5. Differentiation II

Daisuke Oyama

Mathematics II

April 26, 2024

Vectors and Matrices

- We regard elements in \mathbb{R}^{N} as column vectors.
- We denote the set of $M \times N$ matrices by $\mathbb{R}^{M \times N}$,

$$
\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 N} \\
\vdots & \ddots & \vdots \\
a_{M 1} & \cdots & a_{M N}
\end{array}\right) \in \mathbb{R}^{M \times N}
$$

- For $A \in \mathbb{R}^{M \times N}, A^{\mathrm{T}} \in \mathbb{R}^{N \times M}$ denotes the transpose of A.
- \mathbb{R}^{N} and $\mathbb{R}^{N \times 1}$ are naturally identified, and we use the natural identification

$$
\underbrace{x \cdot y}_{\text {real number }}=\underbrace{x^{\mathrm{T}} y}_{1 \times 1 \text { matrix }}
$$

$$
\text { for } x, y \in \mathbb{R}^{N} \text { or } x, y \in \mathbb{R}^{N \times 1} \text {. }
$$

Little o Notation

- For functions $f, g: U \rightarrow \mathbb{R}$, where $U \subset \mathbb{R}^{N}$ is an open neighborhood of $\bar{x} \in \mathbb{R}^{N}$, if $\lim _{x \rightarrow \bar{x}} g(x)=0$ and $\lim _{x \rightarrow \bar{x}} \frac{f(x)}{g(x)}=0$, we write

$$
f(x)=o(g(x)) \text { as } x \rightarrow \bar{x} .
$$

- By $f(x)=h(x)+o(g(x))$, we mean $f(x)-h(x)=o(g(x))$.

Partial Differentiation

Let U be a nonempty open subset of \mathbb{R}^{N}.

- A function $f: U \rightarrow \mathbb{R}$ is partially differentiable with respect to x_{i} at $\bar{x} \in U$ if the function $x_{i} \mapsto f\left(\bar{x}_{1}, \ldots, \bar{x}_{i-1}, x_{i}, \bar{x}_{i+1}, \ldots, \bar{x}_{N}\right)$ is differentiable at \bar{x}_{i}.
- In this case, the differential coefficient is denoted by $f_{i}(\bar{x}), f_{x_{i}}(\bar{x})$, or $\frac{\partial f}{\partial x_{i}}(\bar{x})$, and is called the partial differential coefficient of f with respect to x_{i} at \bar{x}.
We also say that $\frac{\partial f}{\partial x_{i}}(\bar{x})$ exists.
- f is partially differentiable with respect to x_{i} if it is partially differentiable with respect to x_{i} at all $\bar{x} \in U$.
- The function $x \mapsto f_{i}(x)$ is called the partial derivative function (or partial derivative) of f with respect to x_{i} and is denoted by $f_{i}, f_{x_{i}}$, or $\frac{\partial f}{\partial x_{i}}$.

Gradient Vectors

Let U be a nonempty open subset of \mathbb{R}^{N}.

- For a function $f: U \rightarrow \mathbb{R}$, if $\frac{\partial f}{\partial x_{i}}(\bar{x})$ exists for all $i=1, \ldots, N$, we write

$$
\nabla f(\bar{x})=\left(\begin{array}{c}
\frac{\partial f}{\partial x_{1}}(\bar{x}) \\
\vdots \\
\frac{\partial f}{\partial x_{N}}(\bar{x})
\end{array}\right) \in \mathbb{R}^{N}
$$

which is called the gradient vector (or gradient) of f at \bar{x}.

Jacobian Matrices

Let U be a nonempty open subset of \mathbb{R}^{N}.

- For a function $f: U \rightarrow \mathbb{R}^{M}$, if $\frac{\partial f_{j}}{\partial x_{i}}(\bar{x})$ exists for all $i=1, \ldots, N$ and $j=1, \ldots, M$, we write

$$
\begin{aligned}
D f(\bar{x}) & =\left(\begin{array}{c}
\nabla f_{1}(\bar{x})^{\mathrm{T}} \\
\vdots \\
\nabla f_{M}(\bar{x})^{\mathrm{T}}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}}(\bar{x}) & \cdots & \frac{\partial f_{1}}{\partial x_{N}}(\bar{x}) \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{M}}{\partial x_{1}}(\bar{x}) & \cdots & \frac{\partial f_{M}}{\partial x_{N}}(\bar{x})
\end{array}\right) \in \mathbb{R}^{M \times N},
\end{aligned}
$$

which is called the Jacobian matrix (or Jacobian) of f at \bar{x}.

