2. Continuous Functions and Compact Sets

Daisuke Oyama

Mathematics II

April 10, 2024

Euclidean Norm in \mathbb{R}^N

For $x = (x_1, \ldots, x_N) \in \mathbb{R}^N$, the Euclidean norm of x is denoted by |x| or ||x||, i.e.,

$$|x| = \sqrt{(x_1)^2 + \dots + (x_N)^2},$$

or

$$||x|| = \sqrt{(x_1)^2 + \dots + (x_N)^2}.$$

• We follow MWG to use $\|\cdot\|$.

- For all $x, y \in \mathbb{R}^N$:
 - $||x|| \ge 0$; ||x|| = 0 if and only if x = 0;

$$\|\alpha x\| = |\alpha| \|x\| \text{ for } \alpha \in \mathbb{R};$$

 $||x + y|| \le ||x|| + ||y|| \quad \text{(triangular inequality)}.$

Convergence in \mathbb{R}^N

• A sequence in \mathbb{R}^N is a function from \mathbb{N} to \mathbb{R}^N .

A sequence is denoted by $\{x^m\}_{m=1}^\infty$, or simply $\{x^m\}$, or x^m .

Notation (in this course): For $A \subset \mathbb{R}^N$, if $x^m \in A$ for all $m \in \mathbb{N}$, then we write $\{x^m\}_{m=1}^{\infty} \subset A$.

Definition 2.1

A sequence $\{x^m\}_{m=1}^{\infty}$ converges to $\bar{x} \in \mathbb{R}^N$ if for any $\varepsilon > 0$, there exists $M \in \mathbb{N}$ such that

 $||x^m - \bar{x}|| < \varepsilon$ for all $m \ge M$.

In this case, we write $\lim_{m\to\infty} x^m = \bar{x}$ or $x^m \to \bar{x}$ (as $m \to \infty$).

•
$$\bar{x}$$
 is called the *limit* of $\{x^m\}_{m=1}^{\infty}$.

A sequence that converges to some $\bar{x} \in \mathbb{R}^N$ is said to be *convergent*.

Convergence in \mathbb{R}^N

Proposition 2.1

For a sequence $\{x^m\}$ in \mathbb{R}^N , where $x^m = (x_1^m, \ldots, x_N^m)$, $x^m \to \bar{x} = (\bar{x}_1, \ldots, \bar{x}_N) \in \mathbb{R}^N$ if and only if $x_i^m \to \bar{x}_i \in \mathbb{R}$ for all $i = 1, \ldots, N$.

 Thus, the definition in MWG (M.F.1) and that in Debreu (1.6.e) are equivalent.

Completeness of \mathbb{R}^N

A sequence {x^m} in ℝ^N is a Cauchy sequence if for any ε > 0, there exists a natural number M such that

$$||x^m - x^n|| < \varepsilon$$
 for all $m, n \ge M$.

A convergent sequence is a Cauchy sequence.

Proposition 2.2 (Completeness of \mathbb{R}^N) Every Cauchy sequence in \mathbb{R}^N is convergent.

Proof

- Let $\{x^m\}$ be a Cauchy sequence in \mathbb{R}^N .
- ► Then, for each i = 1,..., N, {x_i^m} is a Cauchy sequence in ℝ, and hence is convergent (by the completeness of ℝ);

denote its limit by \bar{x}_i .

• Let
$$\bar{x} = (\bar{x}_1, \ldots, \bar{x}_N)$$
.

Then $x^m \to \bar{x}$ by Proposition 2.1.

Open Sets and Closed Sets in \mathbb{R}^N

For
$$x \in \mathbb{R}^N$$
, the ε -open ball around x :

$$B_{\varepsilon}(x) = \{ y \in \mathbb{R}^N \mid ||y - x|| < \varepsilon \}.$$

Definition 2.2

- $A \subset \mathbb{R}^N$ is an open set if for any $x \in A$, there exists $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subset A$.
- $A \subset \mathbb{R}^N$ is a closed set if $\mathbb{R}^N \setminus A$ is an open set.

