
2. Separating Hyperplane Theorems

Daisuke Oyama

Mathematical Economics

This version: June 19, 2023



Things to know from real analysis

▶ For S ⊂ R,
▶ α = maxS if

▶ α ≥ x for all S and

▶ α ∈ S.

▶ α = minS if
▶ α ≤ x for all S and

▶ α ∈ S.

▶ α = supS if
▶ α ≥ x for all S and

▶ if β ≥ x for all S, then β ≥ α.

▶ α = inf S if
▶ α ≤ x for all S and

▶ if β ≤ x for all S, then β ≤ α.

▶ supS exists if S is bounded above;
inf S exists if S is bounded below.

1 / 61



▶ Euclidean norm: for x = (x1, . . . , xn) ∈ Rn,
‖x‖ =

√∑n
i=1(xi)

2.

▶ Euclidean distance: for x, y ∈ Rn, d(x, y) = ‖x− y‖.

▶ A sequence {xk} in Rn converges to x0 ∈ Rn if for any ε > 0,
there exists a natural number K such that d(xk, x0) < ε for
all k ≥ K.

In this case,

▶ {xk} is said to be convergent,

▶ x0 is called the limit of {xk}, and
▶ we write limk→∞ xk = x0 or xk → x0 as k → ∞.

▶ A sequence {xk} in Rn is called a Cauchy sequence if
for any ε > 0, there exists a natural number K such that
d(xk, xℓ) < ε for all k, ℓ ≥ K.

▶ A sequence {xk} in Rn is convergent if and only if
it is a Cauchy sequence.
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▶ S ⊂ Rn is closed if for any convergent sequence in {xk} in S
with xk → x∗, we have x∗ ∈ S.

▶ S ⊂ Rn is open if for every x ∈ S, there exists ε > 0 such
that Bε(x) ⊂ S,

where Bε(x) = {y ∈ Rn | d(y, x) < ε}.

▶ S ⊂ Rn is closed if and only if Rn \ S is open.

▶ Basic properties:

▶ ∅ and Rn are both closed and open.

▶ The union of any family of open sets is open.

▶ The intersection of a finite number of open sets is open.

▶ The intersection of any family of closed sets is closed.

▶ The union of a finite number of closed sets is closed.
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▶ x ∈ S is an interior point of S if there exists ε > 0 such that
Bε(x) ⊂ S.

The set of all interior points of S is called the interior of S
and denoted intS.

▶ intS is the largest open set that is contained in S.

▶ x ∈ Rn is a boundary point of S if for any ε > 0,
Bε(x) ∩ S 6= ∅ and Bε(x) ∩ (Rn \ S) 6= ∅.

The set of all boundary points of S is called the boundary of
S and denoted bdS.

▶ The closure of S ⊂ Rn is the set of all points that are
the limits of convergent sequences of points in S and denoted
clS.

▶ clS is the smallest closed set that contains S.
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▶ Relationships:

▶ clS = Rn \ int(Rn \ S)
▶ intS = Rn \ cl(Rn \ S)
▶ bdS = clS \ intS
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▶ S ⊂ Rn is bounded if there exists r > 0 such that S ⊂ Br(0).

▶ S ⊂ Rn is compact if it is closed and bounded.

▶ If S ⊂ R is compact, then supS ∈ S and inf S ∈ S
(and hence supS = maxS and inf S = minS).

▶ If S ⊂ Rn is bounded, then any sequence in S has
a convergent subsequence.

If in addition S is closed (i.e., S is compact),
then any sequence in S has a convergent subsequence and its
limit is in S.

▶ Conversely, if every sequence in S has a convergent
subsequence whose limit is in S, then S is compact.
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▶ A family of subsets of Rn is said to have the finite intersection
property if the intersection of any finite subfamily of it is
nonempty.

▶ For S ⊂ Rn, the following conditions are equivalent:

▶ S is compact.

▶ For any family (Fλ)λ∈Λ of closed subsets of S that has
the finite intersection property, we have

∩
λ∈Λ Fλ 6= ∅.
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▶ Let S ⊂ Rn, S 6= ∅.

A function f : S → Rm is continuous at x̄ ∈ S if for any
ε > 0, there exists δ > 0 such that

d(x, x̄) < δ, x ∈ S ⇒ d(f(x), f(x̄)) < ε.

▶ f : S → Rm is continuous on T ⊂ S if it is continuous at
every x ∈ T .

