Homework 4

Due on May 8

1. For $a>0, a \neq 1$, let $f(x)=a^{x}$.
(1) Compute $f^{\prime}(0)$.
(2) Compute $\lim _{c \rightarrow 1} \frac{a^{1-c}-1}{1-c}$.
2. Compute $\lim _{x \rightarrow 0} \frac{1-\sqrt{1-x^{2}}}{x}$.
3. Consider the function $\mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}x^{2} & \text { if } x \in \mathbb{Q} \\ 0 & \text { if } x \notin \mathbb{Q}\end{cases}
$$

(1) Show that f is continuous at 0 .
(2) Show that f is differentiable at 0 .
4. The following statement is false:

If a differentiable function $f: I \rightarrow \mathbb{R}$, where $I \subset \mathbb{R}$ is a nonempty open interval, is strictly increasing, then $f^{\prime}(x)>0$ for all $x \in I$.
Find a counter-example.
5. Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$ and differentiable on (a, b), where $a<b$. Show that if $f^{\prime}(x) \neq 1$ for all $x \in(a, b)$, then f has at most one fixed point on $[a, b]$.
6. Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$ and differentiable on (a, b), where $a<b$, and that $f(a)>0>f(b)$. Assume that $f^{\prime}(x)<0$ whenever $f(x)=0$. Show that there exists a unique $x \in[a, b]$ such that $f(x)=0$.
7. Let $I \subset \mathbb{R}$ be a nonempty open interval, and for a function $f: I \rightarrow \mathbb{R}$ and $\bar{x} \in I$, suppose that f is differentiable on I and f^{\prime} is differentiable at \bar{x}. Show directly using the Mean Value Theorem (and without using Taylor's Theorem) that if \bar{x} is a local maximizer of f, then $f^{\prime \prime}(\bar{x}) \leq 0$.
(Hint: construct a sequence $\left\{x^{m}\right\}$ with $x^{m} \searrow \bar{x}$ such that $f^{\prime}\left(x^{m}\right) \leq 0$.)
8. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}\frac{2 x_{1} x_{2}}{x_{1}^{2}+x_{2}^{2}} & \text { if }\left(x_{1}, x_{2}\right) \neq(0,0) \\ 0 & \text { if }\left(x_{1}, x_{2}\right)=(0,0)\end{cases}
$$

(1) Compute $\frac{\partial f}{\partial x_{1}}$ and $\frac{\partial f}{\partial x_{2}}$.
(2) Show that f is not continuous at $(0,0)$.
9. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}x_{1} x_{2} \frac{x_{1}^{2}-x_{2}^{2}}{x_{1}^{2}+x_{2}^{2}} & \text { if }\left(x_{1}, x_{2}\right) \neq(0,0) \\ 0 & \text { if }\left(x_{1}, x_{2}\right)=(0,0)\end{cases}
$$

(1) Compute $\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}$ and $\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}$.
(2) Show that $\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}$ is not continuous at $(0,0)$.
(3) Show that $\frac{\partial f}{\partial x_{1}}$ is not differentiable at $(0,0)$.
10. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}-\frac{1}{x_{2}^{3}} x_{1}^{2}\left(x_{1}-2 x_{2}\right)^{2} & \text { if } 2 x_{2}<x_{1}<0 \\ \frac{1}{x_{2}^{3}} x_{1}^{2}\left(x_{1}-2 x_{2}\right)^{2} & \text { if } 0<x_{1}<2 x_{2} \\ -x_{1}^{2}\left(x_{1}-2 x_{2}\right)^{2} & \text { otherwise }\end{cases}
$$

(1) Compute $\frac{\partial f}{\partial x_{1}}$ and $\frac{\partial f}{\partial x_{2}}$.
(2) Show that f is continuous at $(0,0)$.
(3) Show that f is not differentiable at $(0,0)$.
11. For a function $f: U \rightarrow \mathbb{R}$, where $U \subset \mathbb{R}^{N}$ is a nonempty open set, the directional derivative of f at $x \in U$ with respect to $d \in \mathbb{R}^{N}$ is defined by

$$
f^{\prime}(x ; d)=\lim _{\lambda \searrow 0} \frac{f(x+\lambda d)-f(x)}{\lambda}
$$

if the limit exists. Show that if f is differentiable, then $f^{\prime}(x ; d)=\nabla f(x) \cdot d$ for all $x \in U$ and $d \in \mathbb{R}^{N}$.
12. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}\sqrt{x_{1}^{2}+x_{2}^{2}} \sin \left(\frac{x_{2}^{2}}{x_{1}}\right) & \text { if } x_{1} \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

(1) Show that f is continuous at $(0,0)$.
(2) Compute the directional derivative $f^{\prime}((0,0) ; d)$.
(3) Show that f is not differentiable at $(0,0)$.
13. Let

$$
M=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)
$$

(1) Determine the condition under which M is negative definite.
(2) Determine the condition under which M is negative semi-definite.
14. Let $f: \mathbb{R}_{++}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f\left(x_{1}, x_{2}\right)=\left(x_{1}\right)^{\alpha_{1}}\left(x_{2}\right)^{\alpha_{2}},
$$

where $\alpha_{1}, \alpha_{2} \geq 0$.
(1) Determine the condition on α_{1} and α_{2} under which f is concave.
(2) Determine the condition on α_{1} and α_{2} under which f is quasi-concave.

