4. Lattices and Supermodularity

Daisuke Oyama

Mathematical Economics

This version: July 3, 2023

Partially Ordered Sets

Definition 4.1

A binary relation \precsim on a set X is a *partial order* if it satisfies the following:

► Transitivity:

 $\text{for all } x,y,z\in X\text{, if } x\precsim y \text{ and } y\precsim z\text{, then } x\precsim z.$

- Reflexivity: for all $x \in X$, $x \preceq x$.
- Antisymmetry: for all $x, y \in X$, if $x \preceq y$ and $y \preceq x$, then x = y.

A partially ordered set (or poset) is a set X with a partial order ∠ on X, denoted (X, ∠).

Examples

• (\mathbb{R}, \leq) , where \leq is the usual order on \mathbb{R} .

In fact, it is a totally ordered set:

 \leq also satisfies *completeness*: for all $x, y \in \mathbb{R}$, $x \leq y$ or $y \leq x$.

- (\mathbb{R}^n, \leq) , where \leq is the vector order on \mathbb{R}^n .
- $(2^X, \subset)$, where 2^X is the set of all subsets of a set X, and \subset is set inclusion.

Upper/lower bounds, ...

- Let (X, \preceq) be a partially ordered set, and let $S \subset X$.
- $x \in X$ is an upper bound of S if $y \preceq x$ for all $y \in S$.

 $x \in X$ is a *lower bound* of S if $x \preceq y$ for all $y \in S$.

★ x ∈ X is a greatest (or largest) element of S if x ∈ S, and x is an upper bound of S.

 $x \in X$ is a *least* (or *smallest*) *element* of S if $x \in S$, and x is a lower bound of S.

• $x \in X$ is a maximal element of S if $x \in S$, and $x \preceq y$ and $y \in S \implies y = x$. $x \in X$ is a minimal element of S if $x \in S$, and $y \preceq x$ and $y \in S \implies y = x$. If the set of upper bounds of S has a least element, then it is called the *least upper bound*, or *supremum*, of S, and denoted sup_X S.

That is, $x = \sup_X S$ if and only if

1. $y \preceq x$ for all $y \in S$; and

- 2. if $y \preceq z$ for all $y \in S$, then $x \preceq z$.
- If the set of lower bounds of S has a greatest element, then it is called the greatest lower bound, or infimum, of S, and denoted inf_X S.

That is, $x = \inf_X S$ if and only if

1. $x \preceq y$ for all $y \in S$; and

2. if $z \precsim y$ for all $y \in S$, then $z \precsim x$.

▶ $\sup_X S$ is a greatest (least) element of S if and only if $\sup_X S \in S$ (inf_X $S \in S$).

(Abstract) Lattices

For $x, y \in X$, write

 $x \lor_X y = \sup_X \{x, y\}, \quad x \land_X y = \inf_X \{x, y\}.$

(If there is no risk of confusion, we just write $x \lor y$ and $x \land y$.)

Definition 4.2

A partially ordered set (X, \preceq) is a *lattice* if $x \lor_X y$ and $x \land_X y$ exist for all $x, y \in X$.

Example

▶ (\mathbb{R}, \leq) is a lattice.

 $x \lor y = \max\{x, y\}, \ x \land y = \min\{x, y\}$

▶ (\mathbb{R}^n, \leq) is a lattice.

x ∨ y ∈ ℝⁿ: the vector such that (x ∨ y)_i = max{x_i, y_i}
x ∧ y ∈ ℝⁿ: the vector such that (x ∧ y)_i = min{x_i, y_i}

▶ $(2^X, \subset)$ is a lattice.

 $\blacktriangleright S \lor T = S \cup T, \ S \land T = S \cap T$

▶ $X = \{(0,0), (1,0), (0,1)\} \subset \mathbb{R}^2$

 (X,\leq) is not a lattice.

▶ The set of upper bounds of $\{(1,0), (0,1)\}$ is empty, so $(1,0) \lor_X (0,1)$ does not exist.

▶ $X = \{(0,0), (1,0), (0,1), (2,2)\} \subset \mathbb{R}^2$ (X, ≤) is a lattice.

$$(1,0) \lor_X (0,1) = (2,2)$$

• Note that $(1,0) \vee_{\mathbb{R}^2} (0,1) = (1,1)$.

 $\implies X \text{ is not a sublattice of } (\mathbb{R}^2, \leq) \text{ (to be defined later).}$

▶
$$X = \{(0,0), (1,0), (0,1)\} \cup \{(x_1, x_2) \mid x_1 = x_2, x_1 > 2\} \subset \mathbb{R}^2$$

 (X, \leq) is not a lattice.

▶ The set of upper bounds of $\{(1,0), (0,1)\}$, $\{(x_1,x_2) \mid x_1 = x_2, x_1 > 2\}$, does not have a least element.

Sublattices

Definition 4.3 For a lattice (X, \preceq) , $K \subset X$ is a *sublattice* of (X, \preceq) if $x \lor_X y \in K$ and $x \land_X y \in K$ for all $x, y \in K$.

- ▶ If $K \subset X$ is a sublattice of (X, \preceq) , then (K, \preceq) is a lattice, but not vice versa.
- ► (According to this definition, Definition 7.1 in the textbook is defining a sublattice of ℝⁿ.)
- ▶ $X = \{(0,0), (1,0), (0,1), (1,1)\}$ is a sublattice of (\mathbb{R}^2, \leq) .