Examples:

▶
$$\{x \in \mathbb{R}^2 \mid x_1 + x_2 < 1\}$$
 is an open set.
 $\{x \in \mathbb{R}^2 \mid x_1 + x_2 \le 1\}$ is a closed set.

•
$$B_{\varepsilon}(x)$$
, $\varepsilon > 0$, is an open set.

Relative Openness and Closedness

- In Consumer Theory, for example, we usually work with ℝ^N₊ (set of nonnegative consumption bundles) rather than ℝ^N.
- We want to say

 $\{x \in \mathbb{R}^2 \mid x_1 + x_2 < 1, \ x_1 \ge 0, \ x_2 \ge 0\} \quad (= \{x \in \mathbb{R}^2_+ \mid x_1 + x_2 < 1\})$

is an open set in the world of \mathbb{R}^2_+ .

Definition 2.3

For $X \subset \mathbb{R}^N$,

• $A \subset X$ is an open set relative to X if for any $x \in A$, there exists $\varepsilon > 0$ such that $(B_{\varepsilon}(x) \cap X) \subset A$.

A ⊂ X is a closed set relative to X if X \ A is an open set relative to X.

- Open sets, closed sets, and other concepts relative to X are defined with
 - X in place of \mathbb{R}^N , and
 - $B_{\varepsilon}(x) \cap X$ in place of $B_{\varepsilon}(x)$.
- A ⊂ X is an open set relative to X if and only if
 A = B ∩ X for some open set B ⊂ ℝ^N (relative to ℝ^N).

Properties of Open Sets

Proposition 2.3 Let $X \subset \mathbb{R}^N$.

- 1. \emptyset and X are open sets relative to X.
- For any index set Λ,
 if O_λ is an open set relative to X for all λ ∈ Λ,
 then ⋃_{λ∈Λ} O_λ is an open set relative to X.
 (The union of any family of open sets is open.)
- 3. For any $M \in \mathbb{N}$, if O_m is an open set relative to X for all m = 1, ..., M, then $\bigcap_{m=1}^{M} O_m$ is an open set relative to X.

(The intersection of any finite family of open sets is open.)

Properties of Closed Sets

Proposition 2.4 Let $X \subset \mathbb{R}^N$.

- 1. \emptyset and X are closed sets relative to X.
- 2. For any index set Λ , if C_{λ} is a closed set relative to X for all $\lambda \in \Lambda$, then $\bigcap_{\lambda \in \Lambda} C_{\lambda}$ is a closed relative to X.

(The intersection of any family of closed sets is closed.)

3. For any $M \in \mathbb{N}$, if C_m is a closed set relative to X for all $m = 1, \ldots, M$, then $\bigcup_{m=1}^{M} C_m$ is a closed set relative to X.

(The union of any finite family of closed sets is closed.)

Properties of Closed Sets

Proposition 2.5 Let $X \subset \mathbb{R}^N$. $A \subset X$ is a closed set relative to X \iff for any convergent sequence $\{x^m\}_{m=1}^{\infty} \subset A$ with $x^m \to \bar{x} \in X$, we have $\bar{x} \in A$. (A closed set is closed with respect to convergence.)

Proof

- ▶ By definition, $A \subset X$ is a closed set relative to X $\iff \forall x \in X \setminus A \exists \varepsilon > 0 : B_{\varepsilon}(x) \cap A = \emptyset.$
- ► Therefore, if A is closed, then ∀x ∈ X \ A, any sequence in A cannot converge to x.

► Conversely, if A is not closed, then $\exists \bar{x} \in X \setminus A \ \forall \varepsilon > 0 : B_{\varepsilon}(\bar{x}) \cap A \neq \emptyset$.

