6. Negative (Semi-)Definite Matrices

Daisuke Oyama

Mathematics II

May 3, 2024

Let $M \in \mathbb{R}^{N \times N}$.

▶ M is said to be *nonsingular* if there exists $A \in \mathbb{R}^{N \times N}$ such that MA = AM = I.

In this case, A is called the *inverse matrix* of M and denoted by M^{-1} .

- ► The following are equivalent:
 - ▶ *M* is nonsingular.
 - ightharpoonup rank M = N.
 - ▶ $|M| \neq 0$.
 - $\{z \in \mathbb{R}^N \mid Mz = 0\} = \{0\}.$
 - ightharpoonup 0 is not a characteristic root of M.

Let $M \in \mathbb{R}^{N \times N}$.

▶ The equation in λ ,

$$|M - \lambda I| = 0,$$

is called the *characteristic equation* of M.

- ▶ The characteristic equation of M has N solutions in \mathbb{C} (counted with multiplicity).
- ightharpoonup The solutions to the characteristic equation of M are called the *characteristic roots* of M.
- If $\lambda_1, \ldots, \lambda_N$ are the characteristic roots of M, then $|M| = \prod_{n=1}^N \lambda_n$.
- If M is nonsingular and $\lambda_1, \ldots, \lambda_N$ are its characteristic roots, then $\lambda_1^{-1}, \ldots, \lambda_N^{-1}$ are the characteristic roots of M^{-1} .

Let $M \in \mathbb{R}^{N \times N}$.

lacksquare $\lambda \in \mathbb{C}$ is an eigenvalue of M if there exists $z \in \mathbb{C}^N$ with $z \neq 0$ such that

$$Mz = \lambda z$$
.

In this case, z is called an *eigenvector* of M that corresponds (or belongs) to λ .

 $ightharpoonup \lambda$ is an eigenvalue of M if and only if it is a characteristic root of M.

Let $M \in \mathbb{R}^{N \times N}$ be a symmetric matrix.

- ightharpoonup All the eigenvalues (hence characteristic roots) of M are real.
- ► Each eigenvalue of *M* has real eigenvectors.
- lacksquare $\exists \, U \in \mathbb{R}^{N imes N}$ orthogonal (i.e., $U^{\mathrm{T}}U = UU^{\mathrm{T}} = I$) such that

$$U^{\mathrm{T}}MU = \begin{pmatrix} \lambda_1 & O \\ & \ddots & \\ O & & \lambda_N \end{pmatrix} \quad (= \operatorname{diag}(\lambda_1, \dots, \lambda_N)),$$

where $\lambda_1, \ldots, \lambda_N \in \mathbb{R}$ are the eigenvalues of M.

▶ If M is nonsingular, then M^{-1} is symmetric.

Negative (Semi-)Definite Matrices

Definition 6.1

 $lackbox{}{} M \in \mathbb{R}^{N \times N}$ is negative semi-definite if

$$z \cdot Mz \le 0$$

for all $z \in \mathbb{R}^N$.

 $ightharpoonup M \in \mathbb{R}^{N imes N}$ is negative definite if

$$z \cdot Mz < 0$$

for all $z \in \mathbb{R}^N$ with $z \neq 0$.

▶ $M \in \mathbb{R}^{N \times N}$ is positive definite (positive semi-definite, resp.) if -M is negative definite (negative semi-definite, resp.).

Remark

- ▶ In many math books, negative definiteness is defined only for symmetric matrices, or for quadratic forms $\sum_{i,j=1}^{N} a_{ij}z_iz_j$.
 - (Any quadratic form is written as $z \cdot Mz$ for some symmetric M.)
- ► Sometimes, matrices (not necessarily symmetric) that are negative definite in our sense are called negative quasi-definite.

Example: Negative (Semi-)Definiteness of Jacobi Matrices

Let $X \subset \mathbb{R}^N$ be a non-empty open convex set.

Suppose that $f \colon X \to \mathbb{R}^N$ is differentiable.