- For a function $f: U \rightarrow \mathbb{R}, D f(\bar{x})=\nabla f(\bar{x})^{\mathrm{T}}$.
- For a function $f(x, y)$ of $x \in \mathbb{R}^{N}$ and $y \in \mathbb{R}^{S}$, we often write

$$
D_{x} f(\bar{x}, \bar{y})=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}}(\bar{x}, \bar{y}) & \cdots & \frac{\partial f_{1}}{\partial x_{N}}(\bar{x}, \bar{y}) \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{M}}{\partial x_{1}}(\bar{x}, \bar{y}) & \cdots & \frac{\partial f_{M}}{\partial x_{N}}(\bar{x}, \bar{y})
\end{array}\right) \in \mathbb{R}^{M \times N}
$$

and

$$
D_{y} f(\bar{x}, \bar{y})=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial y_{1}}(\bar{x}, \bar{y}) & \cdots & \frac{\partial f_{1}}{\partial y_{S}}(\bar{x}, \bar{y}) \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{M}}{\partial y_{1}}(\bar{x}, \bar{y}) & \cdots & \frac{\partial f_{M}}{\partial y_{S}}(\bar{x}, \bar{y})
\end{array}\right) \in \mathbb{R}^{M \times S}
$$

where

$$
D f(\bar{x}, \bar{y})=\left(D_{x} f(\bar{x}, \bar{y}) \quad D_{y} f(\bar{x}, \bar{y})\right) \in \mathbb{R}^{M \times(N+S)} .
$$

Differentiation in Several Variables

Let U be a nonempty open subset of \mathbb{R}^{N}.
Definition 5.2
A function $f: U \rightarrow \mathbb{R}$ is differentiable (or totally differentiable) at $\bar{x} \in U$ if there exists $\bar{p} \in \mathbb{R}^{N}$ such that

$$
\lim _{z \rightarrow 0} \frac{f(\bar{x}+z)-f(\bar{x})-\bar{p} \cdot z}{\|z\|}=0
$$

or $f(\bar{x}+z)=f(\bar{x})+\bar{p} \cdot z+o(\|z\|)$ as $z \rightarrow 0$,
i.e., for any $\varepsilon>0$, there exists $\delta>0$ such that

$$
0<\|z\|<\delta, \bar{x}+z \in U \Longrightarrow \frac{|f(\bar{x}+z)-f(\bar{x})-\bar{p} \cdot z|}{\|z\|}<\varepsilon
$$

- In this case, $\frac{\partial f}{\partial x_{i}}(\bar{x})$ exists for all $i=1, \ldots, N$, and $\bar{p}=\nabla f(\bar{x})$.

Differentiability, Continuity, Partial Differentiability

```
Proposition 5.8
If \(f\) is differentiable at \(\bar{x}\), then it is continuous at \(\bar{x}\), and partially differentiable with respect to \(x_{i}\) at \(\bar{x}\) for each \(i\).
```

However,

- partial differentiability does not imply differentiability; and
- partial differentiability does not even imply continuity.

Continuous Differentiability and Differentiability

Let U be a nonempty open subset of \mathbb{R}^{N}.

- $f: U \rightarrow \mathbb{R}$ is continuously differentiable or of class C^{1} if it is partially differentiable with respect to x_{1}, \ldots, x_{N} and its partial derivative functions $\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{N}}$ are continuous.

Proposition 5.9
If f is continuously differentiable, then it is differentiable.

Vector-Valued Functions

Let U be a nonempty open subset of \mathbb{R}^{N}.

- For a function $f: U \rightarrow \mathbb{R}^{M}$, we write $f(x)=\left(\begin{array}{c}f_{1}(x) \\ \vdots \\ f_{M}(x)\end{array}\right)$.
f is differentiable if f_{m} is differentiable for all $m=1, \ldots, M$.
- When f is differentiable,

$$
\lim _{z \rightarrow 0} \frac{1}{\|z\|}(f(\bar{x}+z)-f(\bar{x})-D f(\bar{x}) z)=0
$$

where $D f(\bar{x}) \in \mathbb{R}^{M \times N}$ is the Jacobian matrix of f at \bar{x}.

- f is of class C^{1} if f_{m} is of class C^{1} for all $m=1, \ldots, M$.

Product Rule

Let $U \subset \mathbb{R}^{N}$ be a nonempty open set.

Proposition 5.10

Suppose that $f: U \rightarrow \mathbb{R}^{M}$ and $g: U \rightarrow \mathbb{R}^{M}$ are differentiable.
Define the function $h: U \rightarrow \mathbb{R}$ by $h(x)=f(x)^{\mathrm{T}} g(x)$.
Then h is differentiable and satisfies

$$
\underbrace{D h(x)}_{1 \times N}=\underbrace{g(x)^{\mathrm{T}}}_{1 \times M} \underbrace{D f(x)}_{M \times N}+\underbrace{f(x)^{\mathrm{T}}}_{1 \times M} \underbrace{D g(x)}_{M \times N}
$$

for all $x \in U$.

Chain Rule

Let $U \subset \mathbb{R}^{N}$ and $V \subset \mathbb{R}^{S}$ be nonempty open sets.
Proposition 5.11
Suppose that $g: V \rightarrow U$ and $f: U \rightarrow \mathbb{R}^{M}$ are differentiable.
Define the function $h: V \rightarrow \mathbb{R}^{M}$ by $h(x)=f(g(x))$.
Then h is differentiable and satisfies

$$
\underbrace{D h(x)}_{M \times S}=\underbrace{D f(g(x))}_{M \times N} \underbrace{D g(x)}_{N \times S}
$$

for all $x \in V$.

