1. Real Numbers

Daisuke Oyama

Mathematics II

April 5, 2024

Notations

- $\mathbb{N}=\{1,2,3, \ldots\}$: the set of natural numbers (often 0 included)
- \mathbb{Z} : the set of integers
- \mathbb{Q} : the set of rational numbers
- \mathbb{R} : the set of real numbers

Properties of \mathbb{R}

(We do not discuss how to construct real numbers.)

1. Binary operations, addition + and multiplication •, are defined (commutative, associative, distributive).
2. Complete ordering \leq is defined (complete, transitive, antisymmetric).
3. Every nonempty subset of \mathbb{R} that has an upper bound (or is bounded above) has a least upper bound (or supremum).
... "Axiom of Real Numbers"

- Property 3 is the property that differentiates \mathbb{R} from \mathbb{Q}. \mathbb{Q} does not satisfy property 3.

Example:
$A=\left\{x \in \mathbb{Q} \mid x^{2}<2\right\}$ has no least upper bound in \mathbb{Q}.

Maximum/Minimum

Let A be a subset of \mathbb{R}.

- $x \in \mathbb{R}$ is the greatest element of A or the maximum of A, denoted $\max A$, if
- $x \in A$, and
- $a \leq x$ for all $a \in A$.
- $x \in \mathbb{R}$ is the least element of A or the minimum of A, denoted $\min A$, if
- $x \in A$, and
- $x \leq a$ for all $a \in A$.

Upper/Lower Bounds, Supremum/Infimum

Let A be a nonempty subset of \mathbb{R}.

- $x \in \mathbb{R}$ is an upper bound of A if $a \leq x$ for all $a \in A$.
- $x \in \mathbb{R}$ is the supremum of A, denoted $\sup A$, if it is the least upper bound of A, i.e.,
- x is an upper bound of A, and
- if y is an upper bound of A, then $x \leq y$.

Likewise,

- $x \in \mathbb{R}$ is a lower bound of A if $x \leq a$ for all $a \in A$.
- $x \in \mathbb{R}$ is the infimum of A, denoted $\inf A$, if it is the greatest lower bound of A.

Recap

Let A be a nonempty subset of \mathbb{R}.

- $\sup A=$ least upper bound of A
- $\inf A=$ greatest lower bound of A
- Property 3 says that $\sup A$ exists if A is bounded above.
- Property 3 implies that $\inf A$ exists if A is bounded below.

Example

Let $A=(0,1]=\{a \in \mathbb{R} \mid 0<a \leq 1\}$.

- $\max A=\sup A=1$.
- $\min A$ does not exist, while $\inf A=0$.

Characterization of sup and inf

Proposition 1.1

1. $x=\sup A$ if and only if
(i) $a \leq x$ for all $a \in A$, and
(ii) for all $\varepsilon>0$, there exists $a \in A$ such that $x-\varepsilon<a$.
2. $x=\inf A$ if and only if
(i) $x \leq a$ for all $a \in A$, and
(ii) for all $\varepsilon>0$, there exists $a \in A$ such that $a<x+\varepsilon$.

Derived Properties of \mathbb{R}

Proposition 1.2 (Archimedean Property)

\mathbb{N} is unbounded above (i.e., \mathbb{N} has no upper bound) in \mathbb{R}.

Proof

- Assume that \mathbb{N} is bounded above.
- Then $\alpha=\sup \mathbb{N}$ exists by the Axiom of Real Numbers.
- By the definition of sup, there is some $n \in \mathbb{N}$ such that $\alpha-1<n$.
- Then $\alpha<n+1$, where $n+1 \in \mathbb{N}$.
- This contradicts the assumption that $\alpha=\sup \mathbb{N}$.

Derived Properties of \mathbb{R}

Proposition 1.3 (Denseness of \mathbb{Q} in \mathbb{R})
For any $a, b \in \mathbb{R}$ with $a<b$, there exists $r \in \mathbb{Q}$ such that $a<r<b$.

