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Partially Ordered Sets

Definition 4.1
A binary relation ≾ on a set X is a partial order if it satisfies the
following:

▶ Transitivity:
for all x, y, z ∈ X, if x ≾ y and y ≾ z, then x ≾ z.

▶ Reflexivity:
for all x ∈ X, x ≾ x.

▶ Antisymmetry:
for all x, y ∈ X, if x ≾ y and y ≾ x, then x = y.

▶ A partially ordered set (or poset) is a set X with a partial
order ≾ on X, denoted (X,≾).
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Examples

▶ (R,≤), where ≤ is the usual order on R.

In fact, it is a totally ordered set:
≤ also satisfies completeness: for all x, y ∈ R, x ≤ y or y ≤ x.

▶ (Rn,≤), where ≤ is the vector order on Rn.

▶ (2X ,⊂), where 2X is the set of all subsets of a set X, and
⊂ is set inclusion.
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Upper/lower bounds, . . .

▶ Let (X,≾) be a partially ordered set, and let S ⊂ X.

▶ x ∈ X is an upper bound of S if y ≾ x for all y ∈ S.

x ∈ X is a lower bound of S if x ≾ y for all y ∈ S.

▶ x ∈ X is a greatest (or largest) element of S if x ∈ S, and
x is an upper bound of S.

x ∈ X is a least (or smallest) element of S if x ∈ S, and
x is a lower bound of S.

▶ x ∈ X is a maximal element of S if x ∈ S, and
x ≾ y and y ∈ S =⇒ y = x.

x ∈ X is a minimal element of S if x ∈ S, and
y ≾ x and y ∈ S =⇒ y = x.
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▶ If the set of upper bounds of S has a least element,
then it is called the least upper bound, or supremum, of S,
and denoted supX S.

That is, x = supX S if and only if

1. y ≾ x for all y ∈ S; and

2. if y ≾ z for all y ∈ S, then x ≾ z.

▶ If the set of lower bounds of S has a greatest element,
then it is called the greatest lower bound, or infimum, of S,
and denoted infX S.

That is, x = infX S if and only if

1. x ≾ y for all y ∈ S; and

2. if z ≾ y for all y ∈ S, then z ≾ x.

▶ supX S is a greatest (least) element of S if and only if
supX S ∈ S (infX S ∈ S).
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(Abstract) Lattices

▶ For x, y ∈ X, write

x ∨X y = supX{x, y}, x ∧X y = infX{x, y}.

(If there is no risk of confusion, we just write x∨ y and x∧ y.)

Definition 4.2
A partially ordered set (X,≾) is a lattice if x ∨X y and x ∧X y
exist for all x, y ∈ X.
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Example

▶ (R,≤) is a lattice.

▶ x ∨ y = max{x, y}, x ∧ y = min{x, y}

▶ (Rn,≤) is a lattice.

▶ x ∨ y ∈ Rn: the vector such that (x ∨ y)i = max{xi, yi}
▶ x ∧ y ∈ Rn: the vector such that (x ∧ y)i = min{xi, yi}

▶ (2X ,⊂) is a lattice.

▶ S ∨ T = S ∪ T , S ∧ T = S ∩ T

▶ X = {(0, 0), (1, 0), (0, 1)} ⊂ R2

(X,≤) is not a lattice.

▶ The set of upper bounds of {(1, 0), (0, 1)} is empty,
so (1, 0) ∨X (0, 1) does not exist.
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▶ X = {(0, 0), (1, 0), (0, 1), (2, 2)} ⊂ R2

(X,≤) is a lattice.

▶ (1, 0) ∨X (0, 1) = (2, 2)

▶ Note that (1, 0) ∨R2 (0, 1) = (1, 1).

=⇒ X is not a sublattice of (R2,≤) (to be defined later).

▶ X = {(0, 0), (1, 0), (0, 1)}∪{(x1, x2) | x1 = x2, x1 > 2} ⊂ R2

(X,≤) is not a lattice.

▶ The set of upper bounds of {(1, 0), (0, 1)},
{(x1, x2) | x1 = x2, x1 > 2}, does not have a least element.
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Sublattices

Definition 4.3
For a lattice (X,≾), K ⊂ X is a sublattice of (X,≾) if
x ∨X y ∈ K and x ∧X y ∈ K for all x, y ∈ K.

▶ If K ⊂ X is a sublattice of (X,≾), then (K,≾) is a lattice,
but not vice versa.