Example 1-1

- For a function $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ and $y, z \in \mathbb{R}^{N}$, consider the function $h: \mathbb{R} \rightarrow \mathbb{R}$ defined by $h(\alpha)=f(y+\alpha z)$.
- Define the function $g: \mathbb{R} \rightarrow \mathbb{R}^{N}$ by $g(\alpha)=y+\alpha z$.

Then $h(\alpha)=f(g(\alpha))$.

- By the Chain rule,

$$
\begin{aligned}
h^{\prime}(\alpha)=D h(\alpha) & =D f(g(\alpha)) D g(\alpha) \\
& =\underbrace{D f(y+\alpha z)}_{1 \times N} \underbrace{z}_{N \times 1} \\
& =\underbrace{\nabla f(y+\alpha z)}_{\in \mathbb{R}^{N}} \cdot \underbrace{z}_{\in \mathbb{R}^{N}} . \quad \text { (matrix product) } \quad \text { (inner product) }
\end{aligned}
$$

Example 1-2

- For a function $f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ and $y, z \in \mathbb{R}^{N}$, consider the function $k: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
k(\alpha)=z^{\mathrm{T}} f(y+\alpha z)
$$

- By the Chain rule,

$$
\begin{aligned}
k^{\prime}(\alpha)=D k(\alpha) & =z^{\mathrm{T}} D_{\alpha}[f(y+\alpha z)] \\
& =\underbrace{z^{\mathrm{T}}}_{1 \times N} \underbrace{D f(y+\alpha z)}_{N \times N} \underbrace{z}_{N \times 1}
\end{aligned}
$$

Example 2: Slutsky Equation

- $x: \mathbb{R}_{++}^{N} \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}^{N}$: Walrasian demand function
- $h: \mathbb{R}_{++}^{N} \times \mathbb{R} \rightarrow \mathbb{R}_{+}^{N}$: Hicksian demand function
- $e: \mathbb{R}_{++}^{N} \times \mathbb{R} \rightarrow \mathbb{R}$: expenditure function
- By duality, we have $h(p)=x(p, e(p))$.
(The fixed utility level u is omitted.)
I.e., if $g: \mathbb{R}_{++}^{N} \rightarrow \mathbb{R}_{++}^{N} \times \mathbb{R}_{+}$is defined by $g(q)=(q, e(q))$, then $h(p)=x(g(p))$.
- $D g(q)=\left(\begin{array}{cc}1 & 0 \\ 0 & 1 \\ e_{1} & e_{2}\end{array}\right)$, where $e_{n}=\frac{\partial e}{\partial p_{n}}($ and $N=2)$.
- We will also write $x_{n p_{k}}=\frac{\partial x_{n}}{\partial p_{k}}$ and $x_{n w}=\frac{\partial x_{n}}{\partial w}$.

Then by the Chain Rule,

$$
\left.\begin{array}{rl}
D h(p) & =D x(g(p)) D g(p) \\
& =\left(\begin{array}{ll}
x_{1 p_{1}} & x_{1 p_{2}} \\
x_{2 p_{1}} & x_{2 p_{2}}
\end{array} x_{2 w}\right.
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
e_{1} & e_{2}
\end{array}\right) .
$$

where the last equality follows from $\underbrace{\nabla e(p)}_{N \times 1}=\underbrace{h(p)}_{N \times 1}$
("Hotelling's Lemma").

Example 3: Homogeneous Functions and Euler's Formula

Definition 5.3
A function $f: \mathbb{R}_{+}^{N} \rightarrow \mathbb{R}$ is homogeneous of degree k if

$$
f(t x)=t^{k} f(x)
$$

for all $t>0$ and all $x \in \mathbb{R}_{+}^{N}$.

Proposition 5.12

If f is homogeneous of degree k and differentiable, then for all $i, \frac{\partial f}{\partial x_{i}}$ is homogeneous of degree $k-1$.

Proof

- Since $f(t x)=t^{k} f(x)$ holds for any value of x_{i}, it holds that $\frac{\partial}{\partial x_{i}}(\mathrm{LHS})=\frac{\partial}{\partial x_{i}}(\mathrm{RHS})$.
- Since

$$
\frac{\partial}{\partial x_{i}}(\mathrm{LHS})=t \frac{\partial f}{\partial x_{i}}(t x),
$$

and

$$
\frac{\partial}{\partial x_{i}}(\mathrm{RHS})=t^{k} \frac{\partial f}{\partial x_{i}}(x)
$$

we have $\frac{\partial f}{\partial x_{i}}(t x)=t^{k-1} \frac{\partial f}{\partial x_{i}}(x)$.

Proposition 5.13

If f is homogeneous of degree k and differentiable, then

$$
\nabla f(x) \cdot x=k f(x)
$$

for all $x \in \mathbb{R}_{+}^{N}$.
Proof

- Since $f(t x)=t^{k} f(x)$ holds for any value of t, it holds that $\frac{\partial}{\partial t}($ LHS $)=\frac{\partial}{\partial t}($ RHS $)$.
- We have

$$
\frac{\partial}{\partial t}(\mathrm{LHS})=\nabla f(t x) \cdot x
$$

and

$$
\frac{\partial}{\partial t}(\mathrm{RHS})=k t^{k-1} f(x)
$$

Since these are equal, evaluating at $t=1$ we have $\nabla f(x) \cdot x=k f(x)$.

