x^m \end{bmatrix} \in \mathbb{R}^{n \times m}$$

- ▶ Since $b \notin \operatorname{conv}(A)$ (⊂ C), there exists no $\alpha \in \mathbb{R}^m$ such that $b = A\alpha$, $\mathbf{1}\alpha = 1$, and $\alpha \ge 0$ (where $\mathbf{1} \in \mathbb{R}^m$ is the vector of ones), or such that $\begin{bmatrix} b \\ 1 \end{bmatrix} = \begin{bmatrix} A \\ \mathbf{1}^T \end{bmatrix} \alpha$ and $\alpha \ge 0$.
- ▶ Then by Farkas' Lemma, there exist $h \in \mathbb{R}^n$ and $k \in \mathbb{R}$ such that $\begin{bmatrix} h & k \end{bmatrix} \begin{bmatrix} A \\ \mathbf{1}^T \end{bmatrix} \leq 0$ and $\begin{bmatrix} h & k \end{bmatrix} \begin{bmatrix} b \\ 1 \end{bmatrix} > 0$, or $hx^j \leq -k < hb$ for all $j = 1, \dots, m$, so that $h \in \bigcap_{j=1}^m P_{x^j}$.
- Thus, $\bigcap_{j=1}^m P_{x^j} \neq \emptyset$.
- ▶ Hence, by the compactness of P^0 , we have $\bigcap_{x \in C} P_x \neq \emptyset$, as desired.

Proposition 2.9

Suppose $C, D \subset \mathbb{R}^n$, $C, D \neq \emptyset$, are convex, and that $C \cap D = \emptyset$. Then there exists $h \in \mathbb{R}^n$, $h \neq 0$ such that

 $hx \leq hy$ for all $x \in C$ and $y \in D$.

Proof

• Let
$$K = C - D$$
 (= { $x - y \mid x \in C, y \in D$ }). Then

 $\blacktriangleright K \neq \emptyset (:: C, D \neq \emptyset);$

• K is convex (:: C and D convex);

$$\blacktriangleright 0 \notin K \ (:: C \cap D = \emptyset).$$

Therefore, by the weak separating hyperplane theorem, there exists h ∈ ℝⁿ, h ≠ 0, such that

 $hz \leq h0$ for all $z \in K$,

or

 $hx \leq hy$ for all $x \in C$ and $y \in D$.

Strict Separating Hyperplane Theorem

Proposition 2.10 (Strict Separating Hyperplane Theorem) Suppose that $C \subset \mathbb{R}^n$ is a closed convex set, and that $b \notin C$. Then there exist $h \in \mathbb{R}^n$, $h \neq 0$, and $\beta \in \mathbb{R}$ such that

 $hx \leq \beta < hb$ for all $x \in C$.

Proof

• Let $b \notin C$.

- ▶ By the closedness of *C*, there exists $\bar{\varepsilon} > 0$ such that $C \cap B_{\bar{\varepsilon}}(b) = \emptyset$.
- By the convexity of C (and B_ē(b)), it follows from Proposition 2.9 that there exists h ∈ ℝⁿ, h ≠ 0 such that hx ≤ hy for all C and all y ∈ B_ē(b).

Normalize h so that ||h|| = 1.

• Letting $y = b - \frac{\overline{\varepsilon}}{2}h$, we have $hx \le hb - \frac{\overline{\varepsilon}}{2}$ for all $x \in C$, where $hb - \frac{\overline{\varepsilon}}{2} < hb$.

Finally, let
$$\beta = hb - \frac{\overline{\varepsilon}}{2}$$
.

Proposition 2.11

Suppose $C, D \subset \mathbb{R}^n$, $C, D \neq \emptyset$, are convex and closed, and that $C \cap D = \emptyset$. If C or D is bounded, then there exist $h \in \mathbb{R}^n$, $h \neq 0$, and $\beta \in \mathbb{R}$ such that

 $hx < \beta < hy$ for all $x \in C$ and $y \in D$.

▶ The boundedness of *C* or *D* is indispensable.

