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Euclidean Norm in RN

▶ For x = (x1, . . . , xN ) ∈ RN , the Euclidean norm of x is
denoted by |x| or ‖x‖, i.e.,

|x| =
√
(x1)2 + · · ·+ (xN )2,

or

‖x‖ =
√

(x1)2 + · · ·+ (xN )2.

▶ We follow MWG to use ‖·‖.

▶ For all x, y ∈ RN :

▶ ‖x‖ ≥ 0; ‖x‖ = 0 if and only if x = 0;

▶ ‖αx‖ = |α|‖x‖ for α ∈ R;
▶ ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangular inequality).
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Convergence in RN

▶ A sequence in RN is a function from N to RN .

A sequence is denoted by {xm}∞m=1, or simply {xm}, or xm.

▶ Notation (in this course):

For A ⊂ RN , if xm ∈ A for all m ∈ N, then we write {xm}∞m=1 ⊂ A.

Definition 2.1
A sequence {xm}∞m=1 converges to x̄ ∈ RN if
for any ε > 0, there exists M ∈ N such that

‖xm − x̄‖ < ε for all m ≥ M.

In this case, we write limm→∞ xm = x̄ or xm → x̄ (as m → ∞).

▶ x̄ is called the limit of {xm}∞m=1.

▶ A sequence that converges to some x̄ ∈ RN is said to be convergent.

▶ limm→∞ xm = x̄ if and only if limm→∞‖xm − x̄‖ = 0.
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Convergence in RN

Proposition 2.1

For a sequence {xm} in RN , where xm = (xm1 , . . . , xmN ),
xm → x̄ = (x̄1, . . . , x̄N ) ∈ RN

if and only if xmi → x̄i ∈ R for all i = 1, . . . , N .

▶ Thus, the definition in MWG (M.F.1) and that in Debreu (1.6.e) are
equivalent.
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Completeness of RN

▶ A sequence {xm} in RN is a Cauchy sequence if
for any ε > 0, there exists a natural number M such that

‖xm − xn‖ < ε for all m,n ≥ M.

▶ A convergent sequence is a Cauchy sequence.

Proposition 2.2 (Completeness of RN)

Every Cauchy sequence in RN is convergent.
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Proof

▶ Let {xm} be a Cauchy sequence in RN .

▶ Then, for each i = 1, . . . , N , {xmi } is a Cauchy sequence in R,
and hence is convergent (by the completeness of R);

denote its limit by x̄i.

▶ Let x̄ = (x̄1, . . . , x̄N ).

Then xm → x̄ by Proposition 2.1.
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Open Sets and Closed Sets in RN

▶ For x ∈ RN , the ε-open ball around x:

Bε(x) = {y ∈ RN | ‖y − x‖ < ε}.

Definition 2.2
▶ A ⊂ RN is an open set if for any x ∈ A, there exists ε > 0

such that Bε(x) ⊂ A.

▶ A ⊂ RN is a closed set if RN \A is an open set.

Examples:

▶ {x ∈ R2 | x1 + x2 < 1} is an open set.

{x ∈ R2 | x1 + x2 ≤ 1} is a closed set.

▶ Bε(x), ε > 0, is an open set.
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Relative Openness and Closedness

▶ In Consumer Theory, for example, we usually work with RN
+

(set of nonnegative consumption bundles) rather than RN .

▶ We want to say

{x ∈ R2 | x1+x2 < 1, x1 ≥ 0, x2 ≥ 0} (= {x ∈ R2
+ | x1 + x2 < 1})

is an open set in the world of R2
+.

Definition 2.3
For X ⊂ RN ,

▶ A ⊂ X is an open set relative to X if for any x ∈ A,
there exists ε > 0 such that (Bε(x) ∩X) ⊂ A.

▶ A ⊂ X is a closed set relative to X if X \A is an open set
relative to X.
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▶ Open sets, closed sets, and other concepts relative to X are
defined with

▶ X in place of RN , and

▶ Bε(x) ∩X in place of Bε(x).

