4. Lattices and Supermodularity

Daisuke Oyama

Mathematical Economics

This version: July 3, 2023

Partially Ordered Sets

Definition 4.1

A binary relation \precsim on a set X is a partial order if it satisfies the following:

- Transitivity: for all $x, y, z \in X$, if $x \precsim y$ and $y \precsim z$, then $x \precsim z$.
- Reflexivity: for all $x \in X, x \precsim x$.
- Antisymmetry: for all $x, y \in X$, if $x \precsim y$ and $y \precsim x$, then $x=y$.
- A partially ordered set (or poset) is a set X with a partial order \precsim on X, denoted (X, \precsim).

Examples

- (\mathbb{R}, \leq), where \leq is the usual order on \mathbb{R}.

In fact, it is a totally ordered set:
\leq also satisfies completeness: for all $x, y \in \mathbb{R}, x \leq y$ or $y \leq x$.

- $\left(\mathbb{R}^{n}, \leq\right)$, where \leq is the vector order on \mathbb{R}^{n}.
- $\left(2^{X}, \subset\right)$, where 2^{X} is the set of all subsets of a set X, and \subset is set inclusion.

Upper/lower bounds, ...

- Let (X, \precsim) be a partially ordered set, and let $S \subset X$.
- $x \in X$ is an upper bound of S if $y \precsim x$ for all $y \in S$.
$x \in X$ is a lower bound of S if $x \precsim y$ for all $y \in S$.
- $x \in X$ is a greatest (or largest) element of S if $x \in S$, and x is an upper bound of S.
$x \in X$ is a least (or smallest) element of S if $x \in S$, and x is a lower bound of S.
- $x \in X$ is a maximal element of S if $x \in S$, and $x \precsim y$ and $y \in S \Longrightarrow y=x$.
$x \in X$ is a minimal element of S if $x \in S$, and $y \precsim x$ and $y \in S \Longrightarrow y=x$.
- If the set of upper bounds of S has a least element, then it is called the least upper bound, or supremum, of S, and denoted $\sup _{X} S$.
That is, $x=\sup _{X} S$ if and only if

1. $y \precsim x$ for all $y \in S$; and
2. if $y \precsim z$ for all $y \in S$, then $x \precsim z$.

- If the set of lower bounds of S has a greatest element, then it is called the greatest lower bound, or infimum, of S, and denoted $\inf _{X} S$.
That is, $x=\inf _{X} S$ if and only if

1. $x \precsim y$ for all $y \in S$; and
2. if $z \precsim y$ for all $y \in S$, then $z \precsim x$.

- $\sup _{X} S$ is a greatest (least) element of S if and only if $\sup _{X} S \in S\left(\inf _{X} S \in S\right)$.

(Abstract) Lattices

- For $x, y \in X$, write

$$
x \vee_{X} y=\sup _{X}\{x, y\}, \quad x \wedge_{X} y=\inf _{X}\{x, y\} .
$$

(If there is no risk of confusion, we just write $x \vee y$ and $x \wedge y$.)

Definition 4.2
A partially ordered set (X, \precsim) is a lattice if $x \vee_{X} y$ and $x \wedge_{X} y$ exist for all $x, y \in X$.

Example

- (\mathbb{R}, \leq) is a lattice.
- $x \vee y=\max \{x, y\}, x \wedge y=\min \{x, y\}$
- $\left(\mathbb{R}^{n}, \leq\right)$ is a lattice.
$-x \vee y \in \mathbb{R}^{n}$: the vector such that $(x \vee y)_{i}=\max \left\{x_{i}, y_{i}\right\}$
- $x \wedge y \in \mathbb{R}^{n}$: the vector such that $(x \wedge y)_{i}=\min \left\{x_{i}, y_{i}\right\}$
- $\left(2^{X}, \subset\right)$ is a lattice.
- $S \vee T=S \cup T, S \wedge T=S \cap T$
- $X=\{(0,0),(1,0),(0,1)\} \subset \mathbb{R}^{2}$
(X, \leq) is not a lattice.
- The set of upper bounds of $\{(1,0),(0,1)\}$ is empty, so $(1,0) \vee_{X}(0,1)$ does not exist.
- $X=\{(0,0),(1,0),(0,1),(2,2)\} \subset \mathbb{R}^{2}$
(X, \leq) is a lattice.
- $(1,0) \vee_{X}(0,1)=(2,2)$
- Note that $(1,0) \vee_{\mathbb{R}^{2}}(0,1)=(1,1)$.
$\Longrightarrow X$ is not a sublattice of $\left(\mathbb{R}^{2}, \leq\right)$ (to be defined later).
- $X=\{(0,0),(1,0),(0,1)\} \cup\left\{\left(x_{1}, x_{2}\right) \mid x_{1}=x_{2}, x_{1}>2\right\} \subset \mathbb{R}^{2}$
(X, \leq) is not a lattice.
- The set of upper bounds of $\{(1,0),(0,1)\}$, $\left\{\left(x_{1}, x_{2}\right) \mid x_{1}=x_{2}, x_{1}>2\right\}$, does not have a least element.

Sublattices

Definition 4.3

For a lattice $(X, \precsim), K \subset X$ is a sublattice of (X, \precsim) if $x \vee_{X} y \in K$ and $x \wedge_{X} y \in K$ for all $x, y \in K$.

- If $K \subset X$ is a sublattice of (X, \precsim), then (K, \precsim) is a lattice, but not vice versa.
- (According to this definition, Definition 7.1 in the textbook is defining a sublattice of \mathbb{R}^{n}.)
- $X=\{(0,0),(1,0),(0,1),(1,1)\}$ is a sublattice of $\left(\mathbb{R}^{2}, \leq\right)$.
- $X=\{(0,0),(1,0),(0,1),(2,2)\}$ is not a sublattice of $\left(\mathbb{R}^{2}, \leq\right)$.

Complete Lattices

Definition 4.4
A lattice (X, \precsim) is complete if $\sup _{X} S$ and $\inf _{X} S$ exist for all $S \subset X$
(where $\sup _{X} \emptyset=\inf _{X} X$ and $\inf _{X} \emptyset=\sup _{X} X$ by convention).