Proof

▶ Let K = C - D (= { $x - y | x \in C, y \in D$ }). Then

•
$$K \neq \emptyset$$
 (:: $C, D \neq \emptyset$);

• K is convex (:: C and D convex);

$$\bullet \ 0 \notin K \ (:: C \cap D = \emptyset).$$

Suppose that C is bounded and hence is compact by the closedness of C.

We want to show that K is closed.

- Take any sequence $\{z^k\}$ in K, and assume that $z^k \to z^*$.
 - For each k, let $x^k \in C$ and $y^k \in D$ be such that $z^k = x^k y^k$.
 - By the compactness of C, there are a subsequence of {x^k} (again denoted {x^k}) and x^{*} ∈ C such that x^k → x^{*}.
 - ▶ Then $y^k = x^k z^k$ converges to some y^* , where $y^* \in D$ by the closedness of D.
 - Then we have $z^k = x^k y^k \rightarrow z^* = x^* y^*$, and hence $z^* \in K$.
 - This proves that K is closed.

Therefore, by the strict separating hyperplane theorem, there exist h ∈ ℝⁿ, h ≠ 0, and β' ∈ ℝ such that

 $hz < \beta' < h0$ for all $z \in K$,

or

$$hx < hy + \beta' < hy$$
 for all $x \in C$ and $y \in D$.

• Then let, for example, $\beta = \inf_{y \in D} hy + \frac{\beta'}{2}$.

Extreme Points and Extreme Rays

Definition 2.2 For $S \subset \mathbb{R}^n$, $x \in S$ is an *extreme point* of S if

 $x = \lambda y + (1 - \lambda)z, \ y, z \in S, \ \lambda \in (0, 1) \implies y = z = x.$

Definition 2.3 For $S \subset \mathbb{R}^n$, $r \in S, r \neq 0$, is a ray of S if $x + \lambda r \in S$ for all $x \in S$ and $\lambda \ge 0$; $r \in S$ is an extreme ray of S if

$$\begin{aligned} r &= \lambda u + (1 - \lambda)v, \ u, v: \text{ rays of } S, \ \lambda \in (0, 1) \\ \implies u &= \alpha v \text{ for some } \alpha > 0. \end{aligned}$$

Krein-Milman Theorem

• Denote the set of extreme points of C by ext(C).

Proposition 2.12 (Krein-Milman Theorem) Let $C \subset \mathbb{R}^n$, $C \neq \emptyset$, be a compact convex set. Then C = conv(ext(C)).

In the proof given in the textbook, I could not prove the closedness of K from the induction hypothesis (rather than proving the Krein-Milman Theorem itself by a different proof). • We prove the theorem in a stronger form.

Proposition 2.13 (Krein-Milman Theorem) Let $C \subset \mathbb{R}^n$, $C \neq \emptyset$, be a compact convex set. Then each $x \in C$ is written as a convex combination of at most n+1 extreme points of C.

▶ The proof is by induction on the dimension of C.

Dimension of a set

Definition 2.4 $\{x^0, \ldots, x^m\} \subset \mathbb{R}^n$ is affinely independent if $\{x^1 - x^0, \ldots, x^m - x^0\}$ is LI.

Definition 2.5

For $S \subset \mathbb{R}^n$, the dimension of S, dim S, is the largest number m for which S contains some affinely independent vectors x^0, \ldots, x^m .

For any
$$x^0 \in S$$
, $\dim(S) = \operatorname{rank}(S - \{x^0\})$.

• dim $\mathbb{R}^n = n$ (take 0 and the unit vectors e^1, \ldots, e^n).

For a hyperplane $H \subset \mathbb{R}^n$, i.e., $H = \{x \in \mathbb{R}^n \mid hx = \beta\}$ for some $h \in \mathbb{R}^n$, $h \neq 0$, and $\beta \in \mathbb{R}$, dim H = n - 1.

For any
$$x^0 \in H$$
, let $H^0 = H - \{x^0\} = \{x \in \mathbb{R}^n \mid hx = 0\}$.

▶ $H^0 = \ker(h^T)$ and $\operatorname{rank}(\operatorname{span}(h)) = 1$, and hence $\dim(H) = \operatorname{rank}(H^0) = n - 1$.

Proof of Proposition 2.13

▶ We prove by induction on the dimension of C.