Proof

- We only consider the case where $0 \leq a<b$.
- By the Archimedean Property, there is some $n \in \mathbb{N}$ such that $n>\frac{1}{b-a}$.
- Let $m \in \mathbb{N}$ be such that $m-1 \leq n a<m$.

$$
\Rightarrow a<\frac{m}{n} .
$$

- Then

$$
\begin{aligned}
& n b=n a+n(b-a)>(m-1)+1=m . \\
\Rightarrow & \frac{m}{n}<b .
\end{aligned}
$$

- So let $r=\frac{m}{n}$.

Convergence in \mathbb{R}

- A sequence in \mathbb{R} is a function from \mathbb{N} to \mathbb{R}.

A sequence is denoted by $\left\{x^{m}\right\}_{m=1}^{\infty}$, or simply $\left\{x^{m}\right\}$, or x^{m}.

- A sequence $\left\{x^{m}\right\}_{m=1}^{\infty}$ converges to $\alpha \in \mathbb{R}$ if for any $\varepsilon>0$, there exists a natural number M such that

$$
\left|x^{m}-\alpha\right|<\varepsilon \text { for all } m \geq M .
$$

In this case, we write

$$
\lim _{m \rightarrow \infty} x^{m}=\alpha \quad \text { or } \quad x^{m} \rightarrow \alpha(\text { as } m \rightarrow \infty)
$$

- α is called the limit of $\left\{x^{m}\right\}_{m=1}^{\infty}$.

$$
\text { (If } x^{m} \rightarrow \alpha \text { and } x^{m} \rightarrow \beta \text {, then } \alpha=\beta \text {.) }
$$

- A sequence that converges to some $\alpha \in \mathbb{R}$ is said to be convergent.

Example

Let $x^{m}=\frac{1}{m}$.
Then $\lim _{m \rightarrow \infty} x^{m}=0$.

- Take any $\varepsilon>0$.
- By the Archimedean Property, we can take a natural number $M>\frac{1}{\varepsilon}$.
- Then for all $m \geq M$, we have

$$
\left|x^{m}-0\right|=\frac{1}{m} \leq \frac{1}{M}<\varepsilon
$$

Derived Properties of \mathbb{R}

Proposition 1.4 (Convergence of Monotone Sequences)
Every monotone increasing (decreasing, resp.) sequence $\left\{x^{m}\right\}$ in \mathbb{R} that is bounded above (below, resp.) is convergent, where the limit equals $\sup \left\{x^{m}\right\}\left(\inf \left\{x^{m}\right\}\right.$, resp.).

Proof

- For a monotone increasing and bounded sequence $\left\{x^{m}\right\}$, let $A=\left\{x^{1}, x^{2}, x^{3}, \ldots\right\}$.
- Since A is bounded above, $\alpha=\sup A$ exists by the Axiom of Real Numbers. $\Rightarrow x^{m} \leq \alpha$ for all $m \in \mathbb{N}$.
- Fix any $\varepsilon>0$.
- By the definition of $\sup A$, there exists $M \in \mathbb{N}$ such that $\alpha-\varepsilon<x^{M}$.
- Since x^{m} is increasing, $\alpha-\varepsilon<x^{m}$ for all $m \geq M$.
- Therefore, we have $\left|x^{m}-\alpha\right|<\varepsilon$ for all $m \geq M$.

Derived Properties of \mathbb{R}

Write $[a, b]=\{x \in \mathbb{R} \mid a \leq x \leq b\}$ (called a closed interval).

Proposition 1.5 (Nested Intervals Theorem)
Suppose that closed intervals $I^{m}=\left[a^{m}, b^{m}\right]$, where $a^{m} \leq b^{m}$, satisfy $I^{m} \supset I^{m+1}, m=1,2, \ldots$ Then, $\bigcap_{m=1}^{\infty} I^{m} \neq \emptyset$. If $b^{m}-a^{m} \rightarrow 0$ as $m \rightarrow \infty$, then for some $\alpha \in \mathbb{R}$, $\lim _{m \rightarrow \infty} a^{m}=\lim _{m \rightarrow \infty} b^{m}=\alpha$ and $\bigcap_{m=1}^{\infty} I^{m}=\{\alpha\}$.

