5. Differentiation I

Daisuke Oyama

Mathematics II

April 26, 2024

Differentiation in One Variable

Let $I \subset \mathbb{R}$ be a nonempty interval.
Definition 5.1

- A function $f: I \rightarrow \mathbb{R}$ is differentiable at $\bar{x} \in I$ if

$$
\lim _{h \rightarrow 0} \frac{f(\bar{x}+h)-f(\bar{x})}{h}
$$

exists, i.e., if there exists $a \in \mathbb{R}$ such that for any $\varepsilon>0$, there exists $\delta>0$ such that

$$
0<|h|<\delta, \bar{x}+h \in I \Longrightarrow\left|\frac{f(\bar{x}+h)-f(\bar{x})-a h}{h}\right|<\varepsilon .
$$

- In this case, the limit a is called the differential coefficient of f at \bar{x}, and denoted by $f^{\prime}(\bar{x})$ or $\frac{d f}{d x}(\bar{x})$.
- For $I^{\prime} \subset I, f$ is differentiable on I^{\prime} if f is differentiable at all $\bar{x} \in I^{\prime}$.
- f is differentiable if f is differentiable on I.
- If f is differentiable on I^{\prime}, the function $x \mapsto f^{\prime}(x)$ from I^{\prime} to \mathbb{R} is called the derivative function (or derivative) of f and denoted by f^{\prime} or $\frac{d f}{d x}$.
- If f is differentiable and f^{\prime} is continuous, then f is said to be continuously differentiable or of class C^{1}.

Little o Notation

- If $\lim _{x \rightarrow \bar{x}} g(x)=0$ and $\lim _{x \rightarrow \bar{x}} \frac{f(x)}{g(x)}=0$, we write

$$
f(x)=o(g(x)) \text { as } x \rightarrow \bar{x}
$$

- For example, $x^{2}=o(x)$ as $x \rightarrow 0$.
(I.e., x^{2} is much smaller than x when $x \approx 0$.)
- By $f(x)=h(x)+o(g(x))$, we mean $f(x)-h(x)=o(g(x))$.
- If f is differentiable at \bar{x}, then

$$
f(x)=f(\bar{x})+f^{\prime}(\bar{x})(x-\bar{x})+o(x-\bar{x}) \text { as } x \rightarrow \bar{x}
$$

or

$$
f(\bar{x}+\varepsilon)=f(\bar{x})+f^{\prime}(\bar{x}) \varepsilon+o(\varepsilon) \text { as } \varepsilon \rightarrow 0
$$

(Often, "as $\varepsilon \rightarrow 0$ " is omitted.)

Differentiability and Continuity

Proposition 5.1
If f is differentiable at \bar{x}, then it is continuous at \bar{x}.
Proof

$$
\begin{aligned}
\lim _{x \rightarrow \bar{x}} f(x) & =\lim _{x \rightarrow \bar{x}}\left(f(\bar{x})+f^{\prime}(\bar{x})(x-\bar{x})+o(x-\bar{x})\right) \\
& =f(\bar{x}) .
\end{aligned}
$$

- The converse does not hold.

For example, the continuous function $x \mapsto|x|$ is not differentiable at 0 .

First-Order Condition for Optimality

Proposition 5.2
Let $I \subset \mathbb{R}$ be a nonempty open interval.
For $f: I \rightarrow \mathbb{R}$ and $x^{*} \in I$, if

- $f\left(x^{*}\right) \geq f(x)$ for all $x \in I$ and
- f is differentiable at x^{*},
then $f^{\prime}\left(x^{*}\right)=0$.

Proof

- For any sufficiently small $\varepsilon>0$, we have $\frac{f\left(x^{*}+\varepsilon\right)-f\left(x^{*}\right)}{\varepsilon} \leq 0$.
- Therefore,

$$
f^{\prime}\left(x^{*}\right)=\lim _{\varepsilon \searrow 0} \frac{f\left(x^{*}+\varepsilon\right)-f\left(x^{*}\right)}{\varepsilon} \leq 0 .
$$

- Similarly, we have $\frac{f\left(x^{*}\right)-f\left(x^{*}-\varepsilon\right)}{\varepsilon} \geq 0$.
- Therefore,

$$
f^{\prime}\left(x^{*}\right)=\lim _{\varepsilon \searrow 0} \frac{f\left(x^{*}\right)-f\left(x^{*}-\varepsilon\right)}{\varepsilon} \geq 0 .
$$

