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Convex Sets

Definition 4.1
A ⊂ RN is convex if

(1− α)x+ αx′ ∈ A

whenever x, x′ ∈ A and α ∈ [0, 1].
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Convex Combinations

▶ For α1, . . . , αM ≥ 0,
∑M

m=1 αm = 1,
α1x

1 + · · ·+ αMxM is called a convex combination of
x1, . . . , xM .

Proposition 4.1

If A ⊂ RN is convex, then
any convex combination of elements in A is contained in A.

Proof
By induction.
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Convex Hull

Proposition 4.2

For any index set Λ,
if Cλ ⊂ RN is convex for all λ ∈ Λ, then

⋂
λ∈ΛCλ is convex.

(The intersection of any family of convex sets is convex.)

Definition 4.2
For A ⊂ RN , the convex hull of A, denoted CoA, is
the intersection of all convex sets that contain A
(or, the smallest convex set that contains A).
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Proposition 4.3

For A ⊂ RN , CoA equals the set of all convex combinations of
elements in A, i.e.,

CoA =

{
x ∈ RN

∣∣∣∣ x =

M∑
m=1

αmxm

for some M ∈ N, x1, . . . , xM ∈ A, and

α1, . . . , αM ≥ 0 with
M∑

m=1

αm = 1

}
.
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Proposition 4.4

Let A,B ⊂ RN .

1. A ⊂ CoA.

2. If A ⊂ B, then CoA ⊂ CoB.

3. CoCoA = CoA.
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Algebra of Convex Sets

Proposition 4.5

1. If A,B ⊂ RN are convex, then
A+B = {x ∈ RN | x = a+ b for some a ∈ A and b ∈ B} is
convex.

2. If A ⊂ RN is convex, then for t ∈ R,
tA = {x ∈ RN | x = ta for some a ∈ A} is convex.
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Proposition 4.6

For A1, . . . , AM ⊂ RN , Co
M∑

m=1

Am =

M∑
m=1

CoAm.

Proof

▶ (LHS) ⊂ (RHS): Exercise.

▶ (LHS) ⊃ (RHS): Sufficient to show for M = 2:

If x ∈ CoA1 +CoA2, then for some y1, . . . , yI ∈ A1 and
z1, . . . , zJ ∈ A2, we have

x =
∑

i αiy
i +

∑
j βjz

j =
∑

i αi
∑

j βj(y
i + zj),

where αi ≥ 0, βj ≥ 0, and
∑

i αi =
∑

j βj = 1.

This implies that x ∈ CoCo(A1 +A2) = Co(A1 +A2).
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Convex Cones

Definition 4.3
▶ A ⊂ RN is a cone if

x ∈ A ⇒ αx ∈ A

for any α ≥ 0.

▶ A ⊂ RN is a convex cone if

x, y ∈ A ⇒ αx+ βy ∈ A

for any α, β ≥ 0.

(Some textbooks define with “for any α > 0” and “for any α, β > 0”.)
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Carathéodory’s Theorem

▶ For α1, . . . , αM ≥ 0, α1x
1 + · · ·+ αMxM is called a conic

combination of x1, . . . , xM .

▶ For A ⊂ RN , the conic hull of A, denoted ConeA, is the set
of all conic combinations of elements of A;

▶ or equivalently, the smallest convex cone that contains A.

Proposition 4.7 (Carathéodory’s Theorem)

1. For A ⊂ RN , A ̸= {0}, each x ∈ ConeA is written as a conic
combination of linearly independent elements of A.

2. For A ⊂ RN , each x ∈ CoA is written as a convex
combination of at most N + 1 elements in A.
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Proof

1.

▶ Let x ∈ ConeA.

Let M be the smallest integer such that x is written
in the form of

x = α1x
1 + · · ·+ αMxM , (1)

where x1, . . . , xM ∈ A and α1, . . . , αM > 0.

▶ Suppose that x1, . . . , xM are linearly dependent, so that

c1x
1 + · · ·+ cMxM = 0 (2)

for some (c1, . . . , cM ) ̸= (0, . . . , 0).