Example 4: A Property of the Hicksian Demand Function

- The Hicksian demand function $h(p, u)$ is homogeneous of degree 0 in p.
- By Proposition 5.13, we have

$$
\underbrace{D_{p} h(p, u)}_{N \times N} \underbrace{p}_{N \times 1}=\underbrace{0}_{N \times 1}
$$

Mean Value Theorem in Several Variables

Let $U \subset \mathbb{R}^{N}$ be a nonempty open convex set.
Proposition 5.14
Suppose that $f: U \rightarrow \mathbb{R}$ is differentiable.
Then for any $x, y \in U$, there exists $\alpha_{0} \in(0,1)$ such that

$$
f(y)-f(x)=\nabla f\left(\left(1-\alpha_{0}\right) x+\alpha_{0} y\right) \cdot(y-x) .
$$

Proof

- Consider the differentiable function $h(\alpha)=f(x+\alpha(y-x))$.
- By the Mean Value Theorem in one variable, there exists $\alpha_{0} \in(0,1)$ such that $h(1)-h(0)=h^{\prime}\left(\alpha_{0}\right)(1-0)$, or $f(y)-f(x)=\nabla f\left(x+\alpha_{0}(y-x)\right) \cdot(y-x)$.

Second Order Differentiation

- The partial derivative of $\frac{\partial f}{\partial x_{i}}$ with respect to x_{i} is written as

$$
\frac{\partial^{2} f}{\partial x_{i}^{2}} \quad \text { or } \quad f_{x_{i} x_{i}} \quad \text { or } \quad f_{i i}
$$

- The partial derivative of $\frac{\partial f}{\partial x_{i}}$ with respect to x_{j} is written as

$$
\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}} \text { or } f_{x_{i} x_{j}} \quad \text { or } f_{i j}
$$

- These are called the second partial derivative functions, or second partial derivatives, of f.
- f is twice continuously differentiable or of class C^{2} if all the second partial derivatives exist and are continuous.

Hessian Matrices

Let U be a nonempty open subset of \mathbb{R}^{N}.

- For a function $f: U \rightarrow \mathbb{R}$, if all the second partial derivatives exist at \bar{x}, we write

$$
\begin{aligned}
D^{2} f(\bar{x}) & =D \nabla f(\bar{x}) \\
& =\left(\begin{array}{ccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}}(\bar{x}) & \cdots & \frac{\partial^{2} f}{\partial x_{N} \partial x_{1}}(\bar{x}) \\
\vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{1} \partial x_{N}}(\bar{x}) & \cdots & \frac{\partial^{2} f}{\partial x_{N}^{2}}(\bar{x})
\end{array}\right) \in \mathbb{R}^{N \times N},
\end{aligned}
$$

which is called the Hessian matrix (or Hessian) of f at \bar{x}.

- Some textbooks define the Hessian to be the transpose of this matrix.

Young's Theorem

- In general, $\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}(x) \neq \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x)$.

Proposition 5.15

If $f: U \rightarrow \mathbb{R}$ is of class C^{2}, then $D^{2} f(x)$ is symmetric, i.e.,

$$
\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}(x)=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x) \text { for all } i, j=1, \ldots, N
$$

for all $x \in U$.

- There are other, weaker conditions, such as "all the first partial derivatives are differentiable".
- The above proposition, or one with a weaker condition, is called Young's theorem, Schwarz's theorem, or Clairaut's theorem.

Example 5: Symmetry of $D_{p} h(p, u)$

- By "Hotelling's Lemma", $h(p, u)=\nabla_{p} e(p, u)$.
- If h is of class C^{1} in p, so that e is of class C^{2} in p, then $D_{p} h(p, u)=D^{2} e(p, u)$ is symmetric by Young's Theorem.

Example 6

- For a function $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ and $y, z \in \mathbb{R}^{N}$, define the function $g: \mathbb{R} \rightarrow \mathbb{R}^{N}$ by $g(\alpha)=\nabla f(y+\alpha z)$.
Then by the Chain rule,

$$
D g(\alpha)=D \nabla f(y+\alpha z) z=\underbrace{D^{2} f(y+\alpha z)}_{N \times N} \underbrace{z}_{N \times 1} \in \mathbb{R}^{N \times 1} .
$$

- Consider the function $h: \mathbb{R} \rightarrow \mathbb{R}$ defined by $h(\alpha)=f(y+\alpha z)$.

