4. Convex Sets and (Quasi-)Concave Functions

Daisuke Oyama

Mathematics II

April 24, 2024

Convex Sets

Definition 4.1
$A \subset \mathbb{R}^{N}$ is convex if

$$
(1-\alpha) x+\alpha x^{\prime} \in A
$$

whenever $x, x^{\prime} \in A$ and $\alpha \in[0,1]$.

Convex Combinations

- For $\alpha_{1}, \ldots, \alpha_{M} \geq 0, \sum_{m=1}^{M} \alpha_{m}=1$, $\alpha_{1} x^{1}+\cdots+\alpha_{M} x^{M}$ is called a convex combination of x^{1}, \ldots, x^{M}.

Proposition 4.1
If $A \subset \mathbb{R}^{N}$ is convex, then any convex combination of elements in A is contained in A.

Proof
By induction.

Convex Hull

Proposition 4.2

For any index set Λ,
if $C_{\lambda} \subset \mathbb{R}^{N}$ is convex for all $\lambda \in \Lambda$, then $\bigcap_{\lambda \in \Lambda} C_{\lambda}$ is convex.
(The intersection of any family of convex sets is convex.)
Definition 4.2
For $A \subset \mathbb{R}^{N}$, the convex hull of A, denoted $\operatorname{Co} A$, is the intersection of all convex sets that contain A (or, the smallest convex set that contains A).

Proposition 4.3
For $A \subset \mathbb{R}^{N}$, Co A equals the set of all convex combinations of elements in A, i.e.,
$\operatorname{Co} A=\left\{x \in \mathbb{R}^{N} \mid x=\sum_{m=1}^{M} \alpha_{m} x^{m}\right.$
for some $M \in \mathbb{N}, x^{1}, \ldots, x^{M} \in A$, and

$$
\left.\alpha_{1}, \ldots, \alpha_{M} \geq 0 \text { with } \sum_{m=1}^{M} \alpha_{m}=1\right\} .
$$

Proposition 4.4
Let $A, B \subset \mathbb{R}^{N}$.

1. $A \subset \operatorname{Co} A$.
2. If $A \subset B$, then $\operatorname{Co} A \subset \operatorname{Co} B$.
3. $\mathrm{Co} \mathrm{Co} A=\operatorname{Co} A$.

Algebra of Convex Sets

Proposition 4.5

1. If $A, B \subset \mathbb{R}^{N}$ are convex, then
$A+B=\left\{x \in \mathbb{R}^{N} \mid x=a+b\right.$ for some $a \in A$ and $\left.b \in B\right\}$ is convex.
2. If $A \subset \mathbb{R}^{N}$ is convex, then for $t \in \mathbb{R}$, $t A=\left\{x \in \mathbb{R}^{N} \mid x=t a\right.$ for some $\left.a \in A\right\}$ is convex.

Proposition 4.6
For $A_{1}, \ldots, A_{M} \subset \mathbb{R}^{N}$, Co $\sum_{m=1}^{M} A_{m}=\sum_{m=1}^{M} \operatorname{Co} A_{m}$.

Proof

- $(\mathrm{LHS}) \subset(\mathrm{RHS}):$ Exercise.
- (LHS) $\supset($ RHS $):$ Sufficient to show for $M=2$: If $x \in \operatorname{Co} A_{1}+\operatorname{Co} A_{2}$, then for some $y^{1}, \ldots, y^{I} \in A_{1}$ and $z^{1}, \ldots, z^{J} \in A_{2}$, we have

$$
x=\sum_{i} \alpha_{i} y^{i}+\sum_{j} \beta_{j} z^{j}=\sum_{i} \alpha_{i} \sum_{j} \beta_{j}\left(y^{i}+z^{j}\right)
$$

where $\alpha_{i} \geq 0, \beta_{j} \geq 0$, and $\sum_{i} \alpha_{i}=\sum_{j} \beta_{j}=1$.
This implies that $x \in \operatorname{CoCo}\left(A_{1}+A_{2}\right)=\operatorname{Co}\left(A_{1}+A_{2}\right)$.

Convex Cones

Definition 4.3

- $A \subset \mathbb{R}^{N}$ is a cone if

$$
x \in A \Rightarrow \alpha x \in A
$$

for any $\alpha \geq 0$.