Assume that cm > 0 for some m
(if cm ≤ 0 for all m, then multiply both sides by −1).

10 / 39



Proof

▶ Let µ = min
{

αm
cm

∣∣ cm > 0
}
> 0.

▶ By (1) and (2) we have

x = (α1 − µc1)x
1 + · · ·+ (αM − µcM )xM ,

where

▶ αm − µcm ≥ 0 for all m, and

▶ αm − µcm = 0 for some m.

▶ Thus x has been written as a conic combination of M − 1 (or
fewer) elements of A.

This contradicts the minimality of M .
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Proof
2.

▶ For A ⊂ RN , let x ∈ CoA.

Then we have x = α1x
1 + . . .+ αJx

J

for some x1, . . . , xJ ∈ A and some α1, . . . , αJ ≥ 0 with
α1 + · · ·+ αJ = 1.

▶ Consider B = {(x1, 1), . . . , (xJ , 1)} ⊂ RN+1.

Then (x, 1) ∈ ConeB.

▶ By part 1, there are linearly independent elements
{(xj1 , 1), . . . , (xjK , 1)} from B such that
(x, 1) = β1(x

j1 , 1) + · · ·+ βK(xjK , 1), where βk ≥ 0 and
K ≤ N + 1.

▶ From the 1st through N th coordinates we have
x = β1x

j1 + · · ·+ βKxjK , while from the (N + 1)st
coordinate we have β1 + · · ·+ βK = 1.
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A General Form of Carathéodory’s Theorem

Lemma 4.8
Let A1, . . . , AI ⊂ RN .
If x ∈ Co

∑I
i=1Ai, then there exist xij ∈ Ai, i = 1, . . . , I,

j = 1, . . . ,Ki, where Ki ≥ 1, such that

x ∈
I∑

i=1

Co{xi1, . . . , xiKi}

and

I∑
i=1

Ki ≤ N + I.
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Proof
▶ Let A1, . . . , AI ⊂ RN , and let x ∈ Co

∑I
i=1Ai.

Since Co
∑I

i=1Ai =
∑I

i=1CoAi by Proposition 4.6,

x is written as x =
∑I

i=1 y
i for some yi ∈ Ai, i = 1, . . . , I,

where each yi is written as yi =
∑Ji

j=1 αijy
ij for

some yij ∈ Ai and αij ≥ 0, j = 1, . . . , Ji, with
∑Ji

j=1 αij = 1.

▶ Consider the following vectors in RN+I :

z = (x, 1, 1, . . . , 1, 1),

z1j = (y1j , 1, 0, . . . , 0, 0), j = 1, . . . , J1,

z2j = (y2j , 0, 1, . . . , 0, 0), j = 1, . . . , J2,

...

zIj = (yIj , 0, 0, . . . , 0, 1), j = 1, . . . , JI .

▶ By construction, z is written as a conic combination of zij ’s:
z =

∑I
i=1

∑Ji
j=1 αijz

ij .
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Proof

▶ By the cone version of Carathéodory’s Theorem
(Proposition 4.7(1)), there are at most N + I linearly
independent elements of {zij , i = 1, . . . , I, j = 1, . . . , Ji}
such that z is written as a conic combination of them:

i.e., there exist βij ≥ 0, i = 1, . . . , I, j = 1, . . . , Ji, such that

z =
∑I

i=1

∑Ji
j=1 βijz

ij and∑I
i=1|{j = 1, . . . , Ji | βij > 0}| ≤ N + I.

▶ From the 1st through N th coordinates we have
x =

∑I
i=1

∑Ji
j=1 βijy

ij .

▶ From the (N + 1)st through (N + I)th coordinates we have∑Ji
j=1 βij = 1, i = 1, . . . , I, where βij > 0 for at least one j.
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Shapley-Folkman Theorem

Proposition 4.9

Let A1, . . . , AI ⊂ RN .
If x ∈ Co

∑I
i=1Ai, then

x ∈
∑
i∈I′

Ai +
∑

i∈{1,...,I}\I′

CoAi

for some I ′ ⊂ {1, . . . , I} with |I ′| ≥ I −N .