▶ (According to this definition, Definition 7.1 in the textbook is
defining a sublattice of Rn.)

▶ X = {(0, 0), (1, 0), (0, 1), (1, 1)} is a sublattice of (R2,≤).

▶ X = {(0, 0), (1, 0), (0, 1), (2, 2)} is not a sublattice of (R2,≤).
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Complete Lattices

Definition 4.4
A lattice (X,≾) is complete if supX S and infX S exist for
all S ⊂ X
(where supX ∅ = infX X and infX ∅ = supX X by convention).

▶ This property is called “compact” in the textbook.
We follow the “standard” terminology here.

▶ Any lattice (X,≾) with finite X is a complete lattice,
but not always if X is infinite.

▶ X = [0, 1] ⊂ R

(X,≤) is a complete lattice.

▶ X = [0, 1) ⊂ R

(X,≤) is not a complete lattice.
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▶ X = [0, 1) ∪ {2} ⊂ R
(X,≤) is a complete lattice.

▶ supX [0, 1) = 2

▶ Note that supR[0, 1) = 1.

=⇒ X is not a complete sublattice of (R,≤).
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Complete Sublattices

Definition 4.5
For a lattice (X,≾), K ⊂ X is a complete sublattice of (X,≾) if
supX S and infX S exist in K for all S ⊂ K, S ̸= ∅.
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Complete (Sub-)Lattices in Rn

Proposition 4.1

1. If K ⊂ Rn, K ̸= ∅, is compact and (K,≤) is a lattice, then
(K,≤) is a complete lattice.

2. For X ⊂ Rn, suppose that (X,≤) is a lattice.

If K ⊂ X is compact and a sublattice of (X,≤), then K is
a complete sublattice of (X,≤).

▶ Part 1 is a special case of part 2. (Let K = X.)
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Proof
2.

▶ Let S ⊂ K, S ̸= ∅.

We want to show that supX S exists in K.
(The existence of infX S in K can be shown symmetrically.)

▶ Let U ⊂ X be the set of upper bounds of S in X:
U = {u ∈ X | s ≤ u for all s ∈ S}.

For the moment, assume that U ̸= ∅. We prove this later.

▶ For (s, u) ∈ S × U , write [s, u] = {x ∈ Rn | s ≤ x ≤ u},
which is a closed set.

▶ We want to show that
∩

(s,u)∈S×U [s, u] ∩K ̸= ∅.

If u ∈
∩

(s,u)∈S×U [s, u] ∩K, then

▶ u ∈ K (⊂ X);

▶ s ≤ u for all s ∈ S: u is an upper bound of S;

▶ u ≤ u for all u ∈ U . ∴ supX S = u ∈ K.
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▶ Take any (s1, u1), . . . , (sK , uK) ∈ S × U .

▶ Since X is a lattice, s = supX{s1, . . . , sK} exists in X.

▶ Since K is a sublattice of X, s ∈ K.

▶ For each k = 1, . . . ,K, since uk is an upper bound of
{s1, . . . , sK}, we have s ≤ uk.

▶ Therefore
∩K

k=1[s
k, uk] ∩K ̸= ∅.

▶ By the compactness of K, this implies that∩
(s,u)∈S×U [s, u] ∩K ̸= ∅.

▶ Finally, we show that U ̸= ∅.
▶ Write [s,∞) = {x ∈ Rn | s ≤ x}, which is a closed set.

▶ By the compactness of K, a similar argument as above shows
that

∩
s∈S [s,∞) ∩K ̸= ∅.

▶ Thus U =
∩

s∈S [s,∞) ∩X ⊃
∩

s∈S [s,∞) ∩K ̸= ∅.
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Complete (Sub-)Lattices in Rn

Proposition 4.2

For a sublattice K ⊂ Rn of (Rn,≤), K is a complete sublattice of
(Rn,≤) if and only if it is a compact set.
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Proof

▶ “If” part:

Follows from Proposition 4.1.

▶ “Only if” part:

Boundedness: K is contained in a bounded set
{x ∈ Rn | infRn K ≤ x ≤ supRn K}.

Closedness: If {xk} ⊂ K and xk → x∗, then let
yk = infRn{xm}m≥k ∈ K, and let ȳ = supRn{yk} ∈ K.

Show that x∗ = ȳ:

▶ For any ε > 0, there exists k such that ȳ− ε1 ≤ yk, and hence
ȳ − ε1 ≤ xm for all m ≥ k. Therefore, ȳ − ε1 ≤ x∗. Since
ε > 0 is arbitrary, this implies ȳ ≤ x∗.