As we have seen $h^{\prime}(\alpha)=\nabla f(y+\alpha z) \cdot z=g(\alpha) \cdot z$.
Then,

$$
\begin{aligned}
h^{\prime \prime}(\alpha) & =D g(\alpha) \cdot z \\
& =\left(D^{2} f(y+\alpha z) z\right) \cdot z=z \cdot D^{2} f(y+\alpha z) z \\
& =z^{\mathrm{T}} D^{2} f(y+\alpha z) z .
\end{aligned}
$$

Taylor's Theorem: 2nd Order Case

Let $U \subset \mathbb{R}^{N}$ be a nonempty open convex set.
Let $\bar{x} \in U$ and let $z \in \mathbb{R}^{N}$ such that $x+z \in U$.
Proposition 5.16

1. If $f: U \rightarrow \mathbb{R}$ is differentiable and ∇f is differentiable at $\bar{x} \in U$, then

$$
f(\bar{x}+z)=f(\bar{x})+\nabla f(\bar{x}) \cdot z+\frac{1}{2} z \cdot D^{2} f(\bar{x}) z+o\left(\|z\|^{2}\right) .
$$

2. If f is twice differentiable, then there exists $\alpha_{0} \in(0,1)$ such that

$$
f(\bar{x}+z)=f(\bar{x})+\nabla f(\bar{x}) \cdot z+\frac{1}{2} z \cdot D^{2} f\left(\bar{x}+\alpha_{0} z\right) z
$$

Implicit Function Theorem

Let $A \subset \mathbb{R}^{N}$ and $B \subset \mathbb{R}^{M}$ be nonempty open sets.
Proposition 5.17
Suppose that $f: A \times B \rightarrow \mathbb{R}^{N},(x, q) \mapsto f(x, q)$, is of class C^{1}.
Assume that $f(\bar{x}, \bar{q})=0$, where $(\bar{x}, \bar{q}) \in A \times B$, and
$\left|D_{x} f(\bar{x}, \bar{q})\right| \neq 0$.
Then there exist an open neighborhood $U \subset A$ of \bar{x}, an open neighborhood $V \subset B$ of \bar{q}, and a C^{1} function $\eta: V \rightarrow U$ that satisfy the following:

- for all $(x, q) \in U \times V, f(x, q)=0 \Longleftrightarrow x=\eta(q)$; and
- $D \eta(\bar{q})=-\left[D_{x} f(\bar{x}, \bar{q})\right]^{-1} D_{q} f(\bar{x}, \bar{q})$.

Intuition

- Suppose that $f(\bar{x}, \bar{q})=0$.
- Given $q \approx \bar{q}$, we want to solve the equation $f(x, q)=0$ in x.
- Locally, the equation is approximated by the linear equation

$$
\underbrace{D_{x} f(\bar{x}, \bar{q})}_{N \times N} \underbrace{(x-\bar{x})}_{\in \mathbb{R}^{N}}+\underbrace{D_{q} f(\bar{x}, \bar{q})}_{N \times M} \underbrace{(q-\bar{q})}_{\in \mathbb{R}^{M}}=\underbrace{0}_{\in \mathbb{R}^{N}}
$$

- If $\left|D_{x} f(\bar{x}, \bar{q})\right| \neq 0$, then this linear equation has a solution, and the solution is given as a function of q by

$$
\theta(q)=\bar{x}-\left[D_{x} f(\bar{x}, \bar{q})\right]^{-1} D_{q} f(\bar{x}, \bar{q})(q-\bar{q})
$$

where

$$
D \theta(q)=-\left[D_{x} f(\bar{x}, \bar{q})\right]^{-1} D_{q} f(\bar{x}, \bar{q})
$$

- $\theta(q)$ is a linear approximation of the solution $\eta(q)$ of the original equation.

Concave Functions

Definition 5.4
Let $X \subset \mathbb{R}^{N}$ be a nonempty convex set.

- A function $f: X \rightarrow \mathbb{R}$ is concave if

$$
f\left((1-\alpha) x+\alpha x^{\prime}\right) \geq(1-\alpha) f(x)+\alpha f\left(x^{\prime}\right)
$$

for all $x, x^{\prime} \in X$ and all $\alpha \in[0,1]$.

- $f: X \rightarrow \mathbb{R}$ is strictly concave if

$$
f\left((1-\alpha) x+\alpha x^{\prime}\right)>(1-\alpha) f(x)+\alpha f\left(x^{\prime}\right)
$$

for all $x, x^{\prime} \in X$ with $x \neq x^{\prime}$ and all $\alpha \in(0,1)$.

- $f: X \rightarrow \mathbb{R}$ is convex (strictly convex, resp.) if $-f$ is concave (strictly concave, resp.).

Characterization of Concave Functions

Let $X \subset \mathbb{R}^{N}$ be a nonempty convex set.
Lemma 5.18
$f: X \rightarrow \mathbb{R}$ is (strictly) concave if and only if for any $x \in X$ and any $z \in \mathbb{R}^{N}$ with $x+z \in X$, for $t \in(0,1]$,

$$
\frac{f(x+t z)-f(x)}{t}
$$

is nonincreasing (strictly decreasing) in t.

Characterization via Gradient

Let $X \subset \mathbb{R}^{N}$ be a nonempty open convex set.
Proposition 5.19
Suppose that $f: X \rightarrow \mathbb{R}$ is differentiable.

- f is concave if and only if

$$
f(x+z) \leq f(x)+\nabla f(x) \cdot z
$$

for all $x \in X$ and all $z \in \mathbb{R}^{N}$ with $x+z \in X$.

- f is strictly concave if and only if

$$
f(x+z)<f(x)+\nabla f(x) \cdot z
$$

for all $x \in X$ and all $z \neq 0$ with $x+z \in X$.