- $A \subset \mathbb{R}^{N}$ is a convex cone if

$$
x, y \in A \Rightarrow \alpha x+\beta y \in A
$$

for any $\alpha, \beta \geq 0$.
(Some textbooks define with "for any $\alpha>0$ " and "for any $\alpha, \beta>0$ ".)

Carathéodory's Theorem

- For $\alpha_{1}, \ldots, \alpha_{M} \geq 0, \alpha_{1} x^{1}+\cdots+\alpha_{M} x^{M}$ is called a conic combination of x^{1}, \ldots, x^{M}.
- For $A \subset \mathbb{R}^{N}$, the conic hull of A, denoted Cone A, is the set of all conic combinations of elements of A;
- or equivalently, the smallest convex cone that contains A.

Proposition 4.7 (Carathéodory's Theorem)

1. For $A \subset \mathbb{R}^{N}, A \neq\{0\}$, each $x \in \operatorname{Cone} A$ is written as a conic combination of linearly independent elements of A.
2. For $A \subset \mathbb{R}^{N}$, each $x \in \operatorname{Co} A$ is written as a convex combination of at most $N+1$ elements in A.

Proof

1.

- Let $x \in$ Cone A.

Let M be the smallest integer such that x is written in the form of

$$
\begin{equation*}
x=\alpha_{1} x^{1}+\cdots+\alpha_{M} x^{M} \tag{1}
\end{equation*}
$$

where $x^{1}, \ldots, x^{M} \in A$ and $\alpha_{1}, \ldots, \alpha_{M}>0$.

- Suppose that x^{1}, \ldots, x^{M} are linearly dependent, so that

$$
\begin{equation*}
c_{1} x^{1}+\cdots+c_{M} x^{M}=0 \tag{2}
\end{equation*}
$$

for some $\left(c_{1}, \ldots, c_{M}\right) \neq(0, \ldots, 0)$.
Assume that $c_{m}>0$ for some m
(if $c_{m} \leq 0$ for all m, then multiply both sides by -1).

Proof

- Let $\mu=\min \left\{\left.\frac{\alpha_{m}}{c_{m}} \right\rvert\, c_{m}>0\right\}>0$.
- By (1) and (2) we have

$$
x=\left(\alpha_{1}-\mu c_{1}\right) x^{1}+\cdots+\left(\alpha_{M}-\mu c_{M}\right) x^{M}
$$

where

- $\alpha_{m}-\mu c_{m} \geq 0$ for all m, and
- $\alpha_{m}-\mu c_{m}=0$ for some m.
- Thus x has been written as a conic combination of $M-1$ (or fewer) elements of A.

This contradicts the minimality of M.

Proof

2.

- For $A \subset \mathbb{R}^{N}$, let $x \in \operatorname{Co} A$.

Then we have $x=\alpha_{1} x^{1}+\ldots+\alpha_{J} x^{J}$
for some $x^{1}, \ldots, x^{J} \in A$ and some $\alpha_{1}, \ldots, \alpha_{J} \geq 0$ with $\alpha_{1}+\cdots+\alpha_{J}=1$.

- Consider $B=\left\{\left(x^{1}, 1\right), \ldots,\left(x^{J}, 1\right)\right\} \subset \mathbb{R}^{N+1}$.

Then $(x, 1) \in$ Cone B.

- By part 1, there are linearly independent elements $\left\{\left(x^{j_{1}}, 1\right), \ldots,\left(x^{j_{K}}, 1\right)\right\}$ from B such that $(x, 1)=\beta_{1}\left(x^{j_{1}}, 1\right)+\cdots+\beta_{K}\left(x^{j_{K}}, 1\right)$, where $\beta_{k} \geq 0$ and $K \leq N+1$.
- From the 1st through N th coordinates we have $x=\beta_{1} x^{j_{1}}+\cdots+\beta_{K} x^{j_{K}}$, while from the $(N+1)$ st coordinate we have $\beta_{1}+\cdots+\beta_{K}=1$.