• $X = \{(0,0), (1,0), (0,1), (2,2)\}$ is not a sublattice of (\mathbb{R}^2, \leq) .

Complete Lattices

Definition 4.4 A lattice (X, \preceq) is *complete* if $\sup_X S$ and $\inf_X S$ exist for all $S \subset X$ (where $\sup_X \emptyset = \inf_X X$ and $\inf_X \emptyset = \sup_X X$ by convention).

- This property is called "compact" in the textbook. We follow the "standard" terminology here.
- Any lattice (X, ≺) with finite X is a complete lattice, but not always if X is infinite.
- $\blacktriangleright X = [0,1] \subset \mathbb{R}$

 (X,\leq) is a complete lattice.

•
$$X = [0,1) \subset \mathbb{R}$$

 (X, \leq) is not a complete lattice.

•
$$X = [0,1) \cup \{2\} \subset \mathbb{R}$$

 (X, \leq) is a complete lattice.

- $\blacktriangleright \ \mathrm{sup}_X[0,1) = 2$
- Note that $\sup_{\mathbb{R}}[0,1) = 1$.

 $\implies X$ is not a complete sublattice of (\mathbb{R}, \leq) .

Complete Sublattices

Definition 4.5

For a lattice (X, \preceq) , $K \subset X$ is a complete sublattice of (X, \preceq) if $\sup_X S$ and $\inf_X S$ exist in K for all $S \subset K$, $S \neq \emptyset$.

Complete (Sub-)Lattices in \mathbb{R}^n

Proposition 4.1

- 1. If $K \subset \mathbb{R}^n$, $K \neq \emptyset$, is compact and (K, \leq) is a lattice, then (K, \leq) is a complete lattice.
- 2. For $X \subset \mathbb{R}^n$, suppose that (X, \leq) is a lattice.

If $K \subset X$ is compact and a sublattice of (X, \leq) , then K is a complete sublattice of (X, \leq) .

Part 1 is a special case of part 2. (Let K = X.)

Proof

2.

• Let $S \subset K$, $S \neq \emptyset$.

We want to show that $\sup_X S$ exists in K. (The existence of $\inf_X S$ in K can be shown symmetrically.)

Let
$$U \subset X$$
 be the set of upper bounds of S in X :
 $U = \{u \in X \mid s \le u \text{ for all } s \in S\}.$

For the moment, assume that $U \neq \emptyset$. We prove this later.

▶ For $(s, u) \in S \times U$, write $[s, u] = \{x \in \mathbb{R}^n \mid s \le x \le u\}$, which is a closed set.

• We want to show that $\bigcap_{(s,u)\in S\times U}[s,u]\cap K\neq \emptyset$.

If
$$\underline{u} \in igcap_{(s,u) \in S imes U}[s,u] \cap K$$
, ther

- $\blacktriangleright \underline{u} \in K \ (\subset X);$
- ▶ $s \leq \underline{u}$ for all $s \in S$: \underline{u} is an upper bound of S;
- $\underline{u} \leq u$ for all $u \in U$. $\therefore \sup_X S = \underline{u} \in K$.

- ▶ Take any $(s^1, u^1), \ldots, (s^K, u^K) \in S \times U$.
- Since X is a lattice, $\overline{s} = \sup_X \{s^1, \dots, s^K\}$ exists in X.

Since K is a sublattice of X,
$$\overline{s} \in K$$
.

- For each k = 1, ..., K, since u^k is an upper bound of $\{s^1, ..., s^K\}$, we have $\overline{s} \le u^k$.
- Therefore $\bigcap_{k=1}^{K} [s^k, u^k] \cap K \neq \emptyset$.
- ▶ By the compactness of K, this implies that $\bigcap_{(s,u)\in S\times U}[s,u]\cap K\neq \emptyset.$
- Finally, we show that $U \neq \emptyset$.
 - Write $[s, \infty) = \{x \in \mathbb{R}^n \mid s \le x\}$, which is a closed set.
 - By the compactness of K, a similar argument as above shows that ∩_{s∈S}[s,∞) ∩ K ≠ Ø.
 - $\blacktriangleright \ \, {\sf Thus} \ U = {\textstyle \bigcap_{s \in S}} [s,\infty) \cap X \supset {\textstyle \bigcap_{s \in S}} [s,\infty) \cap K \neq \emptyset.$

Complete (Sub-)Lattices in \mathbb{R}^n

Proposition 4.2

For a sublattice $K \subset \mathbb{R}^n$ of (\mathbb{R}^n, \leq) , K is a complete sublattice of (\mathbb{R}^n, \leq) if and only if it is a compact set.

Proof

"If" part:

Follows from Proposition 4.1.