(See Kreps, Chapter 13 for an application of this theorem.)
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Proof

▶ Let x ∈ Co
∑I

i=1Ai.

▶ Then by Lemma 4.8, there exist xij ∈ Ai, i = 1, . . . , I,
j = 1, . . . ,Ki, where Ki ≥ 1, such that

▶ x ∈
∑I

i=1 Co{xi1, . . . , xiKi}, and

▶ ∑I
i=1 Ki ≤ N + I.

▶ Let I ′ = {i = 1, . . . , I | Ki = 1}, and let |I ′| = n.

▶ Then
∑I

i=1Ki ≥ n+ 2(I − n) = 2I − n.

▶ With
∑I

i=1Ki ≤ N + I, this implies that n ≥ I −N .

17 / 39



Topological Properties of Convex Sets

Proposition 4.10

If A ⊂ RN is open, then CoA is open.

Proposition 4.11

If A ⊂ RN is convex, then IntA is convex.

Proposition 4.12

If A ⊂ RN is convex, then ClA is convex.

Proof

▶ ClA =
⋂

ε>0(A+Bε(0)).
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Topological Properties of Convex Sets

Fact 1
Let A ⊂ RN be a convex set.
If Int(ClA) ̸= ∅, then IntA ̸= ∅.

Proposition 4.13

Let A ⊂ RN be a convex set.
Then Int(ClA) = IntA.

▶ See “Topological Properties of Convex Sets”.
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Topological Properties of Convex Sets

Proposition 4.14

If A ⊂ RN is bounded, then Cl(CoA) = Co(ClA).
In particular, if A is compact, then CoA is compact.
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Proof
▶ Since CoA ⊃ A, we have Cl(CoA) ⊃ ClA.

Since Cl(CoA) is convex (Proposition 4.12), we have
Cl(CoA) ⊃ Co(ClA).

▶ Since A ⊂ ClA, we have CoA ⊂ Co(ClA).

We want to show that Co(ClA) is closed if A is bounded.

▶ Let {xm} ⊂ Co(ClA), and assume xm → x̄.

▶ By Carathéodory’s Theorem (Proposition 4.7(2)), each xm is
written as

xm = αm
1 xm,1 + · · ·+ αm

N+1x
m,N+1,

where

▶ (αm
1 , . . . , αm

N+1) ∈ ∆ = {α ∈ RN+1 | αn ≥ 0,
∑

n αn = 1},
▶ xm,1, . . . , xm,N+1 ∈ ClA.
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Proof

▶ Since ∆ and ClA are compact, there exists a sequence

{m(k)} such that the limits ᾱn = limk→∞ α
m(k)
n and

x̄n = limk→∞ xm(k),n exist where (ᾱ1, . . . , ᾱN+1) ∈ ∆ and
x̄1, . . . , x̄N+1 ∈ ClA.

▶ Hence,

x̄ = ᾱ1x̄
1 + · · ·+ ᾱN+1x̄

N+1,

so that x̄ ∈ Co(ClA).
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Concave Functions

Definition 4.4
Let X ⊂ RN be a non-empty convex set.

▶ A function f : X → R is concave if

f((1− α)x+ αx′) ≥ (1− α)f(x) + αf(x′)

for all x, x′ ∈ X and all α ∈ [0, 1].

▶ f : X → R is strictly concave if

f((1− α)x+ αx′) > (1− α)f(x) + αf(x′)

for all x, x′ ∈ X with x ̸= x′ and all α ∈ (0, 1).

▶ f : X → R is convex (strictly convex, resp.) if
−f is concave (strictly concave, resp.).
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Hypograph and Epigraph

Let X ⊂ RN be a non-empty set.

▶ The hypograph of a function f : X → R is the set

hyp f = {(x, y) ∈ RN × R | x ∈ X, y ≤ f(x)}.

▶ The epigraph of a function f : X → R is the set

epi f = {(x, y) ∈ RN × R | x ∈ X, y ≥ f(x)}.