▶ A ⊂ X is an open set relative to X if and only if
A = B ∩X for some open set B ⊂ RN (relative to RN ).
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Properties of Open Sets

Proposition 2.3

Let X ⊂ RN .

1. ∅ and X are open sets relative to X.

2. For any index set Λ,
if Oλ is an open set relative to X for all λ ∈ Λ,
then

∪
λ∈ΛOλ is an open set relative to X.

(The union of any family of open sets is open.)

3. For any M ∈ N,
if Om is an open set relative to X for all m = 1, . . . ,M ,
then

∩M
m=1Om is an open set relative to X.

(The intersection of any finite family of open sets is open.)
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Properties of Closed Sets

Proposition 2.4

Let X ⊂ RN .

1. ∅ and X are closed sets relative to X.

2. For any index set Λ,
if Cλ is a closed set relative to X for all λ ∈ Λ,
then

∩
λ∈ΛCλ is a closed relative to X.

(The intersection of any family of closed sets is closed.)

3. For any M ∈ N,
if Cm is a closed set relative to X for all m = 1, . . . ,M ,
then

∪M
m=1Cm is a closed set relative to X.

(The union of any finite family of closed sets is closed.)
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Properties of Closed Sets

Proposition 2.5

Let X ⊂ RN .
A ⊂ X is a closed set relative to X
⇐⇒ for any convergent sequence {xm}∞m=1 ⊂ A with
xm → x̄ ∈ X, we have x̄ ∈ A.
(A closed set is closed with respect to convergence.)
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Proof

▶ By definition,
A ⊂ X is a closed set relative to X
⇐⇒ ∀x ∈ X \A ∃ ε > 0 : Bε(x) ∩A = ∅.

▶ Therefore, if A is closed,
then ∀x ∈ X \A, any sequence in A cannot converge to x.

▶ Conversely, if A is not closed,
then ∃ x̄ ∈ X \A ∀ ε > 0 : Bε(x̄) ∩A 6= ∅.

Then construct a sequence {xm}∞m=1 ⊂ A by

xm ∈ B 1
m
(x̄) ∩A (m = 1, 2, . . .).

By construction, xm → x̄ /∈ A.
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Interior, Closure, and Boundary

Definition 2.4
For X ⊂ RN and A ⊂ X,

▶ the interior of A relative to X:

IntX A = {x ∈ A | (Bε(x) ∩X) ⊂ A for some ε > 0};

▶ the closure of A relative to X: ClX A = X \ IntX(X \A);

▶ the boundary of A relative to X: BdryX A = ClX A \ IntX A.

(We write IntRN = Int, ClRN = Cl, and BdryRN = Bdry.)
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Characterization of Interior

Proposition 2.6

Let X ⊂ RN and A ⊂ X.

1. IntX A ⊂ A.

2. IntX A is an open set relative to X.

3. If B ⊂ A and if B is open relative to X, then B ⊂ IntX A.

Hence,

IntX A =
∪

{B ⊂ X | B ⊂ A and B is open relative to X},

i.e., IntX A is the largest open set (relative to X) contained in A.
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Proof

1. By definition.

2. ▶ Take any x ∈ IntX A.

By definition, (Bε(x) ∩X) ⊂ A for some ε > 0.

We want to show that (Bε(x) ∩X) ⊂ IntX A.

▶ Take any y ∈ Bε(x) ∩X.

Let ε′ = ε− ‖y − x‖ > 0.

Then Bε′(y) ⊂ Bε(x).

▶ Hence, (Bε′(y) ∩X) ⊂ (Bε(x) ∩X) ⊂ A,
which implies that y ∈ IntX A.

3. Take any x ∈ B.

By the openness of B, (Bε(x) ∩X) ⊂ B for some ε > 0.

By B ⊂ A, (Bε(x) ∩X) ⊂ A.

Therefore, x ∈ IntX A.
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Characterization of Closure

Proposition 2.7

Let X ⊂ RN and A ⊂ X.

