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Convex Sets

Definition 4.1
A C RY is convex if

(1-a)z+ar' € A

whenever 2,2’ € A and a € [0, 1].
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Convex Combinations

M
» Foroq,...,oanr >0, > =1,
arz! + -+ ayxM is called a convex combination of
:cl, .,azM.

Proposition 4.1

If A c RN js convex, then
any convex combination of elements in A is contained in A.

Proof
By induction.
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Convex Hull

Proposition 4.2

For any index set A,
if Cx C RY is convex for all A € A, then (., C» is convex.
(The intersection of any family of convex sets is convex.)

Definition 4.2

For A ¢ RY, the convex hull of A, denoted Co A, is
the intersection of all convex sets that contain A
(or, the smallest convex set that contains A).
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Proposition 4.3
For A C RY, Co A equals the set of all convex combinations of
elements in A, i.e.,

M
T = E amx™

m=1

for some M € N, z',...,2M € A, and

M
at,...,ap > 0 with Zamzl}.

m=1

CoA:{xERN
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Proposition 4.4
Let A, B C R¥.
1. AcC CoA.

2. If Ac B, then CoA c CoB.
3. CoCoA = CoA.
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Algebra of Convex Sets

Proposition 4.5

1. If A,B C RY are convex, then
A+B={zcR" |z=a+bforsomeac Aandbc B} is

convex.

2. If A C RY is convex, then fort € R,
tA = {z € RN | x = ta for some a € A} is convex.
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Proposition 4.6

M M
For Ay,..., Ay C RY, CoZAm = ZCoAm.
m=1 m=1

Proof
» (LHS) C (RHS): Exercise.
» (LHS) D (RHS): Sufficient to show for M = 2:

If € CoA; + Co As, then for some y',...,y! € A; and

24 ..., 27 € Ay, we have

z =3,y + > Bz =3, > Bily' +27),
where a; >0, 5 >0, and ), oy = Zj B = 1.

This implies that 2z € Co Co(A; + A2) = Co(A; + Asg).
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Convex Cones
Definition 4.3
» AcC RV isa coneif
r€A=arxec A

for any a > 0.

» A c RN is a convex cone if
r,ye A= ax+pPye A

for any o, 5 > 0.

(Some textbooks define with “for any a > 0" and “for any «, 5 > 0".)
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Carathéodory’s Theorem

>

M

For ai,...,an >0, anz! + - + apyaz™ is called a conic

combination of z!,... «M.

For A ¢ RY, the conic hull of A, denoted Cone A, is the set
of all conic combinations of elements of A:

or equivalently, the smallest convex cone that contains A.

Proposition 4.7 (Carathéodory’s Theorem)

1.

For A C RN, A # {0}, each z € Cone A is written as a conic
combination of linearly independent elements of A.

For A C RN, each x € Co A is written as a convex
combination of at most N + 1 elements in A.
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Proof
1.

» Let x € Cone A.

Let M be the smallest integer such that x is written
in the form of

r=art + - +aya, (1)
where 2!, ..., 2™ € A and a1, ..., ap > 0.
» Suppose that 2!, ..., 2™ are linearly dependent, so that
ezt + ey =0 (2)

for some (c1,...,car) # (0,...,0).

Assume that ¢, > 0 for some m
(if ¢ < 0 for all m, then multiply both sides by —1).
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Proof

> Let,u:min{‘é‘—z‘cm>0}>0.

» By (1) and (2) we have

z = (o1 — pey)zt + -+ (an — pear)z™,

where

> «,, — pcy, >0 for all m, and

> a,, — pc, = 0 for some m.

» Thus x has been written as a conic combination of M — 1 (or
fewer) elements of A.

This contradicts the minimality of M.
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Proof

For AC RY, let € Co A.

Then we have z = ajz' + ... + ayz
for some z!,..., 27 € A and some a1,...,a; > 0 with
ar+-+ay=1.

Consider B = {(z%,1),...,(z7,1)} c RN*L
Then (z,1) € Cone B.