▶ f : S → Rm is continuous if it is continuous on S.

▶ f : S → Rm is continuous at x̄ ∈ S if and only if
for any sequence {xk} in S such that xk → x̄, we have
f(xk) → f(x̄).

▶ Examples:

▶ (x, y) 7→ d(x, y) is continuous.

▶ For A ∈ Rm×n, x 7→ Ax is continuous.
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Proposition 2.1 (Weierstrass’ Theorem)

Suppose that S ⊂ Rn, S 6= ∅, is compact and f : S → R is
continuous. Then maxx∈S f(x) and minx∈S f(x) exist,
i.e., there exist x∗, x∗∗ ∈ S such that f(x∗∗) ≤ f(x) ≤ f(x∗) for
all x ∈ S.
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Convex Sets

Definition 2.1
C ⊂ Rn is convex if for any x, y ∈ C and λ ∈ [0, 1], we have
λx+ (1− λ)y ∈ C.
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Properties of Convex Sets

Proposition 2.2

Suppose that C,D ⊂ Rn are convex.

▶ C +D = {x+ y | x ∈ C, y ∈ D} is convex.

▶ For α ∈ R, αC = {αx | x ∈ C} is convex.

Proposition 2.3

The intersection of any family of convex sets is convex.
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Proposition 2.4

If C ⊂ Rn is convex, then clC is also convex.

Proof

▶ Bε(0) = {y ∈ Rn | ‖y‖ < ε} is convex.

▶ Then clC =
∩

ε>0(C +Bε(0)) is convex if C is convex.

Proposition 2.5

If C ⊂ Rn is convex, then intC is also convex.
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▶ For S ⊂ Rn, the set of all convex combinations of finite
subsets of S is called the convex hull of S and denoted by
conv(S).

▶ conv(S) is the smallest convex set that contains S.

13 / 61



Carathéodory’s Theorem

Proposition 2.6 (Carathéodory’s Theorem)

1. For S ⊂ Rn, S 6= {0}, each x ∈ cone(S) is written as a conic
combination of linear independent elements of S.

2. For S ⊂ Rn, each x ∈ conv(S) is written as a convex
combination of at most n+ 1 elements of S.

Proof of Part 1

▶ Immediate from Proposition 1.6 (Fundamental Theorem of
Linear Inequalities).
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Proof of Part 2

▶ Let x ∈ conv(S).

Then we have x =
∑J

j=1 λjx
j for some x1, . . . , xJ ∈ S and

λ1, . . . , λJ ≥ 0,
∑J

j=1 λj = 1.

▶ Consider T = {(x1, 1), . . . , (xJ , 1)} ⊂ Rn+1.

Then (x, 1) ∈ cone(T ).

▶ By part 1, there is an LI subset T ′ ⊂ T such that
(x, 1) =

∑
j∈T ′ µj(x

j , 1) with µj ≥ 0, where |T ′| ≤ n+ 1.

▶ From the 1st through nth coordinates we have
x =

∑
j∈T ′ µjx

j , while from the (n+ 1)st coordinate we have∑
j∈T ′ µj = 1.
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Convex Hull of a Compact Set

Proposition 2.7

If S ⊂ Rn is bounded, then cl(conv(S)) = conv(cl(S)).
In particular, if S is compact, then conv(S) is compact.
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Proof
▶ Since conv(S) ⊃ S, we have cl(conv(S)) ⊃ cl(S).

Since cl(conv(S)) is convex (Proposition 2.4), we have
cl(conv(S)) ⊃ conv(cl(S)).

▶ Since S ⊂ cl(S), we have conv(S) ⊂ conv(cl(S)).

We want to show that conv(cl(S)) is closed if S is bounded.

▶ Let {xk} ⊂ conv(cl(S)), and assume xk → x̄.

▶ By Carathéodory’s Theorem (Proposition 2.6 part 2),
each xk is written as

xk = αk
1x

k,1 + · · ·+ αk
n+1x

k,n+1,

where

▶ (αk
1 , . . . , α

k
n+1) ∈ ∆ = {α ∈ Rn+1 | αi ≥ 0,

∑
i αi = 1},

▶ xk,1, . . . , xk,n+1 ∈ cl(S).
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▶ Since ∆ and cl(S) are compact, there exists a sequence

{k(ℓ)} such that the limits ᾱi = limℓ→∞ α
k(ℓ)
i and

x̄i = limℓ→∞ xk(ℓ),i exist where (ᾱ1, . . . , ᾱn+1) ∈ ∆ and
x̄1, . . . , x̄n+1 ∈ cl(S).