- ▶ If dim(C) = 0, where C is a singleton set, the statement is obviously true.
- Assume that the statement is true for any compact convex set C with $\dim(C) \leq m 1$.
- Suppose that $\dim(C) = m$. Denote $K = \operatorname{conv}(\operatorname{ext}(C))$.

We can embed C into \mathbb{R}^m , so that we can assume $C \subset \mathbb{R}^m$ (where the structure of convex combinations does not change).

Claim 1

Each $x \in \operatorname{bd} C$ is written as a convex combination of at most m extreme points of C.

Proof

• Take any $\bar{x} \in \operatorname{bd} C$.

By the weak separating hyperplane theorem (applied to int C which is convex), there exists a hyperplane $H = \{x \in \mathbb{R}^m \mid hx = h\bar{x}\}$ such that $hy \leq h\bar{x}$ for all $y \in C$.

- Since $C \cap H$ is compact and convex and $\dim(C \cap H) \leq m - 1$, by the induction hypothesis there are m extreme points y^1, \ldots, y^m of $C \cap H$ such that $\bar{x} \in \operatorname{conv}(\{y^1, \ldots, y^m\}).$
- We want to show that y^1, \ldots, y^m are extreme points of C.

• Let
$$y^i = \lambda z + (1 - \lambda)w$$
, $z, w \in C$, and $\lambda \in (0, 1)$.

Then we have

$$\begin{aligned} h\bar{x} &= hy^i = \lambda hz + (1-\lambda)hw\\ &\leq \lambda h\bar{x} + (1-\lambda)h\bar{x} = h\bar{x}. \end{aligned}$$

Thus, the inequality in fact holds with equality, and hence, $hz = hw = h\bar{x}$, meaning that $z, w \in H$.

Since y^i is an extreme point of $C \cap H$, it must be that $z = w = y^i$.

This proves that each y^i is an extreme point of C.

[End of the proof of Claim 1]

- Claim 1 in particular implies that ext(C) ≠ Ø.
 Fix any x⁰ ∈ ext(C).
- ▶ Take any $x \in C$.

If $x = x^0$, we are done, so assume that $x \neq x^0$.

• Let $\alpha_0 = \max\{\alpha \in \mathbb{R} \mid x^0 + \alpha(x - x^0) \in C\} \ge 1$, which is well defined by the compactness of C.

Then $y = x^0 + \alpha_0 (x - x^0) \in \text{bd} C$.

- ► Then by Claim 1, there exist $x^1, \ldots, x^m \in \text{ext}(C)$ such that $y = \sum_{i=1}^m \alpha_i x^i$ for some $\alpha_1, \ldots, \alpha_m \ge 0$ with $\sum_{i=1}^m \alpha_i = 1$.
- Then we have

$$\begin{split} x &= x^0 + \frac{1}{\alpha_0}(y - x^0) \\ &= \frac{\alpha_0 - 1}{\alpha_0} x^0 + \frac{1}{\alpha^0} y = \frac{\alpha_0 - 1}{\alpha_0} x^0 + \frac{1}{\alpha^0} \sum_{i=1}^m \alpha_i x^i, \\ \text{where } \frac{\alpha_0 - 1}{\alpha_0}, \frac{1}{\alpha^0} \alpha_i \ge 0 \text{ and } \frac{\alpha_0 - 1}{\alpha_0} + \frac{1}{\alpha^0} \sum_{i=1}^m \alpha_i = 1, \text{ as desired} \end{split}$$

Application: Walrasian Equilibrium in Exchange Economies

- Goods $1, \ldots, n$
- Agents $A = \{1, \ldots, m\}$
- For each agent $i \in A$:
 - Endowment $w^i \in \mathbb{R}^n_+$ Assume $w^i \gg 0$.
 - Utility function $U^i \colon \mathbb{R}^n_+ \to \mathbb{R}$ Assumed to be
 - continuous;
 - strictly quasi-concave; and
 - strictly increasing: i.e., if $y \ge x$ and $y \ne x$, then $U^i(y) > U^i(x)$.
- ▶ Let $M \in \mathbb{R}^n_+$ be such that $M \ge \sum_{i \in A} w^i$. (In particular, $M \gg w^i$ for all $i \in A$.)