Then construct a sequence $\{x^m\}_{m=1}^\infty \subset A$ by

$$x^m \in B_{\frac{1}{m}}(\bar{x}) \cap A \quad (m = 1, 2, \ldots).$$

By construction, $x^m \to \bar{x} \notin A$.

Interior, Closure, and Boundary

Definition 2.4 For $X \subset \mathbb{R}^N$ and $A \subset X$, the interior of A relative to X:

 $\operatorname{Int}_X A = \{ x \in A \mid (B_{\varepsilon}(x) \cap X) \subset A \text{ for some } \varepsilon > 0 \};$

• the closure of A relative to X: $\operatorname{Cl}_X A = X \setminus \operatorname{Int}_X(X \setminus A)$;

• the boundary of A relative to X: $\operatorname{Bdry}_X A = \operatorname{Cl}_X A \setminus \operatorname{Int}_X A$.

(We write $\operatorname{Int}_{\mathbb{R}^N} = \operatorname{Int}, \operatorname{Cl}_{\mathbb{R}^N} = \operatorname{Cl}, \text{ and } \operatorname{Bdry}_{\mathbb{R}^N} = \operatorname{Bdry}.$)

Characterization of Interior

Proposition 2.6 Let $X \subset \mathbb{R}^N$ and $A \subset X$.

- 1. Int_X $A \subset A$.
- 2. $Int_X A$ is an open set relative to X.
- 3. If $B \subset A$ and if B is open relative to X, then $B \subset Int_X A$.

Hence,

 $\operatorname{Int}_X A = \bigcup \{ B \subset X \mid B \subset A \text{ and } B \text{ is open relative to } X \},\$

i.e., $Int_X A$ is the largest open set (relative to X) contained in A.

Proof

2.

1. By definition.

Take any $x \in \operatorname{Int}_X A$. By definition, $(B_{\varepsilon}(x) \cap X) \subset A$ for some $\varepsilon > 0$. We want to show that $(B_{\varepsilon}(x) \cap X) \subset \operatorname{Int}_X A$.

• Take any
$$y \in B_{\varepsilon}(x) \cap X$$
.

Let $\varepsilon' = \varepsilon - ||y - x|| > 0.$

Then $B_{\varepsilon'}(y) \subset B_{\varepsilon}(x)$.

- ▶ Hence, $(B_{\varepsilon'}(y) \cap X) \subset (B_{\varepsilon}(x) \cap X) \subset A$, which implies that $y \in Int_X A$.
- 3. Take any $x \in B$.

By the openness of B, $(B_{\varepsilon}(x) \cap X) \subset B$ for some $\varepsilon > 0$. By $B \subset A$, $(B_{\varepsilon}(x) \cap X) \subset A$. Therefore, $x \in \operatorname{Int}_X A$. Characterization of Closure

Proposition 2.7 Let $X \subset \mathbb{R}^N$ and $A \subset X$. 1. $A \subset \operatorname{Cl}_X A$. 2. $\operatorname{Cl}_X A$ is a closed set relative to X.

3. If $A \subset B$ and if B is closed relative to X, then $\operatorname{Cl}_X A \subset B$.

Hence,

$$\operatorname{Cl}_X A = \bigcap \{ B \subset X \mid B \supset A \text{ and } B \text{ is closed relative to } X \},\$$

i.e., $\operatorname{Cl}_X A$ is the smallest closed set (relative to X) containing A.

Proof

By Proposition 2.6.

For
$$X = \mathbb{R}$$
,
 $Int[0, 1) = (0, 1)$,
 $Cl[0, 1) = [0, 1]$,
 $Bdry[0, 1) = \{0, 1\}$.

▶ What are the interior, closure, and boundary of $\mathbb{Q} \cap [0,1]$? → Homework

▶ For
$$A = \{(x_1, x_2) \in \mathbb{R}^2 \mid 0 \le x_1 \le 1, x_2 = 0\}$$
,
Int $A \ (= \text{Int}_{\mathbb{R}^2} A) = \emptyset$, while $\text{Int}_{\mathbb{R}} A = (0, 1)$.