Mean Value Theorem

Proposition 5.3

Suppose that f is continuous on $[a, b]$ and differentiable on (a, b), where $a<b$. Then there exists $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Proof
Consider $g(x)=f(x)-f(a)-\frac{f(b)-f(a)}{b-a}(x-a)$.
Note that $g(a)=g(b)(=0)$.
Since g is continuous on the compact set $[a, b]$, it has a maximum y^{*} and a minimum $y^{* *}$. If $y^{*}=y^{* *}$, then the assertion obviously holds.
If $y^{*} \neq y^{* *}$,
then a maximizer x^{*} exists in (a, b) in which case $g^{\prime}\left(x^{*}\right)=0$, or a minimizer $x^{* *}$ exists in (a, b) in which case $g^{\prime}\left(x^{* *}\right)=0$.

Applications

Suppose that f is continuous on $[a, b]$ and differentiable on (a, b), where $a<b$.

- If $f^{\prime}(x) \geq 0$ for all $x \in(a, b)$, then f is nondecreasing on $[a, b]$ (i.e., $f\left(x_{1}\right) \leq f\left(x_{2}\right)$ for any $x_{1}, x_{2} \in[a, b]$ with $x_{1}<x_{2}$) (The converse also holds.)
- If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then f is strictly increasing on $[a, b]$ (i.e., $f\left(x_{1}\right)<f\left(x_{2}\right)$ for any $x_{1}, x_{2} \in[a, b]$ with $x_{1}<x_{2}$).
- If $f^{\prime}(x)=0$ for all $x \in(a, b)$, then f is constant on $[a, b]$.
- The following is false:
"if f is strictly increasing on $[a, b]$, then $f^{\prime}(x)>0$ for all $x \in(a, b)$ ".
Find a counter-example.

Proof

Take any $x_{1}, x_{2} \in[a, b]$ with $x_{1}<x_{2}$.
By the Mean Value Theorem, there exists some $c \in\left(x_{1}, x_{2}\right)$ such that

$$
f^{\prime}(c)=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

Thus,

- $f^{\prime}(x) \geq 0$ for all $x \in(a, b) \Rightarrow f\left(x_{1}\right) \leq f\left(x_{2}\right)$;
- $f^{\prime}(x)>0$ for all $x \in(a, b) \Rightarrow f\left(x_{1}\right)<f\left(x_{2}\right)$;
- $f^{\prime}(x)=0$ for all $x \in(a, b) \Rightarrow f\left(x_{1}\right)=f\left(x_{2}\right)$.

Inverse Function Theorem: One Variable Case

Proposition 5.4

Let $I \subset \mathbb{R}$ be a nonempty open interval.
Suppose that $f: I \rightarrow \mathbb{R}$ is of class C^{1} and $f^{\prime}(\bar{x}) \neq 0$ for $\bar{x} \in I$. Then there exists an open interval $J \subset I$ containing \bar{x} that satisfies the following:

- $\left.f\right|_{J}: J \rightarrow f(J)$ is a bijection;
- $\left(\left.f\right|_{J}\right)^{-1}: f(J) \rightarrow J$ is of class C^{1}; and
- $\left(\left(\left.f\right|_{J}\right)^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}\left(\left(\left.f\right|_{J}\right)^{-1}(y)\right)}$ for all $y \in f(J)$.
- $f(J)=\{y \in \mathbb{R} \mid y=f(x)$ for some $x \in J\}$.

Higher Order Derivatives

Let $I \subset \mathbb{R}$ be a nonempty interval.
Suppose that a function $f: I \rightarrow \mathbb{R}$ is differentiable on I.

- If the function f^{\prime} is differentiable on I, then f is said to be twice differentiable, and the derivative function of f^{\prime} is denoted by $f^{\prime \prime}$, or $\frac{d^{2} f}{d x^{2}}$, and is called the 2 nd derivative function of f.
- If the function $f^{(n-1)}$ is differentiable on I, then f is said to be n times differentiable, and the derivative function of $f^{(n-1)}$ is denoted by $f^{(n)}$, or $\frac{d^{n} f}{d x^{n}}$, and is called the nth derivative function of f, where $f^{(1)}=f^{\prime}$.
- If f is n times differentiable and $f^{(n)}$ is continuous, then f is said to be n times continuously differentiable or of class C^{n}.