"Only if" part:

Boundedness: K is contained in a bounded set $\{x \in \mathbb{R}^n \mid \inf_{\mathbb{R}^n} K \leq x \leq \sup_{\mathbb{R}^n} K\}.$

Closedness: If $\{x^k\} \subset K$ and $x^k \to x^*$, then let $y^k = \inf_{\mathbb{R}^n} \{x^m\}_{m \ge k} \in K$, and let $\bar{y} = \sup_{\mathbb{R}^n} \{y^k\} \in K$. Show that $x^* = \bar{y}$:

- For any $\varepsilon > 0$, there exists k such that $\overline{y} \varepsilon \mathbf{1} \le y^k$, and hence $\overline{y} \varepsilon \mathbf{1} \le x^m$ for all $m \ge k$. Therefore, $\overline{y} \varepsilon \mathbf{1} \le x^*$. Since $\varepsilon > 0$ is arbitrary, this implies $\overline{y} \le x^*$.
- For any $\varepsilon > 0$, there exists k such that $x^* \varepsilon \mathbf{1} \le x^m$ for all $m \ge k$, and hence $x^* \varepsilon \mathbf{1} \le y^k$. Therefore, $x^* \varepsilon \mathbf{1} \le \overline{y}$. Since $\varepsilon > 0$ is arbitrary, this implies that $x^* \le \overline{y}$.

Tarski's Fixed Point Theorem

For partially ordered sets (X, ∠X) and (Y, Y), a function f: X → Y is non-decreasing (or isotone, or order-preserving) if f(x) ∠Y f(x') whenever x ∠X x'.

Proposition 4.3 (Tarski's Fixed Point Theorem)

Suppose that (X, \preceq) is a complete lattice, and that $f: X \to X$ is a non-decreasing function. Let $X^* \subset X$ be the set of fixed points of f.

1. $\sup\{x \in X \mid x \preceq f(x)\}$ and $\inf\{x \in X \mid f(x) \preceq x\}$ are the greatest and the least elements of X^* . In particular, $X^* \neq \emptyset$.

2.
$$(X^*, \precsim)$$
 is a complete lattice.

Proof

1.

• Let $X' = \{x \in X \mid x \preceq f(x)\}.$ $X' \neq \emptyset$ since $\inf X \in X'.$

• Denote
$$x^* = \sup X' \in X$$
.

We show that $x^* \in X^*$.

• Take any $x \in X'$, where $x \preceq f(x)$ and $x \preceq x^*$.

By the monotonicity of f, we have $f(x)\precsim f(x^*),$ so that $x\precsim f(x^*).$

Since this holds for any $x \in X'$, we have

$$x^* \precsim f(x^*). \tag{1}$$

By the monotonicity of f, (1) implies that f(x*) ∠ f(f(x*)).
 This means that f(x*) ∈ X'.
 Therefore, we have

 $f(x^*) \precsim x^*. \tag{2}$

• By (1) and (2), we have $x^* = f(x^*)$, i.e., $x^* \in X^*$.

For any x ∈ X*, we have x ∈ X', and therefore x ≍ x*. Thus, x* is the greatest element of X*.

A symmetric argument shows that inf{x ∈ X | f(x) ≍ x} is the least element of X*. • Take any $S \subset X^*$.

▶ Denote $\bar{s} = \sup_X S \in X$ and $Z = \{x \in X \mid \bar{s} \preceq x\}$. (Z, \si) is a complete lattice.

- We have $f(Z) \subset Z$.
 - Take any $z \in Z$.

For any $x \in S$ ($\subset X^*$), we have $x = f(x) \preceq f(\overline{s}) \preceq f(z)$.

• This shows that $\bar{s} = \sup_X S \preceq z$, i.e., $f(z) \in Z$.

Thus, the restriction f|Z of f to Z is a non-decreasing function from the complete lattice Z to itself.

Let Z^{*} (⊂ X^{*}) denote the set of fixed points of f|_Z, which is the set of upper bounds of S in X^{*}.

By part 1, Z^* has a least element, which is $\sup_{X^*} S$.

- A symmetric argument shows that $\inf_{X^*} S$ exists in X^* .
- ▶ Thus, (X^*, \preceq) is a complete lattice.

Proposition 4.4

Suppose that (X, \preceq_X) is a complete lattice and (Y, \preceq_Y) is a lattice, and that $f: X \times Y \to X$ is a non-decreasing function. Then the greatest and the least fixed points of $f(\cdot, y)$ are non-decreasing in y.

Proof

• Let $\bar{x}^*(y) \in X$ denote the greatest fixed point of $f(\cdot, y)$.

for any $x \in Z$, we have

$$\bar{x}^*(y') = f(\bar{x}^*(y'), y') \precsim f(x, y') \precsim f(x, y'').$$

▶ By Tarski's Fixed Point Theorem, f(·, y") has a fixed point in Z, and its greatest fixed point in Z is the greatest fixed point in X,

that is,
$$\bar{x}^*(y'') \in Z$$
, or $\bar{x}^*(y') \precsim \bar{x}^*(y'')$.

Proposition 4.5

Let $X \subset \mathbb{R}^n$ be a compact set, and suppose that (X, \leq) has a least element \underline{x} . Suppose that $f: X \to X$ is non-decreasing and continuous.

Then the sequence $x^k = f(x^{k-1})$ with $x^0 = \underline{x}$ converges to the least fixed point.