Remark

There is an abuse of notation in " $\operatorname{Int}_{\mathbb{R}} A = (0, 1)$ ": To be precise, one should write $\operatorname{Int}_{\{x \in \mathbb{R}^2 | x_1 \in \mathbb{R}, x_2 = 0\}} A = \{x \in \mathbb{R}^2 | x_1 \in (0, 1), x_2 = 0\}.$ Characterizations of Open/Closed Sets by Interior/Closure

Proposition 2.8 Let $X \subset \mathbb{R}^N$ and $A \subset X$.

- 1. A is open relative to $X \iff \operatorname{Int}_X A = A$.
- 2. A is closed relative to $X \iff \operatorname{Cl}_X A = A$.

Characterizations of Closure

Proposition 2.9
Let
$$X \subset \mathbb{R}^N$$
 and $A \subset X$.
1. $\operatorname{Cl}_X A = \{x \in X \mid B_{\varepsilon}(x) \cap A \neq \emptyset \text{ for all } \varepsilon > 0\}$
 $= \bigcap_{\varepsilon > 0} B_{\varepsilon}(A) \cap X$,
where $B_{\varepsilon}(A) = \{x \in \mathbb{R}^N \mid ||x - a|| < \varepsilon \text{ for some } a \in A\}$.
2. $\operatorname{Cl}_X A = \{x \in X \mid x^m \to x \text{ for some } \{x^m\} \subset A\}$.

> Thus, the definition in MWG and that in Debreu are equivalent.

Proof of Proposition 2.9

Recall the definition: $\operatorname{Cl}_X A = X \setminus \operatorname{Int}_X(X \setminus A)$.

1. For
$$x \in X$$
, we have
 $x \in \operatorname{Cl}_X A$
 $\iff x \notin \operatorname{Int}_X(X \setminus A)$
 $\iff \forall \varepsilon > 0 : (B_{\varepsilon}(x) \cap X) \not\subset (X \setminus A)$
 $\iff \forall \varepsilon > 0 : B_{\varepsilon}(x) \cap A \neq \emptyset$
 $\iff \forall \varepsilon > 0 : x \in B_{\varepsilon}(A).$

2. If $x \in \operatorname{Cl}_X A$, construct $\{x^m\} \subset A$ by $x^m \in B_{\frac{1}{m}}(x) \cap A$, where $B_{\frac{1}{m}}(x) \cap A \neq \emptyset$ by part 1.

Then $x^m \to x$.

Conversely, let $\{x^m\} \subset A$ and $x^m \to x \in X$.

For any $\varepsilon > 0$, there exists M such that $x^M \in B_{\varepsilon}(x)$, so that $B_{\varepsilon}(x) \cap A \neq \emptyset$.

Hence, $x \in \operatorname{Cl}_X A$ by part 1.

Dense Sets

Definition 2.5 For $X \subset \mathbb{R}^N$, $A \subset X$ is dense in X if $\operatorname{Cl}_X A = X$.

Proposition 2.10 For $X \subset \mathbb{R}^N$ and $A \subset X$, the following statements are equivalent: 1. A is dense in X.

2.
$$\operatorname{Int}_X(X \setminus A) = \emptyset$$
.

3. $O \cap A \neq \emptyset$ for every nonempty open set $O \subset X$ relative to X.

Proof

By the definitions of interior and closure.

Compact Sets

• $A \subset \mathbb{R}^N$ is bounded if there exists $r \in \mathbb{R}$ such that ||x|| < r for all $x \in A$.

Definition 2.6 $A \subset \mathbb{R}^N$ is compact if it is bounded and closed (relative to \mathbb{R}^N).

