6. Negative (Semi-)Definite Matrices

Daisuke Oyama

Mathematics II

May 3, 2024

Some Facts from Linear Algebra

Let $M \in \mathbb{R}^{N \times N}$.

- M is said to be nonsingular if there exists $A \in \mathbb{R}^{N \times N}$ such that $M A=A M=I$.

In this case, A is called the inverse matrix of M and denoted by M^{-1}.

- The following are equivalent:
- M is nonsingular.
- $\operatorname{rank} M=N$.
- $|M| \neq 0$.
- $\left\{z \in \mathbb{R}^{N} \mid M z=0\right\}=\{0\}$.
- 0 is not a characteristic root of M.

Some Facts from Linear Algebra

Let $M \in \mathbb{R}^{N \times N}$.

- The equation in λ,

$$
|M-\lambda I|=0
$$

is called the characteristic equation of M.

- The characteristic equation of M has N solutions in \mathbb{C} (counted with multiplicity).
- The solutions to the characteristic equation of M are called the characteristic roots of M.
- If $\lambda_{1}, \ldots, \lambda_{N}$ are the characteristic roots of M, then $|M|=\prod_{n=1}^{N} \lambda_{n}$.
- If M is nonsingular and $\lambda_{1}, \ldots, \lambda_{N}$ are its characteristic roots, then $\lambda_{1}^{-1}, \ldots, \lambda_{N}^{-1}$ are the characteristic roots of M^{-1}.

Some Facts from Linear Algebra

Let $M \in \mathbb{R}^{N \times N}$.

- $\lambda \in \mathbb{C}$ is an eigenvalue of M if there exists $z \in \mathbb{C}^{N}$ with $z \neq 0$ such that

$$
M z=\lambda z .
$$

In this case, z is called an eigenvector of M that corresponds (or belongs) to λ.

- λ is an eigenvalue of M if and only if it is a characteristic root of M.

Some Facts from Linear Algebra

Let $M \in \mathbb{R}^{N \times N}$ be a symmetric matrix.

- All the eigenvalues (hence characteristic roots) of M are real.
- Each eigenvalue of M has real eigenvectors.
- $\exists U \in \mathbb{R}^{N \times N}$ orthogonal (i.e., $U^{\mathrm{T}} U=U U^{\mathrm{T}}=I$) such that

$$
U^{\mathrm{T}} M U=\left(\begin{array}{ccc}
\lambda_{1} & & O \\
& \ddots & \\
O & & \lambda_{N}
\end{array}\right) \quad\left(=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)\right)
$$

where $\lambda_{1}, \ldots, \lambda_{N} \in \mathbb{R}$ are the eigenvalues of M.

- If M is nonsingular, then M^{-1} is symmetric.

Negative (Semi-)Definite Matrices

Definition 6.1

- $M \in \mathbb{R}^{N \times N}$ is negative semi-definite if

$$
z \cdot M z \leq 0
$$

for all $z \in \mathbb{R}^{N}$.

- $M \in \mathbb{R}^{N \times N}$ is negative definite if

$$
z \cdot M z<0
$$

for all $z \in \mathbb{R}^{N}$ with $z \neq 0$.

- $M \in \mathbb{R}^{N \times N}$ is positive definite (positive semi-definite, resp.) if $-M$ is negative definite (negative semi-definite, resp.).

Remark

- In many math books, negative definiteness is defined only for symmetric matrices, or for quadratic forms $\sum_{i, j=1}^{N} a_{i j} z_{i} z_{j}$.
(Any quadratic form is written as $z \cdot M z$ for some symmetric M.)
- Sometimes, matrices (not necessarily symmetric) that are negative definite in our sense are called negative quasi-definite.

Example: Negative (Semi-)Definiteness of Jacobi Matrices

Let $X \subset \mathbb{R}^{N}$ be a non-empty open convex set.
Suppose that $f: X \rightarrow \mathbb{R}^{N}$ is differentiable.