Proof

By the monotonicity of f, we have

$$\begin{aligned} x^{0} &= \underline{x} \leq f(x^{0}) = x^{1}, \\ x^{1} &= f(x^{0}) \leq f(x^{1}) = x^{2}, \\ x^{2} &= f(x^{1}) \leq f(x^{2}) = x^{3}, \\ . \end{aligned}$$

- ▶ By the boundedness of X, x^k converges to some \underline{x}^* , and by the closedness of X, $\underline{x}^* \in X$.
- By the continuity of f, <u>x</u>^{*} = f(<u>x</u>^{*}), i.e., <u>x</u>^{*} is a fixed point of f.

- Let $\hat{x} \in X$ be a fixed point of f.
- By the monotonicity of f, we have

$$\begin{split} x^{0} &= \underline{x} \leq \hat{x}, \\ x^{1} &= f(x^{0}) \leq f(\hat{x}) = \hat{x}, \\ x^{2} &= f(x^{1}) \leq f(\hat{x}) = \hat{x}, \\ &\vdots \end{split}$$

• Therefore, $\underline{x}^* \leq \hat{x}$.

• This shows that \underline{x}^* is the least fixed point.

Application: Games with Monotone Best Responses

• $\mathcal{I} = \{1, \dots, I\}$: Set of players

► S_i: Set of strategies of player $i \in \mathcal{I}$ Partially ordered by $≺_i$

- ▶ Assumption: For all $i \in \mathcal{I}$, (S_i, \preceq_i) is a complete lattice.
- ► \preceq : Product partial order on $S = \prod_{i \in \mathcal{I}} S_i$ $(s_i)_{i \in \mathcal{I}} \precsim (s'_i)_{i \in \mathcal{I}}$ if and only if $s_i \precsim s'_i$ for all $i \in \mathcal{I}$
- ▶ \leq_{-i} : Product partial order on $S_{-i} = \prod_{j \neq i} S_j$ $(s_j)_{j \neq i} \lesssim_{-i} (s'_j)_{j \neq i}$ if and only if $s_j \lesssim_j s'_j$ for all $j \neq i$
- $u_i \colon S \to \mathbb{R}$: Payoff function of player $i \in \mathcal{I}$
- Denote this game by G.

Best response correspondence (in pure strategies) of player *i*:

 $b_i(s_{-i}) = \{s_i \in S_i \mid u_i(s_i, s_{-i}) \ge u_i(s'_i, s_{-i}) \text{ for all } s_i \in S_i\}$

- ► Assumption: G has monotone best responses, i.e., for all i ∈ I,
 - ▶ for all $s_{-i} \in S_{-i}$, $b_i(s_{-i})$ has a greatest element $\overline{b}_i(s_{-i})$ and a least element $\underline{b}_i(s_{-i})$, and
 - ▶ $\overline{b}_i(s_{-i})$ and $\underline{b}_i(s_{-i})$ are non-decreasing in s_{-i} .
- (We will later discuss what conditions on the primitives of the game guarantee this assumption to hold.)

Examples

Coordination game:

	L_2	R_2
L_1	4, 4	0,2
R_1	2,0	3,3

$$\blacktriangleright b_i(L_j) = L_i, \ b_i(R_j) = R_i$$

▶ With orders $L_i \prec_i R_i$, the best responses are non-decreasing.

Battle of the sexes:

$$\begin{array}{c|cccc} L_2 & R_2 \\ L_1 & 0,0 & 2,1 \\ R_1 & 1,2 & 0,0 \end{array}$$

$$\blacktriangleright b_i(L_j) = R_i, \ b_i(R_j) = L_i$$

With orders L₁ ≺₁ R₁ and R₂ ≺₂ L₂, the best responses are non-decreasing. Matching pennies:

$$\begin{array}{c|ccccc} L_2 & R_2 \\ L_1 & 1, -1 & -1, 1 \\ R_1 & -1, 1 & 1, -1 \end{array}$$

►
$$b_1(L_2) = L_1, b_1(R_2) = R_1$$

 $b_2(L_1) = R_2, b_2(R_1) = L_2$

With any orders, the best responses cannot be non-decreasing simultaneously for both players.

Existence of Pure-Strategy Nash Equilibria

Proposition 4.6

Suppose that the game G has monotone best responses. Then G has a pure-strategy Nash equilibrium. In particular, there are a greatest and a least pure-strategy Nash equilibria.

Proof

- ▶ The function $\bar{b}: S \to S$ defined by $\bar{b}(s) = (\bar{b}_1(s_{-1}), \dots, \bar{b}_n(s_{-i}))$ is a non-decreasing function from the complete lattice S to itself.
- By Tarski's Fixed Point Theorem, a greatest fixed point of b exists, which is the greatest pure-strategy Nash equilibrium.

Supermodular Functions

Definition 4.6

For a lattice $(X,\precsim),$ a function $f\colon X\to \mathbb{R}$ is said to be supermodular if

$$f(x) + f(x') \le f(x \lor x') + f(x \land x')$$

for all $x, x' \in X$.

- f is said to be *strictly supermodular* if $f(x) + f(x') < f(x \lor x') + f(x \land x')$ whenever neither $x \preceq x'$ nor $x' \preceq x$.
- ► f is said to be (strictly) submodular if -f is (strictly) supermodular.

Example

• Let $X = \{x \in \mathbb{R}^2 \mid \underline{x} \le x \le \overline{x}\}$ for some $\underline{x}, \overline{x} \in \mathbb{R}^2$.