▶ $p \in \mathbb{R}^n_+$: Price vector (to be determined in equilibrium)

Demand function of agent i:

$$d^{i}(p) = \arg \max\{U^{i}(x) \mid x \in \mathbb{R}^{n}_{+}, \ px \leq pw^{i}, \ x \leq M\}$$

- ► "x ≤ M" is a non-standard constraint, which makes the domain compact even when the prices of some goods are zero.
- By the continuity of Uⁱ, the right-hand side is nonempty.
- By the strict quasi-concavity of Uⁱ, the right-hand side is a singleton set.

 \rightarrow We regard $d^i(p)$ as a function (instead of correspondence).

Observation 1

For any $p \in \mathbb{R}^n_+$, if $px < pw^i$ and $x \le M$, then $U^i(x) < U^i(d^i(p))$; in particular, $pd^i(p) = pw^i$.

▶ This holds if U^i satisfies local insatiability within $\{x \in \mathbb{R}^n_+ \mid x \leq M\}$ (denote this set by M),

i.e., the property that for any $x \in M$ and any $\varepsilon > 0$, there exists $x' \in M$ such that $||x' - x|| < \varepsilon$ and $U^i(x') > U^i(x)$.

(Local insatiability within \mathbb{R}^n_+ is not sufficient.)

Proof

• Let $p \neq 0$.

- Let x ∈ ℝⁿ₊ be such that px < pwⁱ and x ≤ M.
 We want to show that such an x is not optimal.
- ▶ By $M \gg w^i$, there must exist j such that $p_j > 0$ and $x_j < M_j$ (otherwise we would have $px > pw^i$).
- Let $x' \in \mathbb{R}^n_+$ be such that x'_j is slightly larger than x_j (while $x'_k = x_k$ for all $k \neq j$) so that we still have $px' \leq pw^i$ and $x'_j \leq M_j$.
- ▶ By strict monotonicity of Uⁱ, we have Uⁱ(x') > Uⁱ(x). This means that x is not optimal.

Observation 2 $d^{i}(tp) = d^{i}(p)$ for any t > 0.

Observation 3 If $U^{i}(x) > U^{i}(d^{i}(p))$ and $x \leq M$, then $px > pw^{i}$.

We normalize a price vector p ≥ 0, p ≠ 0, so that ∑_j p_j = 1, or consider p as an element of Δ = {p ∈ ℝⁿ₊ | ∑_j p_j = 1}.

Definition 2.6

A pair of price vector $p \in \mathbb{R}^n_+$ and allocation

 $X = (x^1, \dots, x^m) \in (\mathbb{R}^n_+)^m$ is a Walrasian equilibrium if

• [utility maximization] $x^i = d^i(p)$ for all $i \in A$, and

• [market clearing]

$$\sum_{i \in A} x^i = \sum_{i \in A} w^i.$$

► The market clearing condition should be imposed as an inequality (i.e., ∑_{i∈A} xⁱ ≤ ∑_{i∈A} wⁱ) if we do not assume monotonicity of Uⁱ. Lemma 2.14 $d^i(p)$ is continuous on Δ .

By the continuity of Uⁱ and the "continuity" of the constraint correspondence p → {x ∈ ℝⁿ₊ | px ≤ pwⁱ, x ≤ M}.

Proof

• Let $\{p^k\}$ be a sequence in Δ and assume that $p^k \to p^* \in \Delta$.

• Write
$$x^k = d^i(p^k)$$
.

Since it is contained in the compact set $\{x \in \mathbb{R}^n_+ \mid x \leq M\}$, we assume that $\{x^k\}$ is convergent with limit $x^* \in \mathbb{R}^n_+$, $x^* \leq M$.

We want to show that $d^i(p^*) = x^*$.

First, since $p^k x^k \leq p^k w^i$ for all k, by $k \to \infty$ we have $p^* x^* \leq p^* w^i$.

- Second take any $z \in \mathbb{R}^n_+$ such that $p^*z \le p^*w^i$ and $z \le M$. We want to show that $U^i(z) \le U^i(x^*)$.
- For any $\varepsilon > 0$, let $z^{\varepsilon} \in \mathbb{R}^{n}_{+}$ be such that $||z^{\varepsilon} z|| < \varepsilon$, $p^{*}z^{\varepsilon} < p^{*}w^{i}$, and $z^{\varepsilon} \leq M$.