Examples:

- ▶ $[0,1] \subset \mathbb{R}$ is compact.
- ▶ $[0,\infty) \subset \mathbb{R}$ is not compact.
- ▶ $(0,1] \subset \mathbb{R}$ is not compact.

Sequential Compactness

Proposition 2.11

For $A \subset \mathbb{R}^N$, the following statements are equivalent:

- 1. A is compact.
- 2. For every sequence $\{x^m\} \subset A$, there exist a subsequence $\{x^{m(k)}\}$ of $\{x^m\}$ and a point $x \in A$ such that $x^{m(k)} \to x$.

Proof

 $2 \Rightarrow 1$ If A is not bounded, then for all $m \in \mathbb{N}$, there exists $x^m \in A$ such that $||x^m|| \ge m$.

No subsequence of the sequence $\{x^m\} \subset A$ can be convergent $(\because \forall x \in \mathbb{R}^N \exists M \in \mathbb{N} : ||x^m - x|| \ge ||x^m|| - ||x|| \ge 1 \forall m \ge M).$

If A is not closed, then there exists $\bar{x} \notin A$ such that for all $m \in \mathbb{N}$, there exists $x^m \in B_{\frac{1}{m}}(\bar{x}) \cap A$.

The sequence $\{x^m\} \subset A$, and any subsequence, converges to $\bar{x} \notin A$.

Proof

$1 \Rightarrow 2$ Take any sequence $\{x^m\} \subset A$.

Suppose that A is bounded.

- Since $\{x_1^m\} \subset \mathbb{R}$ is bounded, there is a subsequence $\{x^{m_1(k)}\}$ of $\{x^m\}$ such that $\{x_1^{m_1(k)}\}$ is convergent.
- ▶ Since $\{x_2^{m_1(k)}\} \subset \mathbb{R}$ is bounded, there is a subsequence $\{x^{m_2(k)}\}$ of $\{x^{m_1(k)}\}$ such that $\{x_2^{m_2(k)}\}$ is convergent.

...

▶ Since $\{x_N^{m_{N-1}(k)}\} \subset \mathbb{R}$ is bounded, there is a subsequence $\{x^{m_N(k)}\}$ of $\{x^{m_{N-1}(k)}\}$ such that $\{x_N^{m_N(k)}\}$ is convergent.

Thus, we have a convergent subsequence $\{x^{m_N(k)}\}$. If in addition, A is closed, then its limit is contained in A.

Open Covers and Finite Intersections

Proposition 2.12

For $A \subset \mathbb{R}^N$, the following statements are equivalent:

- 1. A is compact.
- 2. Any family \mathcal{O} of open sets such that $A \subset \bigcup \mathcal{O}$ has a finite subset \mathcal{O}' such that $A \subset \bigcup \mathcal{O}'$.

(I.e., Any open cover of A has a finite subcover.)

3. For any family C of closed subsets of A that has the property that $\bigcap C' \neq \emptyset$ for any finite subset C' of C, we have $\bigcap C \neq \emptyset$.

(The property in 3 is called the *finite intersection property*.)

\sup and \inf

Proposition 2.13

Let A be a nonempty subset of \mathbb{R} .

- If A is bounded, then $\sup A \in \operatorname{Cl} A$ and $\inf A \in \operatorname{Cl} A$.
- If in addition, A is closed, then $\sup A \in A$ and $\inf A \in A$.

Thus, a nonempty compact subset of $\ensuremath{\mathbb{R}}$ has a maximum and a minimum.

Continuous Functions

Let X be a nonempty subset of \mathbb{R}^N .

Definition 2.7

 A function f: X → ℝ^K is continuous at x̄ ∈ X if for any sequence {x^m} ⊂ X such that x^m → x̄ as m → ∞, we have f(x^m) → f(x̄) as m → ∞
 (i.e. lim f(x^m) = f(lim x^m))

(i.e.,
$$\lim_{m\to\infty} f(x^m) = f(\lim_{m\to\infty} x^m)$$
).