Suppose that $f: X \to \mathbb{R}$ is supermodular.

• Consider (x'_1, x''_2) and (x''_1, x'_2) with $x'_1 \le x''_1$ and $x'_2 \le x''_2$. By the supermodularity of f, we have

$$\begin{aligned} &f(x_1', x_2'') + f(x_1'', x_2') \\ &\leq f(x_1' \lor x_1'', x_2'' \lor x_2') + f(x_1' \land x_1'', x_2'' \land x_2') \\ &= f(x_1'', x_2'') + f(x_1', x_2'), \end{aligned}$$

or $f(x_1'', x_2') - f(x_1', x_2') \le f(x_1'', x_2'') - f(x_1', x_2'')$,

that is, f satisfies increasing differences in (x_1, x_2) .

• Conversely, if f satisfies increasing differences in (x_1, x_2) , then it is supermodular.

Example: Submodular Functions on \mathbb{R}^2

• Let
$$X = \{x \in \mathbb{R}^2 \mid \underline{x} \leq x \leq \overline{x}\}$$
 for some $\underline{x}, \overline{x} \in \mathbb{R}^2$.

Suppose that $f: X \to \mathbb{R}$ is submodular (i.e., -f is supermodular).

• Define the partial order \leq^* on \mathbb{R}^2 by $(x'_1, x'_2) \leq^* (x''_1, x''_2) \iff x'_1 \leq x''_1, x'_2 \geq x''_2.$

▶ Then f is supermodular with respect to \leq^* : If $(x'_1, x'_2) \leq^* (x''_1, x''_2)$, then $f(x''_1, x'_2) - f(x'_1, x'_2) = -[(-f(x''_1, x'_2)) - (-f(x'_1, x'_2))]$ $\leq -[(-f(x''_1, x''_2)) - (-f(x'_1, x''_2))]$ $= f(x''_1, x''_2) - f(x'_1, x''_2).$

This "trick" does not work with more than two variables.

Let $X = \{x \in \mathbb{R}^n \mid \underline{x} \le x \le \overline{x}\}$ for some $\underline{x}, \overline{x} \in \mathbb{R}^n, \underline{x} \ll \overline{x}$, and suppose that $f \colon X \to \mathbb{R}$ is twice continuously differentiable on int X and continuous on X.

Then f is supermodular if and only if for all i, j = 1, ..., n, $i \neq j$ $\frac{\partial^2 f}{\partial x_i \partial x_j}(x) \ge 0$ for all $x \in \text{int } X$.

Example:

 $f(x_1, x_2) = x_1^{\alpha_1} x_2^{\alpha_2}$, $\alpha_1, \alpha_2 \ge 0$, is supermodular on \mathbb{R}^2_+ .

Optimization

Proposition 4.8

Let (X, \precsim) be a lattice.

• If $f: X \to \mathbb{R}$ is supermodular, then $\arg \max_{x \in X} f(x)$ is a sublattice of X.

If f is strictly supermodular, then arg max_{x∈X} f(x) is a chain, i.e., for any x, x' ∈ arg max_{x∈X} f(x), x ≍ x' or x' ≍ x.

Proof

1.

- Suppose that $x, x' \in \arg \max_{x \in X} f(x)$.
- By supermodularity, we have

$$0 \le f(x) - f(x \land x') \le f(x \lor x') - f(x') \le 0,$$

which must hold with equality.

▶ Thus,
$$x \vee x', x \wedge x' \in \arg \max_{x \in X} f(x)$$
.

2.

- ▶ If $x, x' \in \arg \max_{x \in X} f(x)$, then we have $f(x \lor x') + f(x \land x') \leq f(x) + f(x')$.
- If neither x ≤ x' nor x' ≤ x, then this contradicts the strict supermodularity.

Let X and Y be lattices, and suppose that $f\colon X\times Y\to \mathbb{R}$ is supermodular.

Assume that $v(y) = \sup_{x \in X} f(x, y)$ is finite for all $y \in Y$. Then v is supermodular.

Proof

• Let
$$y, y' \in Y$$
.

For any
$$x, x' \in X$$
, we have

$$v(y \lor_Y y') + v(y \land_Y y')$$

$$\geq f(x \lor_X x', y \lor_Y y') + f(x \land_X x', y \land_Y y')$$

$$\geq f(x, y) + f(x', y').$$

Since this holds for all $x, x' \in X$, it follows that $v(y \lor_Y y') + v(y \land_Y y') \ge v(y) + v(y')$.

Monotone Comparative Statics

Definition 4.7

For partially ordered sets (X, \preceq_X) and (Y, \preceq_Y) , a function $f: X \times Y \to \mathbb{R}$ satisfies *increasing differences* in (x, y) if

$$f(x'',y') - f(x',y') \le f(x'',y'') - f(x',y'')$$

whenever $x' \preceq_X x''$ and $y' \preceq_Y y''$.

Suppose that

- $X \subset \mathbb{R}^n$, $X \neq \emptyset$, is compact and a lattice (with respect to \leq);
- $(Y \preceq_Y)$ is a partially ordered set; and
- $f: X \times Y \to \mathbb{R}$ satisfies the following:
 - $f(\cdot, y)$ is continuous for each $y \in Y$;
 - $f(\cdot, y)$ is supermodular for each $y \in Y$; and
 - f(x,y) satisfies increasing differences in (x,y).