(Note that $p^*w^i > 0$ since $w^i \gg 0$ by assumption.)

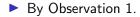
- Let K be such that $p^k z^{\varepsilon} \leq p^k w^i$ for all $k \geq K$.
- ▶ Then by optimality we have $U^i(z^{\varepsilon}) \leq U^i(x^k)$.
- Letting $k \to \infty$, we have $U^i(z^{\varepsilon}) \leq U^i(x^*)$ by continuity of U^i .
- ▶ Finally, letting $\varepsilon \to 0$, we have $U^i(z) \le U^i(x^*)$ again by continuity of U^i .

• Define the function $E(p) = \sum_{i \in A} d^i(p) - \sum_{i \in A} w^i$.

 \cdots Excess demand function

Continuous by Lemma 2.14.

Lemma 2.15 (Walras' Law) For any $p \in \mathbb{R}^n_+$, pE(p) = 0.



Existence of Walrasian equilibrium

Proposition 2.16

There exists a Walrasian equilibrium.

▶ $p \in \Delta$ is a Walrasian equilibrium price vector if and only if E(p) = 0, or it is a fixed point of the function p + E(p).

• But
$$p + E(p) \notin \Delta$$
 in general.

We will modify this function so that the value is in Δ .

▶ Then use Brouwer's Fixed Point Theorem.

Proposition 2.17

Suppose that $X \subset \mathbb{R}^N$ is a nonempty, compact, and convex set, and that $f: X \to X$ is a continuous function from X into itself. Then f has a fixed point, i.e., there exists $x \in X$ such that x = f(x).

Proof of Proposition 2.16

- Write $E_j^+(p) = \max\{E_j(p), 0\}$, which is continuous in p.
- \blacktriangleright Define the function $f\colon \Delta\to \Delta$ by

$$f_j(p) = \frac{p_j + E_j^+(p)}{1 + \sum_{j=1}^m E_j^+(p)},$$

which is continuous, mapping the compact set Δ to itself.

▶ By Brouwer's Fixed Point Theorem, f has a fixed point $p \in \Delta$:

$$p_j = \frac{p_j + E_j^+(p)}{1 + \sum_{j=1}^m E_j^+(p)}.$$

▶ Then by Walras' Law pE(p) = 0, we have

$$0 = \sum_{j} p_{j} E_{j}(p) = \frac{\sum_{j} p_{j} E_{j}(p) + \sum_{j} E_{j}^{+}(p) E_{j}(p)}{1 + \sum_{j} E^{+}j(p)}$$
$$= \frac{\sum_{j} E_{j}^{+}(p) E_{j}(p)}{1 + \sum_{j} E^{+}j(p)},$$

and therefore $\sum_{j} E_{j}^{+}(p) E_{j}(p) = 0.$

Since

$$E_{j}^{+}(p)E_{j}(p) = \begin{cases} E_{j}(p)^{2} & \text{if } E_{j}(p) > 0, \\ 0 & \text{if } E_{j}(p) \le 0, \end{cases}$$

it must be that $E_j(p) \leq 0$ for all j.

- ▶ Finally, we want to show that E_j(p) = 0 for all j (by strict monotonicity of Uⁱ).
- ▶ By Walras' Law, $\sum_j p_j E_j(p) = 0$, where $p_j E_j(p) \le 0$ as shown.

Pareto Efficiency of Walrasian equilibrium

- ► An allocation $X = (x^1, ..., x^m) \in (\mathbb{R}^n_+)^m$ is feasible if $\sum_{i \in A} x^i \leq \sum_{i \in A} w^i$.
- ▶ An allocation *Y* Pareto dominates an allocation *X* if

•
$$U^i(y^i) \ge U^i(x^i)$$
 for all $i \in A$, and

•
$$U^i(y^i) > U^i(x^i)$$
 for some $i \in A$.

A feasible allocation X is Pareto efficient (or Pareto optimal) if there exists no feasible allocation Y that Pareto dominates X.