- 1. $(y-x)\cdot (f(y)-f(x))\leq 0$ for all $x,y\in X$ if and only if Df(x) is negative semi-definite for all $x\in X$.
- 2. If Df(x) is negative definite for all $x \in X$, then $(y-x)\cdot (f(y)-f(x)) < 0$ for all $x,y \in X$, $x \neq y$.
- For N=1, " $(y-x)\cdot (f(y)-f(x))\leq 0$ (< 0) for all $x,y\in X$ " implies that f is nonincreasing (strictly decreasing).
- ► Cf. Proposition 5.20.

Example: Negative (Semi-)Definiteness of Hesse Matrices

Let $X \subset \mathbb{R}^N$ be a non-empty open convex set.

Suppose that $f \colon X \to \mathbb{R}$ is differentiable and ∇f is differentiable.

- 1. f is concave if and only if $D^2f(x)$ is negative semi-definite for all $x \in X$.
- 2. If $D^2 f(x)$ is negative definite for all $x \in X$, then f is strictly concave.
- Proposition 5.21.

Characterizations of Negative (Semi-)Definiteness

Proposition 6.1

Let $M \in \mathbb{R}^{N \times N}$.

- 1. M is negative definite $\iff M + M^{\mathrm{T}}$ is negative definite.
- 2. Suppose that M is symmetric. M is negative definite \iff all the characteristic roots of M are negative.
- 3. M is negative definite $\implies M$ is nonsingular and M^{-1} is negative definite.

Proof

- 1. For any $z \in \mathbb{R}^N$, $z^{\mathrm{T}}(M+M^{\mathrm{T}})z = 2z^{\mathrm{T}}Mz$.
- 2. Since $M = U^{\mathrm{T}} \operatorname{diag}(\lambda_1, \dots, \lambda_N) U$ for some U orthogonal (hence nonsingular),

$$\begin{split} z^{\mathrm{T}} M z &< 0 \text{ for all } z \in \mathbb{R}^N \setminus \{0\} \\ \iff & (Uz)^{\mathrm{T}} \operatorname{diag}(\lambda_1, \dots, \lambda_N)(Uz) < 0 \text{ for all } z \in \mathbb{R}^N \setminus \{0\} \\ \iff & \sum_{n=1}^N \lambda_n(y_n)^2 = y^{\mathrm{T}} \operatorname{diag}(\lambda_1, \dots, \lambda_N) y < 0 \\ & \text{ for all } y \in \{Uz \mid z \in \mathbb{R}^N \setminus \{0\}\} = \mathbb{R}^N \setminus \{0\} \\ \iff & \lambda_1, \dots, \lambda_N < 0. \end{split}$$

3. Suppose Mz=0. Then $z^{\mathrm{T}}(M+M^{\mathrm{T}})z=0$. Thus, if M is negative definite (and so is $M+M^{\mathrm{T}}$), we must have z=0.

Take any $z \in \mathbb{R}^N$, $z \neq 0$.

Let $x = M^{-1}z \ (\neq 0)$. Then z = Mx.

Then we have

$$z^{\mathrm{T}} M^{-1} z = (Mx)^{\mathrm{T}} M^{-1} (Mx)$$

= $x^{\mathrm{T}} M^{\mathrm{T}} x = x^{\mathrm{T}} Mx < 0.$

Characterizations of Negative (Semi-)Definiteness

Proposition 6.2

Let $M \in \mathbb{R}^{N \times N}$ be symmetric.

- 1. M is negative semi-definite $\iff \exists B \in \mathbb{R}^{N \times N} \text{ such that } M = -B^TB.$
- 2. M is negative definite $\iff \exists \, B \in \mathbb{R}^{N \times N}$ nonsingular such that $M = -B^{\mathrm{T}}B$.

Proof

► The "if" part:

Suppose that $M = -B^{\mathrm{T}}B$. Then for any $z \in \mathbb{R}^N$,

$$z^{\mathrm{T}}Mz = -z^{\mathrm{T}}B^{\mathrm{T}}Bz = -\|Bz\|^2 \le 0.$$

▶ If B is nonsingular and $z \neq 0$, then $||Bz|| \neq 0$.