Then

- 1. for each $y \in Y$, $\arg \max_{x \in X} f(x, y)$ is a nonempty, complete sublattice of X; and
- 2. its greatest and least elements are non-decreasing in y.

Proof

- Write $X^*(y) = \arg \max_{x \in X} f(x, y)$.
- By the compactness of X and the continuity of f(·, y), X*(y) is nonempty and compact.
- By the compactness, the lattice X is a complete lattice by Proposition 4.1.
- ► Thus, together with the supermodularity of f(·, y), X*(y) is a sublattice of X by Proposition 4.8.
- Again by Proposition 4.1, $X^*(y)$ is a complete sublattice.
- Denote the greatest and the least elements of X*(y) by x̄*(y) and x̄*(y), respectively.

Suppose that $y' \preceq_Y y''$. If $x' \in X^*(y')$ and $x'' \in X^*(y'')$, then $0 \leq f(x', y') - f(x' \wedge_X x'', y')$ (by $x' \in X^*(y')$) $\leq f(x' \vee_X x'', y') - f(x'', y')$ (by supermodularity) $\leq f(x' \vee_X x'', y'') - f(x'', y'')$ (by increasing differences) ≤ 0 (by $x'' \in X^*(y'')$)

which must hold with equality.

• Thus,
$$x' \wedge_X x'' \in X^*(y')$$
 and $x' \vee_X x'' \in X^*(y'')$.

In particular, we must have

• $\underline{x}^*(y') \precsim_X \underline{x}^*(y') \land_X \underline{x}^*(y'')$, so that $\underline{x}^*(y') \precsim_X \underline{x}^*(y'')$; and • $\overline{x}^*(y') \lor_X \overline{x}^*(y'') \precsim_X \overline{x}^*(y'')$, so that $\overline{x}^*(y') \precsim_X \overline{x}^*(y'')$.

Supermodular Games

- $\mathcal{I} = \{1, \dots, I\}$: Set of players
- $S_i \subset \mathbb{R}^{n_i}$: Set of strategies of player $i \in \mathcal{I}$

Partially ordered by \leq on \mathbb{R}^{n_i}

• $S_i \subset \mathbb{R}^{n_i}$: compact

▶ $u_i: S \to \mathbb{R}$: Payoff function of player $i \in \mathcal{I}$ $(S = \prod_{j \in \mathcal{I}} S_j)$

► u_i(s_i, s_{-i}): continuous in s_i for each s_{-i} and continuous in s_{-i} for each s_i

- Denote this game by G.
- G is called a supermodular game if for each $i \in \mathcal{I}$,
 - S_i is a complete lattice;
 - $u_i(s_i, s_{-i})$ is supermodular in s_i for each s_{-i} ; and
 - $u_i(s_i, s_{-i})$ satisfies increasing differences in (s_i, s_{-i}) .

Smooth Supermodular Games

- ► The game is supermodular if the following are satisfied: For each i ∈ I:
 - $\blacktriangleright S_i = \{s_i \in \mathbb{R}^{n_i} \mid \underline{s}_i \le s_i \le \overline{s}_i\} \text{ for some } \underline{s}_i \ll \overline{s}_i;$
 - u_i is twice continuously differentiable on int S, and continuous on S;
 - ▶ for all $s \in \text{int } S$, $\frac{\partial^2 u_i}{\partial s_{ik} \partial s_{i\ell}}(s) \ge 0$ for all $k, \ell = 1, \dots, n_i, k \neq \ell$.
 - ▶ for all $s \in \text{int } S$, $\frac{\partial^2 u_i}{\partial s_{ik} \partial s_{jm}}(s) \ge 0$ for all $j \neq i$, and for all $k = 1, \dots, n_i$ and all $m = 1, \dots, n_j$.

Suppose that the game G is a supermodular game.

1. G has monotone best responses,

i.e., the greatest and the least best responses $\overline{b}_i(s_{-i})$ and $\underline{b}_i(s_{-i})$ are well defined and non-decreasing in s_{-i} .

- 2. *G* has a greatest and a least pure-strategy Nash equilibria \overline{s}^* and \underline{s}^* .
- 3. Let $\overline{s} = (\overline{s}_i)_{i \in \mathcal{I}}$ and $\underline{s} = (\underline{s}_i)_{i \in \mathcal{I}}$ be the greatest and the least strategy profiles. Then the sequences $\overline{s}^k = \overline{b}(\overline{s}^{k-1})$, $\overline{s}^0 = \overline{s}$ and $\underline{s}^k = \underline{b}(\underline{s}^{k-1})$, $\underline{s}^0 = \underline{s}$ converge to \overline{s}^* and \underline{s}^* , respectively (where $\overline{b}(s) = (\overline{b}_i(s_{-i}))_{i \in \mathcal{I}}$ and $\underline{b}(s) = (\underline{b}_i(s_{-i}))_{i \in \mathcal{I}}$).

Proof

- Part 1: By Proposition 4.10.
- Part 2: By Proposition 4.6.
- ► Part 3:

 $\{\underline{s}^k\}$ is increasing and bounded above, and thus converges to some $s^* \in S.$

For any $s_i \in S_i$, $u_i(\underline{s}_i^k, \underline{s}_{-i}^{k-1}) \ge u_i(s_i, \underline{s}_{-i}^{k-1})$ for all k.