First Fundamental Theorem of Welfare Economics

Proposition 2.18

If (p, X) is a Walrasian equilibrium, then X is Pareto efficient.

Uses only Observation 1.

Proof

Suppose that an allocation Y Pareto dominates X, i.e.,

$$U^{i}(y^{i}) \geq U^{i}(x^{i}) \text{ for all } i \in A,$$

$$U^{i}(y^{i}) > U^{i}(x^{i}) \text{ for some } i \in A.$$
(1)
(2)

We want to show that Y is not feasible.

- ▶ If $y^i \leq M$ for some $i \in A$, then clearly Y is not feasible. Suppose that $y^i \leq M$ for all $i \in A$.
- By (1) and Observation 1, we have

$$py^i \ge pw^i$$
 for all $i \in A$.

▶ By (2), we have

 $py^i > pw^i$ for some $i \in A$.

Therefore, we have

$$p\left(\sum_{i\in A} y^i - \sum_{i\in A} w^i\right) = \sum_{i\in A} (py^i - pw^i) > 0.$$

▶ This implies that $\sum_{i \in A} y^i \leq \sum_{i \in A} w^i$ does not hold, i.e., Y is not feasible,

for, we would have $p\left(\sum_{i\in A}y^i-\sum_{i\in A}w^i\right)\leq 0$ otherwise.

Second Fundamental Theorem of Welfare Economics

Proposition 2.19

Suppose that $X = (w^1, \ldots, w^m)$ is Pareto efficient. Then there exists $p \in \mathbb{R}^n_+$ such that (p, X) is a Walrasian equilibrium.

Uses

- quasi-concavity,
- local insatiability, and
- continuity of U^i ; and
- $\blacktriangleright \ w^i \gg 0.$

Proof

Define

$$\hat{S}^{i} = \{y^{i} \in \mathbb{R}^{n}_{+} \mid U^{i}(y^{i}) > U^{i}(w^{i})\},\$$

and define $\hat{S} = \sum_{i \in A} \hat{S}^i$, which is a convex set by the quasi-concavity of U^i 's.

- ▶ By the Pareto efficiency of $X = (w^1, ..., w^m)$, $\hat{S} \cap (\{\sum_{i \in A} w^i\} - \mathbb{R}^n_+) = \emptyset$.
- ▶ By the weak separating hyperplane theorem, there exists $p \in \mathbb{R}^n$, $p \neq 0$, such that

$$py \ge p\left(\sum_{i \in A} w^i - z\right)$$
 for all $y \in \hat{S}$ and $z \ge 0$.

- Since this holds for all $z \ge 0$, it must be that $p \ge 0$.
- We want to show that (p, X) is a Walrasian equilibrium.

- Fix any $i \in A$. Suppose that $y^i \in \mathbb{R}^n_+$, $U^i(y^i) > U^i(w^i)$, and $y^i \leq M$.
- For each j ≠ i, by strict monotonicity of U^j (local insatiability is sufficient) we have y^j arbitrarily close to w^j such that U^j(y^j) > Uⁱ(wⁱ).

▶ Then
$$\sum_{j} y^{j} \in \hat{S}$$
, and therefore,
 $p(y^{i} + \sum_{j \neq i} y^{j}) \ge p(w^{i} + \sum_{j \neq i} w^{j}).$

- Letting y^j → w^j for all j ≠ i, we have pyⁱ ≥ pwⁱ.
 (We have shown that (p, X) is a "quasi-equilibrium".)
- We want to show that if $y^i \in \mathbb{R}^n_+$, $U^i(y^i) > U^i(w^i)$, and $y^i \leq M$, then $py^i > pw^i$.

- Suppose that $y^i \in \mathbb{R}^n_+$, $U^i(y^i) > U^i(w^i)$, and $y^i \leq M$.
- ▶ By the continuity of U^i , $U^i(\alpha y^i) > U^i(w^i)$ for some $\alpha < 1$. Then, as we have shown, we must have $p(\alpha y^i) \ge pw^i$.
- Since $w^i \gg 0$ and $p \ge 0$, $p \ne 0$, we have $0 < pw^i \le \alpha(py^i) < py^i$.