A General Form of Carathéodory's Theorem

Lemma 4.8
Let $A_{1}, \ldots, A_{I} \subset \mathbb{R}^{N}$.
If $x \in \operatorname{Co} \sum_{i=1}^{I} A_{i}$, then there exist $x^{i j} \in A_{i}, i=1, \ldots, I$, $j=1, \ldots, K_{i}$, where $K_{i} \geq 1$, such that

$$
x \in \sum_{i=1}^{I} \operatorname{Co}\left\{x^{i 1}, \ldots, x^{i K_{i}}\right\}
$$

and

$$
\sum_{i=1}^{I} K_{i} \leq N+I
$$

Proof

- Let $A_{1}, \ldots, A_{I} \subset \mathbb{R}^{N}$, and let $x \in \operatorname{Co} \sum_{i=1}^{I} A_{i}$.

Since $\operatorname{Co} \sum_{i=1}^{I} A_{i}=\sum_{i=1}^{I} \operatorname{Co} A_{i}$ by Proposition 4.6, x is written as $x=\sum_{i=1}^{I} y^{i}$ for some $y^{i} \in A_{i}, i=1, \ldots, I$, where each y^{i} is written as $y^{i}=\sum_{j=1}^{J_{i}} \alpha_{i j} y^{i j}$ for
some $y^{i j} \in A_{i}$ and $\alpha_{i j} \geq 0, j=1, \ldots, J_{i}$, with $\sum_{j=1}^{J_{i}} \alpha_{i j}=1$.

- Consider the following vectors in \mathbb{R}^{N+I} :

$$
\begin{aligned}
& z=(x, 1,1, \ldots, 1,1), \\
& z^{1 j}=\left(y^{1 j}, 1,0, \ldots, 0,0\right), j=1, \ldots, J_{1}, \\
& z^{2 j}=\left(y^{2 j}, 0,1, \ldots, 0,0\right), j=1, \ldots, J_{2}, \\
& \quad \vdots \\
& z^{I j}=\left(y^{I j}, 0,0, \ldots, 0,1\right), j=1, \ldots, J_{I} .
\end{aligned}
$$

- By construction, z is written as a conic combination of $z^{i j}$'s: $z=\sum_{i=1}^{I} \sum_{j=1}^{J_{i}} \alpha_{i j} z^{i j}$.

Proof

- By the cone version of Carathéodory's Theorem (Proposition 4.7(1)), there are at most $N+I$ linearly independent elements of $\left\{z^{i j}, i=1, \ldots, I, j=1, \ldots, J_{i}\right\}$ such that z is written as a conic combination of them:
i.e., there exist $\beta_{i j} \geq 0, i=1, \ldots, I, j=1, \ldots, J_{i}$, such that $z=\sum_{i=1}^{I} \sum_{j=1}^{J_{i}} \beta_{i j} z^{i j}$ and
$\sum_{i=1}^{I}\left|\left\{j=1, \ldots, J_{i} \mid \beta_{i j}>0\right\}\right| \leq N+I$.
- From the 1st through N th coordinates we have $x=\sum_{i=1}^{I} \sum_{j=1}^{J_{i}} \beta_{i j} y^{i j}$.
- From the $(N+1)$ st through $(N+I)$ th coordinates we have $\sum_{j=1}^{J_{i}} \beta_{i j}=1, i=1, \ldots, I$, where $\beta_{i j}>0$ for at least one j.

Shapley-Folkman Theorem

Proposition 4.9
Let $A_{1}, \ldots, A_{I} \subset \mathbb{R}^{N}$.
If $x \in \mathrm{Co} \sum_{i=1}^{I} A_{i}$, then

$$
x \in \sum_{i \in \mathcal{I}^{\prime}} A_{i}+\sum_{i \in\{1, \ldots, I\} \backslash \mathcal{I}^{\prime}} \operatorname{Co} A_{i}
$$

for some $\mathcal{I}^{\prime} \subset\{1, \ldots, I\}$ with $\left|\mathcal{I}^{\prime}\right| \geq I-N$.
(See Kreps, Chapter 13 for an application of this theorem.)