Proof
By Convergence of Bounded Monotone Sequences.

Derived Properties of \mathbb{R}

Proposition 1.6 (Bolzano-Weierstrass Theorem)

Every bounded sequence in \mathbb{R} has a convergent subsequence.

- For a sequence $\left\{x^{m}\right\}_{m=1}^{\infty}$ and a strictly increasing function $m(k)$ from \mathbb{N} to \mathbb{N}, the sequence $\left\{x^{m(1)}, x^{m(2)}, \ldots\right\}$ (denoted $\left.\left\{x^{m(k)}\right\}_{k=1}^{\infty}\right)$ is called a subsequence of $\left\{x^{m}\right\}_{m=1}^{\infty}$.

Proof (1/2)

- Let $\left\{x^{m}\right\}$ be a bounded sequence, and let $I^{1}=\left[a^{1}, b^{1}\right]$ be such that $x^{m} \in I^{1}$ for all $m \in \mathbb{N}$.
- Either $\left\{m \in \mathbb{N} \mid x^{m} \in\left[a^{1},\left(a^{1}+b^{1}\right) / 2\right]\right\}$ or $\left\{m \in \mathbb{N} \mid x^{m} \in\left[\left(a^{1}+b^{1}\right) / 2, b^{1}\right]\right\}$ (or both) contains infinitely many elements of $\left\{x^{m}\right\}$.
Let $I^{2}=\left[a^{2}, b^{2}\right]$ be such an interval (let $I^{2}=\left[a^{1},\left(a^{1}+b^{1}\right) / 2\right]$ if both contain infinitely many elements).
- Repeat this procedure, and we have a sequence of closed intervals $I^{1} \supset I^{2} \supset I^{3} \supset \cdots$, which satisfies $b^{m}-a^{m}=2^{-(m-1)}\left(b^{1}-a^{1}\right) \rightarrow 0$ as $m \rightarrow \infty$ by the Archimedean Property.
- By the Nested Intervals Theorem, $\lim _{m \rightarrow \infty} a^{m}=\lim _{m \rightarrow \infty} b^{m}=\alpha$ for some $\alpha \in \mathbb{R}$.

Proof (2/2)

- Define a subsequence $\left\{x^{m(k)}\right\}$ as follows:
- Let $m(1)=1$.
- Pick any x^{m} from I^{2} with $m>m(1)$, and let $m(2)=m$.
- ...
- Pick any x^{m} from I^{k} with $m>m(k-1)$, and let $m(k)=m$.

Then, since $a^{k} \leq x^{m(k)} \leq b^{k}$ for all k and $\lim _{k \rightarrow \infty} a^{k}=\lim _{k \rightarrow \infty} b^{k}=\alpha$, we have $x^{m(k)} \rightarrow \alpha$ as $k \rightarrow \infty$.

Derived Properties of \mathbb{R}

- A sequence $\left\{x^{m}\right\}_{m=1}^{\infty}$ is a Cauchy sequence if for any $\varepsilon>0$, there exists a natural number M such that

$$
\left|x^{m}-x^{n}\right|<\varepsilon \text { for all } m, n \geq M
$$

- A Cauchy sequence is bounded.
- A convergent sequence is a Cauchy sequence.

Proposition 1.7 (Completeness of \mathbb{R})
Every Cauchy sequence in \mathbb{R} is convergent.

Proof
By the Bolzano-Weierstrass Theorem.