1. A ⊂ ClX A.

2. ClX A is a closed set relative to X.

3. If A ⊂ B and if B is closed relative to X, then ClX A ⊂ B.

Hence,

ClX A =
∩

{B ⊂ X | B ⊃ A and B is closed relative to X},

i.e., ClX A is the smallest closed set (relative to X) containing A.

Proof

▶ By Proposition 2.6.
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Examples
▶ For X = R,

Int[0, 1) = (0, 1),

Cl[0, 1) = [0, 1],

Bdry[0, 1) = {0, 1}.

▶ What are the interior, closure, and boundary of Q ∩ [0, 1]?
→ Homework

▶ For A = {(x1, x2) ∈ R2 | 0 ≤ x1 ≤ 1, x2 = 0},

IntA (= IntR2 A) = ∅, while IntRA = (0, 1).

Remark
There is an abuse of notation in “IntR A = (0, 1)”:
To be precise, one should write
Int{x∈R2|x1∈R, x2=0} A = {x ∈ R2 | x1 ∈ (0, 1), x2 = 0}.
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Characterizations of Open/Closed Sets by Interior/Closure

Proposition 2.8

Let X ⊂ RN and A ⊂ X.

1. A is open relative to X ⇐⇒ IntX A = A.

2. A is closed relative to X ⇐⇒ ClX A = A.
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Characterizations of Closure

Proposition 2.9

Let X ⊂ RN and A ⊂ X.

1. ClX A = {x ∈ X | Bε(x) ∩A 6= ∅ for all ε > 0}
=

∩
ε>0

Bε(A) ∩X,

where Bε(A) = {x ∈ RN | ‖x− a‖ < ε for some a ∈ A}.

2. ClX A = {x ∈ X | xm → x for some {xm} ⊂ A}.

▶ Thus, the definition in MWG and that in Debreu are equivalent.
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Proof of Proposition 2.9
Recall the definition: ClX A = X \ IntX(X \A).

1. For x ∈ X, we have
x ∈ ClX A
⇐⇒ x /∈ IntX(X \A)
⇐⇒ ∀ ε > 0 : (Bε(x) ∩X) 6⊂ (X \A)
⇐⇒ ∀ ε > 0 : Bε(x) ∩A 6= ∅
⇐⇒ ∀ ε > 0 : x ∈ Bε(A).

2. If x ∈ ClX A, construct {xm} ⊂ A by xm ∈ B 1
m
(x) ∩A,

where B 1
m
(x) ∩A 6= ∅ by part 1.

Then xm → x.

Conversely, let {xm} ⊂ A and xm → x ∈ X.

For any ε > 0, there exists M such that xM ∈ Bε(x), so that
Bε(x) ∩A 6= ∅.

Hence, x ∈ ClX A by part 1.
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Dense Sets

Definition 2.5
For X ⊂ RN ,
A ⊂ X is dense in X if ClX A = X.

Proposition 2.10

For X ⊂ RN and A ⊂ X, the following statements are equivalent:

1. A is dense in X.

2. IntX(X \A) = ∅.

3. O ∩A 6= ∅ for every nonempty open set O ⊂ X relative to X.

Proof

▶ By the definitions of interior and closure.
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Compact Sets

▶ A ⊂ RN is bounded if there exists r ∈ R such that ‖x‖ < r
for all x ∈ A.

Definition 2.6
A ⊂ RN is compact if it is bounded and closed (relative to RN ).

Examples:

▶ [0, 1] ⊂ R is compact.

▶ [0,∞) ⊂ R is not compact.

▶ (0, 1] ⊂ R is not compact.
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Sequential Compactness

Proposition 2.11

For A ⊂ RN , the following statements are equivalent:

1. A is compact.

2. For every sequence {xm} ⊂ A,
there exist a subsequence {xm(k)} of {xm} and a point x ∈ A
such that xm(k) → x.
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Proof

2 ⇒ 1 If A is not bounded, then for all m ∈ N, there exists xm ∈ A
such that ‖xm‖ ≥ m.