- For $A \subset X$, $f: X \to \mathbb{R}^K$ is continuous on A if it is continuous at all $\bar{x} \in A$.
- $f: X \to \mathbb{R}^K$ is continuous if it is continuous on X.

Note:

A function f: X → ℝ^K is continuous at x̄ ∈ X if and only if each coordinate function f_k is continuous at x̄.
 (f: x ↦ f(x) = (f₁(x),..., f_K(x)) ∈ ℝ^K.)

Let X be a nonempty subset of \mathbb{R}^N .

Proposition 2.14

A function $f: X \to \mathbb{R}^K$ is continuous at $\bar{x} \in X$ if and only if for any $\varepsilon > 0$, there exists $\delta > 0$ such that

$$||x - \bar{x}|| < \delta, \ x \in X \Longrightarrow ||f(x) - f(\bar{x})|| < \varepsilon.$$

The Limit of a Function

Let X be a nonempty subset of \mathbb{R}^N .

Definition 2.8

For a function $f\colon X\to \mathbb{R}^K$ and for $\bar{x}\in {\rm Cl}\,X$ and $\hat{y}\in \mathbb{R}^K$, we write

$$\lim_{x\to \bar x} f(x) = \hat y \qquad \text{or} \qquad f(x)\to \hat y \text{ as } x\to \bar x$$

if for any $\varepsilon>0,$ there exists $\delta>0$ such that

$$0 < \|x - \bar{x}\| < \delta, \ x \in X \Longrightarrow \|f(x) - \hat{y}\| < \varepsilon.$$

Let X be a nonempty subset of \mathbb{R}^N .

Proposition 2.15

A function $f: X \to \mathbb{R}^K$ is continuous at $\bar{x} \in X$ if and only if

$$\lim_{x \to \bar{x}} f(x) = f(\bar{x}).$$

Let X be a nonempty subset of \mathbb{R}^N .

Proposition 2.16

A function $f: X \to \mathbb{R}^K$ is continuous at $\bar{x} \in X$ if and only if for any open neighborhood V of $f(\bar{x})$, there exists an open neighborhood U of \bar{x} relative to X such that $f(U) \subset V$.

• $U \subset X$ is an open neighborhood of \bar{x} relative to X if it is an open set relative to X such that $\bar{x} \in U$.

For
$$A \subset X$$
,
 $f(A) = \{y \in \mathbb{R}^K \mid y = f(x) \text{ for some } x \in A\}$
 \cdots the *image* of A under f.

Let X be a nonempty subset of \mathbb{R}^N .

Proposition 2.17

For a function $f: X \to \mathbb{R}^K$, the following statements are equivalent:

- 1. f is continuous.
- 2. For any open set $O \subset \mathbb{R}^K$, $f^{-1}(O)$ is open relative to X.
- 3. For any closed set $C \subset \mathbb{R}^K$, $f^{-1}(C)$ is closed relative to X.

For
$$B \subset \mathbb{R}^K$$
,
 $f^{-1}(B) = \{x \in X \mid f(x) \in B\}$

 \cdots the *inverse image* of *B* under *f*.

Equivalent Definitions of Continuity: **R**-Valued Functions

Let X be a nonempty subset of \mathbb{R}^N .

Proposition 2.18

For a function $f: X \to \mathbb{R}$, the following statements are equivalent:

- 1. f is continuous.
- 2. For any open interval $I \subset \mathbb{R}$, $\{x \in X \mid f(x) \in I\}$ is open relative to X.
- 3. For all $c \in \mathbb{R}$, $\{x \in X \mid f(x) > c\}$ and $\{x \in X \mid f(x) < c\}$ are open relative to X.
- 4. For all $c \in \mathbb{R}$, $\{x \in X \mid f(x) \ge c\}$ and $\{x \in X \mid f(x) \le c\}$ are closed relative to X.