- This property is called "compact" in the textbook. We follow the "standard" terminology here.
- Any lattice (X, \precsim) with finite X is a complete lattice, but not always if X is infinite.
- $X=[0,1] \subset \mathbb{R}$
(X, \leq) is a complete lattice.
- $X=[0,1) \subset \mathbb{R}$
(X, \leq) is not a complete lattice.
- $X=[0,1) \cup\{2\} \subset \mathbb{R}$
(X, \leq) is a complete lattice.
$-\sup _{X}[0,1)=2$
- Note that $\sup _{\mathbb{R}}[0,1)=1$.
$\Longrightarrow X$ is not a complete sublattice of (\mathbb{R}, \leq).

Complete Sublattices

Definition 4.5

For a lattice $(X, \precsim), K \subset X$ is a complete sublattice of (X, \precsim) if $\sup _{X} S$ and $\inf _{X} S$ exist in K for all $S \subset K, S \neq \emptyset$.

Complete (Sub-)Lattices in \mathbb{R}^{n}

Proposition 4.1

1. If $K \subset \mathbb{R}^{n}, K \neq \emptyset$, is compact and (K, \leq) is a lattice, then (K, \leq) is a complete lattice.
2. For $X \subset \mathbb{R}^{n}$, suppose that (X, \leq) is a lattice.

If $K \subset X$ is compact and a sublattice of (X, \leq), then K is a complete sublattice of (X, \leq).

- Part 1 is a special case of part 2. (Let $K=X$.)

Proof

2.

- Let $S \subset K, S \neq \emptyset$.

We want to show that $\sup _{X} S$ exists in K.
(The existence of $\inf _{X} S$ in K can be shown symmetrically.)

- Let $U \subset X$ be the set of upper bounds of S in X : $U=\{u \in X \mid s \leq u$ for all $s \in S\}$.

For the moment, assume that $U \neq \emptyset$. We prove this later.

- For $(s, u) \in S \times U$, write $[s, u]=\left\{x \in \mathbb{R}^{n} \mid s \leq x \leq u\right\}$, which is a closed set.
- We want to show that $\bigcap_{(s, u) \in S \times U}[s, u] \cap K \neq \emptyset$.

If $\underline{u} \in \bigcap_{(s, u) \in S \times U}[s, u] \cap K$, then

- $\underline{u} \in K(\subset X)$;
- $s \leq \underline{u}$ for all $s \in S: \underline{u}$ is an upper bound of S;
- $\underline{u} \leq u$ for all $u \in U . \quad \therefore \sup _{X} S=\underline{u} \in K$.
- Take any $\left(s^{1}, u^{1}\right), \ldots,\left(s^{K}, u^{K}\right) \in S \times U$.
- Since X is a lattice, $\bar{s}=\sup _{X}\left\{s^{1}, \ldots, s^{K}\right\}$ exists in X.
- Since K is a sublattice of $X, \bar{s} \in K$.
- For each $k=1, \ldots, K$, since u^{k} is an upper bound of $\left\{s^{1}, \ldots, s^{K}\right\}$, we have $\bar{s} \leq u^{k}$.
- Therefore $\bigcap_{k=1}^{K}\left[s^{k}, u^{k}\right] \cap K \neq \emptyset$.
- By the compactness of K, this implies that $\bigcap_{(s, u) \in S \times U}[s, u] \cap K \neq \emptyset$.
- Finally, we show that $U \neq \emptyset$.
- Write $[s, \infty)=\left\{x \in \mathbb{R}^{n} \mid s \leq x\right\}$, which is a closed set.
- By the compactness of K, a similar argument as above shows that $\bigcap_{s \in S}[s, \infty) \cap K \neq \emptyset$.
- Thus $U=\bigcap_{s \in S}[s, \infty) \cap X \supset \bigcap_{s \in S}[s, \infty) \cap K \neq \emptyset$.

Complete (Sub-)Lattices in \mathbb{R}^{n}

Proposition 4.2
For a sublattice $K \subset \mathbb{R}^{n}$ of $\left(\mathbb{R}^{n}, \leq\right)$, K is a complete sublattice of $\left(\mathbb{R}^{n}, \leq\right)$ if and only if it is a compact set.

Proof

- "If" part:

Follows from Proposition 4.1.

- "Only if" part:

Boundedness: K is contained in a bounded set $\left\{x \in \mathbb{R}^{n} \mid \inf _{\mathbb{R}^{n}} K \leq x \leq \sup _{\mathbb{R}^{n}} K\right\}$.

Closedness: If $\left\{x^{k}\right\} \subset K$ and $x^{k} \rightarrow x^{*}$, then let $y^{k}=\inf _{\mathbb{R}^{n}}\left\{x^{m}\right\}_{m \geq k} \in K$, and let $\bar{y}=\sup _{\mathbb{R}^{n}}\left\{y^{k}\right\} \in K$.
Show that $x^{*}=\bar{y}$:

- For any $\varepsilon>0$, there exists k such that $\bar{y}-\varepsilon \mathbf{1} \leq y^{k}$, and hence $\bar{y}-\varepsilon \mathbf{1} \leq x^{m}$ for all $m \geq k$. Therefore, $\bar{y}-\varepsilon \mathbf{1} \leq x^{*}$. Since $\varepsilon>0$ is arbitrary, this implies $\bar{y} \leq x^{*}$.
- For any $\varepsilon>0$, there exists k such that $x^{*}-\varepsilon \mathbf{1} \leq x^{m}$ for all $m \geq k$, and hence $x^{*}-\varepsilon \mathbf{1} \leq y^{k}$. Therefore, $x^{*}-\varepsilon \mathbf{1} \leq \bar{y}$. Since $\varepsilon>0$ is arbitrary, this implies that $x^{*} \leq \bar{y}$.

Tarski's Fixed Point Theorem

- For partially ordered sets $(X, \precsim X)$ and $\left(Y, \precsim_{Y}\right)$, a function $f: X \rightarrow Y$ is non-decreasing (or isotone, or order-preserving) if $f(x) \precsim_{Y} f\left(x^{\prime}\right)$ whenever $x \precsim X x^{\prime}$.

Proposition 4.3 (Tarski's Fixed Point Theorem)

Suppose that (X, \precsim) is a complete lattice, and that $f: X \rightarrow X$ is a non-decreasing function. Let $X^{*} \subset X$ be the set of fixed points of f.

1. $\sup \{x \in X \mid x \precsim f(x)\}$ and $\inf \{x \in X \mid f(x) \precsim x\}$ are the greatest and the least elements of X^{*}.
In particular, $X^{*} \neq \emptyset$.
2. ($\left.X^{*}, \precsim\right)$ is a complete lattice.