Proof

► The "only if" part:

Since
$$M$$
 is symmetric, we have $U^{\mathrm{T}}MU = \begin{pmatrix} \lambda_1 & & O \\ & \ddots & \\ O & & \lambda_N \end{pmatrix}$ for some U orthogonal (hence persingular)

for some U orthogonal (hence nonsingular).

If M is negative semi-definite, then $\lambda_1, \ldots, \lambda_N \leq 0$.

If M is negative definite, then $\lambda_1, \ldots, \lambda_N < 0$, so that B is nonsingular.

Characterizations of Negative (Semi-)Definiteness

Proposition 6.3

Let $M \in \mathbb{R}^{N \times N}$ be symmetric.

M is negative definite

$$\iff (-1)^r|_rM_r| > 0 \text{ for all } r = 1, \dots, N.$$

- ▶ ${}_rM_r \in \mathbb{R}^{r \times r}$ is the $r \times r$ submatrix of M obtained by deleting the last N-r columns and rows of M, which is called the *leading principal submatrix* of order r of M.
- $ightharpoonup |rM_r|$ is called the *leading principal minor* of order r of M.

Proof

► The "only if" part:

If M is negative definite, then $_rM_r$ is negative definite and its characteristic roots $\lambda_1,\ldots,\lambda_r$ are all negative, and thus,

$$(-1)^r|_r M_r| = (-\lambda_1) \times \cdots \times (-\lambda_r) > 0.$$

► The "if" part: by induction:

Trivial for N=1.

▶ Assume that the assertion holds for N-1.

Suppose that $(-1)^r|_rM_r|>0$ for all $r=1,\ldots,N$. Then $L=_{N-1}M_{N-1}$ is negative definite by the induction hypothesis.

Hence,

- ightharpoonup L is nonsingular, and
- $ightharpoonup L = -\tilde{B}^{\mathrm{T}}\tilde{B}$ for some nonsingular \tilde{B} .

Proof

$$lackbox{ Write } M = \begin{pmatrix} L & b \\ b^{\mathrm{T}} & a_{NN} \end{pmatrix}$$
 , where $b \in \mathbb{R}^{(N-1) \times 1}$.

$$\blacktriangleright \text{ Let } U = \begin{pmatrix} I_{N-1} & L^{-1}b \\ 0^{\mathrm{T}} & 1 \end{pmatrix}.$$

Then one can verify that $M=U^{\rm T}\begin{pmatrix} L & 0 \\ 0^{\rm T} & c \end{pmatrix}U$, where $c=a_{NN}-b^{\rm T}L^{-1}b$.

▶ Thus, |M| = c|L|.

But by assumption, $(-1)^N|M|>0$ and $(-1)^{N-1}|L|>0$, so that c<0.

▶ Let $B = \begin{pmatrix} \tilde{B} & 0 \\ 0^{\mathrm{T}} & \sqrt{-c} \end{pmatrix} U$, which is nonsingular, where $L = -\tilde{B}^{\mathrm{T}}\tilde{B}$.

Then $M=-B^{\mathrm{T}}B.$ Hence, M is negative definite.

Note

- " $(-1)^r|_rM_r| \ge 0$ for all $r=1,\ldots,N$ " does not imply that M is negative semi-definite.
- For example,

$$M = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

satisfies this condition $((-1)|_1M_1|=(-1)^2|M|=0)$, but is not negative semi-definite.

Characterizations of Negative (Semi-)Definiteness

Proposition 6.4

Let $M \in \mathbb{R}^{N \times N}$.

1. Suppose that M is symmetric.

M is negative semi-definite $\iff (-1)^r|_rM_r^\pi| \geq 0$ for all $r=1,\ldots,N$ and for all permutations π of $\{1,\ldots,N\}$.

2. If (not necessarily symmetric) M is negative semi-definite, then $(-1)^r|_rM_r^\pi|\geq 0$ for all $r=1,\ldots,N$ and for all permutations π of $\{1,\ldots,N\}$.

Application to Concave Functions

Denote
$$f_{ij}(x) = \frac{\partial^2 f}{\partial x_i \partial x_i}(x)$$
.