1. $(y-x) \cdot(f(y)-f(x)) \leq 0$ for all $x, y \in X$ if and only if $D f(x)$ is negative semi-definite for all $x \in X$.
2. If $D f(x)$ is negative definite for all $x \in X$, then $(y-x) \cdot(f(y)-f(x))<0$ for all $x, y \in X, x \neq y$.

- For $N=1$, " $(y-x) \cdot(f(y)-f(x)) \leq 0(<0)$ for all $x, y \in X$ " implies that f is nonincreasing (strictly decreasing).
- Cf. Proposition 5.20.

Example: Negative (Semi-)Definiteness of Hesse Matrices

Let $X \subset \mathbb{R}^{N}$ be a non-empty open convex set.
Suppose that $f: X \rightarrow \mathbb{R}$ is differentiable and ∇f is differentiable.

1. f is concave if and only if
$D^{2} f(x)$ is negative semi-definite for all $x \in X$.
2. If $D^{2} f(x)$ is negative definite for all $x \in X$, then f is strictly concave.

- Proposition 5.21.

Characterizations of Negative (Semi-)Definiteness

Proposition 6.1

Let $M \in \mathbb{R}^{N \times N}$.

1. M is negative definite
$\Longleftrightarrow M+M^{\mathrm{T}}$ is negative definite.
2. Suppose that M is symmetric.
M is negative definite
\Longleftrightarrow all the characteristic roots of M are negative.
3. M is negative definite
$\Longrightarrow M$ is nonsingular and M^{-1} is negative definite.

Proof

1. For any $z \in \mathbb{R}^{N}, z^{\mathrm{T}}\left(M+M^{\mathrm{T}}\right) z=2 z^{\mathrm{T}} M z$.
2. Since $M=U^{\mathrm{T}} \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right) U$ for some U orthogonal (hence nonsingular),

$$
\begin{aligned}
& z^{\mathrm{T}} M z<0 \text { for all } z \in \mathbb{R}^{N} \backslash\{0\} \\
& \Longleftrightarrow(U z)^{\mathrm{T}} \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)(U z)<0 \text { for all } z \in \mathbb{R}^{N} \backslash\{0\} \\
& \Longleftrightarrow \sum_{n=1}^{N} \lambda_{n}\left(y_{n}\right)^{2}=y^{\mathrm{T}} \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right) y<0 \\
& \text { for all } y \in\left\{U z \mid z \in \mathbb{R}^{N} \backslash\{0\}\right\}=\mathbb{R}^{N} \backslash\{0\} \\
& \Longleftrightarrow \lambda_{1}, \ldots, \lambda_{N}<0 .
\end{aligned}
$$

3. Suppose $M z=0$. Then $z^{\mathrm{T}}\left(M+M^{\mathrm{T}}\right) z=0$.

Thus, if M is negative definite (and so is $M+M^{\mathrm{T}}$), we must have $z=0$.
Take any $z \in \mathbb{R}^{N}, z \neq 0$.
Let $x=M^{-1} z(\neq 0)$. Then $z=M x$.
Then we have

$$
\begin{aligned}
z^{\mathrm{T}} M^{-1} z & =(M x)^{\mathrm{T}} M^{-1}(M x) \\
& =x^{\mathrm{T}} M^{\mathrm{T}} x=x^{\mathrm{T}} M x<0 .
\end{aligned}
$$

Characterizations of Negative (Semi-)Definiteness

Proposition 6.2
Let $M \in \mathbb{R}^{N \times N}$ be symmetric.

1. M is negative semi-definite $\Longleftrightarrow \exists B \in \mathbb{R}^{N \times N}$ such that $M=-B^{\mathrm{T}} B$.
2. M is negative definite
$\Longleftrightarrow \exists B \in \mathbb{R}^{N \times N}$ nonsingular such that $M=-B^{\mathrm{T}} B$.