- X^{*} is not a sublattice in X in general.

Proof

1.

- Let $X^{\prime}=\{x \in X \mid x \precsim f(x)\}$.
$X^{\prime} \neq \emptyset$ since $\inf X \in X^{\prime}$.
- Denote $x^{*}=\sup X^{\prime} \in X$.

We show that $x^{*} \in X^{*}$.

- Take any $x \in X^{\prime}$, where $x \precsim f(x)$ and $x \precsim x^{*}$.

By the monotonicity of f, we have $f(x) \precsim f\left(x^{*}\right)$, so that $x \precsim f\left(x^{*}\right)$.
Since this holds for any $x \in X^{\prime}$, we have

$$
\begin{equation*}
x^{*} \precsim f\left(x^{*}\right) . \tag{1}
\end{equation*}
$$

- By the monotonicity of f, (1) implies that $f\left(x^{*}\right) \precsim f\left(f\left(x^{*}\right)\right)$. This means that $f\left(x^{*}\right) \in X^{\prime}$.

Therefore, we have

$$
\begin{equation*}
f\left(x^{*}\right) \precsim x^{*} . \tag{2}
\end{equation*}
$$

- By (1) and (2), we have $x^{*}=f\left(x^{*}\right)$, i.e., $x^{*} \in X^{*}$.
- For any $x \in X^{*}$, we have $x \in X^{\prime}$, and therefore $x \precsim x^{*}$.

Thus, x^{*} is the greatest element of X^{*}.

- A symmetric argument shows that $\inf \{x \in X \mid f(x) \precsim x\}$ is the least element of X^{*}.
- Take any $S \subset X^{*}$.
- Denote $\bar{s}=\sup _{X} S \in X$ and $Z=\{x \in X \mid \bar{s} \precsim x\}$.
(Z, \precsim) is a complete lattice.
- We have $f(Z) \subset Z$.
- Take any $z \in Z$.
- For any $x \in S\left(\subset X^{*}\right)$, we have $x=f(x) \precsim f(\bar{s}) \precsim f(z)$.
- This shows that $\bar{s}=\sup _{X} S \precsim z$, i.e., $f(z) \in Z$.
- Thus, the restriction $\left.f\right|_{Z}$ of f to Z is a non-decreasing function from the complete lattice Z to itself.
- Let $Z^{*}\left(\subset X^{*}\right)$ denote the set of fixed points of $\left.f\right|_{Z}$, which is the set of upper bounds of S in X^{*}.

By part $1, Z^{*}$ has a least element, which is $\sup _{X^{*}} S$.

- A symmetric argument shows that $\inf _{X^{*}} S$ exists in X^{*}.
- Thus, $\left(X^{*}, \precsim\right)$ is a complete lattice.

Proposition 4.4
Suppose that $\left(X, \precsim_{X}\right)$ is a complete lattice and $\left(Y, \precsim_{Y}\right)$ is a lattice, and that $f: X \times Y \rightarrow X$ is a non-decreasing function.
Then the greatest and the least fixed points of $f(\cdot, y)$ are non-decreasing in y.

Proof

- Let $\bar{x}^{*}(y) \in X$ denote the greatest fixed point of $f(\cdot, y)$.
- Let $y^{\prime} \precsim y^{\prime \prime}$.

Let $Z=\left\{x \in X \mid \bar{x}^{*}\left(y^{\prime}\right) \precsim x\right\}$.
(Z, \precsim) is a complete lattice.

- $f\left(\cdot, y^{\prime \prime}\right)$ maps Z into itself:
for any $x \in Z$, we have

$$
\bar{x}^{*}\left(y^{\prime}\right)=f\left(\bar{x}^{*}\left(y^{\prime}\right), y^{\prime}\right) \precsim f\left(x, y^{\prime}\right) \precsim f\left(x, y^{\prime \prime}\right) .
$$

- By Tarski's Fixed Point Theorem, $f\left(\cdot, y^{\prime \prime}\right)$ has a fixed point in Z, and its greatest fixed point in Z is the greatest fixed point in X, that is, $\bar{x}^{*}\left(y^{\prime \prime}\right) \in Z$, or $\bar{x}^{*}\left(y^{\prime}\right) \precsim \bar{x}^{*}\left(y^{\prime \prime}\right)$.

Proposition 4.5
Let $X \subset \mathbb{R}^{n}$ be a compact set, and suppose that (X, \leq) has a least element \underline{x}. Suppose that $f: X \rightarrow X$ is non-decreasing and continuous.
Then the sequence $x^{k}=f\left(x^{k-1}\right)$ with $x^{0}=\underline{x}$ converges to the least fixed point.

Proof

- By the monotonicity of f, we have

$$
\begin{aligned}
& x^{0}=\underline{x} \leq f\left(x^{0}\right)=x^{1}, \\
& x^{1}=f\left(x^{0}\right) \leq f\left(x^{1}\right)=x^{2}, \\
& x^{2}=f\left(x^{1}\right) \leq f\left(x^{2}\right)=x^{3},
\end{aligned}
$$

- By the boundedness of X, x^{k} converges to some \underline{x}^{*}, and by the closedness of $X, \underline{x}^{*} \in X$.
- By the continuity of $f, \underline{x}^{*}=f\left(\underline{x}^{*}\right)$, i.e., \underline{x}^{*} is a fixed point of f.
- Let $\hat{x} \in X$ be a fixed point of f.
- By the monotonicity of f, we have

$$
\begin{aligned}
& x^{0}=\underline{x} \leq \hat{x} \\
& x^{1}=f\left(x^{0}\right) \leq f(\hat{x})=\hat{x} \\
& x^{2}=f\left(x^{1}\right) \leq f(\hat{x})=\hat{x}
\end{aligned}
$$

- Therefore, $\underline{x}^{*} \leq \hat{x}$.
- This shows that \underline{x}^{*} is the least fixed point.