- $\begin{array}{l} \blacktriangleright \ \, f(x_1,x_2) \ \mbox{is concave} \\ \iff D^2 f(x_1,x_2) \ \mbox{is negative semi-definite} \quad \, \forall \, (x_1,x_2) \\ \iff (-1)f_{11} \geq 0, \ (-1)^2 \left| \begin{matrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{matrix} \right| \geq 0, \\ (-1)f_{22} \geq 0, \ \mbox{and} \ \ (-1)^2 \left| \begin{matrix} f_{22} & f_{21} \\ f_{12} & f_{11} \end{matrix} \right| \geq 0 \quad \, \forall \, (x_1,x_2) \\ \iff f_{11} \leq 0, \ f_{22} \leq 0, \ \mbox{and} \ \ f_{11}f_{22} (f_{12})^2 \geq 0 \quad \, \forall \, (x_1,x_2) \\ \end{array}$

Characterizations of Negative (Semi-)Definiteness

Proposition 6.5

Let $M \in \mathbb{R}^{N \times N}$ be symmetric, and $B \in \mathbb{R}^{N \times S}$ with $S \leq N$ be such that $\operatorname{rank} B = S$. Let $W = \{z \in \mathbb{R}^N \mid B^Tz = 0\}$.

1. M is negative definite on W if and only if

$$(-1)^r \begin{vmatrix} {}_r M_r & {}_r B \\ {}_{(r} B)^{\mathrm{T}} & 0 \end{vmatrix} > 0$$

for all r = S + 1, ..., N.

2. M is negative semi-definite on W if and only if

$$(-1)^r \begin{vmatrix} {}_r M_r^{\pi} & {}_r B^{\pi} \\ ({}_r B^{\pi})^{\mathrm{T}} & 0 \end{vmatrix} \ge 0$$

for all $r = S + 1, \dots, N$ and for all permutations π of $\{1, \dots, N\}$.

Application to Quasi-Concave Functions

Denote
$$f_i(x) = \frac{\partial f}{\partial x_i}(x)$$
 and $f_{ij}(x) = \frac{\partial^2 f}{\partial x_i \partial x_i}(x)$.

 $f(x_1,x_2) \text{ is strictly quasi-concave} \\ \iff D^2 f(x_1,x_2) \text{ is negative definite on } T_{\nabla f(x_1,x_2)} \ \forall (x_1,x_2) \\ \iff (-1)^2 \begin{vmatrix} f_{11} & f_{12} & f_1 \\ f_{21} & f_{22} & f_2 \\ f_1 & f_2 & 0 \end{vmatrix} > 0 \quad \forall (x_1,x_2) \\ \iff 2f_1 f_2 f_{12} - (f_1)^2 f_{22} - (f_2)^2 f_{11} > 0 \quad \forall (x_1,x_2) \\ \text{where } T_{\nabla f(x_1,x_2)} = \{z \in \mathbb{R}^N \mid \nabla f(x_1,x_2) \cdot z = 0\}.$

Characterizations of Negative (Semi-)Definiteness

For $p \in \mathbb{R}^N$, we denote $T_p = \{z \in \mathbb{R}^N \mid p \cdot z = 0\}$.

Proposition 6.6

Let $M \in \mathbb{R}^{N \times N}$, and suppose that $p \gg 0$, Mp = 0, and $M^{\mathrm{T}}p = 0$. Let $\hat{M} \in \mathbb{R}^{(N-1) \times (N-1)}$ be the matrix obtained by deleting the nth row and column for some n.

- 1. If rank M = N 1, then rank $\hat{M} = N 1$.
- 2. If M is negative definite on T_p , then M is negative definite on $\mathbb{R}^N \setminus \{z \in \mathbb{R}^N \mid z = \lambda p \text{ for some } \lambda \in \mathbb{R}\}.$
- 3. M is negative definite on T_p if and only if \hat{M} is negative definite.

Stable Matrices

Definition 6.2

 $M \in \mathbb{R}^{N \times N}$ is stable if all of its characteristic roots have a negative real part.