Proof

- Let $x \in \operatorname{Co} \sum_{i=1}^{I} A_{i}$.
- Then by Lemma 4.8, there exist $x^{i j} \in A_{i}, i=1, \ldots, I$, $j=1, \ldots, K_{i}$, where $K_{i} \geq 1$, such that
- $x \in \sum_{i=1}^{I} \operatorname{Co}\left\{x^{i 1}, \ldots, x^{i K_{i}}\right\}$, and
- $\sum_{i=1}^{I} K_{i} \leq N+I$.
- Let $\mathcal{I}^{\prime}=\left\{i=1, \ldots, I \mid K_{i}=1\right\}$, and let $\left|\mathcal{I}^{\prime}\right|=n$.
- Then $\sum_{i=1}^{I} K_{i} \geq n+2(I-n)=2 I-n$.
- With $\sum_{i=1}^{I} K_{i} \leq N+I$, this implies that $n \geq I-N$.

Topological Properties of Convex Sets

Proposition 4.10
If $A \subset \mathbb{R}^{N}$ is open, then $\mathrm{Co} A$ is open.

Proposition 4.11
If $A \subset \mathbb{R}^{N}$ is convex, then $\operatorname{Int} A$ is convex.

Proposition 4.12
If $A \subset \mathbb{R}^{N}$ is convex, then $\mathrm{Cl} A$ is convex.

Proof
$-\mathrm{Cl} A=\bigcap_{\varepsilon>0}\left(A+B_{\varepsilon}(0)\right)$.

Topological Properties of Convex Sets

Fact 1
Let $A \subset \mathbb{R}^{N}$ be a convex set.
If $\operatorname{Int}(\mathrm{Cl} A) \neq \emptyset$, then $\operatorname{Int} A \neq \emptyset$.

Proposition 4.13
Let $A \subset \mathbb{R}^{N}$ be a convex set.
Then $\operatorname{Int}(\mathrm{Cl} A)=\operatorname{Int} A$.

- See "Topological Properties of Convex Sets".

Topological Properties of Convex Sets

Proposition 4.14
If $A \subset \mathbb{R}^{N}$ is bounded, then $\mathrm{Cl}(\operatorname{Co} A)=\mathrm{Co}(\mathrm{Cl} A)$.
In particular, if A is compact, then $\mathrm{Co} A$ is compact.

Proof

- Since $\operatorname{Co} A \supset A$, we have $\mathrm{Cl}(\operatorname{Co} A) \supset \mathrm{Cl} A$.

Since $\mathrm{Cl}(\mathrm{Co} A$) is convex (Proposition 4.12), we have $\mathrm{Cl}(\mathrm{Co} A) \supset \mathrm{Co}(\mathrm{Cl} A)$.

- Since $A \subset \mathrm{Cl} A$, we have $\mathrm{Co} A \subset \operatorname{Co}(\mathrm{Cl} A)$.

We want to show that $\operatorname{Co}(\mathrm{Cl} A)$ is closed if A is bounded.

- Let $\left\{x^{m}\right\} \subset \mathrm{Co}(\mathrm{Cl} A)$, and assume $x^{m} \rightarrow \bar{x}$.
- By Carathéodory's Theorem (Proposition 4.7(2)), each x^{m} is written as

$$
x^{m}=\alpha_{1}^{m} x^{m, 1}+\cdots+\alpha_{N+1}^{m} x^{m, N+1}
$$

where

- $\left(\alpha_{1}^{m}, \ldots, \alpha_{N+1}^{m}\right) \in \Delta=\left\{\alpha \in \mathbb{R}^{N+1} \mid \alpha_{n} \geq 0, \sum_{n} \alpha_{n}=1\right\}$,
- $x^{m, 1}, \ldots, x^{m, N+1} \in \mathrm{Cl} A$.

Proof

- Since Δ and $\mathrm{Cl} A$ are compact, there exists a sequence $\{m(k)\}$ such that the limits $\bar{\alpha}_{n}=\lim _{k \rightarrow \infty} \alpha_{n}^{m(k)}$ and $\bar{x}^{n}=\lim _{k \rightarrow \infty} x^{m(k), n}$ exist where $\left(\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{N+1}\right) \in \Delta$ and $\bar{x}^{1}, \ldots, \bar{x}^{N+1} \in \mathrm{Cl} A$.
- Hence,

$$
\bar{x}=\bar{\alpha}_{1} \bar{x}^{1}+\cdots+\bar{\alpha}_{N+1} \bar{x}^{N+1}
$$

so that $\bar{x} \in \operatorname{Co}(\mathrm{Cl} A)$.

