5. Differentiation I

Daisuke Oyama

Mathematics II

April 26, 2024

Differentiation in One Variable

Let $I \subset \mathbb{R}$ be a nonempty interval.

Definition 5.1

• A function $f: I \to \mathbb{R}$ is differentiable at $\bar{x} \in I$ if

$$\lim_{h \to 0} \frac{f(\bar{x}+h) - f(\bar{x})}{h}$$

exists, i.e., if there exists $a \in \mathbb{R}$ such that for any $\varepsilon > 0$, there exists $\delta > 0$ such that

$$0 < |h| < \delta, \ \bar{x} + h \in I \Longrightarrow \left| \frac{f(\bar{x} + h) - f(\bar{x}) - ah}{h} \right| < \varepsilon.$$

In this case, the limit a is called the differential coefficient of f at x̄, and denoted by f'(x̄) or df/dx(x̄).

- For $I' \subset I$, f is differentiable on I' if f is differentiable at all $\bar{x} \in I'$.
- f is differentiable if f is differentiable on I.
- If f is differentiable on I', the function x → f'(x) from I' to ℝ is called the *derivative function* (or *derivative*) of f and denoted by f' or df/dx.
- ► If f is differentiable and f' is continuous, then f is said to be continuously differentiable or of class C¹.

Little o Notation

• If
$$\lim_{x \to \bar{x}} g(x) = 0$$
 and $\lim_{x \to \bar{x}} \frac{f(x)}{g(x)} = 0$, we write $f(x) = o(g(x))$ as $x \to \bar{x}$.

$$f(x) = f(\bar{x}) + f'(\bar{x})(x - \bar{x}) + o(x - \bar{x})$$
 as $x \to \bar{x}$,

or

$$f(\bar{x}+\varepsilon)=f(\bar{x})+f'(\bar{x})\varepsilon+o(\varepsilon) \text{ as } \varepsilon \to 0.$$

(Often, "as $\varepsilon \to 0$ " is omitted.)

Differentiability and Continuity

Proposition 5.1 If f is differentiable at \bar{x} , then it is continuous at \bar{x} .

Proof

$$\lim_{x \to \bar{x}} f(x) = \lim_{x \to \bar{x}} \left(f(\bar{x}) + f'(\bar{x})(x - \bar{x}) + o(x - \bar{x}) \right)$$
$$= f(\bar{x}).$$

For example, the continuous function $x\mapsto |x|$ is not differentiable at 0.

First-Order Condition for Optimality

Proposition 5.2

Let $I \subset \mathbb{R}$ be a nonempty open interval. For $f: I \to \mathbb{R}$ and $x^* \in I$, if

•
$$f(x^*) \ge f(x)$$
 for all $x \in I$ and

• f is differentiable at x^* , then $f'(x^*) = 0$.

- For any sufficiently small $\varepsilon > 0$, we have $\frac{f(x^* + \varepsilon) f(x^*)}{\varepsilon} \le 0$.
- ► Therefore,

$$f'(x^*) = \lim_{\varepsilon \searrow 0} \frac{f(x^* + \varepsilon) - f(x^*)}{\varepsilon} \le 0.$$

Similarly, we have
$$\frac{f(x^*)-f(x^*-\varepsilon)}{\varepsilon} \ge 0.$$

Therefore,

$$f'(x^*) = \lim_{\varepsilon \searrow 0} \frac{f(x^*) - f(x^* - \varepsilon)}{\varepsilon} \ge 0.$$

Mean Value Theorem

Proposition 5.3

Suppose that f is continuous on [a, b] and differentiable on (a, b), where a < b. Then there exists $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Proof

Consider $g(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)$. Note that $g(a) = g(b) \ (= 0)$. Since g is continuous on the compact set [a, b], it has a maximum y^* and a minimum y^{**} . If $y^* = y^{**}$, then the assertion obviously holds.

If $y^* \neq y^{**}$, then a maximizer x^* exists in (a, b) in which case $g'(x^*) = 0$, or a minimizer x^{**} exists in (a, b) in which case $g'(x^{**}) = 0$.

Applications

Suppose that f is continuous on [a, b] and differentiable on (a, b), where a < b.

- ▶ If $f'(x) \ge 0$ for all $x \in (a, b)$, then f is nondecreasing on [a, b](i.e., $f(x_1) \le f(x_2)$ for any $x_1, x_2 \in [a, b]$ with $x_1 < x_2$) (The converse also holds.)
- ▶ If f'(x) > 0 for all $x \in (a, b)$, then f is strictly increasing on [a, b] (i.e., $f(x_1) < f(x_2)$ for any $x_1, x_2 \in [a, b]$ with $x_1 < x_2$).
- If f'(x) = 0 for all $x \in (a, b)$, then f is constant on [a, b].
- ▶ The following is *false*:
 "if *f* is strictly increasing on [*a*, *b*], then *f*'(*x*) > 0 for all *x* ∈ (*a*, *b*)".
 Find a counter-example.

