Homework 3

Due on May 1

1. Prove Proposition 4.1.
2. Prove Proposition 4.2 .
3. Prove Proposition 4.3 .
4. Prove Proposition 4.5 .
5. Prove $(\mathrm{LHS}) \subset(\mathrm{RHS})$ in Proposition 4.6.
6. Prove Proposition 4.16 .
7. Prove the following:

Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a concave function. If $x<x^{\prime}$ and $t>0$, then

$$
f(x+t)-f(x) \geq f\left(x^{\prime}+t\right)-f\left(x^{\prime}\right)
$$

8. For a function $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$, consider the following conditions:
(i) $f(\alpha x)=|\alpha| f(x)$ for all $x \in \mathbb{R}^{N}$ and $\alpha \in \mathbb{R}$.
(ii) $f(x+y) \leq f(x)+f(y)$ for all $x, y \in \mathbb{R}^{N}$.
(iii) If $f(x+y)=f(x)+f(y)$ and $x \neq 0$, then $y=\alpha x$ for some $\alpha \geq 0$.

Prove the following:
(1) If f satisfies (i) and (ii), then it is a convex function.
(2) If f satisfies (i), (ii), and (iii), then $f(x)>0$ whenever $x \neq 0$.
(3) If f satisfies (i), (ii), and (iii), then it is a strictly quasi-convex function.
9. Suppose that $f: \mathbb{R}^{N} \rightarrow[-\infty, \infty]$ is a concave function. Show that for any $c \in$ $[-\infty, \infty]$, the sets $\left\{x \in \mathbb{R}^{N} \mid f(x)>c\right\}$ and $\left\{x \in \mathbb{R}^{N} \mid f(x) \geq c\right\}$ are convex.
$\left(f: \mathbb{R}^{N} \rightarrow[-\infty, \infty]\right.$ is defined to be concave if hyp $f=\left\{(x, y) \in \mathbb{R}^{N} \times \mathbb{R} \mid y \leq f(x)\right\}$ is convex.)
10.
(1) For $x \in \mathbb{R}^{N}$ and $\varepsilon>0$, show that $B_{\varepsilon}(x)$ is a convex set.
(2) For a convex set $C \subset \mathbb{R}^{N}$ and $\varepsilon>0$, show that $B_{\varepsilon}(C)\left(=\left\{x \in \mathbb{R}^{N} \mid\|x-y\|<\right.\right.$ ε for some $y \in C\}$) is a convex set.
11. Prove Proposition 4.22 .
12. Show that $f: \mathbb{R}^{N} \rightarrow[-\infty, \infty]$ is concave if and only if

$$
f\left((1-\alpha) x+\alpha x^{\prime}\right)>(1-\alpha) t+\alpha t^{\prime}
$$

whenever $f(x)>t, f\left(x^{\prime}\right)>t^{\prime}$, and $0 \leq \alpha \leq 1$.
13. Let $X \subset \mathbb{R}^{N}$ and $A \subset \mathbb{R}^{S}$ be nonempty convex sets. For a function $f: X \times A \rightarrow \mathbb{R}$, consider the function $v: A \rightarrow[-\infty, \infty]$ be defined by

$$
v(\alpha)=\sup _{x \in X} f(x, \alpha)
$$

Show that if f is concave, then v is concave.
14. Prove Proposition 4.24 .
15. Prove Proposition 4.26 .

