Homework 2

Due on April 24

1. Prove Proposition 2.12 .
2. Prove Proposition 2.13 .
3. Suppose that a sequence $\left\{x^{m}\right\}$ in \mathbb{R}^{N} converges to $\bar{x} \in \mathbb{R}^{N}$. Show that the set $\left\{x^{m} \mid m \in \mathbb{N}\right\} \cup\{\bar{x}\}$ is compact.
4. Suppose that $A \subset \mathbb{R}^{N}$ is closed and $B \subset \mathbb{R}^{N}$ is compact. Show that the set $A+B=$ $\left\{x \in \mathbb{R}^{N} \mid z=a+b\right.$ for some $a \in A$ and $\left.b \in B\right\}$ is closed. Find a counter-example when B is only assumed to be closed.
5. We want to prove Proposition 2.14: A function $f: X \rightarrow \mathbb{R}^{K}$ is continuous at $\bar{x} \in X$ if and only if for any $\varepsilon>0$, there exists $\delta>0$ such that
(*) $\quad\|x-\bar{x}\|<\delta, x \in X \Longrightarrow\|f(x)-f(\bar{x})\|<\varepsilon$.
Complete the proof by continuing the following:
Proof of the "if" part: Suppose that for any $\varepsilon>0$, there exists $\delta>0$ such that (*) holds. Take any sequence $\left\{x^{m}\right\}_{m=1}^{\infty}$ with $x^{m} \in X$ for all $m \in \mathbb{N}$ such that $x^{m} \rightarrow \bar{x}$ as $m \rightarrow \infty$. We want to show that $f\left(x^{m}\right) \rightarrow f(\bar{x})$ as $m \rightarrow \infty$. Fix any $\varepsilon>0$...

Proof of the "only if" part: Suppose that there exists some $\varepsilon>0$ such that for any $\delta>0$, there exists some $x \in X$ such that $\|x-\bar{x}\|<\delta$ and $\|f(x)-f(\bar{x})\| \geq \varepsilon$. Then for each $m \in \mathbb{N}$, let $x^{m} \in X$ be such that \ldots
6.
(1) Prove Proposition 2.16.
(2) Prove Proposition 2.17.
7. For a nonempty subset A of \mathbb{R}^{N} and for $x \in \mathbb{R}^{N}$, denote

$$
d(x, A)=\inf \{\|y-x\| \mid y \in A\}
$$

Prove the following:
(1) For any $x \in \mathbb{R}^{N}$, there exists $\bar{y} \in \mathrm{Cl} A$ such that $d(x, A)=\|\bar{y}-x\|$.
(2) Show that the function $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ defined by $f(x)=d(x, A)$ is continuous.
(3) $d(x, A)=0$ if and only if $x \in \mathrm{Cl} A$.
8. Let $X \subset \mathbb{R}^{N}$ be a nonempty set, and $f: X \rightarrow \mathbb{R}$ a continuous function.

Prove the following:
(1) If X is closed, then the set

$$
\underset{x \in X}{\arg \max } f(x)=\{x \in X \mid f(x) \geq f(y) \text { for all } y \in X\}
$$

is closed.
(2) If X is compact, then $\arg \max _{x \in X} f(x)$ is compact.
9.
(1) Prove Proposition 2.24.
(2) Prove Proposition 2.26.
10. Let $X \subset \mathbb{R}^{N}$ be a nonempty set. For a function $f: X \rightarrow \mathbb{R}$, the hypograph and the epigraph of f are the sets

$$
\begin{aligned}
& \operatorname{hyp} f=\{(x, y) \in X \times \mathbb{R} \mid y \leq f(x)\} \\
& \operatorname{epi} f=\{(x, y) \in X \times \mathbb{R} \mid y \geq f(x)\}
\end{aligned}
$$

respectively. Prove the following:
(1) f is upper semi-continuous if and only if hyp f is closed relative to $X \times \mathbb{R}$.
(2) f is lower semi-continuous if and only if epi f is closed relative to $X \times \mathbb{R}$.
11. Prove Proposition 3.2 by using Proposition 3.1.
12.
(1) Give an example of a correspondence that is upper semi-continuous, has a closed graph, but is not compact-valued.
(2) Give an example of a correspondence that is upper semi-continuous, but whose graph is not closed.
(Specify the domain and the codomain when you define a function/correspondence.)
13. Let X and Y be nonempty subsets of \mathbb{R}^{N} and \mathbb{R}^{K}, respectively. For a correspondence $F: X \rightarrow Y$ and $B \subset \mathbb{R}^{K}$, write

$$
\begin{aligned}
& F^{-1}(B)=\{x \in X \mid F(x) \subset B\} \\
& F_{-1}(B)=\{x \in X \mid F(x) \cap B \neq \emptyset\}
\end{aligned}
$$

$F^{-1}(B)$ is called the upper inverse image (or strong inverse image) of B under F, while $F_{-1}(B)$ is called the lower inverse image (or weak inverse image) of B under F.

Prove the following:
(1) F is upper semi-continuous if and only if $F^{-1}(B)$ is open for any open set $B \subset Y$.
(2) F is lower semi-continuous if and only if $F_{-1}(B)$ is open for any open set $B \subset Y$.
14.
(1) Prove Proposition 3.9.
(2) Prove Proposition 3.10.
15. Define the correspondences $B: \mathbb{R}_{++}^{N} \times \mathbb{R}_{++} \rightarrow \mathbb{R}_{+}^{N}$ by

$$
B(p, w)=\left\{x \in \mathbb{R}_{+}^{N} \mid p \cdot x \leq w\right\}
$$

(1) Show that B is upper semi-continuous.
(2) Show that B is lower semi-continuous.