▶ For any ε > 0, there exists k such that x∗ − ε1 ≤ xm for all
m ≥ k, and hence x∗ − ε1 ≤ yk. Therefore, x∗ − ε1 ≤ ȳ.
Since ε > 0 is arbitrary, this implies that x∗ ≤ ȳ.
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Tarski’s Fixed Point Theorem
▶ For partially ordered sets (X,≾X) and (Y,≾Y ), a function

f : X → Y is non-decreasing (or isotone, or order-preserving)
if f(x) ≾Y f(x′) whenever x ≾X x′.

Proposition 4.3 (Tarski’s Fixed Point Theorem)

Suppose that (X,≾) is a complete lattice, and that f : X → X is
a non-decreasing function. Let X∗ ⊂ X be the set of fixed points
of f .

1. sup{x ∈ X | x ≾ f(x)} and inf{x ∈ X | f(x) ≾ x} are
the greatest and the least elements of X∗.
In particular, X∗ ̸= ∅.

2. (X∗,≾) is a complete lattice.

▶ X∗ is not a sublattice in X in general.

17 / 62



Proof

1.

▶ Let X ′ = {x ∈ X | x ≾ f(x)}.

X ′ ̸= ∅ since infX ∈ X ′.

▶ Denote x∗ = supX ′ ∈ X.

We show that x∗ ∈ X∗.

▶ Take any x ∈ X ′, where x ≾ f(x) and x ≾ x∗.

By the monotonicity of f , we have f(x) ≾ f(x∗), so that
x ≾ f(x∗).

Since this holds for any x ∈ X ′, we have

x∗ ≾ f(x∗). (1)
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▶ By the monotonicity of f , (1) implies that f(x∗) ≾ f(f(x∗)).

This means that f(x∗) ∈ X ′.

Therefore, we have

f(x∗) ≾ x∗. (2)

▶ By (1) and (2), we have x∗ = f(x∗), i.e., x∗ ∈ X∗.

▶ For any x ∈ X∗, we have x ∈ X ′, and therefore x ≾ x∗.

Thus, x∗ is the greatest element of X∗.

▶ A symmetric argument shows that inf{x ∈ X | f(x) ≾ x} is
the least element of X∗.
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2.

▶ Take any S ⊂ X∗.

▶ Denote s̄ = supX S ∈ X and Z = {x ∈ X | s̄ ≾ x}.

(Z,≾) is a complete lattice.

▶ We have f(Z) ⊂ Z.

▶ Take any z ∈ Z.

▶ For any x ∈ S (⊂ X∗), we have x = f(x) ≾ f(s̄) ≾ f(z).

▶ This shows that s̄ = supX S ≾ z, i.e., f(z) ∈ Z.

▶ Thus, the restriction f |Z of f to Z is a non-decreasing
function from the complete lattice Z to itself.

▶ Let Z∗ (⊂ X∗) denote the set of fixed points of f |Z , which is
the set of upper bounds of S in X∗.

By part 1, Z∗ has a least element, which is supX∗ S.
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▶ A symmetric argument shows that infX∗ S exists in X∗.

▶ Thus, (X∗,≾) is a complete lattice.
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Proposition 4.4

Suppose that (X,≾X) is a complete lattice and (Y,≾Y ) is
a lattice, and that f : X × Y → X is a non-decreasing function.
Then the greatest and the least fixed points of f(·, y) are
non-decreasing in y.
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Proof

▶ Let x̄∗(y) ∈ X denote the greatest fixed point of f(·, y).

▶ Let y′ ≾ y′′.

Let Z = {x ∈ X | x̄∗(y′) ≾ x}.

(Z,≾) is a complete lattice.

▶ f(·, y′′) maps Z into itself:

for any x ∈ Z, we have

x̄∗(y′) = f(x̄∗(y′), y′) ≾ f(x, y′) ≾ f(x, y′′).

▶ By Tarski’s Fixed Point Theorem, f(·, y′′) has a fixed point in
Z, and its greatest fixed point in Z is the greatest fixed point
in X,

that is, x̄∗(y′′) ∈ Z, or x̄∗(y′) ≾ x̄∗(y′′).
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Proposition 4.5

Let X ⊂ Rn be a compact set, and suppose that (X,≤) has
a least element x. Suppose that f : X → X is non-decreasing and
continuous.
Then the sequence xk = f(xk−1) with x0 = x converges to
the least fixed point.
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Proof

▶ By the monotonicity of f , we have

x0 = x ≤ f(x0) = x1,

x1 = f(x0) ≤ f(x1) = x2,

x2 = f(x1) ≤ f(x2) = x3,

...