▶ Hence,

x̄ = ᾱ1x̄
1 + · · ·+ ᾱn+1x̄

n+1,

so that x̄ ∈ conv(cl(S)).
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Separating Hyperplane Theorems

▶ The textbook proves the strict separating hyperplane theorem
from scratch.

▶ It then states the weak separating hyperplane theorem without
proof, saying “The proof is similar to the previous one.”

(In fact, the proof is far from “similar”.)

▶ Here, we prove the weak separating hyperplane theorem by
Farkas’ Lemma (which we proved by an algebraic argument).

▶ Then we prove the strict version from the weak version.
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Weak Separating Hyperplane Theorem

Proposition 2.8 (Weak Separating Hyperplane Theorem)

Suppose that C ⊂ Rn is a convex set, and that b /∈ C.
Then there exists h ∈ Rn, h 6= 0 such that

hx ≤ hb for all x ∈ C.

▶ The proof below is an adoption of a proof in some lecture notes by
Atsushi Kajii (which proves this theorem from the strict version).

▶ A similar argument (similar to Kajii’s) is also found in Berkovitz,
Convexity and Optimization in Rn, Chapter II, Theorem 3.2.
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Proof

▶ Write P 0 = {h ∈ Rn | ‖h‖ = 1}, which is compact.

▶ Let C ⊂ Rn be convex and b /∈ C.

▶ For each x ∈ C, let

Px = {h ∈ P 0 | hx ≤ hb},

which is a closed subset of P 0.

We want to show that
∩

x∈C Px 6= ∅.

▶ We show that the family {Px}x∈C of closed subsets of
compact set P 0 has the finite intersection property.

Take any x1, . . . , xm ∈ C.

Write A =
[
x1 · · ·xm

]
∈ Rn×m.
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▶ Since b /∈ conv(A) (⊂ C), there exists no α ∈ Rm such that
b = Aα, 1α = 1, and α ≥ 0 (where 1 ∈ Rm is the vector of

ones), or such that

[
b
1

]
=

[
A
1T

]
α and α ≥ 0.

▶ Then by Farkas’ Lemma, there exist h ∈ Rn and k ∈ R such

that
[
h k

] [A
1T

]
≤ 0 and

[
h k

] [b
1

]
> 0, or

hxj ≤ −k < hb for all j = 1, . . . ,m,

so that h ∈
∩m

j=1 Pxj .

▶ Thus,
∩m

j=1 Pxj 6= ∅.

▶ Hence, by the compactness of P 0, we have
∩

x∈C Px 6= ∅, as
desired.
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Proposition 2.9

Suppose C,D ⊂ Rn, C,D 6= ∅, are convex, and that C ∩D = ∅.
Then there exists h ∈ Rn, h 6= 0 such that

hx ≤ hy for all x ∈ C and y ∈ D.
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Proof

▶ Let K = C −D (= {x− y | x ∈ C, y ∈ D}). Then
▶ K 6= ∅ (∵ C,D 6= ∅);
▶ K is convex (∵ C and D convex);

▶ 0 /∈ K (∵ C ∩D = ∅).

▶ Therefore, by the weak separating hyperplane theorem, there
exists h ∈ Rn, h 6= 0, such that

hz ≤ h0 for all z ∈ K,

or

hx ≤ hy for all x ∈ C and y ∈ D.
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Strict Separating Hyperplane Theorem

Proposition 2.10 (Strict Separating Hyperplane Theorem)

Suppose that C ⊂ Rn is a closed convex set, and that b /∈ C.
Then there exist h ∈ Rn, h 6= 0, and β ∈ R such that

hx ≤ β < hb for all x ∈ C.
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Proof

▶ Let b /∈ C.

▶ By the closedness of C, there exists ε̄ > 0 such that
C ∩Bε̄(b) = ∅.

▶ By the convexity of C (and Bε̄(b)), it follows from
Proposition 2.9 that there exists h ∈ Rn, h 6= 0 such that
hx ≤ hy for all C and all y ∈ Bε̄(b).

Normalize h so that ‖h‖ = 1.

▶ Letting y = b− ε̄
2h, we have hx ≤ hb− ε̄

2 for all x ∈ C,
where hb− ε̄

2 < hb.