Proof

- The "if" part:

Suppose that $M=-B^{\mathrm{T}} B$. Then for any $z \in \mathbb{R}^{N}$,

$$
z^{\mathrm{T}} M z=-z^{\mathrm{T}} B^{\mathrm{T}} B z=-\|B z\|^{2} \leq 0 .
$$

- If B is nonsingular and $z \neq 0$, then $\|B z\| \neq 0$.

Proof

- The "only if" part:

Since M is symmetric, we have $U^{\mathrm{T}} M U=\left(\begin{array}{ccc}\lambda_{1} & & O \\ & \ddots & \\ O & & \lambda_{N}\end{array}\right)$
for some U orthogonal (hence nonsingular).
If M is negative semi-definite, then $\lambda_{1}, \ldots, \lambda_{N} \leq 0$.

- Let $B=\left(\begin{array}{ccc}\sqrt{-\lambda_{1}} & & O \\ & \ddots & \\ O & & \sqrt{-\lambda_{N}}\end{array}\right) U^{\mathrm{T}}$.

Then $-B^{\mathrm{T}} B=U\left(\begin{array}{lll}\lambda_{1} & & O \\ & \ddots & \\ O & & \lambda_{N}\end{array}\right) U^{\mathrm{T}}=M$.

- If M is negative definite, then $\lambda_{1}, \ldots, \lambda_{N}<0$, so that B is nonsingular.

Characterizations of Negative (Semi-)Definiteness

Proposition 6.3

Let $M \in \mathbb{R}^{N \times N}$ be symmetric.
M is negative definite
$\left.\Longleftrightarrow(-1)^{r}\right|_{r} M_{r} \mid>0$ for all $r=1, \ldots, N$.

- ${ }_{r} M_{r} \in \mathbb{R}^{r \times r}$ is the $r \times r$ submatrix of M obtained by deleting the last $N-r$ columns and rows of M, which is called the leading principal submatrix of order r of M.
- ${ }_{r} M_{r} \mid$ is called the leading principal minor of order r of M.
- ${ }_{r} M \in \mathbb{R}^{r \times N}$ will denote the $r \times N$ submatrix of M obtained by deleting the last $N-r$ rows of M.

Proof

- The "only if" part:

If M is negative definite, then ${ }_{r} M_{r}$ is negative definite and its characteristic roots $\lambda_{1}, \ldots, \lambda_{r}$ are all negative, and thus,

$$
\left.(-1)^{r}\right|_{r} M_{r} \mid=\left(-\lambda_{1}\right) \times \cdots \times\left(-\lambda_{r}\right)>0 .
$$

- The "if" part: by induction:

Trivial for $N=1$.

- Assume that the assertion holds for $N-1$.

Suppose that $(-1)^{r}\left|{ }_{r} M_{r}\right|>0$ for all $r=1, \ldots, N$. Then $L={ }_{N-1} M_{N-1}$ is negative definite by the induction hypothesis.
Hence,

- L is nonsingular, and
- $L=-\tilde{B}^{\mathrm{T}} \tilde{B}$ for some nonsingular \tilde{B}.

Proof

- Write $M=\left(\begin{array}{cc}L & b \\ b^{T} & a_{N N}\end{array}\right)$, where $b \in \mathbb{R}^{(N-1) \times 1}$.
- Let $U=\left(\begin{array}{cc}I_{N-1} & L^{-1} b \\ 0^{\mathrm{T}} & 1\end{array}\right)$.

Then one can verify that $M=U^{\mathrm{T}}\left(\begin{array}{cc}L & 0 \\ 0^{\mathrm{T}} & c\end{array}\right) U$, where $c=a_{N N}-b^{\mathrm{T}} L^{-1} b$.

- Thus, $|M|=c|L|$.

But by assumption, $(-1)^{N}|M|>0$ and $(-1)^{N-1}|L|>0$, so that $c<0$.