Application: Games with Monotone Best Responses

- $\mathcal{I}=\{1, \ldots, I\}$: Set of players
- S_{i} : Set of strategies of player $i \in \mathcal{I}$

Partially ordered by \precsim_{i}

- Assumption: For all $i \in \mathcal{I},\left(S_{i}, \precsim_{i}\right)$ is a complete lattice.
- \precsim : Product partial order on $S=\prod_{i \in \mathcal{I}} S_{i}$
$\left(s_{i}\right)_{i \in \mathcal{I}} \precsim\left(s_{i}^{\prime}\right)_{i \in \mathcal{I}}$ if and only if $s_{i} \precsim i s_{i}^{\prime}$ for all $i \in \mathcal{I}$
- \precsim_{-i} : Product partial order on $S_{-i}=\prod_{j \neq i} S_{j}$
$\left(s_{j}\right)_{j \neq i} \precsim_{-i}\left(s_{j}^{\prime}\right)_{j \neq i}$ if and only if $s_{j} \precsim_{j} s_{j}^{\prime}$ for all $j \neq i$
- $u_{i}: S \rightarrow \mathbb{R}$: Payoff function of player $i \in \mathcal{I}$
- Denote this game by G.
- Best response correspondence (in pure strategies) of player i :

$$
b_{i}\left(s_{-i}\right)=\left\{s_{i} \in S_{i} \mid u_{i}\left(s_{i}, s_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}\right) \text { for all } s_{i} \in S_{i}\right\}
$$

- Assumption: G has monotone best responses,
i.e., for all $i \in \mathcal{I}$,
- for all $s_{-i} \in S_{-i}, b_{i}\left(s_{-i}\right)$ has a greatest element $\bar{b}_{i}\left(s_{-i}\right)$ and a least element $\underline{b}_{i}\left(s_{-i}\right)$, and
- $\bar{b}_{i}\left(s_{-i}\right)$ and $\underline{b}_{i}\left(s_{-i}\right)$ are non-decreasing in s_{-i}.
- (We will later discuss what conditions on the primitives of the game guarantee this assumption to hold.)

Examples

Coordination game:

	L_{2}	
L_{1}	R_{2}	
L_{1}	4,4	0,2
R_{1}	2,0	3,3

- $b_{i}\left(L_{j}\right)=L_{i}, b_{i}\left(R_{j}\right)=R_{i}$
- With orders $L_{i} \prec_{i} R_{i}$, the best responses are non-decreasing.

Battle of the sexes:

- $b_{i}\left(L_{j}\right)=R_{i}, b_{i}\left(R_{j}\right)=L_{i}$
- With orders $L_{1} \prec_{1} R_{1}$ and $R_{2} \prec_{2} L_{2}$, the best responses are non-decreasing.

Matching pennies:

	L_{2}	R_{2}
L_{1}	$1,-1$	$-1,1$
R_{1}	$-1,1$	$1,-1$

- $b_{1}\left(L_{2}\right)=L_{1}, b_{1}\left(R_{2}\right)=R_{1}$

$$
b_{2}\left(L_{1}\right)=R_{2}, b_{2}\left(R_{1}\right)=L_{2}
$$

- With any orders, the best responses cannot be non-decreasing simultaneously for both players.

Existence of Pure-Strategy Nash Equilibria

Proposition 4.6
Suppose that the game G has monotone best responses.
Then G has a pure-strategy Nash equilibrium.
In particular, there are a greatest and a least pure-strategy Nash equilibria.

Proof

- The function $\bar{b}: S \rightarrow S$ defined by $\bar{b}(s)=\left(\bar{b}_{1}\left(s_{-1}\right), \ldots, \bar{b}_{n}\left(s_{-i}\right)\right)$ is a non-decreasing function from the complete lattice S to itself.
- By Tarski's Fixed Point Theorem, a greatest fixed point of \bar{b} exists, which is the greatest pure-strategy Nash equilibrium.

Supermodular Functions

Definition 4.6

For a lattice (X, \precsim), a function $f: X \rightarrow \mathbb{R}$ is said to be supermodular if

$$
f(x)+f\left(x^{\prime}\right) \leq f\left(x \vee x^{\prime}\right)+f\left(x \wedge x^{\prime}\right)
$$

for all $x, x^{\prime} \in X$.

- f is said to be strictly supermodular if $f(x)+f\left(x^{\prime}\right)<f\left(x \vee x^{\prime}\right)+f\left(x \wedge x^{\prime}\right)$ whenever neither $x \precsim x^{\prime}$ nor $x^{\prime} \precsim x$.
- f is said to be (strictly) submodular if $-f$ is (strictly) supermodular.

Example

- Let $X=\left\{x \in \mathbb{R}^{2} \mid \underline{x} \leq x \leq \bar{x}\right\}$ for some $\underline{x}, \bar{x} \in \mathbb{R}^{2}$.

Suppose that $f: X \rightarrow \mathbb{R}$ is supermodular.

- Consider $\left(x_{1}^{\prime}, x_{2}^{\prime \prime}\right)$ and $\left(x_{1}^{\prime \prime}, x_{2}^{\prime}\right)$ with $x_{1}^{\prime} \leq x_{1}^{\prime \prime}$ and $x_{2}^{\prime} \leq x_{2}^{\prime \prime}$.

By the supermodularity of f, we have

$$
\begin{aligned}
& f\left(x_{1}^{\prime}, x_{2}^{\prime \prime}\right)+f\left(x_{1}^{\prime \prime}, x_{2}^{\prime}\right) \\
& \leq f\left(x_{1}^{\prime} \vee x_{1}^{\prime \prime}, x_{2}^{\prime \prime} \vee x_{2}^{\prime}\right)+f\left(x_{1}^{\prime} \wedge x_{1}^{\prime \prime}, x_{2}^{\prime \prime} \wedge x_{2}^{\prime}\right) \\
& =f\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}\right)+f\left(x_{1}^{\prime}, x_{2}^{\prime}\right)
\end{aligned}
$$

or $f\left(x_{1}^{\prime \prime}, x_{2}^{\prime}\right)-f\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \leq f\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}\right)-f\left(x_{1}^{\prime}, x_{2}^{\prime \prime}\right)$,
that is, f satisfies increasing differences in $\left(x_{1}, x_{2}\right)$.

- Conversely, if f satisfies increasing differences in $\left(x_{1}, x_{2}\right)$, then it is supermodular.

Example: Submodular Functions on \mathbb{R}^{2}

- Let $X=\left\{x \in \mathbb{R}^{2} \mid \underline{x} \leq x \leq \bar{x}\right\}$ for some $\underline{x}, \bar{x} \in \mathbb{R}^{2}$.

Suppose that $f: X \rightarrow \mathbb{R}$ is submodular (i.e., $-f$ is supermodular).