▶ Finally, let β = hb− ε̄
2 .
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Proposition 2.11

Suppose C,D ⊂ Rn, C,D 6= ∅, are convex and closed, and that
C ∩D = ∅.
If C or D is bounded, then there exist h ∈ Rn, h 6= 0, and β ∈ R
such that

hx < β < hy for all x ∈ C and y ∈ D.

▶ The boundedness of C or D is indispensable.
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Proof

▶ Let K = C −D (= {x− y | x ∈ C, y ∈ D}). Then
▶ K 6= ∅ (∵ C,D 6= ∅);
▶ K is convex (∵ C and D convex);

▶ 0 /∈ K (∵ C ∩D = ∅).

▶ Suppose that C is bounded and hence is compact by
the closedness of C.

We want to show that K is closed.
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▶ Take any sequence {zk} in K, and assume that zk → z∗.

▶ For each k, let xk ∈ C and yk ∈ D be such that zk = xk − yk.

▶ By the compactness of C, there are a subsequence of {xk}
(again denoted {xk}) and x∗ ∈ C such that xk → x∗.

▶ Then yk = xk − zk converges to some y∗, where y∗ ∈ D by
the closedness of D.

▶ Then we have zk = xk − yk → z∗ = x∗ − y∗, and hence
z∗ ∈ K.

▶ This proves that K is closed.
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▶ Therefore, by the strict separating hyperplane theorem, there
exist h ∈ Rn, h 6= 0, and β′ ∈ R such that

hz < β′ < h0 for all z ∈ K,

or

hx < hy + β′ < hy for all x ∈ C and y ∈ D.

▶ Then let, for example, β = infy∈D hy + β′

2 .
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Extreme Points and Extreme Rays

Definition 2.2
For S ⊂ Rn, x ∈ S is an extreme point of S if

x = λy + (1− λ)z, y, z ∈ S, λ ∈ (0, 1) =⇒ y = z = x.

Definition 2.3
For S ⊂ Rn,
r ∈ S, r 6= 0, is a ray of S if x+ λr ∈ S for all x ∈ S and λ ≥ 0;
r ∈ S is an extreme ray of S if

r = λu+ (1− λ)v, u, v: rays of S, λ ∈ (0, 1)

=⇒ u = αv for some α > 0.
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Krein-Milman Theorem

▶ Denote the set of extreme points of C by ext(C).

Proposition 2.12 (Krein-Milman Theorem)

Let C ⊂ Rn, C 6= ∅, be a compact convex set.
Then C = conv(ext(C)).

▶ In the proof given in the textbook, I could not prove the closedness
of K from the induction hypothesis (rather than proving
the Krein-Milman Theorem itself by a different proof).
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▶ We prove the theorem in a stronger form.

Proposition 2.13 (Krein-Milman Theorem)

Let C ⊂ Rn, C 6= ∅, be a compact convex set.
Then each x ∈ C is written as a convex combination of at most
n+ 1 extreme points of C.

▶ The proof is by induction on the dimension of C.
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Dimension of a set

Definition 2.4
{x0, . . . , xm} ⊂ Rn is affinely independent if
{x1 − x0, . . . , xm − x0} is LI.

Definition 2.5
For S ⊂ Rn, the dimension of S, dimS, is the largest number m
for which S contains some affinely independent vectors x0, . . . , xm.

▶ For any x0 ∈ S, dim(S) = rank(S − {x0}).

▶ dimRn = n (take 0 and the unit vectors e1, . . . , en).

▶ For a hyperplane H ⊂ Rn, i.e., H = {x ∈ Rn | hx = β} for
some h ∈ Rn, h 6= 0, and β ∈ R, dimH = n− 1.

▶ For any x0 ∈ H, let H0 = H − {x0} = {x ∈ Rn | hx = 0}.
▶ H0 = ker(hT) and rank(span(h)) = 1, and hence

dim(H) = rank(H0) = n− 1.
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Proof of Proposition 2.13

▶ We prove by induction on the dimension of C.

▶ If dim(C) = 0, where C is a singleton set, the statement is
obviously true.

▶ Assume that the statement is true for any compact convex set
C with dim(C) ≤ m− 1.

▶ Suppose that dim(C) = m. Denote K = conv(ext(C)).

We can embed C into Rm, so that we can assume C ⊂ Rm

(where the structure of convex combinations does not
change).
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Claim 1
Each x ∈ bdC is written as a convex combination of at most m
extreme points of C.