- Let $B=\left(\begin{array}{cc}\tilde{B} & 0 \\ 0^{\mathrm{T}} & \sqrt{-c}\end{array}\right) U$, which is nonsingular, where $L=-\tilde{B}^{\mathrm{T}} \tilde{B}$.

Then $M=-B^{\mathrm{T}} B$. Hence, M is negative definite.

Note

- " $\left.(-1)^{r}\right|_{r} M_{r} \mid \geq 0$ for all $r=1, \ldots, N$ " does not imply that M is negative semi-definite.
- For example,

$$
M=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

satisfies this condition $\left(\left.(-1)\right|_{1} M_{1}\left|=(-1)^{2}\right| M \mid=0\right)$, but is not negative semi-definite.

Characterizations of Negative (Semi-)Definiteness

Proposition 6.4
Let $M \in \mathbb{R}^{N \times N}$.

1. Suppose that M is symmetric.
M is negative semi-definite
$\left.\Longleftrightarrow(-1)^{r}\right|_{r} M_{r}^{\pi} \mid \geq 0$ for all $r=1, \ldots, N$ and for all permutations π of $\{1, \ldots, N\}$.
2. If (not necessarily symmetric) M is negative semi-definite, then $\left.(-1)^{r}\right|_{r} M_{r}^{\pi} \mid \geq 0$ for all $r=1, \ldots, N$ and for all permutations π of $\{1, \ldots, N\}$.

Application to Concave Functions

Denote $f_{i j}(x)=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}(x)$.

- $f\left(x_{1}, x_{2}\right)$ is strictly concave
$\Longleftarrow D^{2} f\left(x_{1}, x_{2}\right)$ is negative definite $\quad \forall\left(x_{1}, x_{2}\right)$
$\Longleftrightarrow(-1) f_{11}>0$ and $(-1)^{2}\left|\begin{array}{ll}f_{11} & f_{12} \\ f_{21} & f_{22}\end{array}\right|>0 \quad \forall\left(x_{1}, x_{2}\right)$
$\Longleftrightarrow f_{11}<0$ and $f_{11} f_{22}-\left(f_{12}\right)^{2}>0 \quad \forall\left(x_{1}, x_{2}\right)$
- $f\left(x_{1}, x_{2}\right)$ is concave
$\Longleftrightarrow D^{2} f\left(x_{1}, x_{2}\right)$ is negative semi-definite $\quad \forall\left(x_{1}, x_{2}\right)$
$\Longleftrightarrow(-1) f_{11} \geq 0,(-1)^{2}\left|\begin{array}{ll}f_{11} & f_{12} \\ f_{21} & f_{22}\end{array}\right| \geq 0$,
$(-1) f_{22} \geq 0$, and $(-1)^{2}\left|\begin{array}{ll}f_{22} & f_{21} \\ f_{12} & f_{11}\end{array}\right| \geq 0 \quad \forall\left(x_{1}, x_{2}\right)$
$\Longleftrightarrow f_{11} \leq 0, f_{22} \leq 0$, and $f_{11} f_{22}-\left(f_{12}\right)^{2} \geq 0 \quad \forall\left(x_{1}, x_{2}\right)$

Characterizations of Negative (Semi-)Definiteness

Proposition 6.5

Let $M \in \mathbb{R}^{N \times N}$ be symmetric, and $B \in \mathbb{R}^{N \times S}$ with $S \leq N$ be such that $\operatorname{rank} B=S$. Let $W=\left\{z \in \mathbb{R}^{N} \mid B^{T} z=0\right\}$.

1. M is negative definite on W if and only if

$$
(-1)^{r}\left|\begin{array}{cc}
{ }^{r} M_{r} & { }_{r} B \\
\left({ }_{r} B\right)^{\mathrm{T}} & 0
\end{array}\right|>0
$$

for all $r=S+1, \ldots, N$.
2. M is negative semi-definite on W if and only if

$$
(-1)^{r}\left|\begin{array}{cc}
{ }_{r} M_{r}^{\pi} & { }_{r} B^{\pi} \\
\left({ }_{r} B^{\pi}\right)^{\mathrm{T}} & 0
\end{array}\right| \geq 0
$$

for all $r=S+1, \ldots, N$ and for all permutations π of $\{1, \ldots, N\}$.