▶ By the boundedness of X, xk converges to some x∗, and by
the closedness of X, x∗ ∈ X.

▶ By the continuity of f , x∗ = f(x∗), i.e., x∗ is a fixed point of
f .
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▶ Let x̂ ∈ X be a fixed point of f .

▶ By the monotonicity of f , we have

x0 = x ≤ x̂,

x1 = f(x0) ≤ f(x̂) = x̂,

x2 = f(x1) ≤ f(x̂) = x̂,

...

▶ Therefore, x∗ ≤ x̂.

▶ This shows that x∗ is the least fixed point.
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Application: Games with Monotone Best Responses

▶ I = {1, . . . , I}: Set of players

▶ Si: Set of strategies of player i ∈ I

Partially ordered by ≾i

▶ Assumption: For all i ∈ I, (Si,≾i) is a complete lattice.

▶ ≾: Product partial order on S =
∏

i∈I Si

(si)i∈I ≾ (s′i)i∈I if and only if si ≾i s
′
i for all i ∈ I

▶ ≾−i: Product partial order on S−i =
∏

j ̸=i Sj

(sj)j ̸=i ≾−i (s
′
j)j ̸=i if and only if sj ≾j s

′
j for all j ̸= i

▶ ui : S → R: Payoff function of player i ∈ I

▶ Denote this game by G.
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▶ Best response correspondence (in pure strategies) of player i:

bi(s−i) = {si ∈ Si | ui(si, s−i) ≥ ui(s
′
i, s−i) for all si ∈ Si}

▶ Assumption: G has monotone best responses,

i.e., for all i ∈ I,
▶ for all s−i ∈ S−i, bi(s−i) has a greatest element bi(s−i) and

a least element bi(s−i), and

▶ bi(s−i) and bi(s−i) are non-decreasing in s−i.

▶ (We will later discuss what conditions on the primitives of
the game guarantee this assumption to hold.)
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Examples

Coordination game:

L2 R2

L1 4, 4 0, 2
R1 2, 0 3, 3

▶ bi(Lj) = Li, bi(Rj) = Ri

▶ With orders Li ≺i Ri, the best responses are non-decreasing.
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Battle of the sexes:

L2 R2

L1 0, 0 2, 1
R1 1, 2 0, 0

▶ bi(Lj) = Ri, bi(Rj) = Li

▶ With orders L1 ≺1 R1 and R2 ≺2 L2, the best responses are
non-decreasing.
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Matching pennies:

L2 R2

L1 1,−1 −1, 1
R1 −1, 1 1,−1

▶ b1(L2) = L1, b1(R2) = R1

b2(L1) = R2, b2(R1) = L2

▶ With any orders, the best responses cannot be non-decreasing
simultaneously for both players.
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Existence of Pure-Strategy Nash Equilibria

Proposition 4.6

Suppose that the game G has monotone best responses.
Then G has a pure-strategy Nash equilibrium.
In particular, there are a greatest and a least pure-strategy Nash
equilibria.

Proof

▶ The function b̄ : S → S defined by
b̄(s) = (b̄1(s−1), . . . , b̄n(s−i)) is a non-decreasing function
from the complete lattice S to itself.

▶ By Tarski’s Fixed Point Theorem, a greatest fixed point of b̄
exists, which is the greatest pure-strategy Nash equilibrium.
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Supermodular Functions

Definition 4.6
For a lattice (X,≾), a function f : X → R is said to be
supermodular if

f(x) + f(x′) ≤ f(x ∨ x′) + f(x ∧ x′)

for all x, x′ ∈ X.

▶ f is said to be strictly supermodular if
f(x) + f(x′) < f(x ∨ x′) + f(x ∧ x′) whenever neither x ≾ x′

nor x′ ≾ x.

▶ f is said to be (strictly) submodular if −f is (strictly)
supermodular.
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Example

▶ Let X = {x ∈ R2 | x ≤ x ≤ x} for some x, x ∈ R2.

Suppose that f : X → R is supermodular.

▶ Consider (x′1, x
′′
2) and (x′′1, x

′
2) with x′1 ≤ x′′1 and x′2 ≤ x′′2.