- Define the partial order \leq^{*} on \mathbb{R}^{2} by

$$
\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \leq^{*}\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}\right) \Longleftrightarrow x_{1}^{\prime} \leq x_{1}^{\prime \prime}, x_{2}^{\prime} \geq x_{2}^{\prime \prime}
$$

- Then f is supermodular with respect to \leq^{*} :

$$
\text { If }\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \leq^{*}\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}\right) \text {, then }
$$

$$
\begin{aligned}
f\left(x_{1}^{\prime \prime}, x_{2}^{\prime}\right)-f\left(x_{1}^{\prime}, x_{2}^{\prime}\right) & =-\left[\left(-f\left(x_{1}^{\prime \prime}, x_{2}^{\prime}\right)\right)-\left(-f\left(x_{1}^{\prime}, x_{2}^{\prime}\right)\right)\right] \\
& \leq-\left[\left(-f\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}\right)\right)-\left(-f\left(x_{1}^{\prime}, x_{2}^{\prime \prime}\right)\right)\right] \\
& =f\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}\right)-f\left(x_{1}^{\prime}, x_{2}^{\prime \prime}\right) .
\end{aligned}
$$

- This "trick" does not work with more than two variables.

Proposition 4.7

Let $X=\left\{x \in \mathbb{R}^{n} \mid \underline{x} \leq x \leq \bar{x}\right\}$ for some $\underline{x}, \bar{x} \in \mathbb{R}^{n}, \underline{x} \ll \bar{x}$, and suppose that $f: X \rightarrow \mathbb{R}$ is twice continuously differentiable on int X and continuous on X.
Then f is supermodular if and only if for all $i, j=1, \ldots, n, i \neq j$ $\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x) \geq 0$ for all $x \in \operatorname{int} X$.

- Example:

$$
f\left(x_{1}, x_{2}\right)=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}}, \alpha_{1}, \alpha_{2} \geq 0, \text { is supermodular on } \mathbb{R}_{+}^{2} .
$$

Optimization

Proposition 4.8
Let (X, \precsim) be a lattice.

- If $f: X \rightarrow \mathbb{R}$ is supermodular, then $\arg \max _{x \in X} f(x)$ is a sublattice of X.
- If f is strictly supermodular, then $\arg \max _{x \in X} f(x)$ is a chain, i.e., for any $x, x^{\prime} \in \arg \max _{x \in X} f(x), x \precsim x^{\prime}$ or $x^{\prime} \precsim x$.

Proof

1.

- Suppose that $x, x^{\prime} \in \arg \max _{x \in X} f(x)$.
- By supermodularity, we have

$$
0 \leq f(x)-f\left(x \wedge x^{\prime}\right) \leq f\left(x \vee x^{\prime}\right)-f\left(x^{\prime}\right) \leq 0
$$

which must hold with equality.

- Thus, $x \vee x^{\prime}, x \wedge x^{\prime} \in \arg \max _{x \in X} f(x)$.

2.

- If $x, x^{\prime} \in \arg \max _{x \in X} f(x)$, then we have $f\left(x \vee x^{\prime}\right)+f\left(x \wedge x^{\prime}\right) \leq f(x)+f\left(x^{\prime}\right)$.
- If neither $x \precsim x^{\prime}$ nor $x^{\prime} \precsim x$, then this contradicts the strict supermodularity.

Proposition 4.9

Let X and Y be lattices, and suppose that $f: X \times Y \rightarrow \mathbb{R}$ is supermodular.
Assume that $v(y)=\sup _{x \in X} f(x, y)$ is finite for all $y \in Y$.
Then v is supermodular.

Proof

- Let $y, y^{\prime} \in Y$.
- For any $x, x^{\prime} \in X$, we have

$$
\begin{aligned}
& v\left(y \vee_{Y} y^{\prime}\right)+v\left(y \wedge_{Y} y^{\prime}\right) \\
& \geq f\left(x \vee_{X} x^{\prime}, y \vee_{Y} y^{\prime}\right)+f\left(x \wedge_{X} x^{\prime}, y \wedge_{Y} y^{\prime}\right) \\
& \geq f(x, y)+f\left(x^{\prime}, y^{\prime}\right)
\end{aligned}
$$

- Since this holds for all $x, x^{\prime} \in X$, it follows that

$$
v\left(y \vee_{Y} y^{\prime}\right)+v\left(y \wedge_{Y} y^{\prime}\right) \geq v(y)+v\left(y^{\prime}\right) .
$$

Monotone Comparative Statics

Definition 4.7
For partially ordered sets $\left(X, \preceq_{X}\right)$ and $\left(Y, \precsim_{Y}\right)$, a function $f: X \times Y \rightarrow \mathbb{R}$ satisfies increasing differences in (x, y) if

$$
f\left(x^{\prime \prime}, y^{\prime}\right)-f\left(x^{\prime}, y^{\prime}\right) \leq f\left(x^{\prime \prime}, y^{\prime \prime}\right)-f\left(x^{\prime}, y^{\prime \prime}\right)
$$

whenever $x^{\prime} \precsim_{X} x^{\prime \prime}$ and $y^{\prime} \precsim_{Y} y^{\prime \prime}$.

Proposition 4.10

Suppose that

- $X \subset \mathbb{R}^{n}, X \neq \emptyset$, is compact and a lattice (with respect to \leq);
- $\left(Y \precsim_{Y}\right)$ is a partially ordered set; and
- $f: X \times Y \rightarrow \mathbb{R}$ satisfies the following:
- $f(\cdot, y)$ is continuous for each $y \in Y$;
- $f(\cdot, y)$ is supermodular for each $y \in Y$; and
- $f(x, y)$ satisfies increasing differences in (x, y).

Then

1. for each $y \in Y$, $\arg \max _{x \in X} f(x, y)$ is a nonempty, complete sublattice of X; and
2. its greatest and least elements are non-decreasing in y.

Proof

- Write $X^{*}(y)=\arg \max _{x \in X} f(x, y)$.
- By the compactness of X and the continuity of $f(\cdot, y)$, $X^{*}(y)$ is nonempty and compact.
- By the compactness, the lattice X is a complete lattice by Proposition 4.1.
- Thus, together with the supermodularity of $f(\cdot, y), X^{*}(y)$ is a sublattice of X by Proposition 4.8.
- Again by Proposition 4.1, $X^{*}(y)$ is a complete sublattice.
- Denote the greatest and the least elements of $X^{*}(y)$ by $\bar{x}^{*}(y)$ and $\underline{x}^{*}(y)$, respectively.
- Suppose that $y^{\prime} \precsim_{Y} y^{\prime \prime}$.