Application to Quasi-Concave Functions

Denote $f_{i}(x)=\frac{\partial f}{\partial x_{i}}(x)$ and $f_{i j}(x)=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}(x)$.

- $f\left(x_{1}, x_{2}\right)$ is strictly quasi-concave $\Longleftarrow D^{2} f\left(x_{1}, x_{2}\right)$ is negative definite on $T_{\nabla f\left(x_{1}, x_{2}\right)} \forall\left(x_{1}, x_{2}\right)$
$\Longleftrightarrow(-1)^{2}\left|\begin{array}{ccc}f_{11} & f_{12} & f_{1} \\ f_{21} & f_{22} & f_{2} \\ f_{1} & f_{2} & 0\end{array}\right|>0 \quad \forall\left(x_{1}, x_{2}\right)$
$\Longleftrightarrow 2 f_{1} f_{2} f_{12}-\left(f_{1}\right)^{2} f_{22}-\left(f_{2}\right)^{2} f_{11}>0 \quad \forall\left(x_{1}, x_{2}\right)$
where $T_{\nabla f\left(x_{1}, x_{2}\right)}=\left\{z \in \mathbb{R}^{N} \mid \nabla f\left(x_{1}, x_{2}\right) \cdot z=0\right\}$.

Characterizations of Negative (Semi-)Definiteness

For $p \in \mathbb{R}^{N}$, we denote $T_{p}=\left\{z \in \mathbb{R}^{N} \mid p \cdot z=0\right\}$.
Proposition 6.6
Let $M \in \mathbb{R}^{N \times N}$, and suppose that $p \gg 0, M p=0$, and $M^{\mathrm{T}} p=0$. Let $\hat{M} \in \mathbb{R}^{(N-1) \times(N-1)}$ be the matrix obtained by deleting the nth row and column for some n.

1. If $\operatorname{rank} M=N-1$, then $\operatorname{rank} \hat{M}=N-1$.
2. If M is negative definite on T_{p}, then M is negative definite on $\mathbb{R}^{N} \backslash\left\{z \in \mathbb{R}^{N} \mid z=\lambda p\right.$ for some $\left.\lambda \in \mathbb{R}\right\}$.
3. M is negative definite on T_{p} if and only if \hat{M} is negative definite.

Stable Matrices

Definition 6.2
$M \in \mathbb{R}^{N \times N}$ is stable if all of its characteristic roots have a negative real part.

Proposition 6.7
For $M \in \mathbb{R}^{N \times N}$ and $K \in \mathbb{R}^{N \times N}$,
suppose that M is negative definite and K is symmetric.
Then $K M$ is stable if and only if K is positive definite.

Some Other Results

Definition 6.3
$M=\left(a_{i j}\right) \in \mathbb{R}^{N \times N}$ has a dominant diagonal if there exists $p \gg 0$ such that $\left|p_{i} a_{i i}\right|>\sum_{j \neq i}\left|p_{j} a_{i j}\right|$ for all $i=1, \ldots, N$.

Definition 6.4

- $M=\left(a_{i j}\right) \in \mathbb{R}^{N \times N}$ has the gross substitute sign pattern if $a_{i j}>0$ for all i, j with $i \neq j$.
- $M=\left(a_{i j}\right) \in \mathbb{R}^{N \times N}$ is a Metzler matrix if $a_{i j} \geq 0$ for all i, j with $i \neq j$.
- M is a Z-matrix if $-M$ is a Metzler matrix.
- Obviously, if M has the gross substitute sign pattern, then it is a Metzler matrix.

Some Other Results

Proposition 6.8

Let $M \in \mathbb{R}^{N \times N}$.