By the supermodularity of f , we have

f(x′1, x
′′
2) + f(x′′1, x

′
2)

≤ f(x′1 ∨ x′′1, x
′′
2 ∨ x′2) + f(x′1 ∧ x′′1, x

′′
2 ∧ x′2)

= f(x′′1, x
′′
2) + f(x′1, x

′
2),

or f(x′′1, x
′
2)− f(x′1, x

′
2) ≤ f(x′′1, x

′′
2)− f(x′1, x

′′
2),

that is, f satisfies increasing differences in (x1, x2).

▶ Conversely, if f satisfies increasing differences in (x1, x2),
then it is supermodular.
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Example: Submodular Functions on R2

▶ Let X = {x ∈ R2 | x ≤ x ≤ x} for some x, x ∈ R2.

Suppose that f : X → R is submodular
(i.e., −f is supermodular).

▶ Define the partial order ≤∗ on R2 by
(x′1, x

′
2) ≤∗ (x′′1, x

′′
2) ⇐⇒ x′1 ≤ x′′1, x′2 ≥ x′′2.

▶ Then f is supermodular with respect to ≤∗:

If (x′1, x
′
2) ≤∗ (x′′1, x

′′
2), then

f(x′′1, x
′
2)− f(x′1, x

′
2) = −[(−f(x′′1, x

′
2))− (−f(x′1, x

′
2))]

≤ −[(−f(x′′1, x
′′
2))− (−f(x′1, x

′′
2))]

= f(x′′1, x
′′
2)− f(x′1, x

′′
2).

▶ This “trick” does not work with more than two variables.
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Proposition 4.7

Let X = {x ∈ Rn | x ≤ x ≤ x} for some x, x ∈ Rn, x ≪ x, and
suppose that f : X → R is twice continuously differentiable on
intX and continuous on X.
Then f is supermodular if and only if for all i, j = 1, . . . , n, i ̸= j
∂2f

∂xi∂xj
(x) ≥ 0 for all x ∈ intX.

▶ Example:
f(x1, x2) = xα1

1 xα2
2 , α1, α2 ≥ 0, is supermodular on R2

+.
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Optimization

Proposition 4.8

Let (X,≾) be a lattice.

▶ If f : X → R is supermodular, then argmaxx∈X f(x) is
a sublattice of X.

▶ If f is strictly supermodular, then argmaxx∈X f(x) is a chain,
i.e., for any x, x′ ∈ argmaxx∈X f(x), x ≾ x′ or x′ ≾ x.

37 / 62



Proof

1.

▶ Suppose that x, x′ ∈ argmaxx∈X f(x).

▶ By supermodularity, we have

0 ≤ f(x)− f(x ∧ x′) ≤ f(x ∨ x′)− f(x′) ≤ 0,

which must hold with equality.

▶ Thus, x ∨ x′, x ∧ x′ ∈ argmaxx∈X f(x).

2.

▶ If x, x′ ∈ argmaxx∈X f(x), then we have
f(x ∨ x′) + f(x ∧ x′) ≤ f(x) + f(x′).

▶ If neither x ≾ x′ nor x′ ≾ x, then this contradicts the strict
supermodularity.
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Proposition 4.9

Let X and Y be lattices, and suppose that f : X × Y → R is
supermodular.
Assume that v(y) = supx∈X f(x, y) is finite for all y ∈ Y .
Then v is supermodular.

Proof

▶ Let y, y′ ∈ Y .

▶ For any x, x′ ∈ X, we have

v(y ∨Y y′) + v(y ∧Y y′)

≥ f(x ∨X x′, y ∨Y y′) + f(x ∧X x′, y ∧Y y′)

≥ f(x, y) + f(x′, y′).

▶ Since this holds for all x, x′ ∈ X, it follows that
v(y ∨Y y′) + v(y ∧Y y′) ≥ v(y) + v(y′).
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Monotone Comparative Statics

Definition 4.7
For partially ordered sets (X,≾X) and (Y,≾Y ), a function
f : X × Y → R satisfies increasing differences in (x, y) if

f(x′′, y′)− f(x′, y′) ≤ f(x′′, y′′)− f(x′, y′′)

whenever x′ ≾X x′′ and y′ ≾Y y′′.
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Proposition 4.10

Suppose that

▶ X ⊂ Rn, X ̸= ∅, is compact and a lattice (with respect to ≤);

▶ (Y ≾Y ) is a partially ordered set; and

▶ f : X × Y → R satisfies the following:

▶ f(·, y) is continuous for each y ∈ Y ;

▶ f(·, y) is supermodular for each y ∈ Y ; and

▶ f(x, y) satisfies increasing differences in (x, y).