Concave Functions

Definition 4.4
Let $X \subset \mathbb{R}^{N}$ be a non-empty convex set.

- A function $f: X \rightarrow \mathbb{R}$ is concave if

$$
f\left((1-\alpha) x+\alpha x^{\prime}\right) \geq(1-\alpha) f(x)+\alpha f\left(x^{\prime}\right)
$$

for all $x, x^{\prime} \in X$ and all $\alpha \in[0,1]$.

- $f: X \rightarrow \mathbb{R}$ is strictly concave if

$$
f\left((1-\alpha) x+\alpha x^{\prime}\right)>(1-\alpha) f(x)+\alpha f\left(x^{\prime}\right)
$$

for all $x, x^{\prime} \in X$ with $x \neq x^{\prime}$ and all $\alpha \in(0,1)$.

- $f: X \rightarrow \mathbb{R}$ is convex (strictly convex, resp.) if $-f$ is concave (strictly concave, resp.).

Hypograph and Epigraph

Let $X \subset \mathbb{R}^{N}$ be a non-empty set.

- The hypograph of a function $f: X \rightarrow \mathbb{R}$ is the set

$$
\operatorname{hyp} f=\left\{(x, y) \in \mathbb{R}^{N} \times \mathbb{R} \mid x \in X, y \leq f(x)\right\}
$$

- The epigraph of a function $f: X \rightarrow \mathbb{R}$ is the set

$$
\text { epi } f=\left\{(x, y) \in \mathbb{R}^{N} \times \mathbb{R} \mid x \in X, y \geq f(x)\right\}
$$

Proposition 4.15
Let $X \subset \mathbb{R}^{N}$ be a nonempty convex set.
$f: X \rightarrow \mathbb{R}$ is a concave (convex, resp.) function if and only if hyp f (epi f, resp.) is a convex set.

Jensen's Inequality

Proposition 4.16
Let $X \subset \mathbb{R}^{N}$ be a nonempty convex set.
If $f: X \rightarrow \mathbb{R}$ is concave, then

$$
f\left(\alpha_{1} x^{1}+\cdots+\alpha_{M} x^{M}\right) \geq \alpha_{1} f\left(x^{1}\right)+\cdots+\alpha_{M} f\left(x^{M}\right)
$$

for any $x^{1}, \ldots, x^{M} \in X$ and $\alpha_{1}, \ldots, \alpha_{M} \geq 0$ with $\sum_{m=1}^{M} \alpha_{m}=1$.

Proposition 4.17
Let $I \subset \mathbb{R}$ be a nonempty closed interval.
If $f: I \rightarrow \mathbb{R}$ is concave, then

$$
f\left(\int x d F(x)\right) \geq \int f(x) d F(x)
$$

for any distribution function F on I.

Properties of Concave Functions

Let $X \subset \mathbb{R}^{N}$ be a non-empty convex set.
Lemma 4.18
$f: X \rightarrow \mathbb{R}$ is (strictly) concave if and only if for any $x \in X$ and any $z \in \mathbb{R}^{N}$ with $x+z \in X$, for $t \in(0,1]$,

$$
\frac{f(x+t z)-f(x)}{t}
$$

is nonincreasing (strictly decreasing) in t.

Proof

If $t^{\prime}<t$ with $t^{\prime}=\alpha t, \alpha \in(0,1)$, then we have

$$
\begin{aligned}
& f\left(x+t^{\prime} z\right) \geq(1-\alpha) f(x)+\alpha f(x+t z) \\
& \quad \Longleftrightarrow \frac{f\left(x+t^{\prime} z\right)-f(x)}{\alpha t} \geq \frac{f(x+t z)-f(x)}{t}
\end{aligned}
$$

Continuity of Concave Functions

Let $X \subset \mathbb{R}^{N}$ be a non-empty convex set.
Lemma 4.19
Let $f: X \rightarrow \mathbb{R}$ be a concave function. If $\bar{x} \in \operatorname{Int} X$, then there exist $\varepsilon>0$ and M such that $|f(x)| \leq M$ for all $x \in B_{\varepsilon}(\bar{x})$.

Proposition 4.20
A concave function $f: X \rightarrow \mathbb{R}$ is continuous on $\operatorname{Int} X$.