Proof (1/2)

- The "if" part:

Take any $x, x^{\prime} \in X$ and $\alpha \in(0,1)$, and denote $x^{\prime \prime}=(1-\alpha) x+\alpha x^{\prime}$. By assumption,

$$
\begin{align*}
& f(x) \leq f\left(x^{\prime \prime}\right)+\nabla f\left(x^{\prime \prime}\right) \cdot\left(x-x^{\prime \prime}\right) \tag{1}\\
& f\left(x^{\prime}\right) \leq f\left(x^{\prime \prime}\right)+\nabla f\left(x^{\prime \prime}\right) \cdot\left(x^{\prime}-x^{\prime \prime}\right) \tag{2}
\end{align*}
$$

From $(1) \times(1-\alpha)+(2) \times \alpha$, we have

$$
(1-\alpha) f(x)+\alpha f\left(x^{\prime}\right) \leq f\left(x^{\prime \prime}\right)
$$

- For strict concavity, replace " \geq " with " $>$ " (assuming $x \neq x^{\prime}$).

Proof (2/2)

- The "only if" part: Suppose that f is concave, and fix any $x \in X$ and $z \in \mathbb{R}^{N}$ with $x+z \in X$.
- By Lemma 5.18, for $t>0, \frac{f(x+t z)-f(x)}{t}$ is decreasing in t.
- In particular, we have $\frac{f(x+t z)-f(x)}{t} \geq f(x+z)-f(x)$ for $t \in(0,1]$.
- Let $t \searrow 0$. Then by the definition of differentiation,
$\left.($ LHS $) \nearrow \frac{\partial}{\partial t} f(x+t z)\right|_{t=0}=\left.\nabla f(x+t z) \cdot z\right|_{t=0}=\nabla f(x) \cdot z$.
- For strict concavity, replace " \geq " with " $>$ " (assuming $z \neq 0$).

Characterization via Gradient

Let $X \subset \mathbb{R}^{N}$ be a nonempty open convex set.
Proposition 5.20
Suppose that $f: X \rightarrow \mathbb{R}$ is differentiable.

- f is concave if and only if

$$
\left(\nabla f\left(x^{\prime}\right)-\nabla f(x)\right) \cdot\left(x^{\prime}-x\right) \leq 0
$$

for all $x, x^{\prime} \in X$.

- f is strictly concave if and only if

$$
\left(\nabla f\left(x^{\prime}\right)-\nabla f(x)\right) \cdot\left(x^{\prime}-x\right)<0
$$

for all $x, x^{\prime} \in X$ with $x \neq x^{\prime}$.

Proof (1/2)

- The "if" part:

Fix any $x \in X$ and $z \in \mathbb{R}^{N}$ with $x+z \in X$.

- Let

$$
g(t)=f(x+t z)-f(x)-\nabla f(x) \cdot(t z) .
$$

By Proposition 5.19, it suffices to show that $g(1) \leq 0$.

- For all $t \in(0,1]$, we have

$$
\begin{aligned}
g^{\prime}(t) & =\nabla f(x+t z) \cdot z-\nabla f(x) \cdot z \\
& =(\nabla f(x+t z)-\nabla f(x)) \cdot(t z) / t \leq 0
\end{aligned}
$$

by assumption.

- Since $g(0)=0$, it follows that $g(1) \leq 0$.
- For strict concavity, replace " \leq " with " $<$ " (assuming $z \neq 0$).

Proof (2/2)

- The "only if" part:

Suppose that f is concave, and fix any $x, x^{\prime} \in X$.

- By Proposition 5.19, we have

$$
\begin{aligned}
& f\left(x^{\prime}\right) \leq f(x)+\nabla f(x) \cdot\left(x^{\prime}-x\right) \\
& f(x) \leq f\left(x^{\prime}\right)+\nabla f\left(x^{\prime}\right) \cdot\left(x-x^{\prime}\right)
\end{aligned}
$$

- Combining these inequalities, we have

$$
0 \leq-\left(\nabla f(x)-\nabla f\left(x^{\prime}\right)\right) \cdot\left(x^{\prime}-x\right) .
$$

- For strict concavity, replace " \leq " with " $<$ " (assuming $x \neq x^{\prime}$).

Differentiability and Partial Differentiability

Let $X \subset \mathbb{R}^{N}$ be a nonempty convex set.

Fact 1

Suppose that $f: X \rightarrow \mathbb{R}$ is concave, and let $\bar{x} \in \operatorname{Int} X$. If $\frac{\partial f}{\partial x_{i}}(\bar{x})$ exists for all $i=1, \ldots, N$, then f is differentiable at \bar{x}.

- This does not hold for general functions.

Characterization via Hessian

Let $X \subset \mathbb{R}^{N}$ be a nonempty open convex set.
Proposition 5.21
Suppose that $f: X \rightarrow \mathbb{R}$ is differentiable and ∇f is differentiable.

- f is concave if and only if for all $x \in X, D^{2} f(x)$ is negative semi-definite, i.e.,

$$
z \cdot D^{2} f(x) z \leq 0
$$

for all $z \in \mathbb{R}^{N}$.

- If for all $x \in X, D^{2} f(x)$ is negative definite, i.e.,

$$
z \cdot D^{2} f(x) z<0
$$

for all $z \neq 0$, then f is strictly concave.