Then

1. for each y ∈ Y , argmaxx∈X f(x, y) is a nonempty, complete
sublattice of X; and

2. its greatest and least elements are non-decreasing in y.
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Proof

▶ Write X∗(y) = argmaxx∈X f(x, y).

▶ By the compactness of X and the continuity of f(·, y),
X∗(y) is nonempty and compact.

▶ By the compactness, the lattice X is a complete lattice by
Proposition 4.1.

▶ Thus, together with the supermodularity of f(·, y), X∗(y) is
a sublattice of X by Proposition 4.8.

▶ Again by Proposition 4.1, X∗(y) is a complete sublattice.

▶ Denote the greatest and the least elements of X∗(y)
by x∗(y) and x∗(y), respectively.
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▶ Suppose that y′ ≾Y y′′.

If x′ ∈ X∗(y′) and x′′ ∈ X∗(y′′), then

0 ≤ f(x′, y′)− f(x′ ∧X x′′, y′) (by x′ ∈ X∗(y′))

≤ f(x′ ∨X x′′, y′)− f(x′′, y′) (by supermodularity)

≤ f(x′ ∨X x′′, y′′)− f(x′′, y′′) (by increasing differences)

≤ 0 (by x′′ ∈ X∗(y′′))

which must hold with equality.

▶ Thus, x′ ∧X x′′ ∈ X∗(y′) and x′ ∨X x′′ ∈ X∗(y′′).

▶ In particular, we must have

▶ x∗(y′) ≾X x∗(y′) ∧X x∗(y′′), so that x∗(y′) ≾X x∗(y′′); and

▶ x∗(y′) ∨X x∗(y′′) ≾X x∗(y′′), so that x∗(y′) ≾X x∗(y′′).
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Supermodular Games

▶ I = {1, . . . , I}: Set of players

▶ Si ⊂ Rni : Set of strategies of player i ∈ I

Partially ordered by ≤ on Rni

▶ Si ⊂ Rni : compact

▶ ui : S → R: Payoff function of player i ∈ I (S =
∏

j∈I Sj)

▶ ui(si, s−i): continuous in si for each s−i and continuous in
s−i for each si

▶ Denote this game by G.

▶ G is called a supermodular game if for each i ∈ I,
▶ Si is a complete lattice;

▶ ui(si, s−i) is supermodular in si for each s−i; and

▶ ui(si, s−i) satisfies increasing differences in (si, s−i).
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Smooth Supermodular Games

▶ The game is supermodular if the following are satisfied:

For each i ∈ I:
▶ Si = {si ∈ Rni | si ≤ si ≤ si} for some si ≪ si;

▶ ui is twice continuously differentiable on intS, and continuous
on S;

▶ for all s ∈ intS, ∂2ui

∂sik∂siℓ
(s) ≥ 0 for all k, ℓ = 1, . . . , ni, k ̸= ℓ.

▶ for all s ∈ intS, ∂2ui

∂sik∂sjm
(s) ≥ 0 for all j ̸= i, and

for all k = 1, . . . , ni and all m = 1, . . . , nj .
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Proposition 4.11

Suppose that the game G is a supermodular game.

1. G has monotone best responses,

i.e., the greatest and the least best responses bi(s−i) and
bi(s−i) are well defined and non-decreasing in s−i.

2. G has a greatest and a least pure-strategy Nash equilibria s∗

and s∗.

3. Let s = (si)i∈I and s = (si)i∈I be the greatest and the least
strategy profiles. Then the sequences sk = b(sk−1), s0 = s
and sk = b(sk−1), s0 = s converge to s∗ and s∗, respectively
(where b(s) = (bi(s−i))i∈I and b(s) = (bi(s−i))i∈I).
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Proof

▶ Part 1: By Proposition 4.10.

▶ Part 2: By Proposition 4.6.

▶ Part 3:

{sk} is increasing and bounded above, and thus converges to
some s∗ ∈ S.

▶ For any si ∈ Si, ui(s
k
i , s

k−1
−i ) ≥ ui(si, s

k−1
−i ) for all k.

By continuity, letting k → ∞ we have

ui(s
∗
i , s

∗
−i) ≥ ui(si, s

∗
−i). (∗)

Thus, s∗ is a Nash equilibrium.