J

By part 1, there are linearly independent elements
{(271,1),...,(27%,1)} from B such that

(2,1) = B1(z7,1) + - - + B (275, 1), where B > 0 and
K <N+1.

From the 1st through Nth coordinates we have
x = 12t + -+ + Bra’k, while from the (N + 1)st
coordinate we have 51 + --- + B = 1.
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A General Form of Carathéodory’'s Theorem

Lemma 4.8

Let Ay,...,A; C RV,

If z € Co Zz'[:1 A;, then there exist ' € A;, i=1,...,1,
7 =1,...,K;, where K; > 1, such that

1
x € Z Cof{z™, ... 2z}
=1
and
I

ZKz'SN—i-I.

=1
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Proof
> Let Ay,...,A; CRY, and let z € CoZiI:1 A;.

Since Co 7| A; = 321 Co A; by Proposition 4.6,
T is written as © = Z{Zl y' for some yi € A;,i=1,...,1,
where each 1’ is written as y* = Zj;l aijyij for
some y” € A; and o;; >0, j =1,...,J;, with Z}]Z:1 a;j = 1.
» Consider the following vectors in RN+
z=(z,1,1,...,1,1),
2V =(y",1,0,...,0,0), j=1,..., ],
22 = (y%,0,1,...,0,0), j=1,...,Js,

Zl’j:(ylj7070)"'50’1)7 j:l,...,JI.

» By construction, z is written as a conic combination of z%'s:

_\! Ji i
2= ijl Q2™
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Proof

By the cone version of Carathéodory's Theorem

(Proposition 4.7(1)), there are at most N + I linearly
independent elements of {2%, i=1,...,I, j=1,...,J;}
such that z is written as a conic combination of them:

i.e., there exist 3;; > 0,i=1,...,1, j=1,...,J;, such that
z= Ele Zjizl Bijzij and

SiHi=1. T By >0} SN+

From the 1st through Nth coordinates we have
I 7, .
T=3i Zj:l Bijy".

From the (N + 1)st through (N + I)th coordinates we have
Z;.]izl Bij =1,1=1,...,I, where 3;; > 0 for at least one j.
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Shapley-Folkman Theorem

Proposition 4.9
Let Ay,...,A; C RV,
If x € Co Zi[:l A;, then

T € Z A; + Z CoA;
€T’ ie{l, IN\T

for some ' C {1,...,1} with |I'| > 1 — N.

(See Kreps, Chapter 13 for an application of this theorem.)
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Proof

> Let z € Codl_| A

» Then by Lemma 4.8, there exist 7 € A;,i=1,...,1,
j=1,...,K;, where K; > 1, such that

> re XY Cofail,... 2K}, and

> S K, <N+
> let 7/ ={i=1,...,I | K; =1}, and let |Z'| = n.
> Then S0 K; >n+2(I —n) =2 —n.

> With S°/_, K; < N + I, this implies that n > T — N.
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Topological Properties of Convex Sets

Proposition 4.10
If A c RN s open, then Co A is open.

Proposition 4.11
If A c RN js convex, then Int A is convex.

Proposition 4.12
If A c RN js convex, then Cl A is convex.

Proof

> ClA = (.oo(4+ B:(0)).
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Topological Properties of Convex Sets

Fact 1
Let A ¢ RY be a convex set.
If Int(Cl1A) # 0, then Int A # 0.

Proposition 4.13

Let A C RN be a convex set.
Then Int(ClA) = Int A.

» See “Topological Properties of Convex Sets”.
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Topological Properties of Convex Sets

Proposition 4.14

If A CRY is bounded, then C1(Co A) = Co(Cl A).
In particular, if A is compact, then Co A is compact.
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Proof
» Since CoA D A, we have Cl(Co A) D ClA.

Since Cl(Co A) is convex (Proposition 4.12), we have
Cl(Co A) D Co(CLA).

» Since A C ClA, we have CoA C Co(CLA).
We want to show that Co(Cl A) is closed if A is bounded.
» Let {2} C Co(ClA), and assume 2™ — Z.