Proof of Lemma 4.19

- Let $\bar{x} \in \operatorname{Int} X$.

Let $\delta>0$ be such that $\bar{B}_{\delta}(\bar{x}) \subset X$, and let $\varepsilon=\delta / \sqrt{N}$.

- Let $S=\left\{x \in \mathbb{R}^{N} \mid\|x-\bar{x}\|_{\infty} \leq \varepsilon\right\} \subset \bar{B}_{\delta}(\bar{x})$.

Let v^{1}, \ldots, v^{m} be the $m=2^{N}$ vertices of S
(so that $S=\operatorname{Co}\left\{v^{1}, \ldots, v^{m}\right\}$).

- Let $L=\min \left\{f\left(v^{1}\right), \ldots, f\left(v^{m}\right)\right\}$.

Then $f(x) \geq L$ for all $x \in S$ by the concavity of f.

- Take any $x \in B_{\varepsilon}(\bar{x})$, and let $y \in B_{\varepsilon}(\bar{x})$ be such that $\bar{x}=\frac{1}{2} x+\frac{1}{2} y$.
- Since $f(\bar{x}) \geq \frac{1}{2} f(x)+\frac{1}{2} f(y)$, we have $f(x) \leq 2 f(\bar{x})-f(y) \leq 2 f(\bar{x})-L$.
- Finally, let $M=\max \{|L|,|2 f(\bar{x})-L|\}$.

Proof of Proposition 4.20

- Let $\bar{x} \in \operatorname{Int} X$.

By Lemma 4.19, we can take $r>0$ and M such that $|f(x)| \leq M$ for all $x \in B_{2 r}(\bar{x})$.

- Take any $x, y \in B_{r}(\bar{x})$.

We want to show that $|f(y)-f(x)| \leq \frac{2 M}{r}\|y-x\|$.

- Let $z=x+\frac{\|y-x\|+r}{\|y-x\|}(y-x)$.

Then $z \in B_{2 r}(\bar{x})$.

- Then we have

$$
\begin{aligned}
f(y)-f(x) & \geq \frac{\|y-x\|}{\|y-x\|+r}(f(z)-f(x)) \quad \text { (by Lemma 4.18) } \\
& \geq-\frac{\|y-x\|}{\|y-x\|+r}|f(z)-f(x)| \\
& \geq-\frac{\|y-x\|}{r}|f(z)-f(x)| \\
& \geq-\frac{\|y-x\|}{r}(|f(z)|+|f(x)|) \\
& \geq-\frac{\|y-x\|}{r} \times 2 M
\end{aligned}
$$

- By a symmetric argument, we have

$$
f(x)-f(y) \geq-\frac{\|x-y\|}{r} \times 2 M
$$

Extended Real Valued Functions

Let $X \subset \mathbb{R}^{N}$ be a nonempty convex set.
Definition 4.5
A function $f: X \rightarrow(-\infty, \infty]$ is defined to be convex if

$$
f\left((1-\alpha) x+\alpha x^{\prime}\right) \leq(1-\alpha) f(x)+\alpha f\left(x^{\prime}\right)
$$

for all $x, x^{\prime} \in X$ and all $\alpha \in[0,1]$, where

- $\alpha \times \infty=\infty$ if $\alpha>0$,
- $0 \times \infty=0$,
- $\infty+y=y+\infty=\infty$ for $y \in(-\infty, \infty]$, and
- $y \leq \infty$ for $y \in(-\infty, \infty]$.
(Concavity of a function $f: X \rightarrow[-\infty, \infty)$ is defined analogously.)

Extended Real Valued Functions

Let $X \subset \mathbb{R}^{N}$ be a nonempty convex set.
Proposition 4.21
A function $f: X \rightarrow(-\infty, \infty]$ is convex if and only if epi f is a convex set.

- Any convex function $f: X \rightarrow \mathbb{R}$ can be extended to \mathbb{R}^{N} keeping convexity, by assigning ∞ to $x \notin X$.

Convex Optimal Value Functions

Let $X \subset \mathbb{R}^{N}$ be a nonempty set, and let $P \subset \mathbb{R}^{M}$ be a nonempty convex set.