▶ For any Nash equilibrium ŝ, s0 ≤ ŝ, s1 = b(s0) ≤ b(ŝ) ≤ ŝ,
. . . , and hence s∗ ≤ ŝ, i.e., s∗ is the least Nash equilibrium.
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▶ Proof of (∗):

Suppose that f(x, y) is continuous in x for each y and in y
for each y and satisfies increasing differences in (x, y).

If {(xk, yk)} is non-decreasing and converges to (x∗, y∗), then
limk→∞ f(xk, yk) = f(x∗, y∗).

▶ f(x∗, y∗)− f(xk, yk) =
f(x∗, y∗)− f(x∗, yk) + f(x∗, yk)− f(xk, yk),
where by increasing differences,

f(x∗, y0)−f(xk, y0) ≤ f(x∗, yk)−f(xk, yk) ≤ f(x∗, y∗)−f(xk, y∗).

▶ Therefore,

[f(x∗, y∗)− f(x∗, yk)] + [f(x∗, y0)− f(xk, y0)]

≤ f(x∗, y∗)− f(xk, yk)

≤ [f(x∗, y∗)− f(x∗, yk)] + [f(x∗, y∗)− f(xk, y∗)],

where the left and the right hand sides go to 0 as k → ∞
by continuity in x (for y = y0, y∗) and in y (for x = x∗).
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Example: Bertrand Game with Differentiated Products

▶ Firms: I = {1, . . . , I}

▶ Strategy space of i: Si = [0, p̄i] (prices)

▶ di(pi, p−i): Demand for i’s product

▶ ∂di

∂pi
< 0

▶ ∂di

∂pj
> 0, j ̸= i (substitutability)

▶ Ci: Total cost

▶ C ′′
i ≥ 0

▶ Payoff function of i:

ui(pi, p−i) = pidi(pi, p−i)− Ci(di(pi, p−i))
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▶ Cross derivatives:

∂2ui
∂pi∂pj

= (pi − C ′
i)

∂2di
∂pi∂pj

+

(
1− C ′′

i

∂di
∂pi

)
∂ui
∂pj

Second term > 0

▶ With linear demand di(pi, p−i) = ai − bipi + gij
∑

j ̸=i pj ,
bi, gij > 0 (Problem 7.7),

we have ∂2di
∂pi∂pj

= 0 and therefore ∂2ui
∂pi∂pj

> 0, so that

the game is supermodular.
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Example: Cournot Game with Two Firms

▶ Firms: I = {1, 2}

▶ Strategy space of 1: S1 = [0, x̄1] (quantities)

Strategy space of 2: S2 = [−x̄2, 0] (negative of quantities)

▶ P (Q): Inverse demand

▶ Q = x1 + (−x2): total supply

▶ P ′ < 0

▶ Ci: Total cost

▶ Payoff functions:

u1(x1, x2) = P (x1 − x2)x1 − C1(x1)

u2(x1, x2) = P (x1 − x2)(−x2)− C2(−x2)
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▶ Cross derivatives:

∂2u1
∂x1∂x2

= −P ′′(x1 − x2)x1 − P ′(x1 − x2)

∂2u2
∂x2∂x1

= P ′′(x1 − x2)x2 − P ′(x1 − x2)

−P ′ > 0

▶ With linear inverse demand P (Q) = 1−Q (Problem 7.8),

we have P ′′ = 0 and therefore ∂2ui
∂xi∂x−i

> 0,
so that the game is supermodular.
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Application: Stable Matchings

▶ M : Set of men

▶ W : Set of women

▶ Assume |M | = |W |.

▶ Each m ∈ M has a strict preference ordering >m over
W ∪ {m};
each w ∈ W has a strict preference ordering >w over
M ∪ {w}.

x >i y · · · i ranks x above y.

▶ Assume

▶ for all m ∈ M , w >m m for all w ∈ W ; and

▶ for all w ∈ W , m >w w for all m ∈ M .

▶ Write x ≥i y for “not y >i x” ( ⇐⇒ “x >i y or x = y”).

53 / 62



▶ A matching is a function µ : M ∪W → M ∪W such that

▶ µ(m) ∈ W ∪ {m} for all m ∈ M ;

▶ µ(w) ∈ M ∪ {w} for all w ∈ W ; and

▶ µ(m) = w if and only if µ(w) = m.

▶ A pair (m,w) ∈ M ×W is a blocking pair for matching µ if
w >m µ(m) and m >w µ(w).