Proposition 4.15

Let X ⊂ RN be a nonempty convex set.
f : X → R is a concave (convex, resp.) function if and only if
hyp f (epi f , resp.) is a convex set.
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Jensen’s Inequality

Proposition 4.16

Let X ⊂ RN be a nonempty convex set.
If f : X → R is concave, then

f(α1x
1 + · · ·+ αMxM ) ≥ α1f(x

1) + · · ·+ αMf(xM )

for any x1, . . . , xM ∈ X and α1, . . . , αM ≥ 0 with
∑M

m=1 αm = 1.

Proposition 4.17

Let I ⊂ R be a nonempty closed interval.
If f : I → R is concave, then

f

(∫
x dF (x)

)
≥

∫
f(x) dF (x)

for any distribution function F on I.
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Properties of Concave Functions
Let X ⊂ RN be a non-empty convex set.

Lemma 4.18
f : X → R is (strictly) concave if and only if
for any x ∈ X and any z ∈ RN with x+ z ∈ X,
for t ∈ (0, 1],

f(x+ tz)− f(x)

t

is nonincreasing (strictly decreasing) in t.

Proof

If t′ < t with t′ = αt, α ∈ (0, 1), then we have

f(x+ t′z) ≥ (1− α)f(x) + αf(x+ tz)

⇐⇒ f(x+ t′z)− f(x)

αt
≥ f(x+ tz)− f(x)

t
.
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Continuity of Concave Functions

Let X ⊂ RN be a non-empty convex set.

Lemma 4.19
Let f : X → R be a concave function. If x̄ ∈ IntX, then
there exist ε > 0 and M such that |f(x)| ≤ M for all x ∈ Bε(x̄).

Proposition 4.20

A concave function f : X → R is continuous on IntX.
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Proof of Lemma 4.19

▶ Let x̄ ∈ IntX.

Let δ > 0 be such that B̄δ(x̄) ⊂ X, and let ε = δ/
√
N .

▶ Let S = {x ∈ RN | ∥x− x̄∥∞ ≤ ε} ⊂ B̄δ(x̄).

Let v1, . . . , vm be the m = 2N vertices of S
(so that S = Co{v1, . . . , vm}).

▶ Let L = min{f(v1), . . . , f(vm)}.

Then f(x) ≥ L for all x ∈ S by the concavity of f .

▶ Take any x ∈ Bε(x̄), and let y ∈ Bε(x̄) be such that
x̄ = 1

2x+ 1
2y.

▶ Since f(x̄) ≥ 1
2f(x) +

1
2f(y), we have

f(x) ≤ 2f(x̄)− f(y) ≤ 2f(x̄)− L.

▶ Finally, let M = max{|L|, |2f(x̄)− L|}.
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Proof of Proposition 4.20

▶ Let x̄ ∈ IntX.

By Lemma 4.19, we can take r > 0 and M such that
|f(x)| ≤ M for all x ∈ B2r(x̄).

▶ Take any x, y ∈ Br(x̄).

We want to show that |f(y)− f(x)| ≤ 2M
r ∥y − x∥.

▶ Let z = x+ ∥y−x∥+r
∥y−x∥ (y − x).

Then z ∈ B2r(x̄).
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▶ Then we have

f(y)− f(x) ≥ ∥y − x∥
∥y − x∥+ r

(f(z)− f(x)) (by Lemma 4.18)

≥ − ∥y − x∥
∥y − x∥+ r

|f(z)− f(x)|

≥ −∥y − x∥
r

|f(z)− f(x)|

≥ −∥y − x∥
r

(|f(z)|+ |f(x)|)

≥ −∥y − x∥
r

× 2M.

▶ By a symmetric argument, we have

f(x)− f(y) ≥ −∥x− y∥
r

× 2M.
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Extended Real Valued Functions

Let X ⊂ RN be a nonempty convex set.