Proof

▶ Take any x̄ ∈ bdC.

By the weak separating hyperplane theorem (applied to intC
which is convex), there exists a hyperplane
H = {x ∈ Rm | hx = hx̄} such that hy ≤ hx̄ for all y ∈ C.

▶ Since C ∩H is compact and convex and
dim(C ∩H) ≤ m− 1, by the induction hypothesis there are
m extreme points y1, . . . , ym of C ∩H such that
x̄ ∈ conv({y1, . . . , ym}).

▶ We want to show that y1, . . . , ym are extreme points of C.
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▶ Let yi = λz + (1− λ)w, z, w ∈ C, and λ ∈ (0, 1).

▶ Then we have

hx̄ = hyi = λhz + (1− λ)hw

≤ λhx̄+ (1− λ)hx̄ = hx̄.

Thus, the inequality in fact holds with equality, and hence,
hz = hw = hx̄, meaning that z, w ∈ H.

▶ Since yi is an extreme point of C ∩H, it must be that
z = w = yi.

This proves that each yi is an extreme point of C.

[End of the proof of Claim 1]
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▶ Claim 1 in particular implies that ext(C) 6= ∅.

Fix any x0 ∈ ext(C).

▶ Take any x ∈ C.

If x = x0, we are done, so assume that x 6= x0.

▶ Let α0 = max{α ∈ R | x0 + α(x− x0) ∈ C} ≥ 1, which is
well defined by the compactness of C.

Then y = x0 + α0(x− x0) ∈ bdC.

▶ Then by Claim 1, there exist x1, . . . , xm ∈ ext(C) such that
y =

∑m
i=1 αix

i for some α1, . . . , αm ≥ 0 with
∑m

i=1 αi = 1.

▶ Then we have

x = x0 +
1

α0
(y − x0)

=
α0 − 1

α0
x0 +

1

α0
y =

α0 − 1

α0
x0 +

1

α0

∑m
i=1 αix

i,

where α0−1
α0

, 1
α0αi ≥ 0 and α0−1

α0
+ 1

α0

∑m
i=1 αi = 1, as desired.
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Application: Walrasian Equilibrium in Exchange Economies
▶ Goods 1, . . . , n

▶ Agents A = {1, . . . ,m}
▶ For each agent i ∈ A:

▶ Endowment wi ∈ Rn
+

Assume wi � 0.

▶ Utility function U i : Rn
+ → R

Assumed to be

▶ continuous;

▶ strictly quasi-concave; and

▶ strictly increasing: i.e., if y ≥ x and y ̸= x, then
U i(y) > U i(x).

▶ Let M ∈ Rn
+ be such that M ≥

∑
i∈Awi.

(In particular, M � wi for all i ∈ A.)

▶ p ∈ Rn
+: Price vector (to be determined in equilibrium)
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▶ Demand function of agent i:

di(p) = argmax{U i(x) | x ∈ Rn
+, px ≤ pwi, x ≤ M}

▶ “x ≤ M” is a non-standard constraint, which makes the
domain compact even when the prices of some goods are zero.

▶ By the continuity of U i, the right-hand side is nonempty.

▶ By the strict quasi-concavity of U i, the right-hand side is
a singleton set.

→ We regard di(p) as a function (instead of correspondence).
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Observation 1
For any p ∈ Rn

+, if px < pwi and x ≤ M , then U i(x) < U i(di(p));
in particular, pdi(p) = pwi.

▶ This holds if U i satisfies local insatiability within
{x ∈ Rn

+ | x ≤ M} (denote this set by M),

i.e., the property that for any x ∈ M and any ε > 0,
there exists x′ ∈ M such that ‖x′ − x‖ < ε and
U i(x′) > U i(x).

(Local insatiability within Rn
+ is not sufficient.)
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Proof

▶ Let p 6= 0.

▶ Let x ∈ Rn
+ be such that px < pwi and x ≤ M .

We want to show that such an x is not optimal.

▶ By M � wi, there must exist j such that pj > 0 and
xj < Mj (otherwise we would have px > pwi).

▶ Let x′ ∈ Rn
+ be such that x′j is slightly larger than xj (while

x′k = xk for all k 6= j) so that we still have px′ ≤ pwi and
x′j ≤ Mj .

▶ By strict monotonicity of U i, we have U i(x′) > U i(x).

This means that x is not optimal.
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Observation 2
di(tp) = di(p) for any t > 0.