Proof (1/2)

- The "if" part: Fix any $x, x^{\prime} \in X$, and write $z=x^{\prime}-x$.
- Let

$$
g(t)=(\nabla f(x+t z)-\nabla f(x)) \cdot z .
$$

By Proposition 5.20, it suffices to show that $g(1) \leq 0$.

- For all $t \in(0,1]$, we have

$$
g^{\prime}(t)=z \cdot D^{2} f(x+t z) z \leq 0
$$

by assumption.

- Since $g(0)=0$, it follows that $g(1) \leq 0$.
- For strict concavity, replace " \leq " with " $<$ " (assuming $x \neq x^{\prime}$).

Proof (2/2)

- The "only if" part:

Suppose that f is concave.
By Proposition 5.20,
$\left(\nabla f\left(x^{\prime}\right)-\nabla f(x)\right) \cdot\left(x^{\prime}-x\right) \leq 0$ for any $x, x^{\prime} \in X$.

- Fix any $x \in X$ and $z \in \mathbb{R}^{N}$, and consider the function

$$
g(t)=\nabla f(x+t z) \cdot z
$$

(defined for t such that $x+t z \in X$).

- By assumption, for $t^{\prime}>t$, we have

$$
\begin{aligned}
& \left(g\left(t^{\prime}\right)-g(t)\right)\left(t^{\prime}-t\right) \\
& =\left(\nabla f\left(x+t^{\prime} z\right)-\nabla f(x+t z)\right) \cdot\left\{\left(x+t^{\prime} z\right)-(x+t z)\right\} \leq 0,
\end{aligned}
$$

which implies that g is nonincreasing.

- Therefore, $g^{\prime}(t)=z \cdot D^{2} f(x+t z) z \leq 0$ for all t.

In particular, we have $g^{\prime}(0)=z \cdot D^{2} f(x) z \leq 0$.

Quasi-Concave Functions

Definition 5.5

Let $X \subset \mathbb{R}^{N}$ be a nonempty convex set.

- $f: X \rightarrow \mathbb{R}$ is quasi-concave if
$f\left((1-\alpha) x+\alpha x^{\prime}\right) \geq f(x)$
for all $x, x^{\prime} \in A$ such that $f\left(x^{\prime}\right) \geq f(x)$ and all $\alpha \in[0,1]$.
- $f: X \rightarrow \mathbb{R}$ is strictly quasi-concave if $f\left((1-\alpha) x+\alpha x^{\prime}\right)>f(x)$ for all $x, x^{\prime} \in A$ with $x \neq x^{\prime}$ such that $f\left(x^{\prime}\right) \geq f(x)$ and all $\alpha \in(0,1)$.
- f is (strictly) quasi-convex if $-f$ is (strictly) quasi-concave.

Characterization via Gradient

Let $X \subset \mathbb{R}^{N}$ be a nonempty open convex set.
Proposition 5.22
Suppose that $f: X \rightarrow \mathbb{R}$ is differentiable.

1. f is quasi-concave if and only if for all $x, x^{\prime} \in X$,

$$
\begin{equation*}
f\left(x^{\prime}\right) \geq f(x) \Rightarrow \nabla f(x) \cdot\left(x^{\prime}-x\right) \geq 0 \tag{3}
\end{equation*}
$$

2. If f is quasi-concave, then for all $x, x^{\prime} \in X$,

$$
\begin{equation*}
f\left(x^{\prime}\right)>f(x), \nabla f(x) \neq 0 \Rightarrow \nabla f(x) \cdot\left(x^{\prime}-x\right)>0 \tag{4}
\end{equation*}
$$

Proof

1. "Only if" part

- Suppose that f is quasi-concave.

Fix any $x, x^{\prime} \in X$, and assume that $f\left(x^{\prime}\right) \geq f(x)$.
Consider the function $g(t)=f\left((1-t) x+t x^{\prime}\right)$.

- By quasi-concavity, $g(t) \geq g(0)$ for all $t \in[0,1]$.
- Therefore, $g^{\prime}(0) \geq 0$, where $g^{\prime}(0)=\nabla f(x) \cdot\left(x^{\prime}-x\right)$.

Proof

1. "If" part

- Suppose that f is not quasi-concave.

Then there exist $\bar{x}, \bar{x}^{\prime} \in X, \bar{x} \neq \bar{x}^{\prime}$, and $\bar{\alpha} \in[0,1]$ such that $f\left(\bar{x}^{\prime}\right) \geq f(\bar{x})>f\left((1-\bar{\alpha}) \bar{x}+\bar{\alpha} \bar{x}^{\prime}\right)$.