1. If M has a dominant diagonal, then it is nonsingular.
2. Suppose that M is symmetric. If M has a negative and dominant diagonal, then it is negative definite.
3. If M is a Metzler matrix and if $M p \ll 0$ and $M^{\mathrm{T}} p \ll 0$ for some $p \gg 0$, then M is negative definite.
4. If M has the gross substitute sign pattern and if $M p=0$ and $M^{\mathrm{T}} p=0$ for some $p \gg 0$, then \hat{M} is negative definite,
where $\hat{M} \in \mathbb{R}^{(N-1) \times(N-1)}$ is the matrix obtained by deleting the nth row and column for some n.

Proof

1. Suppose that $M z=0$. We want to show that $z=0$.

Let $p \gg 0$ be as in the definition of diagonal dominance. Let $y_{i}=z_{i} / p_{i}$, and let i be such that $\left|y_{i}\right| \geq\left|y_{j}\right|$ for all j. Since $a_{i i}\left(p_{i} y_{i}\right)=-\sum_{j \neq i} a_{i j}\left(p_{j} y_{j}\right)$, we have

$$
\left|p_{i} a_{i i} \| y_{i}\right|=\left|\sum_{j \neq i} p_{j} a_{i j} y_{j}\right| \leq \sum_{j \neq i}\left|p_{j} a_{i j}\right|\left|y_{j}\right| \leq \sum_{j \neq i}\left|p_{j} a_{i j}\right|\left|y_{i}\right|
$$

and hence $\left(\left|p_{i} a_{i i}\right|-\sum_{j \neq i}\left|p_{j} a_{i j}\right|\right)\left|y_{i}\right| \leq 0$.
Since $\left|p_{i} a_{i i}\right|-\sum_{j \neq i}\left|p_{j} a_{i j}\right|>0$ by the dominant diagonal, it follows that $\left|y_{i}\right|=0$, which implies that $z=0$.
2. We show that all the eigenvalues of M are negative.

Let $\lambda \in \mathbb{R}$ be any eigenvalue of M, and let $z \in \mathbb{R}^{N}, z \neq 0$, be a corresponding eigenvector, i.e., we have $M z=\lambda z$.
Let $y_{i}=z_{i} / p_{i}$, and let i be such that $\left|y_{i}\right| \geq\left|y_{j}\right|$ for all j, where $\left|y_{i}\right| \neq 0$.

Since $\left(a_{i i}-\lambda\right)\left(p_{i} z_{i}\right)=-\sum_{j \neq i} a_{i j}\left(p_{j} z_{j}\right)$, we have

$$
\begin{aligned}
\left|p_{i} a_{i i}-p_{i} \lambda\right|\left|y_{i}\right|=\left|\sum_{j \neq i} p_{j} a_{i j} y_{j}\right| & \leq \sum_{j \neq i}\left|p_{j} a_{i j}\right|\left|y_{j}\right| \\
& \leq \sum_{j \neq i}\left|p_{j} a_{i j}\right|\left|y_{i}\right|<\left|p_{i} a_{i i}\right|\left|y_{i}\right|
\end{aligned}
$$