If $x^{\prime} \in X^{*}\left(y^{\prime}\right)$ and $x^{\prime \prime} \in X^{*}\left(y^{\prime \prime}\right)$, then

$$
\begin{aligned}
0 & \leq f\left(x^{\prime}, y^{\prime}\right)-f\left(x^{\prime} \wedge_{X} x^{\prime \prime}, y^{\prime}\right) & & \left(\text { by } x^{\prime} \in X^{*}\left(y^{\prime}\right)\right) \\
& \leq f\left(x^{\prime} \vee_{X} x^{\prime \prime}, y^{\prime}\right)-f\left(x^{\prime \prime}, y^{\prime}\right) & & \text { (by supermodularity) } \\
& \leq f\left(x^{\prime} \vee_{X} x^{\prime \prime}, y^{\prime \prime}\right)-f\left(x^{\prime \prime}, y^{\prime \prime}\right) & & (\text { by increasing differences) } \\
& \leq 0 & & \left(\text { by } x^{\prime \prime} \in X^{*}\left(y^{\prime \prime}\right)\right)
\end{aligned}
$$

which must hold with equality.

- Thus, $x^{\prime} \wedge_{X} x^{\prime \prime} \in X^{*}\left(y^{\prime}\right)$ and $x^{\prime} \vee_{X} x^{\prime \prime} \in X^{*}\left(y^{\prime \prime}\right)$.
- In particular, we must have
- $\underline{x}^{*}\left(y^{\prime}\right) \precsim X \underline{x}^{*}\left(y^{\prime}\right) \wedge_{X} \underline{x}^{*}\left(y^{\prime \prime}\right)$, so that $\underline{x}^{*}\left(y^{\prime}\right) \precsim X \underline{x}^{*}\left(y^{\prime \prime}\right)$; and
- $\bar{x}^{*}\left(y^{\prime}\right) \vee_{X} \bar{x}^{*}\left(y^{\prime \prime}\right) \precsim X \bar{x}^{*}\left(y^{\prime \prime}\right)$, so that $\bar{x}^{*}\left(y^{\prime}\right) \precsim X \bar{x}^{*}\left(y^{\prime \prime}\right)$.

Supermodular Games

- $\mathcal{I}=\{1, \ldots, I\}$: Set of players
- $S_{i} \subset \mathbb{R}^{n_{i}}:$ Set of strategies of player $i \in \mathcal{I}$

Partially ordered by \leq on $\mathbb{R}^{n_{i}}$

- $S_{i} \subset \mathbb{R}^{n_{i}}:$ compact
- $u_{i}: S \rightarrow \mathbb{R}$: Payoff function of player $i \in \mathcal{I} \quad\left(S=\prod_{j \in \mathcal{I}} S_{j}\right)$
- $u_{i}\left(s_{i}, s_{-i}\right)$: continuous in s_{i} for each s_{-i} and continuous in s_{-i} for each s_{i}
- Denote this game by G.
- G is called a supermodular game if for each $i \in \mathcal{I}$,
- S_{i} is a complete lattice;
- $u_{i}\left(s_{i}, s_{-i}\right)$ is supermodular in s_{i} for each s_{-i}; and
- $u_{i}\left(s_{i}, s_{-i}\right)$ satisfies increasing differences in $\left(s_{i}, s_{-i}\right)$.

Smooth Supermodular Games

- The game is supermodular if the following are satisfied:

For each $i \in \mathcal{I}$:

- $S_{i}=\left\{s_{i} \in \mathbb{R}^{n_{i}} \mid \underline{s}_{i} \leq s_{i} \leq \bar{s}_{i}\right\}$ for some $\underline{s}_{i} \ll \bar{s}_{i}$;
- u_{i} is twice continuously differentiable on $\operatorname{int} S$, and continuous on S;
- for all $s \in \operatorname{int} S, \frac{\partial^{2} u_{i}}{\partial s_{i k} \partial s_{i i}}(s) \geq 0$ for all $k, \ell=1, \ldots, n_{i}, k \neq \ell$.
- for all $s \in \operatorname{int} S, \frac{\partial^{2} u_{i}}{\partial s_{i k} \partial s_{j m}}(s) \geq 0$ for all $j \neq i$, and for all $k=1, \ldots, n_{i}$ and all $m=1, \ldots, n_{j}$.

Proposition 4.11

Suppose that the game G is a supermodular game.

1. G has monotone best responses,
i.e., the greatest and the least best responses $\bar{b}_{i}\left(s_{-i}\right)$ and $\underline{b}_{i}\left(s_{-i}\right)$ are well defined and non-decreasing in s_{-i}.
2. G has a greatest and a least pure-strategy Nash equilibria \bar{s}^{*} and \underline{s}^{*}.
3. Let $\bar{s}=\left(\bar{s}_{i}\right)_{i \in \mathcal{I}}$ and $\underline{s}=\left(\underline{s}_{i}\right)_{i \in \mathcal{I}}$ be the greatest and the least strategy profiles. Then the sequences $\bar{s}^{k}=\bar{b}\left(\bar{s}^{k-1}\right), \bar{s}^{0}=\bar{s}$ and $\underline{s}^{k}=\underline{b}\left(\underline{s}^{k-1}\right), \underline{s}^{0}=\underline{s}$ converge to \bar{s}^{*} and \underline{s}^{*}, respectively (where $\bar{b}(s)=\left(\bar{b}_{i}\left(s_{-i}\right)\right)_{i \in \mathcal{I}}$ and $\left.\underline{b}(s)=\left(\underline{b}_{i}\left(s_{-i}\right)\right)_{i \in \mathcal{I}}\right)$.

Proof

- Part 1: By Proposition 4.10.
- Part 2: By Proposition 4.6.
- Part 3:
$\left\{\underline{s}^{k}\right\}$ is increasing and bounded above, and thus converges to some $s^{*} \in S$.
- For any $s_{i} \in S_{i}, u_{i}\left(\underline{s}_{i}^{k}, \underline{s}_{-i}^{k-1}\right) \geq u_{i}\left(s_{i}, \underline{s}_{-i}^{k-1}\right)$ for all k.

By continuity, letting $k \rightarrow \infty$ we have

$$
\begin{equation*}
u_{i}\left(s_{i}^{*}, s_{-i}^{*}\right) \geq u_{i}\left(s_{i}, s_{-i}^{*}\right) \tag{*}
\end{equation*}
$$

Thus, s^{*} is a Nash equilibrium.