No subsequence of the sequence {xm} ⊂ A can be convergent
(∵ ∀x ∈ RN∃M ∈ N : ‖xm − x‖ ≥ ‖xm‖ − ‖x‖ ≥ 1 ∀m ≥ M).

If A is not closed, then there exists x̄ /∈ A such that
for all m ∈ N, there exists xm ∈ B 1

m
(x̄) ∩A.

The sequence {xm} ⊂ A, and any subsequence, converges to
x̄ /∈ A.
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Proof

1 ⇒ 2 Take any sequence {xm} ⊂ A.

Suppose that A is bounded.

▶ Since {xm
1 } ⊂ R is bounded,

there is a subsequence {xm1(k)} of {xm} such that

{xm1(k)
1 } is convergent.

▶ Since {xm1(k)
2 } ⊂ R is bounded,

there is a subsequence {xm2(k)} of {xm1(k)} such that

{xm2(k)
2 } is convergent.

▶ · · ·
▶ Since {xmN−1(k)

N } ⊂ R is bounded,
there is a subsequence {xmN (k)} of {xmN−1(k)} such that

{xmN (k)
N } is convergent.

Thus, we have a convergent subsequence {xmN (k)}.

If in addition, A is closed, then its limit is contained in A.
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Open Covers and Finite Intersections

Proposition 2.12

For A ⊂ RN , the following statements are equivalent:

1. A is compact.

2. Any family O of open sets such that A ⊂
∪
O has a finite

subset O′ such that A ⊂
∪

O′.

(I.e., Any open cover of A has a finite subcover.)

3. For any family C of closed subsets of A that has the property
that

∩
C′ 6= ∅ for any finite subset C′ of C, we have

∩
C 6= ∅.

(The property in 3 is called the finite intersection property.)
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sup and inf

Proposition 2.13

Let A be a nonempty subset of R.
▶ If A is bounded, then supA ∈ ClA and inf A ∈ ClA.

▶ If in addition, A is closed, then supA ∈ A and inf A ∈ A.

Thus, a nonempty compact subset of R has a maximum and
a minimum.
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Continuous Functions
Let X be a nonempty subset of RN .

Definition 2.7
▶ A function f : X → RK is continuous at x̄ ∈ X if

for any sequence {xm} ⊂ X such that xm → x̄ as m → ∞,
we have f(xm) → f(x̄) as m → ∞

(i.e., limm→∞ f(xm) = f(limm→∞ xm)).

▶ For A ⊂ X, f : X → RK is continuous on A if
it is continuous at all x̄ ∈ A.

▶ f : X → RK is continuous if it is continuous on X.

Note:

▶ A function f : X → RK is continuous at x̄ ∈ X if and only if
each coordinate function fk is continuous at x̄.
(f : x 7→ f(x) = (f1(x), . . . , fK(x)) ∈ RK .)
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Equivalent Definitions of Continuity

Let X be a nonempty subset of RN .

Proposition 2.14

A function f : X → RK is continuous at x̄ ∈ X if and only if
for any ε > 0, there exists δ > 0 such that

‖x− x̄‖ < δ, x ∈ X =⇒ ‖f(x)− f(x̄)‖ < ε.
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The Limit of a Function

Let X be a nonempty subset of RN .

Definition 2.8
For a function f : X → RK and for x̄ ∈ ClX and ŷ ∈ RK ,
we write

lim
x→x̄

f(x) = ŷ or f(x) → ŷ as x → x̄

if for any ε > 0, there exists δ > 0 such that

0 < ‖x− x̄‖ < δ, x ∈ X =⇒ ‖f(x)− ŷ‖ < ε.
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Equivalent Definitions of Continuity

Let X be a nonempty subset of RN .

Proposition 2.15

A function f : X → RK is continuous at x̄ ∈ X if and only if

lim
x→x̄

f(x) = f(x̄).
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Equivalent Definitions of Continuity

Let X be a nonempty subset of RN .