Proposition 6.7

For $M \in \mathbb{R}^{N \times N}$ and $K \in \mathbb{R}^{N \times N}$, suppose that M is negative definite and K is symmetric. Then KM is stable if and only if K is positive definite.

Some Other Results

Definition 6.3

 $M=(a_{ij})\in\mathbb{R}^{N\times N}$ has a dominant diagonal if there exists $p\gg 0$ such that $|p_ia_{ii}|>\sum_{j\neq i}|p_ja_{ij}|$ for all $i=1,\ldots,N.$

Definition 6.4

- ▶ $M = (a_{ij}) \in \mathbb{R}^{N \times N}$ has the gross substitute sign pattern if $a_{ij} > 0$ for all i, j with $i \neq j$.
- ▶ $M = (a_{ij}) \in \mathbb{R}^{N \times N}$ is a *Metzler matrix* if $a_{ij} \geq 0$ for all i, j with $i \neq j$.
- ightharpoonup M is a Z-matrix if -M is a Metzler matrix.

Obviously, if M has the gross substitute sign pattern, then it is a Metzler matrix.

Some Other Results

Proposition 6.8

Let $M \in \mathbb{R}^{N \times N}$.

- 1. If M has a dominant diagonal, then it is nonsingular.
- 2. Suppose that M is symmetric. If M has a negative and dominant diagonal, then it is negative definite.
- 3. If M is a Metzler matrix and if $Mp \ll 0$ and $M^{\mathrm{T}}p \ll 0$ for some $p \gg 0$, then M is negative definite.
- 4. If M has the gross substitute sign pattern and if Mp=0 and $M^{\mathrm{T}}p=0$ for some $p\gg 0$, then \hat{M} is negative definite, where $\hat{M}\in\mathbb{R}^{(N-1)\times(N-1)}$ is the matrix obtained by deleting the nth row and column for some n.

Proof

1. Suppose that Mz = 0. We want to show that z = 0.

Let $p\gg 0$ be as in the definition of diagonal dominance.

Let $y_i = z_i/p_i$, and let i be such that $|y_i| \ge |y_j|$ for all j.

Since $a_{ii}(p_iy_i) = -\sum_{j\neq i} a_{ij}(p_jy_j)$, we have

$$|p_i a_{ii}||y_i| = \left| \sum_{j \neq i} p_j a_{ij} y_j \right| \le \sum_{j \neq i} |p_j a_{ij}||y_j| \le \sum_{j \neq i} |p_j a_{ij}||y_i|,$$

and hence $\left(|p_i a_{ii}| - \sum_{j \neq i} |p_j a_{ij}|\right) |y_i| \leq 0.$

Since $|p_i a_{ii}| - \sum_{j \neq i} |p_j a_{ij}| > 0$ by the dominant diagonal, it follows that $|y_i| = 0$, which implies that z = 0.

2. We show that all the eigenvalues of M are negative.

Let $\lambda \in \mathbb{R}$ be any eigenvalue of M, and let $z \in \mathbb{R}^N$, $z \neq 0$, be a corresponding eigenvector, i.e., we have $Mz = \lambda z$.

Let $y_i = z_i/p_i$, and let i be such that $|y_i| \ge |y_j|$ for all j, where $|y_i| \ne 0$.

Since $(a_{ii} - \lambda)(p_i z_i) = -\sum_{j \neq i} a_{ij}(p_j z_j)$, we have

$$|p_i a_{ii} - p_i \lambda||y_i| = \left| \sum_{j \neq i} p_j a_{ij} y_j \right| \le \sum_{j \neq i} |p_j a_{ij}||y_j|$$

$$\le \sum_{j \neq i} |p_j a_{ij}||y_i| < |p_i a_{ii}||y_i|$$

by the dominant diagonal, and hence $|a_{ii} - \lambda| < |a_{ii}|$.

By $a_{ii} < 0$, this holds if and only if $2a_{ii} < \lambda < 0$, in particular only if $\lambda < 0$.

3. We show that $M+M^{\rm T}$ is a negative and dominant diagonal, which implies that $M+M^{\rm T}$ is negative definite by 2.