- For any Nash equilibrium $\hat{s}, \underline{s}^{0} \leq \hat{s}, \underline{s}^{1}=\underline{b}\left(\underline{s}^{0}\right) \leq \underline{b}(\hat{s}) \leq \hat{s}$, \ldots, and hence $s^{*} \leq \hat{s}$, i.e., s^{*} is the least Nash equilibrium.
- Proof of $(*)$:

Suppose that $f(x, y)$ is continuous in x for each y and in y for each y and satisfies increasing differences in (x, y).

If $\left\{\left(x^{k}, y^{k}\right)\right\}$ is non-decreasing and converges to $\left(x^{*}, y^{*}\right)$, then $\lim _{k \rightarrow \infty} f\left(x^{k}, y^{k}\right)=f\left(x^{*}, y^{*}\right)$.

- $f\left(x^{*}, y^{*}\right)-f\left(x^{k}, y^{k}\right)=$ $f\left(x^{*}, y^{*}\right)-f\left(x^{*}, y^{k}\right)+f\left(x^{*}, y^{k}\right)-f\left(x^{k}, y^{k}\right)$, where by increasing differences,

$$
f\left(x^{*}, y^{0}\right)-f\left(x^{k}, y^{0}\right) \leq f\left(x^{*}, y^{k}\right)-f\left(x^{k}, y^{k}\right) \leq f\left(x^{*}, y^{*}\right)-f\left(x^{k}, y^{*}\right)
$$

- Therefore,

$$
\begin{aligned}
& {\left[f\left(x^{*}, y^{*}\right)-f\left(x^{*}, y^{k}\right)\right]+\left[f\left(x^{*}, y^{0}\right)-f\left(x^{k}, y^{0}\right)\right]} \\
& \leq f\left(x^{*}, y^{*}\right)-f\left(x^{k}, y^{k}\right) \\
& \leq\left[f\left(x^{*}, y^{*}\right)-f\left(x^{*}, y^{k}\right)\right]+\left[f\left(x^{*}, y^{*}\right)-f\left(x^{k}, y^{*}\right)\right]
\end{aligned}
$$

where the left and the right hand sides go to 0 as $k \rightarrow \infty$ by continuity in x (for $y=y^{0}, y^{*}$) and in y (for $x=x^{*}$).

Example: Bertrand Game with Differentiated Products

- Firms: $\mathcal{I}=\{1, \ldots, I\}$
- Strategy space of $i: S_{i}=\left[0, \bar{p}_{i}\right]$ (prices)
- $d_{i}\left(p_{i}, p_{-i}\right)$: Demand for i 's product
- $\frac{\partial d_{i}}{\partial p_{i}}<0$
- $\frac{\partial d_{i}}{\partial p_{j}}>0, j \neq i$ (substitutability)
- C_{i} : Total cost
- $C_{i}^{\prime \prime} \geq 0$
- Payoff function of i :

$$
u_{i}\left(p_{i}, p_{-i}\right)=p_{i} d_{i}\left(p_{i}, p_{-i}\right)-C_{i}\left(d_{i}\left(p_{i}, p_{-i}\right)\right)
$$

- Cross derivatives:

$$
\frac{\partial^{2} u_{i}}{\partial p_{i} \partial p_{j}}=\left(p_{i}-C_{i}^{\prime}\right) \frac{\partial^{2} d_{i}}{\partial p_{i} \partial p_{j}}+\left(1-C_{i}^{\prime \prime} \frac{\partial d_{i}}{\partial p_{i}}\right) \frac{\partial u_{i}}{\partial p_{j}}
$$

Second term >0

- With linear demand $d_{i}\left(p_{i}, p_{-i}\right)=a_{i}-b_{i} p_{i}+g_{i j} \sum_{j \neq i} p_{j}$, $b_{i}, g_{i j}>0$ (Problem 7.7),
we have $\frac{\partial^{2} d_{i}}{\partial p_{i} \partial p_{j}}=0$ and therefore $\frac{\partial^{2} u_{i}}{\partial p_{i} \partial p_{j}}>0$, so that the game is supermodular.

Example: Cournot Game with Two Firms

- Firms: $\mathcal{I}=\{1,2\}$
- Strategy space of $1: S_{1}=\left[0, \bar{x}_{1}\right]$ (quantities)

Strategy space of 2: $S_{2}=\left[-\bar{x}_{2}, 0\right]$ (negative of quantities)

- $P(Q)$: Inverse demand
- $Q=x_{1}+\left(-x_{2}\right)$: total supply
- $P^{\prime}<0$
- C_{i} : Total cost
- Payoff functions:

$$
\begin{aligned}
& u_{1}\left(x_{1}, x_{2}\right)=P\left(x_{1}-x_{2}\right) x_{1}-C_{1}\left(x_{1}\right) \\
& u_{2}\left(x_{1}, x_{2}\right)=P\left(x_{1}-x_{2}\right)\left(-x_{2}\right)-C_{2}\left(-x_{2}\right)
\end{aligned}
$$

- Cross derivatives:

$$
\begin{aligned}
& \frac{\partial^{2} u_{1}}{\partial x_{1} \partial x_{2}}=-P^{\prime \prime}\left(x_{1}-x_{2}\right) x_{1}-P^{\prime}\left(x_{1}-x_{2}\right) \\
& \frac{\partial^{2} u_{2}}{\partial x_{2} \partial x_{1}}=P^{\prime \prime}\left(x_{1}-x_{2}\right) x_{2}-P^{\prime}\left(x_{1}-x_{2}\right) \\
&-P^{\prime}>0
\end{aligned}
$$

- With linear inverse demand $P(Q)=1-Q$ (Problem 7.8), we have $P^{\prime \prime}=0$ and therefore $\frac{\partial^{2} u_{i}}{\partial x_{i} \partial x_{-i}}>0$, so that the game is supermodular.