Proposition 2.16

A function f : X → RK is continuous at x̄ ∈ X if and only if
for any open neighborhood V of f(x̄),
there exists an open neighborhood U of x̄ relative to X such that
f(U) ⊂ V .

▶ U ⊂ X is an open neighborhood of x̄ relative to X if
it is an open set relative to X such that x̄ ∈ U .

▶ For A ⊂ X,
f(A) = {y ∈ RK | y = f(x) for some x ∈ A}

· · · the image of A under f .
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Equivalent Definitions of Continuity

Let X be a nonempty subset of RN .

Proposition 2.17

For a function f : X → RK , the following statements are
equivalent:

1. f is continuous.

2. For any open set O ⊂ RK , f−1(O) is open relative to X.

3. For any closed set C ⊂ RK , f−1(C) is closed relative to X.

▶ For B ⊂ RK ,
f−1(B) = {x ∈ X | f(x) ∈ B}

· · · the inverse image of B under f .
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Equivalent Definitions of Continuity: R-Valued Functions

Let X be a nonempty subset of RN .

Proposition 2.18

For a function f : X → R, the following statements are equivalent:

1. f is continuous.

2. For any open interval I ⊂ R,
{x ∈ X | f(x) ∈ I} is open relative to X.

3. For all c ∈ R,
{x ∈ X | f(x) > c} and {x ∈ X | f(x) < c} are open
relative to X.

4. For all c ∈ R,
{x ∈ X | f(x) ≥ c} and {x ∈ X | f(x) ≤ c} are closed
relative to X.
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Intermediate Value Theorem

Proposition 2.19

Let X ⊂ R be a nonempty subset of R,
and suppose that [a, b] ⊂ X, where a < b.
If a function f : X → R is continuous on [a, b] and f(a) < f(b),
then for any M ∈ (f(a), f(b)), there exists c ∈ (a, b) such that
f(c) = M .
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Proof (1/2)

▶ Let M ∈ (f(a), f(b)), and let A = {x ∈ [a, b] | f(x) < M}.

▶ A 6= ∅ since a ∈ A. A is bounded above by b.

▶ Hence, supA exists (where supA ∈ ClA ⊂ [a, b]).
Let us denote it by c.
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Proof (2/2)

▶ Since c is an upper bound of A,
for all m ∈ N, c+ 1

m /∈ A, or f(c+ 1
m) ≥ M .

By continuity,

f(c) = f
(

lim
m→∞

c+ 1
m

)
= lim

m→∞
f(c+ 1

m) ≥ M .

▶ Since c is the least upper bound of A,
for each m ∈ N, there is some xm such that
c− 1

m < xm ≤ c (⇒ lim
m→∞

xm = c) and

xm ∈ A, or f(xm) < M .

By continuity,

f(c) = f
(

lim
m→∞

xm
)
= lim

m→∞
f(xm) ≤ M .

▶ Hence, f(c) = M .
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Image of a Compact Set under a Continuous Function

Let X be a nonempty subset of RN .

Proposition 2.20

Let f : X → RK be a continuous function.
If A ⊂ X is compact, then f(A) is compact.

▶ f(A) = {y ∈ RK | y = f(x) for some x ∈ A}
· · · the image of A under f .
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Proof

▶ Take any sequence {ym} ⊂ f(A).

We want to show that it has a convergent subsequence with
a limit in f(A).

▶ For each m ∈ N, take an xm ∈ A such that ym = f(xm).

▶ Since A is compact, {xm} has a convergent subsequence
{xm(k)} with a limit x ∈ A.

▶ By the continuity of f ,
limk→∞ f(xm(k)) = f(limk→∞ xm(k)) = f(x).

That is, ym(k) → f(x) ∈ f(A).
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Extreme Value Theorem

Proposition 2.21

If X ⊂ RN is a nonempty compact set and
f : X → R is a continuous function,
then f has a maximizer and a minimizer, i.e.,
there exist x∗, x∗∗ ∈ X such that f(x∗∗) ≤ f(x) ≤ f(x∗) ∀x ∈ X.

