Homework 1

Due on April 17

1. Prove Proposition 1.1.

2. Let $A=\left\{x \in \mathbb{Q} \mid x^{2}<2\right\}$. Show that A has no least upper bound in \mathbb{Q}. (You can use the fact that $\sqrt{2} \notin \mathbb{Q}$.)
3. Prove the following:
(1) $2^{-m}<\frac{1}{m}$ for all $m \in \mathbb{N}$.
(2) For $a>0, \lim _{m \rightarrow \infty} 2^{-m} a=0$.
4. Prove the following:
(1) For sequences $\left\{x^{m}\right\}_{m=1}^{\infty}$ and $\left\{y^{m}\right\}_{m=1}^{\infty}$ in \mathbb{R}, if $x^{m} \leq y^{m}$ for all $m \in \mathbb{N}$, $\lim _{m \rightarrow \infty} x^{m}=$ α, and $\lim _{m \rightarrow \infty} y^{m}=\beta$, then $\alpha \leq \beta$.
(2) For sequences $\left\{x^{m}\right\}_{m=1}^{\infty},\left\{y^{m}\right\}_{m=1}^{\infty}$, and $\left\{z^{m}\right\}_{m=1}^{\infty}$ in \mathbb{R}, if $x^{m} \leq z^{m} \leq y^{m}$ for all $m \in \mathbb{N}$ and $\lim _{m \rightarrow \infty} x^{m}=\lim _{m \rightarrow \infty} y^{m}=\alpha$, then $\lim _{m \rightarrow \infty} z^{m}=\alpha$.
5. Let $\left\{x^{m}\right\}_{m=1}^{\infty}$ and $\left\{y^{m}\right\}_{m=1}^{\infty}$ be sequences in \mathbb{R}, and suppose that $\lim _{m \rightarrow \infty} x^{m}=\alpha$ and $\lim _{m \rightarrow \infty} y^{m}=\beta$.
(1) Define $\left\{z^{m}\right\}_{m=1}^{\infty}$ by $z^{m}=x^{m}+y^{m}$ for $m \in \mathbb{N}$. Prove that $\lim _{m \rightarrow \infty} z^{m}=\alpha+\beta$.
(2) Define $\left\{w^{m}\right\}_{m=1}^{\infty}$ by $w^{m}=x^{m} y^{m}$ for $m \in \mathbb{N}$. Prove that $\lim _{m \rightarrow \infty} w^{m}=\alpha \beta$.
6. Prove the following:
(1) A convergent sequence $\left\{x^{m}\right\}_{m=1}^{\infty}$ in \mathbb{R} is a Cauchy sequence.
(2) A Cauchy sequence $\left\{x^{m}\right\}_{m=1}^{\infty}$ in \mathbb{R} is bounded (i.e., there exists $M \geq 0$ such that $\left|x^{m}\right| \leq M$ for all $\left.m \in \mathbb{N}\right)$.
7. Prove Proposition 1.7.
8. Show that the Archimedean Property and the Completeness of \mathbb{R} imply the Axiom of Real Numbers.

Hint. Let $A \subset \mathbb{R}$ be nonempty and bounded above, and consider the sets $B=\{x \in \mathbb{R} \mid$ $a \leq x$ for all $a \in A\}$ and $C=\mathbb{R} \backslash B$, both of which are nonempty (why?).
9. For $x=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}^{N}$, let us denote

$$
\begin{aligned}
& \|x\|_{\infty}=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{N}\right|\right\} \\
& \|x\|_{1}=\left|x_{1}\right|+\cdots+\left|x_{N}\right|
\end{aligned}
$$

(1) Show that $\|x\|_{\infty} \leq\|x\| \leq\|x\|_{1} \leq N\|x\|_{\infty}$ for any $x \in \mathbb{R}^{N}$.
(2) Show that for a sequence $\left\{x^{m}\right\}_{m=1}^{\infty}$ in \mathbb{R}^{N}, the following conditions are equivalent:
(i) $x^{m} \rightarrow \bar{x}$ as $m \rightarrow \infty$ (i.e., $\left\|x^{m}-\bar{x}\right\| \rightarrow 0$ as $m \rightarrow \infty$).
(ii) $\left\|x^{m}-\bar{x}\right\|_{\infty} \rightarrow 0$ as $m \rightarrow \infty$.
(iii) For each $i=1, \ldots, N, x_{i}^{m} \rightarrow \bar{x}_{i}$ as $m \rightarrow \infty$.
(iv) $\left\|x^{m}-\bar{x}\right\|_{1} \rightarrow 0$ as $m \rightarrow \infty$.
10. Let $\left\{x^{m}\right\}$ be a sequence in \mathbb{R}^{N}, and $\bar{x} \in \mathbb{R}^{N}$.
(1) Prove the following:

If there exist $\varepsilon>0$ and $M \in \mathbb{N}$ such that $\left\|x^{m}-\bar{x}\right\| \geq \varepsilon$ for all $m \geq M$, then no subsequence of $\left\{x^{m}\right\}$ converges to \bar{x}.
(2) Prove that the following statements are equivalent:
(i) $\left\{x^{m}\right\}$ converges to \bar{x}.
(ii) Every subsequence of $\left\{x^{m}\right\}$ converges to \bar{x}.
(iii) Every subsequence of $\left\{x^{m}\right\}$ has a subsequence that converges to \bar{x}.
11.
(1) Prove Proposition 2.3 .
(2) Prove Proposition 2.4.
12. Prove the following.
(1) For $x \in \mathbb{R}^{N}$ and $\varepsilon>0, B_{\varepsilon}(x)$ is an open set.
(2) For $A \subset \mathbb{R}^{N}$ and $\varepsilon>0, B_{\varepsilon}(A)\left(=\left\{x \in \mathbb{R}^{N} \mid\|y-x\|<\varepsilon\right.\right.$ for some $\left.\left.y \in A\right\}\right)$ is an open set.
13. For $X \subset \mathbb{R}^{N}$ and $A \subset X$, show that $\mathrm{Cl}_{X} A=(\mathrm{Cl} A) \cap X$.
14. For $X \subset \mathbb{R}^{N}$ and $A \subset X$, prove the following:
A is closed relative to X if and only if $\mathrm{Bdry}_{X} A \subset A$.
15. What are the interior, the closure, and the boundary of $\mathbb{Q} \cap[0,1]$ (relative to \mathbb{R})?