Application: Stable Matchings

- M : Set of men
- W : Set of women
- Assume $|M|=|W|$.
- Each $m \in M$ has a strict preference ordering $>^{m}$ over $W \cup\{m\}$;
each $w \in W$ has a strict preference ordering $>^{w}$ over $M \cup\{w\}$.
$x>^{i} y \cdots i$ ranks x above y.
- Assume
- for all $m \in M, w>^{m} m$ for all $w \in W$; and
- for all $w \in W, m>^{w} w$ for all $m \in M$.
- Write $x \geq^{i} y$ for "not $y>^{i} x$ " ($\Longleftrightarrow " x>^{i} y$ or $x=y$ " $)$.
- A matching is a function $\mu: M \cup W \rightarrow M \cup W$ such that
- $\mu(m) \in W \cup\{m\}$ for all $m \in M$;
- $\mu(w) \in M \cup\{w\}$ for all $w \in W$; and
- $\mu(m)=w$ if and only if $\mu(w)=m$.
- A pair $(m, w) \in M \times W$ is a blocking pair for matching μ if $w>^{m} \mu(m)$ and $m>^{w} \mu(w)$.
- Matching μ is stable if there is no blocking pair for μ.
(By assumption, individual rationality is satisfied.)
- Example:

M				W			
$m_{1}:$	w_{2}	w_{1}	w_{3}	$w_{1}:$	m_{1}	m_{3}	m_{2}
$m_{2}:$	w_{1}	w_{3}	w_{2}	$w_{2}:$	m_{3}	m_{1}	m_{2}
$m_{3}:$	w_{1}	w_{2}	w_{3}	$w_{3}:$	m_{1}	m_{3}	m_{2}

- $\left\{\left(m_{1}, w_{1}\right),\left(m_{2}, w_{2}\right),\left(m_{3}, w_{3}\right)\right\}$ is not stable.
$\because\left(m_{1}, w_{2}\right)$ is a blocking pair.
- $\left\{\left(m_{1}, w_{1}\right),\left(m_{2}, w_{3}\right),\left(m_{2}, w_{3}\right)\right\}$ is stable.

Proposition 4.12

There exists a stable matching.
Moreover, there exist

- a stable matching that is most preferred by all $m \in M$ and least preferred by all $w \in W$ among all stable matchings; and
- a stable matching that is most preferred by all $w \in W$ and least preferred by all $m \in M$ among all stable matchings.
- First (formulated and) proved by Gale and Shapley (1962) via the "deferred acceptance algorithm".
- We prove by Tarski's Fixed Point Theorem.
- A semi-matching (or pre-matching) is a function $\mu: M \cup W \rightarrow M \cup W$ such that
- $\mu(m) \in W \cup\{m\}$ for all $m \in M$; and
- $\mu(w) \in M \cup\{w\}$ for all $w \in W$.
- X_{0} : Set of all semi-matchings
$X \subset X_{0}$: Set of all matchings
- Define the function $f: X_{0} \rightarrow X_{0}$ by the following: for $\mu \in X_{0}$,

$$
\begin{aligned}
& f(\mu)(m)=\underset{>m}{\arg \max }\left\{w \in W \mid m \geq^{w} \mu(w)\right\} \cup\{m\}, \\
& f(\mu)(w)=\underset{>_{w}}{\arg \max }\left\{m \in M \mid w \geq^{m} \mu(m)\right\} \cup\{w\} .
\end{aligned}
$$

- X^{*} : Set of fixed points of f

Proposition 4.13
Any fixed point of f is a matching, i.e., $X^{*} \subset X$.

Proof

- Suppose that $f(\mu)=\mu$.
- Suppose that $\mu(m)=w$.
- Then $f(\mu)(m)=w$, which implies $m \geq^{w} \mu(w)$.
- Also $f(\mu)(w) \geq^{w} m$, and therefore $\mu(w) \geq^{w} m$.
- Hence $\mu(w)=m$.
- A symmetric argument shows that

$$
\mu(w)=m \Longrightarrow \mu(m)=w
$$

Proposition 4.14
μ is a stable matching if and only if it is a fixed point of f, i.e., $\mu \in X^{*}$.

Proof

- Suppose that $\mu \in X^{*}(\subset X)$.

If $w>^{m} \mu(m)$, then $f(\mu)(w) \geq^{w} m$, hence $\mu(w) \geq^{w} m$.
Hence there is no blocking pair.

- Suppose that $\mu \in X \backslash X^{*}$.

Suppose that there exists $m \in M$ such that $w=\mu(m) \neq w^{\prime}=f(\mu)(m)$.
Then $m>^{w^{\prime}} \mu\left(w^{\prime}\right)$ and $w^{\prime}>^{m} \mu(m)$.
Hence $\left(m, w^{\prime}\right)$ is a blocking pair.

Proposition 4.15
f has a fixed point, i.e., $X^{*} \neq \emptyset$.

Proof

- Define the partial order \succsim on X_{0} as follows: $\mu \succsim \nu$ if and only if
- $\mu(m) \geq^{m} \nu(m)$ for all $m \in M$, and - $\nu(w) \geq^{w} \mu(w)$ for all $w \in W$.
- Then $\left(X_{0}, \succsim\right)$ is a complete lattice.
- $f: X_{0} \rightarrow X_{0}$ is non-decreasing:

Suppose that $\mu \succsim \nu$.

- By $\nu(w) \geq^{w} \mu(w)$, we have $m \geq^{w} \nu(w) \Longrightarrow m \geq^{w} \mu(w)$.

Therefore, $f(\mu)(m) \geq^{m} f(\nu)(m)$.

- By $\mu(m) \geq^{m} \nu(m)$, we have $w \geq^{m} \mu(m) \Longrightarrow w \geq^{m} \nu(m)$.

Therefore, $f(\nu)(w) \geq^{w} f(\mu)(w)$.

- Thus, by Tarski's Fixed Point Theorem, $X^{*} \neq \emptyset$.

In particular, X^{*} has a greatest element (best for M and worst for W) and a least element (worst for M and best for W).

Problem 3, Homework 4

1. By Tarski's Fixed Point Theorem, f has a greatest fixed point \bar{x}^{*}.
2. Let $X^{\prime}=\left\{x \in X \mid \bar{x}^{*} \leq x\right\}$.

- For $x \in X^{\prime}$, we have $g(x) \geq f(x) \geq f\left(\bar{x}^{*}\right)=\bar{x}^{*}$, so that $g(x) \in X^{\prime}$.
- Thus, g maps the compact convex set X^{\prime} to X^{\prime}.
- By Brouwer's Fixed Point Theorem, g has a fixed point $x^{* *}$ in X^{\prime}.
- For any fixed point x^{*} of f, we have $x^{*} \leq \bar{x}^{*} \leq x^{* *}$.