» By Carathéodory’'s Theorem (Proposition 4.7(2)), each 2™ is

written as
— ai”mmvl 4t a}(ﬂ_lmm’N"'l’
where
> (o) €A={a e RN [0, 20, ¥, a, = 1},
> gl g Nt e ClA.
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Proof

» Since A and Cl A are compact, there exists a sequence
{m(k)} such that the limits @, = limy_oo '™ and
" = limy_, oo 2™F)7 exist where (1,...,an+1) € A and
zl,.. ., 2Nl e Cl A.

» Hence,

- = = - —N+1
x:a1x1+---+ozN+1a: +,

so that z € Co(Cl A).
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Concave Functions

Definition 4.4
Let X C RY be a non-empty convex set.

> A function f: X — R is concave if
f(Q—a)z+aa’) = (1 - a)f(z) + af(@)
for all z,2' € X and all a € [0, 1].
» f: X — Ris strictly concave if
f(d =)z +aa’) > (1 - a)f(x) + af(a))
for all z,2' € X with x # 2’ and all « € (0, 1).

> f: X — Ris convex (strictly convex, resp.) if
—f is concave (strictly concave, resp.).
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Hypograph and Epigraph

Let X ¢ RY be a non-empty set.

» The hypograph of a function f: X — R is the set

hyp f = {(z,y) eRY xR |z € X, y < f(z)}.

» The epigraph of a function f: X — R is the set

epi f = {(z,y) ERY xR |z € X, y > f(z)}.

Proposition 4.15

Let X C RN be a nonempty convex set.
f: X — R is a concave (convex, resp.) function if and only if

hyp f (epi f, resp.) is a convex set.
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Jensen’s Inequality

Proposition 4.16

Let X C RN be a nonempty convex set.
If f: X — R is concave, then

flana! + -+ aya™) Z arf(2') + - + an fa")
for any z',..., 2™ € X and aq,...,ap > 0 with Z%Zlamzl.

Proposition 4.17

Let I C R be a nonempty closed interval.
If f: I — R is concave, then

f(/z:dF(a:)) Z/f(z:) dF (z)

for any distribution function F on I.
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Properties of Concave Functions
Let X C RY be a non-empty convex set.
Lemma 4.18
f+ X — R is (strictly) concave if and only if
for any x € X and any z € RN withx + 2z € X,
for t € (0, 1],

flz +1tz) — f(2)
t

is nonincreasing (strictly decreasing) in t.

Proof
If ' <t with ¢ = at, a € (0,1), then we have
fla+t2) > (1—a)f(z) +af(z+tz)

o @A @) St S
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Continuity of Concave Functions

Let X ¢ RY be a non-empty convex set.

Lemma 4.19
Let f: X — R be a concave function. If T € Int X, then
there exist € > 0 and M such that |f(z)| < M for all x € B.(Z).

Proposition 4.20
A concave function f: X — R is continuous on Int X .
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Proof of Lemma 4.19
> Let 7 € Int X.
Let 6 > 0 be such that Bs(z) C X, and let e = §/v/N.
> Let S={r € RY | ||z — Z|| < €} C Bs(T).

Let v!,...,v™ be the m = 2V vertices of S
(so that S = Co{v!,...,v™}).

> Let L = min{f(v'),..., f(v™)}.
Then f(z) > L for all x € S by the concavity of f.
» Take any z € B.(Z), and let y € B.(Z) be such that
T = %x + %y

> Since f(z) > 1 f(x) + 3 f(y), we have
flx) <2f(7) - fly) <2f(z) - L.

» Finally, let M = max{|L|,|2f(Z) — L|}.
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Proof of Proposition 4.20

» Let z € Int X.

By Lemma 4.19, we can take » > 0 and M such that
|f(x)| < M for all x € Ba, ().

» Take any x,y € B, (Z).
We want to show that |f(y) — f(z)| < 22|y — z||.

> letz=x+ ”?ﬂ;ﬂr (y —x).