Definition 4.5
A function f : X → (−∞,∞] is defined to be convex if

f((1− α)x+ αx′) ≤ (1− α)f(x) + αf(x′)

for all x, x′ ∈ X and all α ∈ [0, 1], where

▶ α×∞ = ∞ if α > 0,

▶ 0×∞ = 0,

▶ ∞+ y = y +∞ = ∞ for y ∈ (−∞,∞], and

▶ y ≤ ∞ for y ∈ (−∞,∞].

(Concavity of a function f : X → [−∞,∞) is defined analogously.)
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Extended Real Valued Functions

Let X ⊂ RN be a nonempty convex set.

Proposition 4.21

A function f : X → (−∞,∞] is convex if and only if
epi f is a convex set.

▶ Any convex function f : X → R can be extended to RN

keeping convexity, by assigning ∞ to x /∈ X.
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Convex Optimal Value Functions

Let X ⊂ RN be a nonempty set, and let P ⊂ RM be a nonempty
convex set.

Proposition 4.22

Consider a function f : X × P → R.
If for all x ∈ X, f(x, p) is convex in p,
then the function v : P → (−∞,∞] defined by

v(p) = sup
x∈X

f(x, p)

is convex.

Proof
Show that epi v is a convex set. (→ Homework)
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Support Functions

▶ For a nonempty set A ⊂ RN ,
the function ϕA : RN → (−∞,∞] defined by

ϕA(p) = sup
x∈A

p · x

is called the support function of A.

▶ The profit function is the support function of the production
set (but only defined for nonnegative/positive price vectors).

▶ The cost function is the “concave support function” of the
input requirement set (Section 5.C), which is defined with
“inf” in place of “sup”.

▶ The expenditure function is the “concave support function” of
the upper utility level set (Section 3.E).
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Support Functions

Proposition 4.23

The support function ϕA : RN → (−∞,∞] is

1. convex and

2. homogeneous of degree one,
i.e., for all p ∈ RN , ϕA(tp) = tϕA(p) for all t > 0.

Proof

1. By Proposition 4.22.

2. ▶ For all x ∈ A, (tp) · x ≤ t supx′∈A p · x′, so
supx∈A(tp) · x ≤ t supx′∈A p · x′.

▶ For all x ∈ A, supx′∈A(tp) · x′ ≥ t(p · x), so
(1/t) supx′∈A(tp) · x′ ≥ supx∈A p · x.
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Quasi-Concave Functions

Definition 4.6
Let X ⊂ RN be a non-empty convex set.

▶ f : X → R is quasi-concave if
f((1− α)x+ αx′) ≥ f(x)
for all x, x′ ∈ X such that f(x′) ≥ f(x) and all α ∈ [0, 1].

▶ f : X → R is strictly quasi-concave if
f((1− α)x+ αx′) > f(x)
for all x, x′ ∈ X with x ̸= x′ such that f(x′) ≥ f(x) and all
α ∈ (0, 1).

▶ f : X → R is semi-strictly quasi-concave if
f((1− α)x+ αx′) > f(x)
for all x, x′ ∈ X such that f(x′) > f(x) and all α ∈ (0, 1).

▶ f is quasi-/strictly quasi-/semi-strictly quasi-convex if
−f is quasi-/strictly quasi-/semi–strictly quasi-concave.

36 / 39



Equivalent Definition

Proposition 4.24

f : X → R is quasi-concave if and only if {x ∈ X | f(x) ≥ t} is
convex for all t ∈ R.

37 / 39



Properties of Quasi-Concave Functions

Let X ⊂ RN be a non-empty convex set.

Proposition 4.25

If f : X → R is quasi-concave (strictly quasi-concave) and
h : R → R is nondecreasing (strictly increasing),
then h ◦ f is quasi-concave (strictly quasi-concave).
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Properties of Quasi-Concave Functions

Let X ⊂ RN be a non-empty convex set.

For f : X → R, write X∗ = {x ∈ X | f(x) = supx′∈X f(x′)}.

Proposition 4.26

1. If f is quasi-concave, then X∗ is a convex set.

2. If f is strictly quasi-concave, then X∗ is either empty or
a singleton set.
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