Proposition 4.22
Consider a function $f: X \times P \rightarrow \mathbb{R}$. If for all $x \in X, f(x, p)$ is convex in p, then the function $v: P \rightarrow(-\infty, \infty]$ defined by

$$
v(p)=\sup _{x \in X} f(x, p)
$$

is convex.
Proof
Show that epi v is a convex set. (\rightarrow Homework)

Support Functions

- For a nonempty set $A \subset \mathbb{R}^{N}$,
the function $\phi_{A}: \mathbb{R}^{N} \rightarrow(-\infty, \infty]$ defined by

$$
\phi_{A}(p)=\sup _{x \in A} p \cdot x
$$

is called the support function of A.

- The profit function is the support function of the production set (but only defined for nonnegative/positive price vectors).
- The cost function is the "concave support function" of the input requirement set (Section 5.C), which is defined with "inf" in place of "sup".
- The expenditure function is the "concave support function" of the upper utility level set (Section 3.E).

Support Functions

Proposition 4.23
The support function $\phi_{A}: \mathbb{R}^{N} \rightarrow(-\infty, \infty]$ is

1. convex and
2. homogeneous of degree one, i.e., for all $p \in \mathbb{R}^{N}, \phi_{A}(t p)=t \phi_{A}(p)$ for all $t>0$.

Proof

1. By Proposition 4.22.
2. For all $x \in A,(t p) \cdot x \leq t \sup _{x^{\prime} \in A} p \cdot x^{\prime}$, so $\sup _{x \in A}(t p) \cdot x \leq t \sup _{x^{\prime} \in A} p \cdot x^{\prime}$.

- For all $x \in A, \sup _{x^{\prime} \in A}(t p) \cdot x^{\prime} \geq t(p \cdot x)$, so $(1 / t) \sup _{x^{\prime} \in A}(t p) \cdot x^{\prime} \geq \sup _{x \in A} p \cdot x$.

Quasi-Concave Functions

Definition 4.6
Let $X \subset \mathbb{R}^{N}$ be a non-empty convex set.

- $f: X \rightarrow \mathbb{R}$ is quasi-concave if
$f\left((1-\alpha) x+\alpha x^{\prime}\right) \geq f(x)$
for all $x, x^{\prime} \in X$ such that $f\left(x^{\prime}\right) \geq f(x)$ and all $\alpha \in[0,1]$.
- $f: X \rightarrow \mathbb{R}$ is strictly quasi-concave if $f\left((1-\alpha) x+\alpha x^{\prime}\right)>f(x)$ for all $x, x^{\prime} \in X$ with $x \neq x^{\prime}$ such that $f\left(x^{\prime}\right) \geq f(x)$ and all $\alpha \in(0,1)$.
- $f: X \rightarrow \mathbb{R}$ is semi-strictly quasi-concave if $f\left((1-\alpha) x+\alpha x^{\prime}\right)>f(x)$ for all $x, x^{\prime} \in X$ such that $f\left(x^{\prime}\right)>f(x)$ and all $\alpha \in(0,1)$.
- f is quasi-/strictly quasi-/semi-strictly quasi-convex if $-f$ is quasi-/strictly quasi-/semi-strictly quasi-concave.

Equivalent Definition

Proposition 4.24
$f: X \rightarrow \mathbb{R}$ is quasi-concave if and only if $\{x \in X \mid f(x) \geq t\}$ is convex for all $t \in \mathbb{R}$.

Properties of Quasi-Concave Functions

Let $X \subset \mathbb{R}^{N}$ be a non-empty convex set.
Proposition 4.25
If $f: X \rightarrow \mathbb{R}$ is quasi-concave (strictly quasi-concave) and
$h: \mathbb{R} \rightarrow \mathbb{R}$ is nondecreasing (strictly increasing),
then $h \circ f$ is quasi-concave (strictly quasi-concave).

Properties of Quasi-Concave Functions

Let $X \subset \mathbb{R}^{N}$ be a non-empty convex set.
For $f: X \rightarrow \mathbb{R}$, write $X^{*}=\left\{x \in X \mid f(x)=\sup _{x^{\prime} \in X} f\left(x^{\prime}\right)\right\}$.
Proposition 4.26

1. If f is quasi-concave, then X^{*} is a convex set.
2. If f is strictly quasi-concave, then X^{*} is either empty or a singleton set.