Proof

▶ By the previous proposition, f(X) ⊂ R is compact.

▶ ⇒ sup f(X) and inf f(X) exist, and
sup f(X) ∈ f(X) and inf f(X) ∈ f(X) by Proposition 2.13.

▶ That is, there exist x∗, x∗∗ ∈ X such that
f(x∗) = sup f(X) and f(x∗∗) = inf f(X).
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lim sup and lim inf

Definition 2.9
For a sequence {xm} in R:

lim sup
m→∞

xm = lim
m→∞

sup
n≥m

xn, lim inf
m→∞

xm = lim
m→∞

inf
n≥m

xn.

▶ lim sup · · · “limit supremum” or “limit superior”
lim inf · · · “limit infimum” or “limit inferior”

▶ lim supm→∞ xm and lim infm→∞ xm always exist,
if we allow a limit to be ∞ or −∞.

▶ limm→∞ xm exists if and only if
lim infm→∞ xm = lim supm→∞ xm,
in which case the three terms coincide.
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Semi-Continuous Functions

Let X be a nonempty subset of RN .

Definition 2.10
▶ A function f : X → R is upper semi-continuous at x̄ ∈ X if

for any sequence {xm} ⊂ X such that xm → x̄ as m → ∞,
we have lim supm→∞ f(xm) ≤ f(x̄).

▶ A function f : X → R is lower semi-continuous at x̄ ∈ X if
for any sequence {xm} ⊂ X such that xm → x̄ as m → ∞,
we have lim infm→∞ f(xm) ≥ f(x̄).

▶ For A ⊂ X, f is upper (lower) semi-continuous on A if
it is upper (lower) semi-continuous at all x̄ ∈ A.

▶ f is upper (lower) semi-continuous if it is upper (lower)
semi-continuous on X.
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Semi-Continuous Functions

Let X be a nonempty subset of RN .

Proposition 2.22

f : X → R is continuous at x̄
if and only if it is upper and lower semi-continuous at x̄.
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Semi-Continuous Functions

▶ A continuous function has no jump.

▶ An upper semi-continuous function

▶ may have a downward jump, but

▶ may not have an upward jump.

▶ A lower semi-continuous function

▶ may have an upward jump, but

▶ may not have a downward jump.
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Equivalent Definitions of Upper Semi-Continuity
Let X be a nonempty subset of RN .

Proposition 2.23

For a function f : X → R, the following statements are equivalent:

1. f is upper semi-continuous at x̄ ∈ X.

2. For any ε > 0, there exists δ > 0 such that

‖x− x̄‖ < δ, x ∈ X =⇒ f(x̄) > f(x)− ε.

Proposition 2.24

For a function f : X → R, the following statements are equivalent:

1. f is upper semi-continuous.

2. For all c ∈ R, {x ∈ X | f(x) < c} is open relative to X.

3. For all c ∈ R, {x ∈ X | f(x) ≥ c} is closed relative to X.
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Equivalent Definitions of Lower Semi-Continuity
Let X be a nonempty subset of RN .

Proposition 2.25

For a function f : X → R, the following statements are equivalent:

1. f is lower semi-continuous at x̄ ∈ X.

2. For any ε > 0, there exists δ > 0 such that

‖x− x̄‖ < δ, x ∈ X =⇒ f(x̄) < f(x) + ε.

Proposition 2.26

For a function f : X → R, the following statements are equivalent:

1. f is lower semi-continuous.

2. For all c ∈ R, {x ∈ X | f(x) > c} is open relative to X.

3. For all c ∈ R, {x ∈ X | f(x) ≤ c} is closed relative to X.

46 / 47



Extreme Value Theorem for Semi-Continuous Functions

Proposition 2.27

Let X ⊂ RN be a nonempty compact set, and let f : X → R.
1. If f is upper semi-continuous, then f has a maximizer.

2. If f is lower semi-continuous, then f has a minimizer.
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