▶ Matching µ is stable if there is no blocking pair for µ.

(By assumption, individual rationality is satisfied.)
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▶ Example:

M W
m1: w2 w1 w3 w1: m1 m3 m2

m2: w1 w3 w2 w2: m3 m1 m2

m3: w1 w2 w3 w3: m1 m3 m2

▶ {(m1, w1), (m2, w2), (m3, w3)} is not stable.

∵ (m1, w2) is a blocking pair.

▶ {(m1, w1), (m2, w3), (m2, w3)} is stable.
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Proposition 4.12

There exists a stable matching.
Moreover, there exist

▶ a stable matching that is most preferred by all m ∈ M and
least preferred by all w ∈ W among all stable matchings; and

▶ a stable matching that is most preferred by all w ∈ W and
least preferred by all m ∈ M among all stable matchings.

▶ First (formulated and) proved by Gale and Shapley (1962) via
the “deferred acceptance algorithm”.

▶ We prove by Tarski’s Fixed Point Theorem.
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▶ A semi-matching (or pre-matching) is a function
µ : M ∪W → M ∪W such that

▶ µ(m) ∈ W ∪ {m} for all m ∈ M ; and

▶ µ(w) ∈ M ∪ {w} for all w ∈ W .

▶ X0: Set of all semi-matchings
X ⊂ X0: Set of all matchings

▶ Define the function f : X0 → X0 by the following:
for µ ∈ X0,

f(µ)(m) = argmax
>m

{w ∈ W | m ≥w µ(w)} ∪ {m},

f(µ)(w) = argmax
>w

{m ∈ M | w ≥m µ(m)} ∪ {w}.

▶ X∗: Set of fixed points of f
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Proposition 4.13

Any fixed point of f is a matching, i.e., X∗ ⊂ X.

Proof

▶ Suppose that f(µ) = µ.

▶ Suppose that µ(m) = w.

▶ Then f(µ)(m) = w, which implies m ≥w µ(w).

▶ Also f(µ)(w) ≥w m, and therefore µ(w) ≥w m.

▶ Hence µ(w) = m.

▶ A symmetric argument shows that
µ(w) = m =⇒ µ(m) = w.
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Proposition 4.14

µ is a stable matching if and only if it is a fixed point of f , i.e.,
µ ∈ X∗.

Proof

▶ Suppose that µ ∈ X∗ (⊂ X).

If w >m µ(m), then f(µ)(w) ≥w m, hence µ(w) ≥w m.

Hence there is no blocking pair.

▶ Suppose that µ ∈ X \X∗.

Suppose that there exists m ∈ M such that
w = µ(m) ̸= w′ = f(µ)(m).

Then m >w′
µ(w′) and w′ >m µ(m).

Hence (m,w′) is a blocking pair.
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Proposition 4.15

f has a fixed point, i.e., X∗ ̸= ∅.

Proof

▶ Define the partial order ≿ on X0 as follows:
µ ≿ ν if and only if

▶ µ(m) ≥m ν(m) for all m ∈ M , and

▶ ν(w) ≥w µ(w) for all w ∈ W .

▶ Then (X0,≿) is a complete lattice.
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▶ f : X0 → X0 is non-decreasing:

Suppose that µ ≿ ν.

▶ By ν(w) ≥w µ(w), we have m ≥w ν(w) =⇒ m ≥w µ(w).

Therefore, f(µ)(m) ≥m f(ν)(m).

▶ By µ(m) ≥m ν(m), we have w ≥m µ(m) =⇒ w ≥m ν(m).

Therefore, f(ν)(w) ≥w f(µ)(w).

▶ Thus, by Tarski’s Fixed Point Theorem, X∗ ̸= ∅.

In particular, X∗ has a greatest element (best for M and worst
for W ) and a least element (worst for M and best for W ).
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Problem 3, Homework 4

1. By Tarski’s Fixed Point Theorem, f has a greatest fixed point
x̄∗.

2. ▶ Let X ′ = {x ∈ X | x̄∗ ≤ x}.
▶ For x ∈ X ′, we have g(x) ≥ f(x) ≥ f(x̄∗) = x̄∗, so that

g(x) ∈ X ′.

▶ Thus, g maps the compact convex set X ′ to X ′.

▶ By Brouwer’s Fixed Point Theorem, g has a fixed point x∗∗ in
X ′.

▶ For any fixed point x∗ of f , we have x∗ ≤ x̄∗ ≤ x∗∗.
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