Then z € By, (7).
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» Then we have

fly) — f(z) > M(f(z) — f(z)) (by Lemma 4.18)

R TR
e )~ @)

> W) )

> - Iy~ Iy =2 ) 1))

PEETI

r

Z_

> By a symmetric argument, we have

llz = yll
T

flx) = fly) > — x 2M.
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Extended Real Valued Functions

Let X c RN be a nonempty convex set.
Definition 4.5
A function f: X — (—o0, 0] is defined to be convex if

f(1—a)z+a2') <(1—a)f(z)+af(z)

for all z,2' € X and all a € [0, 1], where
> axoo=cif a >0,
> 0xoo=0,
> co+y=y+ oo =00 fory € (—o0,00], and
» y < oo for y € (—o0, 0.

(Concavity of a function f: X — [—00,00) is defined analogously.)
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Extended Real Valued Functions

Let X € RY be a nonempty convex set.

Proposition 4.21
A function f: X — (—o0, 00| is convex if and only if
epi f is a convex set.

> Any convex function f: X — R can be extended to R
keeping convexity, by assigning oo to = ¢ X.
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Convex Optimal Value Functions

Let X ¢ RY be a nonempty set, and let P C R™ be a nonempty
convex set.

Proposition 4.22

Consider a function f: X x P — R.
If for all x € X, f(x,p) is convex in p,
then the function v: P — (—o0, oo| defined by

v(p) = sup f(z,p)
rzeX

is convex.

Proof
Show that epiv is a convex set. (— Homework)
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Support Functions

» For a nonempty set A C RY,
the function ¢4: RV — (—oc0, o] defined by

pa(p) =supp-x
x€A

is called the support function of A.

» The profit function is the support function of the production
set (but only defined for nonnegative/positive price vectors).

» The cost function is the “concave support function” of the
input requirement set (Section 5.C), which is defined with
“inf" in place of “sup”.

» The expenditure function is the “concave support function” of
the upper utility level set (Section 3.E).
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Support Functions

Proposition 4.23
The support function ¢ 4: RN — (—o0, 0] is

1. convex and

2. homogeneous of degree one,

ie., forallp € RN, ¢ 4(tp) = topa(p) for all t > 0.

Proof

1. By Proposition 4.22.
2. ®» Forallz € A, (tp) - o < tsuppcqap-', sO
SUP,eca(tp) - @ < tsupycap- 2.

» Forall z € A, sup,c4(tp) -2’ > t(p-x), so
(1/t) sup,rea(tp) - 2’ = sup e ap - .
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Quasi-Concave Functions

Definition 4.6
Let X C RY be a non-empty convex set.

> f: X — R is quasi-concave if
f(Q1—a)z+ax’) > f(x)
for all z,2' € X such that f(2’) > f(x) and all a € [0, 1].

> f: X — R is strictly quasi-concave if
F((1 - a)a+ax’) > f(x)
for all z,2' € X with x # 2’ such that f(2) > f(z) and all
a e (0,1).

> f: X — R is semi-strictly quasi-concave if
(1 =)z +ax’) > f(x)
for all z,2' € X such that f(2’) > f(z) and all a € (0, 1).

» f is quasi-/strictly quasi-/semi-strictly quasi-convex if
—f is quasi-/strictly quasi-/semi—strictly quasi-concave.
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Equivalent Definition

Proposition 4.24
f:+ X — R is quasi-concave if and only if {z € X | f(x) >t} is
convex for all t € R.
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Properties of Quasi-Concave Functions

Let X C RY be a non-empty convex set.

Proposition 4.25

If f: X — R is quasi-concave (strictly quasi-concave) and
h: R — R is nondecreasing (strictly increasing),
then h o f is quasi-concave (strictly quasi-concave).
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Properties of Quasi-Concave Functions

Let X ¢ RY be a non-empty convex set.

For f: X —» R, write X* = {z € X | f(z) =supcx f(z')}.

Proposition 4.26

1. If f is quasi-concave, then X* is a convex set.

2. If f is strictly quasi-concave, then X* is either empty or
a singleton set.
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