By continuity, letting $k \to \infty$ we have

$$u_i(s_i^*, s_{-i}^*) \ge u_i(s_i, s_{-i}^*).$$
(*)

Thus, s^* is a Nash equilibrium.

▶ For any Nash equilibrium \hat{s} , $\underline{s}^0 \leq \hat{s}$, $\underline{s}^1 = \underline{b}(\underline{s}^0) \leq \underline{b}(\hat{s}) \leq \hat{s}$, ..., and hence $s^* \leq \hat{s}$, i.e., s^* is the least Nash equilibrium.

Proof of (*):

Suppose that f(x, y) is continuous in x for each y and in y for each y and satisfies increasing differences in (x, y).

If $\{(x^k,y^k)\}$ is non-decreasing and converges to (x^*,y^*) , then $\lim_{k\to\infty}f(x^k,y^k)=f(x^*,y^*).$

►
$$f(x^*, y^*) - f(x^k, y^k) = f(x^*, y^*) - f(x^*, y^k) + f(x^*, y^k) - f(x^k, y^k)$$
, where by increasing differences,

$$f(x^*, y^0) - f(x^k, y^0) \le f(x^*, y^k) - f(x^k, y^k) \le f(x^*, y^*) - f(x^k, y^*).$$

Therefore,

$$\begin{split} & [f(x^*, y^*) - f(x^*, y^k)] + [f(x^*, y^0) - f(x^k, y^0)] \\ & \leq f(x^*, y^*) - f(x^k, y^k) \\ & \leq [f(x^*, y^*) - f(x^*, y^k)] + [f(x^*, y^*) - f(x^k, y^*)], \end{split}$$

where the left and the right hand sides go to 0 as $k \to \infty$ by continuity in x (for $y = y^0, y^*$) and in y (for $x = x^*$).

Example: Bertrand Game with Differentiated Products

Firms:
$$\mathcal{I} = \{1, \ldots, I\}$$

- Strategy space of $i: S_i = [0, \bar{p}_i]$ (prices)
- ▶ $d_i(p_i, p_{-i})$: Demand for *i*'s product

- $\frac{\partial d_i}{\partial p_j} > 0$, $j \neq i$ (substitutability)
- ► C_i: Total cost

Payoff function of i:

$$u_i(p_i, p_{-i}) = p_i d_i(p_i, p_{-i}) - C_i(d_i(p_i, p_{-i}))$$

Cross derivatives:

$$\frac{\partial^2 u_i}{\partial p_i \partial p_j} = (p_i - C'_i) \frac{\partial^2 d_i}{\partial p_i \partial p_j} + \left(1 - C''_i \frac{\partial d_i}{\partial p_i}\right) \frac{\partial u_i}{\partial p_j}$$

$\mathsf{Second} \, \operatorname{term} > 0$

 With linear demand d_i(p_i, p_{-i}) = a_i − b_ip_i + g_{ij} ∑_{j≠i} p_j, b_i, g_{ij} > 0 (Problem 7.7), we have ∂^{2d_i}/∂p_i∂p_j = 0 and therefore ∂^{2u_i}/∂p_i∂p_j > 0, so that the game is supermodular. Example: Cournot Game with Two Firms

Firms: $I = \{1, 2\}$

• Strategy space of 1: $S_1 = [0, \bar{x}_1]$ (quantities)

Strategy space of 2: $S_2 = [-\bar{x}_2, 0]$ (negative of quantities)

▶ P(Q): Inverse demand

•
$$Q = x_1 + (-x_2)$$
: total supply

$$\blacktriangleright P' < 0$$

► C_i: Total cost

Payoff functions:

$$u_1(x_1, x_2) = P(x_1 - x_2)x_1 - C_1(x_1)$$

$$u_2(x_1, x_2) = P(x_1 - x_2)(-x_2) - C_2(-x_2)$$

Cross derivatives:

$$\frac{\partial^2 u_1}{\partial x_1 \partial x_2} = -P''(x_1 - x_2)x_1 - P'(x_1 - x_2)$$
$$\frac{\partial^2 u_2}{\partial x_2 \partial x_1} = P''(x_1 - x_2)x_2 - P'(x_1 - x_2)$$

-P' > 0

▶ With linear inverse demand P(Q) = 1 - Q (Problem 7.8), we have P'' = 0 and therefore ∂²u_i/∂x_i∂x_{-i} > 0, so that the game is supermodular.

Application: Stable Matchings

- M: Set of men
- ▶ W: Set of women
- Assume |M| = |W|.

 Each m ∈ M has a strict preference ordering >^m over W ∪ {m}; each w ∈ W has a strict preference ordering >^w over M ∪ {w}.
 x >ⁱ y ··· i ranks x above y.

Assume

• for all $m \in M$, $w >^m m$ for all $w \in W$; and

• for all $w \in W$, $m >^w w$ for all $m \in M$.

• Write $x \ge^i y$ for "not $y >^i x$ " (\iff " $x >^i y$ or x = y").