- Consider the function $g(t)=f\left((1-t) \bar{x}+t \bar{x}^{\prime}\right)$.
- Let $M=\min _{t \in[0,1]} g(t)<g(0)$, and let $\alpha^{*}=\min \{t \in[0,1] \mid g(t)=M\}$ (which is well defined by the continuity of g).
- By the continuity of g, there exists $\delta>0$ such that $g(t)<g(0)$ for all $t \in\left(\alpha^{*}-\delta, \alpha^{*}\right)$.
- By the Mean Value Theorem, there exists $\alpha^{* *} \in\left(\alpha^{*}-\delta, \alpha^{*}\right)$ such that $g^{\prime}\left(\alpha^{* *}\right)=\frac{g\left(\alpha^{*}\right)-g\left(\alpha^{*}-\delta\right)}{\delta}<0$.
- Therefore, letting $x^{* *}=\left(1-\alpha^{* *}\right) \bar{x}+\alpha^{* *} \bar{x}^{\prime}$, we have

$$
g(0)=f(\bar{x})>g\left(\alpha^{* *}\right)=f\left(x^{* *}\right)
$$

and

$$
g^{\prime}\left(\alpha^{* *}\right)=\nabla f\left(x^{* *}\right) \cdot\left(x^{* *}-\bar{x}\right)<0 .
$$

2.

- Suppose that f is quasi-concave and that $f\left(x^{\prime}\right)>f(x)$ and $\nabla f(x) \neq 0$.
- By the continuity of f, we have $f\left(x^{\prime}-\varepsilon \nabla f(x)\right)>f(x)$ for some small $\varepsilon>0$.
- Then by part 1 , we have $\nabla f(x) \cdot\left(\left(x^{\prime}-\varepsilon \nabla f(x)\right)-x\right) \geq 0$, or $\nabla f(x) \cdot\left(x^{\prime}-x\right) \geq \varepsilon\|\nabla f(x)\|^{2}>0$.

Characterization via Gradient

Let $X \subset \mathbb{R}^{N}$ be a nonempty open convex set.
Proposition 5.23
Suppose that $f: X \rightarrow \mathbb{R}$ is differentiable.

1. If for all $x, x^{\prime} \in X$,

$$
\begin{equation*}
f\left(x^{\prime}\right) \geq f(x), x \neq x^{\prime} \Rightarrow \nabla f(x) \cdot\left(x^{\prime}-x\right)>0 \tag{5}
\end{equation*}
$$

then f is strictly quasi-concave.
2. If f is strictly quasi-concave, then for all $x, x^{\prime} \in X$,

$$
\begin{align*}
& f\left(x^{\prime}\right) \geq f(x), x \neq x^{\prime}, \quad \nabla f(x) \neq 0 \\
& \Rightarrow \nabla f(x) \cdot\left(x^{\prime}-x\right)>0 \tag{6}
\end{align*}
$$

Proof

1.

- Suppose that condition (5) holds.
- By part 1 of Proposition 5.22, f is quasi-concave.
- Assume that f is not strictly quasi-concave.

Then there exist $\bar{x}, \bar{x}^{\prime} \in X, \bar{x} \neq \bar{x}^{\prime}$, and $\bar{\alpha} \in(0,1)$ such that $f\left(\bar{x}^{\prime}\right) \geq f(\bar{x}) \geq f\left(\bar{x}^{\prime \prime}\right)$, where $\bar{x}^{\prime \prime}=(1-\bar{\alpha}) \bar{x}+\bar{\alpha} \bar{x}^{\prime}$.

- Consider the function $g(t)=f\left((1-t) \bar{x}+t \bar{x}^{\prime}\right)$, which is quasi-concave.
- Since $g(0) \geq g(\bar{\alpha})$, by part 1 of Proposition 5.22 we have $g^{\prime}(\bar{\alpha})(0-\bar{\alpha}) \geq 0$, or $g^{\prime}(\bar{\alpha}) \leq 0$, where $g^{\prime}(\bar{\alpha})=\nabla f\left(\bar{x}^{\prime \prime}\right) \cdot\left(\bar{x}^{\prime}-\bar{x}\right)$.
- This contradicts condition (5).

2.

- Suppose that f is strictly quasi-concave and that $f\left(x^{\prime}\right) \geq f(x), x \neq x^{\prime}$, and $\nabla f(x) \neq 0$.
- By strict quasi-concavity, $f\left(\frac{1}{2} x+\frac{1}{2} x^{\prime}\right)>f(x)$.
- Then by part 2 of Proposition 5.22, we have

$$
\nabla f(x) \cdot\left(\left(\frac{1}{2} x+\frac{1}{2} x^{\prime}\right)-x\right)>0, \text { or } \frac{1}{2} \nabla f(x) \cdot\left(x^{\prime}-x\right)>0 .
$$

Characterization via Hessian

Let $X \subset \mathbb{R}^{N}$ be a nonempty open convex set.

Proposition 5.24

Suppose that $f: X \rightarrow \mathbb{R}$ is differentiable and ∇f is differentiable.

- If f is quasi-concave, then for all $x \in X$,
$D^{2} f(x)$ is negative semi-definite on $\left\{z \in \mathbb{R}^{N} \mid \nabla f(x) \cdot z=0\right\}$, i.e.,

$$
z \cdot D^{2} f(x) z \leq 0
$$

for all $z \in \mathbb{R}^{N}$ with $\nabla f(x) \cdot z=0$.

- If for all $x \in X$,
$D^{2} f(x)$ is negative definite on $\left\{z \in \mathbb{R}^{N} \mid \nabla f(x) \cdot z=0\right\}$, i.e.,

$$
z \cdot D^{2} f(x) z<0
$$

for all $z \neq 0$ with $\nabla f(x) \cdot z=0$, then f is strictly quasi-concave.