Intermediate Value Theorem

Proposition 2.19

Let $X \subset \mathbb{R}$ be a nonempty subset of \mathbb{R} , and suppose that $[a,b] \subset X$, where a < b. If a function $f: X \to \mathbb{R}$ is continuous on [a,b] and f(a) < f(b), then for any $M \in (f(a), f(b))$, there exists $c \in (a,b)$ such that f(c) = M.

Proof (1/2)

- ▶ Let $M \in (f(a), f(b))$, and let $A = \{x \in [a, b] \mid f(x) < M\}$.
- $A \neq \emptyset$ since $a \in A$. A is bounded above by b.
- ► Hence, sup A exists (where sup A ∈ Cl A ⊂ [a, b]). Let us denote it by c.

Proof (2/2)

▶ Since c is an upper bound of A, for all $m \in \mathbb{N}$, $c + \frac{1}{m} \notin A$, or $f(c + \frac{1}{m}) \ge M$.

By continuity,

$$f(c) = f\left(\lim_{m \to \infty} c + \frac{1}{m}\right) = \lim_{m \to \infty} f(c + \frac{1}{m}) \ge M.$$

Since c is the least upper bound of A,
for each
$$m \in \mathbb{N}$$
, there is some x^m such that
 $c - \frac{1}{m} < x^m \le c \ (\Rightarrow \lim_{m \to \infty} x^m = c)$ and
 $x^m \in A$, or $f(x^m) < M$.

By continuity,

$$f(c) = f\left(\lim_{m \to \infty} x^m\right) = \lim_{m \to \infty} f(x^m) \le M.$$

▶ Hence, f(c) = M.

Image of a Compact Set under a Continuous Function

Let X be a nonempty subset of \mathbb{R}^N .

Proposition 2.20

Let $f: X \to \mathbb{R}^K$ be a continuous function. If $A \subset X$ is compact, then f(A) is compact.

•
$$f(A) = \{y \in \mathbb{R}^K \mid y = f(x) \text{ for some } x \in A\}$$

 \cdots the *image* of A under f.

Proof

• Take any sequence $\{y^m\} \subset f(A)$.

We want to show that it has a convergent subsequence with a limit in f(A).

For each $m \in \mathbb{N}$, take an $x^m \in A$ such that $y^m = f(x^m)$.

- Since A is compact, {x^m} has a convergent subsequence {x^{m(k)}} with a limit x ∈ A.
- ▶ By the continuity of f, $\lim_{k\to\infty} f(x^{m(k)}) = f(\lim_{k\to\infty} x^{m(k)}) = f(x).$ That is, $y^{m(k)} \to f(x) \in f(A).$

Extreme Value Theorem

Proposition 2.21 If $X \subset \mathbb{R}^N$ is a nonempty compact set and $f: X \to \mathbb{R}$ is a continuous function, then f has a maximizer and a minimizer, i.e., there exist $x^*, x^{**} \in X$ such that $f(x^{**}) \leq f(x) \leq f(x^*) \ \forall x \in X$.

Proof

- ▶ By the previous proposition, $f(X) \subset \mathbb{R}$ is compact.
- ▶ ⇒ sup f(X) and inf f(X) exist, and sup $f(X) \in f(X)$ and inf $f(X) \in f(X)$ by Proposition 2.13.
- ▶ That is, there exist $x^*, x^{**} \in X$ such that $f(x^*) = \sup f(X)$ and $f(x^{**}) = \inf f(X)$.

\limsup and \liminf

Definition 2.9 For a sequence $\{x^m\}$ in \mathbb{R} :

$$\limsup_{m \to \infty} x^m = \lim_{m \to \infty} \sup_{n \ge m} x^n, \qquad \liminf_{m \to \infty} x^m = \lim_{m \to \infty} \inf_{n \ge m} x^n.$$

- lim sup ··· "limit supremum" or "limit superior" lim inf ··· "limit infimum" or "limit inferior"
- lim sup_{m→∞} x^m and lim inf_{m→∞} x^m always exist, if we allow a limit to be ∞ or -∞.
- ▶ $\lim_{m\to\infty} x^m$ exists if and only if $\liminf_{m\to\infty} x^m = \limsup_{m\to\infty} x^m$, in which case the three terms coincide.