• A matching is a function $\mu \colon M \cup W \to M \cup W$ such that

- $\mu(m) \in W \cup \{m\}$ for all $m \in M$;
- $\mu(w) \in M \cup \{w\}$ for all $w \in W$; and
- $\mu(m) = w$ if and only if $\mu(w) = m$.
- A pair (m, w) ∈ M × W is a blocking pair for matching μ if w >^m μ(m) and m >^w μ(w).
- Matching μ is stable if there is no blocking pair for μ.
 (By assumption, individual rationality is satisfied.)

Example:

M				W			
m_1 :	w_2	w_1	w_3	w_1 :	m_1	m_3	m_2
m_2 :	w_1	w_3	w_2	w_2 :	m_3	m_1	m_2
m_3 :	w_1	w_2	w_3	w_3 :	m_1	m_3	m_2

• $\{(m_1, w_1), (m_2, w_2), (m_3, w_3)\}$ is not stable.

 $\therefore (m_1, w_2)$ is a blocking pair.

▶ $\{(m_1, w_1), (m_2, w_3), (m_2, w_3)\}$ is stable.

There exists a stable matching. Moreover, there exist

- ▶ a stable matching that is most preferred by all $m \in M$ and least preferred by all $w \in W$ among all stable matchings; and
- ▶ a stable matching that is most preferred by all $w \in W$ and least preferred by all $m \in M$ among all stable matchings.

- First (formulated and) proved by Gale and Shapley (1962) via the "deferred acceptance algorithm".
- ▶ We prove by Tarski's Fixed Point Theorem.

- A semi-matching (or pre-matching) is a function $\mu \colon M \cup W \to M \cup W$ such that
 - $\mu(m) \in W \cup \{m\}$ for all $m \in M$; and
 - $\mu(w) \in M \cup \{w\}$ for all $w \in W$.
- X₀: Set of all semi-matchings X ⊂ X₀: Set of all matchings
- Define the function f: X₀ → X₀ by the following: for µ ∈ X₀,

$$f(\mu)(m) = \underset{>^{m}}{\arg\max} \{ w \in W \mid m \ge^{w} \mu(w) \} \cup \{ m \},\$$

$$f(\mu)(w) = \underset{>^{w}}{\arg\max} \{ m \in M \mid w \ge^{m} \mu(m) \} \cup \{ w \}.$$

X*: Set of fixed points of f

Any fixed point of f is a matching, i.e., $X^* \subset X$.

Proof

Suppose that $f(\mu) = \mu$.

Suppose that
$$\mu(m) = w$$
.

- Then $f(\mu)(m) = w$, which implies $m \ge^w \mu(w)$.
- Also $f(\mu)(w) \ge^w m$, and therefore $\mu(w) \ge^w m$.

• Hence
$$\mu(w) = m$$
.

• A symmetric argument shows that $\mu(w) = m \implies \mu(m) = w.$

 μ is a stable matching if and only if it is a fixed point of f , i.e., $\mu \in X^*.$

Proof

Suppose that
$$\mu \in X^*$$
 ($\subset X$).

If $w>^m \mu(m),$ then $f(\mu)(w)\geq^w m,$ hence $\mu(w)\geq^w m.$ Hence there is no blocking pair.

Suppose that
$$\mu \in X \setminus X^*$$
.

Suppose that there exists $m \in M$ such that $w = \mu(m) \neq w' = f(\mu)(m).$

Then $m >^{w'} \mu(w')$ and $w' >^m \mu(m)$.

Hence (m, w') is a blocking pair.

f has a fixed point, i.e., $X^* \neq \emptyset$.

Proof

• Define the partial order \succeq on X_0 as follows: $\mu \succeq \nu$ if and only if

•
$$\mu(m) \geq^m \nu(m)$$
 for all $m \in M$, and

•
$$\nu(w) \ge^w \mu(w)$$
 for all $w \in W$.

▶ Then (X_0, \succeq) is a complete lattice.

• $f: X_0 \to X_0$ is non-decreasing:

Suppose that $\mu \succeq \nu$.

► By $\nu(w) \ge^{w} \mu(w)$, we have $m \ge^{w} \nu(w) \implies m \ge^{w} \mu(w)$. Therefore, $f(\mu)(m) \ge^{m} f(\nu)(m)$.

► By $\mu(m) \ge^m \nu(m)$, we have $w \ge^m \mu(m) \implies w \ge^m \nu(m)$. Therefore, $f(\nu)(w) \ge^w f(\mu)(w)$.

► Thus, by Tarski's Fixed Point Theorem, $X^* \neq \emptyset$.

In particular, X^* has a greatest element (best for M and worst for W) and a least element (worst for M and best for W).

Problem 3, Homework 4

- 1. By Tarski's Fixed Point Theorem, f has a greatest fixed point \bar{x}^* .
- 2. Let $X' = \{x \in X \mid \bar{x}^* \le x\}.$
 - For $x \in X'$, we have $g(x) \ge f(x) \ge f(\bar{x}^*) = \bar{x}^*$, so that $g(x) \in X'$.
 - Thus, g maps the compact convex set X' to X'.
 - By Brouwer's Fixed Point Theorem, g has a fixed point x^{**} in X'.
 - For any fixed point x^* of f, we have $x^* \leq \bar{x}^* \leq x^{**}$.