Homework 3

Due on May 1

- 1. Prove Proposition 4.1.
- **2.** Prove Proposition 4.2.
- **3.** Prove Proposition 4.3.
- 4. Prove Proposition 4.5.
- **5.** Prove (LHS) \subset (RHS) in Proposition 4.6.
- **6.** Prove Proposition 4.16.
- **7.** Prove the following:

Suppose that $f: \mathbb{R} \to \mathbb{R}$ is a concave function. If x < x' and t > 0, then

$$f(x+t) - f(x) \ge f(x'+t) - f(x').$$

- **8.** For a function $f \colon \mathbb{R}^N \to \mathbb{R}$, consider the following conditions:
 - (i) $f(\alpha x) = |\alpha| f(x)$ for all $x \in \mathbb{R}^N$ and $\alpha \in \mathbb{R}$.
- (ii) $f(x+y) \le f(x) + f(y)$ for all $x, y \in \mathbb{R}^N$.
- (iii) If f(x+y) = f(x) + f(y) and $x \neq 0$, then $y = \alpha x$ for some $\alpha \geq 0$.

Prove the following:

- (1) If f satisfies (i) and (ii), then it is a convex function.
- (2) If f satisfies (i), (ii), and (iii), then f(x) > 0 whenever $x \neq 0$.
- (3) If f satisfies (i), (ii), and (iii), then it is a strictly quasi-convex function.
- **9.** Suppose that $f: \mathbb{R}^N \to [-\infty, \infty]$ is a concave function. Show that for any $c \in [-\infty, \infty]$, the sets $\{x \in \mathbb{R}^N \mid f(x) > c\}$ and $\{x \in \mathbb{R}^N \mid f(x) \geq c\}$ are convex.
- $(f: \mathbb{R}^N \to [-\infty, \infty])$ is defined to be concave if hyp $f = \{(x, y) \in \mathbb{R}^N \times \mathbb{R} \mid y \leq f(x)\}$ is convex.)

10.

- (1) For $x \in \mathbb{R}^N$ and $\varepsilon > 0$, show that $B_{\varepsilon}(x)$ is a convex set.
- (2) For a convex set $C \subset \mathbb{R}^N$ and $\varepsilon > 0$, show that $B_{\varepsilon}(C)$ (= $\{x \in \mathbb{R}^N \mid ||x y|| < \varepsilon \text{ for some } y \in C\}$) is a convex set.

- 11. Prove Proposition 4.22.
- 12. Show that $f: \mathbb{R}^N \to [-\infty, \infty]$ is concave if and only if

$$f((1-\alpha)x + \alpha x') > (1-\alpha)t + \alpha t'$$

whenever f(x) > t, f(x') > t', and $0 \le \alpha \le 1$.

13. Let $X \subset \mathbb{R}^N$ and $A \subset \mathbb{R}^S$ be nonempty convex sets. For a function $f: X \times A \to \mathbb{R}$, consider the function $v: A \to [-\infty, \infty]$ be defined by

$$v(\alpha) = \sup_{x \in X} f(x, \alpha).$$

Show that if f is concave, then v is concave.

- 14. Prove Proposition 4.24.
- 15. Prove Proposition 4.26.