by the dominant diagonal, and hence $\left|a_{i i}-\lambda\right|<\left|a_{i i}\right|$.
By $a_{i i}<0$, this holds if and only if $2 a_{i i}<\lambda<0$, in particular only if $\lambda<0$.
3. We show that $M+M^{\mathrm{T}}$ is a negative and dominant diagonal, which implies that $M+M^{\mathrm{T}}$ is negative definite by 2 .
By $M p \ll 0$ and $M^{\mathrm{T}} p \ll 0$ where $p \gg 0$, we have $p_{i}\left(2 a_{i i}\right)<-\sum_{j \neq i} p_{j}\left(a_{i j}+a_{j i}\right)$ for all i.
By $a_{i j} \geq 0$ for all $i \neq j$, we have $2 a_{i i}<0$ and $\left|p_{i}\left(2 a_{i i}\right)\right|=$ $-p_{i}\left(2 a_{i i}\right)>\sum_{j \neq i} p_{j}\left(a_{i j}+a_{j i}\right)=\sum_{j \neq i}\left|p_{j}\left(a_{i j}+a_{j i}\right)\right|$ for all i.
4. Take any $n=1, \ldots, N$, and let \hat{M} be the $(N-1) \times(N-1)$ matrix obtained by deleting the nth row and column.
By the assumptions, \hat{M} is a Metzler matrix, and for all $i \neq n$, $\sum_{j \neq n} p_{j} a_{i j}=-p_{n} a_{i n}<0$ and $\sum_{j \neq n} p_{j} a_{j i}=-p_{n} a_{n i}<0$, so that $\hat{M} p \ll 0$ and $\hat{M}^{\mathrm{T}} p \ll 0$.

Hence, by $3, \hat{M}$ is negative definite.

Some Results on Nonnegative Matrices

- $M=\left(a_{i j}\right) \in \mathbb{R}^{N \times N}$ is called a nonnegative (positive) matrix if $a_{i j} \geq 0\left(a_{i j}>0\right)$ for all $i, j=1, \ldots, N$.

Some Results on Nonnegative Matrices I

Proposition 6.9

For a nonnegative matrix $M \in \mathbb{R}^{N \times N}$, the following conditions are equivalent:

1. For every $c \geq 0$, there exists $z \geq 0$ such that $M z+c=z$.
2. There exists $z \geq 0$ such that $M z \ll z$.
3. There exists $z \gg 0$ such that $M z \ll z$.
4. $\left|r(I-M)_{r}\right|>0$ for all $r=1, \ldots, N$ ("Hawkins-Simon condition").
5. There exist lower and upper triangular matrices L and U with positive diagonals and nonpositive off-diagonals such that $I-M=L U$.
6. $I-M$ is nonsingular, and $(I-M)^{-1} \geq 0$.

Some Results on Nonnegative Matrices II

Proposition 6.9

7. $\left|\lambda_{i}\right|<1$ for all $i=1, \ldots, N$, where $\lambda_{1}, \ldots, \lambda_{N}$ are the characteristic roots of M.
8. $\lim _{k \rightarrow \infty} \sum_{\ell=0}^{k} M^{\ell}$ exists (which is equal to $(I-M)^{-1}$).
9. $\lim _{k \rightarrow \infty} M^{k}=O$.

Spectral Radius

- For $M \in \mathbb{R}^{N \times N}$, let

$$
\lambda(M)=\max \left\{\left|\lambda_{1}\right|, \ldots,\left|\lambda_{N}\right|\right\}
$$

where $\lambda_{1}, \ldots, \lambda_{N}$ are the characteristic roots of M.

- $\lambda(M)$ is called the spectral radius of M.

Some Results on Nonnegative Matrices

Proposition 6.10 (Perron-Frobenius Theorem)

1. Let $M \in \mathbb{R}^{N \times N}$ be a positive matrix.

- $\lambda(M)>0, \lambda(M)$ is an eigenvalue of M, and there exists a positive eigenvector that belongs to $\lambda(M)$.
- $\lambda(M)$ is a simple root of the characteristic equation.
- An eigenvector that belongs to $\lambda(M)$ is unique (up to multiplication).
- If $M z=\mu z, \mu \geq 0$, for some $z \geq 0, z \neq 0$, then $\mu=\lambda(M)$.
- If $M \geq L \geq O$ and $M \neq L$, then $\lambda(M)>\lambda(L)$.

2. Let $M \in \mathbb{R}^{N \times N}$ be a nonnegative matrix.

- $\lambda(M)$ is an eigenvalue of M, and there exists a nonnegative eigenvector that belongs to $\lambda(M)$.
- If $M \geq L \geq O$, then $\lambda(M) \geq \lambda(L)$.