Taylor's Theorem: 2nd Order Case

Let $I \subset \mathbb{R}$ be a nonempty open interval.
Let $a, b \in I$ with $a<b$.
Proposition 5.5

1. If $f: I \rightarrow \mathbb{R}$ is differentiable and f^{\prime} is differentiable at a, then

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}+o\left((x-a)^{2}\right)
$$

2. If $f: I \rightarrow \mathbb{R}$ is twice differentiable, then there exists $c \in(a, b)$ such that

$$
f(b)=f(a)+f^{\prime}(a)(b-a)+\frac{1}{2} f^{\prime \prime}(c)(b-a)^{2} .
$$

Proof

2.

- Let $g(x)=f(x)-f(a)-f^{\prime}(a)(x-a)-\frac{1}{2} A(x-a)^{2}$, where A is a constant such that $g(b)=0$, i.e.,

$$
A=2 \frac{f(b)-f(a)-f^{\prime}(a)(b-a)}{(b-a)^{2}}
$$

We want to show that $A=f^{\prime \prime}(c)$ for some $c \in(a, b)$.

- We have $g(a)=0, g(b)=0$, and $g^{\prime}(a)=0$.
- Since g is differentiable on I (and so on $[a, b]$), there is some $c_{0} \in(a, b)$ such that $g^{\prime}\left(c_{0}\right)=0$ by the Mean Value Theorem.
- Since g^{\prime} is differentiable on I (and so on $[a, b]$), there is some $c \in\left(a, c_{0}\right)$ such that $g^{\prime \prime}(c)=0$ by the Mean Value Theorem.
- Since $g^{\prime \prime}(x)=f^{\prime \prime}(x)-A$, we have $A=f^{\prime \prime}(c)$.

Second-Order Sufficient Condition for Optimality

Proposition 5.6

Let $I \subset \mathbb{R}$ be a nonempty open interval.
For $f: I \rightarrow \mathbb{R}$ and $x^{*} \in I$, if

- f is differentiable on I and f^{\prime} is differentiable at x^{*},
- $f^{\prime}\left(x^{*}\right)=0$, and
- $f^{\prime \prime}\left(x^{*}\right)<0$,
then x^{*} is a strict local maximizer of f, i.e., there exists $\delta>0$ such that $f\left(x^{*}\right)>f(x)$ for all $x \in\left(x^{*}-\delta, x^{*}+\delta\right), x \neq x^{*}$.

Proof

- Since $f^{\prime}\left(x^{*}\right)=0$, by Taylor's Theorem we have

$$
\begin{aligned}
& \quad f(x)=f\left(x^{*}\right)+\frac{1}{2} f^{\prime \prime}\left(x^{*}\right)\left(x-x^{*}\right)^{2}+o\left(\left(x-x^{*}\right)^{2}\right), \\
& \text { i.e., } \lim _{x \rightarrow x^{*}} \frac{f(x)-f\left(x^{*}\right)}{\left(x-x^{*}\right)^{2}}=\frac{1}{2} f^{\prime \prime}\left(x^{*}\right)
\end{aligned}
$$

- Since $f^{\prime \prime}\left(x^{*}\right)<0$, we can take an $\varepsilon>0$ such that $\frac{1}{2} f^{\prime \prime}\left(x^{*}\right)+\varepsilon<0$.
- Given this $\varepsilon>0$, there exists $\delta>0$ such that for any $x \in\left(x^{*}-\delta, x^{*}+\delta\right), x \neq x^{*}$,

$$
\frac{f(x)-f\left(x^{*}\right)}{\left(x-x^{*}\right)^{2}}<\frac{1}{2} f^{\prime \prime}\left(x^{*}\right)+\varepsilon<0
$$

so that $f(x)<f\left(x^{*}\right)$.

Second-Order Necessary Condition for Optimality

Proposition 5.7

Let $I \subset \mathbb{R}$ be a nonempty open interval.
For $f: I \rightarrow \mathbb{R}$ and $x^{*} \in I$, if

- f is differentiable on I and f^{\prime} is differentiable at x^{*}, and
- x^{*} is a maximizer of f,
then $f^{\prime \prime}\left(x^{*}\right) \leq 0$.

Proof
By Proposition 5.6.