Semi-Continuous Functions

Let X be a nonempty subset of \mathbb{R}^N .

Definition 2.10

- ▶ A function $f: X \to \mathbb{R}$ is upper semi-continuous at $\bar{x} \in X$ if for any sequence $\{x^m\} \subset X$ such that $x^m \to \bar{x}$ as $m \to \infty$, we have $\limsup_{m\to\infty} f(x^m) \leq f(\bar{x})$.
- ▶ A function $f: X \to \mathbb{R}$ is lower semi-continuous at $\overline{x} \in X$ if for any sequence $\{x^m\} \subset X$ such that $x^m \to \overline{x}$ as $m \to \infty$, we have $\liminf_{m\to\infty} f(x^m) \ge f(\overline{x})$.
- For A ⊂ X, f is upper (lower) semi-continuous on A if it is upper (lower) semi-continuous at all x̄ ∈ A.
- ► f is upper (lower) semi-continuous if it is upper (lower) semi-continuous on X.

Semi-Continuous Functions

Let X be a nonempty subset of \mathbb{R}^N .

Proposition 2.22

 $f \colon X \to \mathbb{R}$ is continuous at \bar{x}

if and only if it is upper and lower semi-continuous at \bar{x} .

Semi-Continuous Functions

A continuous function has no jump.

An upper semi-continuous function

may have a downward jump, but

- may not have an upward jump.
- A lower semi-continuous function
 - may have an upward jump, but
 - may not have a downward jump.

Equivalent Definitions of Upper Semi-Continuity

Let X be a nonempty subset of \mathbb{R}^N .

Proposition 2.23

For a function $f: X \to \mathbb{R}$, the following statements are equivalent:

- 1. f is upper semi-continuous at $\bar{x} \in X$.
- 2. For any $\varepsilon > 0$, there exists $\delta > 0$ such that

$$||x - \bar{x}|| < \delta, \ x \in X \Longrightarrow f(\bar{x}) > f(x) - \varepsilon.$$

Proposition 2.24

For a function $f: X \to \mathbb{R}$, the following statements are equivalent:

1. f is upper semi-continuous.

2. For all $c \in \mathbb{R}$, $\{x \in X \mid f(x) < c\}$ is open relative to X.

3. For all $c \in \mathbb{R}$, $\{x \in X \mid f(x) \ge c\}$ is closed relative to X.

Equivalent Definitions of Lower Semi-Continuity

Let X be a nonempty subset of \mathbb{R}^N .

Proposition 2.25

For a function $f: X \to \mathbb{R}$, the following statements are equivalent:

- 1. f is lower semi-continuous at $\bar{x} \in X$.
- 2. For any $\varepsilon > 0$, there exists $\delta > 0$ such that

 $\|x - \bar{x}\| < \delta, \ x \in X \Longrightarrow f(\bar{x}) < f(x) + \varepsilon.$

Proposition 2.26

For a function $f: X \to \mathbb{R}$, the following statements are equivalent:

- 1. f is lower semi-continuous.
- 2. For all $c \in \mathbb{R}$, $\{x \in X \mid f(x) > c\}$ is open relative to X.
- 3. For all $c \in \mathbb{R}$, $\{x \in X \mid f(x) \leq c\}$ is closed relative to X.

Extreme Value Theorem for Semi-Continuous Functions

Proposition 2.27

Let $X \subset \mathbb{R}^N$ be a nonempty compact set, and let $f: X \to \mathbb{R}$.

- 1. If f is upper semi-continuous, then f has a maximizer.
- 2. If f is lower semi-continuous, then f has a minimizer.