Observation 3
If U i(x) > U i(di(p)) and x ≤ M , then px > pwi.

▶ We normalize a price vector p ≥ 0, p 6= 0, so that
∑

j pj = 1,

or consider p as an element of ∆ = {p ∈ Rn
+ |
∑

j pj = 1}.
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Definition 2.6
A pair of price vector p ∈ Rn

+ and allocation
X = (x1, . . . , xm) ∈ (Rn

+)
m is a Walrasian equilibrium if

▶ [utility maximization]
xi = di(p) for all i ∈ A, and

▶ [market clearing]∑
i∈A xi =

∑
i∈Awi.

▶ The market clearing condition should be imposed as
an inequality (i.e.,

∑
i∈A xi ≤

∑
i∈Awi) if we do not assume

monotonicity of U i.
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Lemma 2.14
di(p) is continuous on ∆.

▶ By the continuity of U i and the “continuity” of the constraint
correspondence p 7→ {x ∈ Rn

+ | px ≤ pwi, x ≤ M}.
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Proof

▶ Let {pk} be a sequence in ∆ and assume that pk → p∗ ∈ ∆.

▶ Write xk = di(pk).

Since it is contained in the compact set {x ∈ Rn
+ | x ≤ M},

we assume that {xk} is convergent with limit x∗ ∈ Rn
+,

x∗ ≤ M .

We want to show that di(p∗) = x∗.

▶ First, since pkxk ≤ pkwi for all k,
by k → ∞ we have p∗x∗ ≤ p∗wi.
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▶ Second take any z ∈ Rn
+ such that p∗z ≤ p∗wi and z ≤ M .

We want to show that U i(z) ≤ U i(x∗).

▶ For any ε > 0, let zε ∈ Rn
+ be such that ‖zε − z‖ < ε,

p∗zε < p∗wi, and zε ≤ M .

(Note that p∗wi > 0 since wi � 0 by assumption.)

▶ Let K be such that pkzε ≤ pkwi for all k ≥ K.

▶ Then by optimality we have U i(zε) ≤ U i(xk).

▶ Letting k → ∞, we have U i(zε) ≤ U i(x∗) by continuity of U i.

▶ Finally, letting ε → 0, we have U i(z) ≤ U i(x∗) again by
continuity of U i.
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▶ Define the function E(p) =
∑

i∈A di(p)−
∑

i∈Awi.

· · · Excess demand function

Continuous by Lemma 2.14.

Lemma 2.15 (Walras’ Law)

For any p ∈ Rn
+, pE(p) = 0.

▶ By Observation 1.
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Existence of Walrasian equilibrium

Proposition 2.16

There exists a Walrasian equilibrium.

▶ p ∈ ∆ is a Walrasian equilibrium price vector if and only if
E(p) = 0, or it is a fixed point of the function p+ E(p).

▶ But p+ E(p) /∈ ∆ in general.

We will modify this function so that the value is in ∆.

▶ Then use Brouwer’s Fixed Point Theorem.
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Brouwer’s Fixed Point Theorem

Proposition 2.17

Suppose that X ⊂ RN is a nonempty, compact, and convex set,
and that f : X → X is a continuous function from X into itself.
Then f has a fixed point, i.e., there exists x ∈ X such that
x = f(x).
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Proof of Proposition 2.16

▶ Write E+
j (p) = max{Ej(p), 0}, which is continuous in p.

▶ Define the function f : ∆ → ∆ by

fj(p) =
pj + E+

j (p)

1 +
∑m

j=1E
+
j (p)

,

which is continuous, mapping the compact set ∆ to itself.

▶ By Brouwer’s Fixed Point Theorem, f has a fixed point p ∈ ∆:

pj =
pj + E+

j (p)

1 +
∑m

j=1E
+
j (p)

.
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▶ Then by Walras’ Law pE(p) = 0, we have

0 =
∑
j

pjEj(p) =

∑
j pjEj(p) +

∑
j E

+
j (p)Ej(p)

1 +
∑

j E
+j(p)

=

∑
j E

+
j (p)Ej(p)

1 +
∑

j E
+j(p)

,

and therefore
∑

j E
+
j (p)Ej(p) = 0.

▶ Since

E+
j (p)Ej(p) =

{
Ej(p)

2 if Ej(p) > 0,

0 if Ej(p) ≤ 0,

it must be that Ej(p) ≤ 0 for all j.
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▶ Finally, we want to show that Ej(p) = 0 for all j (by strict
monotonicity of U i).

