Mathematics II Daisuke Oyama April 5, 2024

Homework 1

Due on April 17

1. Prove Proposition 1.1.

2. Let $A = \{x \in \mathbb{Q} \mid x^2 < 2\}$. Show that A has no least upper bound in \mathbb{Q} . (You can use the fact that $\sqrt{2} \notin \mathbb{Q}$.)

- **3.** Prove the following:
- (1) $2^{-m} < \frac{1}{m}$ for all $m \in \mathbb{N}$.
- (2) For a > 0, $\lim_{m \to \infty} 2^{-m} a = 0$.

4. Prove the following:

- (1) For sequences $\{x^m\}_{m=1}^{\infty}$ and $\{y^m\}_{m=1}^{\infty}$ in \mathbb{R} , if $x^m \leq y^m$ for all $m \in \mathbb{N}$, $\lim_{m \to \infty} x^m = \alpha$, and $\lim_{m \to \infty} y^m = \beta$, then $\alpha \leq \beta$.
- (2) For sequences $\{x^m\}_{m=1}^{\infty}$, $\{y^m\}_{m=1}^{\infty}$, and $\{z^m\}_{m=1}^{\infty}$ in \mathbb{R} , if $x^m \leq z^m \leq y^m$ for all $m \in \mathbb{N}$ and $\lim_{m\to\infty} x^m = \lim_{m\to\infty} y^m = \alpha$, then $\lim_{m\to\infty} z^m = \alpha$.

5. Let $\{x^m\}_{m=1}^{\infty}$ and $\{y^m\}_{m=1}^{\infty}$ be sequences in \mathbb{R} , and suppose that $\lim_{m\to\infty} x^m = \alpha$ and $\lim_{m\to\infty} y^m = \beta$.

- (1) Define $\{z^m\}_{m=1}^{\infty}$ by $z^m = x^m + y^m$ for $m \in \mathbb{N}$. Prove that $\lim_{m \to \infty} z^m = \alpha + \beta$.
- (2) Define $\{w^m\}_{m=1}^{\infty}$ by $w^m = x^m y^m$ for $m \in \mathbb{N}$. Prove that $\lim_{m \to \infty} w^m = \alpha \beta$.

6. Prove the following:

- (1) A convergent sequence $\{x^m\}_{m=1}^{\infty}$ in \mathbb{R} is a Cauchy sequence.
- (2) A Cauchy sequence $\{x^m\}_{m=1}^{\infty}$ in \mathbb{R} is bounded (i.e., there exists $M \ge 0$ such that $|x^m| \le M$ for all $m \in \mathbb{N}$).
- 7. Prove Proposition 1.7.

8. Show that the Archimedean Property and the Completeness of \mathbb{R} imply the Axiom of Real Numbers.

Hint. Let $A \subset \mathbb{R}$ be nonempty and bounded above, and consider the sets $B = \{x \in \mathbb{R} \mid a \leq x \text{ for all } a \in A\}$ and $C = \mathbb{R} \setminus B$, both of which are nonempty (why?).

9. For $x = (x_1, \ldots, x_N) \in \mathbb{R}^N$, let us denote

 $||x||_{\infty} = \max\{|x_1|, \dots, |x_N|\},$ $||x||_1 = |x_1| + \dots + |x_N|.$

- (1) Show that $||x||_{\infty} \leq ||x|| \leq ||x||_1 \leq N ||x||_{\infty}$ for any $x \in \mathbb{R}^N$.
- (2) Show that for a sequence $\{x^m\}_{m=1}^{\infty}$ in \mathbb{R}^N , the following conditions are equivalent:
 - (i) $x^m \to \bar{x}$ as $m \to \infty$ (i.e., $||x^m \bar{x}|| \to 0$ as $m \to \infty$).
 - (ii) $||x^m \bar{x}||_{\infty} \to 0 \text{ as } m \to \infty.$
 - (iii) For each $i = 1, ..., N, x_i^m \to \bar{x}_i$ as $m \to \infty$.
 - (iv) $||x^m \bar{x}||_1 \to 0$ as $m \to \infty$.
- **10.** Let $\{x^m\}$ be a sequence in \mathbb{R}^N , and $\bar{x} \in \mathbb{R}^N$.
- (1) Prove the following:

If there exist $\varepsilon > 0$ and $M \in \mathbb{N}$ such that $||x^m - \bar{x}|| \ge \varepsilon$ for all $m \ge M$, then no subsequence of $\{x^m\}$ converges to \bar{x} .

- (2) Prove that the following statements are equivalent:
 - (i) $\{x^m\}$ converges to \bar{x} .
 - (ii) Every subsequence of $\{x^m\}$ converges to \bar{x} .
 - (iii) Every subsequence of $\{x^m\}$ has a subsequence that converges to \bar{x} .

11.

- (1) Prove Proposition 2.3.
- (2) Prove Proposition 2.4.
- **12.** Prove the following.
- (1) For $x \in \mathbb{R}^N$ and $\varepsilon > 0$, $B_{\varepsilon}(x)$ is an open set.
- (2) For $A \subset \mathbb{R}^N$ and $\varepsilon > 0$, $B_{\varepsilon}(A)$ (= { $x \in \mathbb{R}^N \mid ||y x|| < \varepsilon$ for some $y \in A$ }) is an open set.
- **13.** For $X \subset \mathbb{R}^N$ and $A \subset X$, show that $\operatorname{Cl}_X A = (\operatorname{Cl} A) \cap X$.
- **14.** For $X \subset \mathbb{R}^N$ and $A \subset X$, prove the following:

A is closed relative to X if and only if $\operatorname{Bdry}_X A \subset A$.

15. What are the interior, the closure, and the boundary of $\mathbb{Q} \cap [0,1]$ (relative to \mathbb{R})?