Take any $x_1, x_2 \in [a, b]$ with $x_1 < x_2$.

By the Mean Value Theorem, there exists some $c\in(x_1,x_2)$ such that

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}.$$

Thus,

Inverse Function Theorem: One Variable Case

Proposition 5.4

Let $I \subset \mathbb{R}$ be a nonempty open interval. Suppose that $f: I \to \mathbb{R}$ is of class C^1 and $f'(\bar{x}) \neq 0$ for $\bar{x} \in I$. Then there exists an open interval $J \subset I$ containing \bar{x} that satisfies the following:

•
$$f|_J: J \to f(J)$$
 is a bijection;

•
$$(f|_J)^{-1}$$
: $f(J) \to J$ is of class C^1 ; and

•
$$((f|_J)^{-1})'(y) = \frac{1}{f'((f|_J)^{-1}(y))}$$
 for all $y \in f(J)$.

▶
$$f(J) = \{y \in \mathbb{R} \mid y = f(x) \text{ for some } x \in J\}.$$

Higher Order Derivatives

Let $I \subset \mathbb{R}$ be a nonempty interval. Suppose that a function $f: I \to \mathbb{R}$ is differentiable on I.

If the function f' is differentiable on I, then f is said to be twice differentiable, and the derivative function of f' is denoted by f", or d²f/dx², and is called the 2nd derivative function of f.

...

- If the function f⁽ⁿ⁻¹⁾ is differentiable on I, then f is said to be n times differentiable, and the derivative function of f⁽ⁿ⁻¹⁾ is denoted by f⁽ⁿ⁾, or dⁿf/dxⁿ, and is called the nth derivative function of f, where f⁽¹⁾ = f'.
- ► If f is n times differentiable and f⁽ⁿ⁾ is continuous, then f is said to be n times continuously differentiable or of class Cⁿ.

Taylor's Theorem: 2nd Order Case

Let $I \subset \mathbb{R}$ be a nonempty open interval. Let $a, b \in I$ with a < b.

Proposition 5.5

1. If $f: I \to \mathbb{R}$ is differentiable and f' is differentiable at a, then

$$f(x) = f(a) + f'(a)(x-a) + \frac{1}{2}f''(a)(x-a)^2 + o((x-a)^2).$$

2. If $f: I \to \mathbb{R}$ is twice differentiable, then there exists $c \in (a, b)$ such that

$$f(b) = f(a) + f'(a)(b-a) + \frac{1}{2}f''(c)(b-a)^2.$$

2.

• Let
$$g(x) = f(x) - f(a) - f'(a)(x-a) - \frac{1}{2}A(x-a)^2$$
, where
 A is a constant such that $g(b) = 0$, i.e.,

$$A = 2\frac{f(b) - f(a) - f'(a)(b-a)}{(b-a)^2}$$

We want to show that A = f''(c) for some $c \in (a, b)$.

• We have
$$g(a) = 0$$
, $g(b) = 0$, and $g'(a) = 0$.

- Since g is differentiable on I (and so on [a, b]), there is some c₀ ∈ (a, b) such that g'(c₀) = 0 by the Mean Value Theorem.
- Since g' is differentiable on I (and so on [a, b]), there is some $c \in (a, c_0)$ such that g''(c) = 0 by the Mean Value Theorem.

• Since
$$g''(x) = f''(x) - A$$
, we have $A = f''(c)$.

Second-Order Sufficient Condition for Optimality

Proposition 5.6

Let $I \subset \mathbb{R}$ be a nonempty open interval. For $f: I \to \mathbb{R}$ and $x^* \in I$, if

• f is differentiable on I and f' is differentiable at x^* ,

▶
$$f'(x^*) = 0$$
, and

►
$$f''(x^*) < 0$$
,

then x^* is a strict local maximizer of f, i.e., there exists $\delta > 0$ such that $f(x^*) > f(x)$ for all $x \in (x^* - \delta, x^* + \delta)$, $x \neq x^*$.

- Since $f''(x^*) < 0$, we can take an $\varepsilon > 0$ such that $\frac{1}{2}f''(x^*) + \varepsilon < 0$.
- Given this $\varepsilon > 0$, there exists $\delta > 0$ such that for any $x \in (x^* \delta, x^* + \delta)$, $x \neq x^*$,

$$\frac{f(x) - f(x^*)}{(x - x^*)^2} < \frac{1}{2}f''(x^*) + \varepsilon < 0,$$

so that $f(x) < f(x^*)$.

Second-Order Necessary Condition for Optimality

Proposition 5.7

Let $I \subset \mathbb{R}$ be a nonempty open interval. For $f: I \to \mathbb{R}$ and $x^* \in I$, if \blacktriangleright f is differentiable on I and f' is differentiable at x^* , and $\triangleright x^*$ is a maximizer of f, then $f''(x^*) \leq 0$.

Proof

By Proposition 5.6.