▶ By Walras’ Law,
∑

j pjEj(p) = 0, where pjEj(p) ≤ 0 as
shown.

▶ If Ej(p) < 0, then pj = 0,

but by monotonicity of U i, we would have
dij(p) = Mj ≥

∑
h∈Awh

j (> 0) for all i ∈ A, which violates
Ej(p) ≤ 0.
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Pareto Efficiency of Walrasian equilibrium

▶ An allocation X = (x1, . . . , xm) ∈ (Rn
+)

m is feasible if∑
i∈A xi ≤

∑
i∈Awi.

▶ An allocation Y Pareto dominates an allocation X if

▶ U i(yi) ≥ U i(xi) for all i ∈ A, and

▶ U i(yi) > U i(xi) for some i ∈ A.

▶ A feasible allocation X is Pareto efficient (or Pareto optimal)
if there exists no feasible allocation Y that Pareto dominates
X.
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First Fundamental Theorem of Welfare Economics

Proposition 2.18

If (p,X) is a Walrasian equilibrium, then X is Pareto efficient.

▶ Uses only Observation 1.
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Proof
▶ Suppose that an allocation Y Pareto dominates X, i.e.,

U i(yi) ≥ U i(xi) for all i ∈ A, (1)

U i(yi) > U i(xi) for some i ∈ A. (2)

We want to show that Y is not feasible.

▶ If yi 6≤ M for some i ∈ A, then clearly Y is not feasible.

Suppose that yi ≤ M for all i ∈ A.

▶ By (1) and Observation 1, we have

pyi ≥ pwi for all i ∈ A.

▶ By (2), we have

pyi > pwi for some i ∈ A.
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▶ Therefore, we have

p

(∑
i∈A

yi −
∑
i∈A

wi

)
=
∑
i∈A

(pyi − pwi) > 0.

▶ This implies that
∑

i∈A yi ≤
∑

i∈Awi does not hold,
i.e., Y is not feasible,

for, we would have p
(∑

i∈A yi −
∑

i∈Awi
)
≤ 0 otherwise.
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Second Fundamental Theorem of Welfare Economics

Proposition 2.19

Suppose that X = (w1, . . . , wm) is Pareto efficient. Then there
exists p ∈ Rn

+ such that (p,X) is a Walrasian equilibrium.

▶ Uses

▶ quasi-concavity,

▶ local insatiability, and

▶ continuity of U i; and

▶ wi � 0.
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Proof

▶ Define

Ŝi = {yi ∈ Rn
+ | U i(yi) > U i(wi)},

and define Ŝ =
∑

i∈A Ŝi, which is a convex set by
the quasi-concavity of U i’s.

▶ By the Pareto efficiency of X = (w1, . . . , wm),
Ŝ ∩ ({

∑
i∈Awi} − Rn

+) = ∅.

▶ By the weak separating hyperplane theorem, there exists
p ∈ Rn, p 6= 0, such that

py ≥ p
(∑

i∈Awi − z
)
for all y ∈ Ŝ and z ≥ 0.

▶ Since this holds for all z ≥ 0, it must be that p ≥ 0.

▶ We want to show that (p,X) is a Walrasian equilibrium.
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▶ Fix any i ∈ A.
Suppose that yi ∈ Rn

+, U
i(yi) > U i(wi), and yi ≤ M .

▶ For each j 6= i, by strict monotonicity of U j (local insatiability
is sufficient) we have yj arbitrarily close to wj such that
U j(yj) > U i(wi).

▶ Then
∑

j y
j ∈ Ŝ, and therefore,

p(yi +
∑

j ̸=i y
j) ≥ p(wi +

∑
j ̸=iw

j).

▶ Letting yj → wj for all j 6= i, we have pyi ≥ pwi.

(We have shown that (p,X) is a “quasi-equilibrium”.)

▶ We want to show that if yi ∈ Rn
+, U

i(yi) > U i(wi), and
yi ≤ M , then pyi > pwi.
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▶ Suppose that yi ∈ Rn
+, U

i(yi) > U i(wi), and yi ≤ M .

▶ By the continuity of U i, U i(αyi) > U i(wi) for some α < 1.

Then, as we have shown, we must have p(αyi) ≥ pwi.

▶ Since wi � 0 and p ≥ 0, p 6= 0, we have
0 < pwi ≤ α(pyi) < pyi.
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