By
$$Mp\ll 0$$
 and $M^{\rm T}p\ll 0$ where $p\gg 0$, we have $p_i(2a_{ii})<-\sum_{j\neq i}p_j(a_{ij}+a_{ji})$ for all i .

By
$$a_{ij} \geq 0$$
 for all $i \neq j$, we have $2a_{ii} < 0$ and $|p_i(2a_{ii})| = -p_i(2a_{ii}) > \sum_{j \neq i} p_j(a_{ij} + a_{ji}) = \sum_{j \neq i} |p_j(a_{ij} + a_{ji})|$ for all i .

4. Take any $n=1,\ldots,N$, and let \hat{M} be the $(N-1)\times(N-1)$ matrix obtained by deleting the nth row and column.

By the assumptions, \hat{M} is a Metzler matrix, and for all $i \neq n$, $\sum_{j \neq n} p_j a_{ij} = -p_n a_{in} < 0$ and $\sum_{j \neq n} p_j a_{ji} = -p_n a_{ni} < 0$, so that $\hat{M}p \ll 0$ and $\hat{M}^{\rm T}p \ll 0$.

Hence, by 3, \hat{M} is negative definite.

Some Results on Nonnegative Matrices

▶ $M = (a_{ij}) \in \mathbb{R}^{N \times N}$ is called a nonnegative (positive) matrix if $a_{ij} \geq 0$ ($a_{ij} > 0$) for all i, j = 1, ..., N.

Some Results on Nonnegative Matrices I

Proposition 6.9

For a nonnegative matrix $M \in \mathbb{R}^{N \times N}$, the following conditions are equivalent:

- 1. For every $c \ge 0$, there exists $z \ge 0$ such that Mz + c = z.
- 2. There exists $z \geq 0$ such that $Mz \ll z$.
- 3. There exists $z \gg 0$ such that $Mz \ll z$.
- 4. $|r(I-M)_r|>0$ for all $r=1,\ldots,N$ ("Hawkins-Simon condition").
- 5. There exist lower and upper triangular matrices L and U with positive diagonals and nonpositive off-diagonals such that I-M=LU.
- 6. I-M is nonsingular, and $(I-M)^{-1} \ge 0$.

Some Results on Nonnegative Matrices II

Proposition 6.9

- 7. $|\lambda_i| < 1$ for all i = 1, ..., N, where $\lambda_1, ..., \lambda_N$ are the characteristic roots of M.
- 8. $\lim_{k\to\infty}\sum_{\ell=0}^k M^\ell$ exists (which is equal to $(I-M)^{-1}$).
- 9. $\lim_{k\to\infty} M^k = O$.

Spectral Radius

ightharpoonup For $M \in \mathbb{R}^{N \times N}$, let

$$\lambda(M) = \max\{|\lambda_1|, \dots, |\lambda_N|\},\,$$

where $\lambda_1, \ldots, \lambda_N$ are the characteristic roots of M.

 $ightharpoonup \lambda(M)$ is called the *spectral radius* of M.

Some Results on Nonnegative Matrices

Proposition 6.10 (Perron-Frobenius Theorem)

- 1. Let $M \in \mathbb{R}^{N \times N}$ be a positive matrix.
 - $ightharpoonup \lambda(M) > 0$, $\lambda(M)$ is an eigenvalue of M, and there exists a positive eigenvector that belongs to $\lambda(M)$.
 - lacktriangledown $\lambda(M)$ is a simple root of the characteristic equation.
 - An eigenvector that belongs to $\lambda(M)$ is unique (up to multiplication).
 - If $Mz = \mu z$, $\mu \ge 0$, for some $z \ge 0$, $z \ne 0$, then $\mu = \lambda(M)$.
 - If $M \ge L \ge O$ and $M \ne L$, then $\lambda(M) > \lambda(L)$.
- 2. Let $M \in \mathbb{R}^{N \times N}$ be a nonnegative matrix.
 - lacksquare $\lambda(M)$ is an eigenvalue of M, and there exists a nonnegative eigenvector that belongs to $\lambda(M)$.
 - If $M \ge L \ge O$, then $\lambda(M) \ge \lambda(L)$.