Derived Properties of \mathbb{R}

Proposition 1.8 (Decimal Representation of Real Numbers)

Fix any $N \in \mathbb{N}$ with $N \geq 2$.
For any $x \in \mathbb{R}$, there exists a sequence $\left\{k_{m}\right\}$ with
$k_{m}=0,1, \ldots, N-1$ such that the sequence

$$
\begin{equation*}
a_{m}=[x]+\frac{k_{1}}{N}+\frac{k_{2}}{N^{2}}+\cdots+\frac{k_{m}}{N^{m}} \tag{*}
\end{equation*}
$$

converges to x as $m \rightarrow \infty$.
Conversely, a sequence $\left\{a_{m}\right\}$ of the form $(*)$ converges to some real number.

Derived Properties of \mathbb{R}

- If $A \subset \mathbb{R}$ is a closed set, then it has the following property: for any convergent sequence $\left\{x^{m}\right\}$ in A, we have $\lim _{m \rightarrow \infty} x^{m} \in A$.
(Closed sets will be formally defined next class.)

Proposition 1.9 (Connectedness of \mathbb{R})
Let $A, B \subset \mathbb{R}$ be nonempty closed sets.
If $\mathbb{R}=A \cup B$, then $A \cap B \neq \emptyset$.

Proof (1/2)

- Pick any $a \in A$ and $b \in B$.

Assume without loss of generality that $a<b$.

- Let $A^{-}=\{x \in A \mid x \leq b\}$.
- $A^{-} \neq \emptyset$ since $a \in A^{-}$, and A^{-}is bounded above by b.

Therefore, $a^{*}=\sup A^{-}$exists by the Axiom of Real Numbers, where $a^{*} \leq b$.

- By the definition of $\sup A^{-}$, for any $m \in \mathbb{N}$ there is some $a^{m} \in A^{-}(\subset A)$ such that $a^{*}-\frac{1}{m}<a^{m} \leq a^{*}$.

By construction, a^{m} converges to a^{*} as $m \rightarrow \infty$.

- Therefore, $a^{*} \in A$ since A is closed.
- If $a^{*}=b$, then we have $a^{*}=b \in B$.

Proof (2/2)

- Suppose that $a^{*}<b$.
- For each $m \in \mathbb{N}$, let $b^{m}=a^{*}+\frac{b-a^{*}}{m}$, where $a^{*}<b^{m} \leq b$.
- By the definition of $\sup A^{-}, b^{m} \notin A$.

Therefore, $b^{m} \in B$ since $\mathbb{R}=A \cup B$.

- By construction, b^{m} converges to a^{*} as $m \rightarrow \infty$.
- Therefore, $a^{*} \in B$ since B is closed.

Remark

Any nonempty interval I in \mathbb{R} has the same property:
Let $A, B \subset I$ be nonempty closed sets (relative to I). If $I=A \cup B$, then $A \cap B \neq \emptyset$.

Cardinality of \mathbb{R}

For a function (or mapping) $f: X \rightarrow Y$,

- f is one-to-one (or an injection) if $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ whenever $x_{1} \neq x_{2}$.
- f is onto (or a surjection) if for any $y \in Y$, there exists $x \in X$ such that $y=f(x)$.
- f is a bijection if it is one-to-one and onto.
- If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are one-to-one (onto, resp.), then $g \circ f: X \rightarrow Z$ is one-to-one (onto, resp.).

Proposition 1.10

1. There is an onto mapping from \mathbb{N} to \mathbb{Z}.
2. There is an onto mapping from \mathbb{Z} to \mathbb{Q}.
3. There is an onto mapping from $(0,1)$ to \mathbb{R}.
4. There is no onto mapping from \mathbb{N} to $(0,1)$.
$1,2,4 \Rightarrow$ There is no onto mapping from \mathbb{Q} to \mathbb{R}.
\because If $f: \mathbb{Q} \rightarrow \mathbb{R}$ was onto, then $g=f \circ f_{2} \circ f_{1}: \mathbb{N} \rightarrow \mathbb{R}$ would be onto, where $f_{1}: \mathbb{N} \rightarrow \mathbb{Z}$ and $f_{2}: \mathbb{Z} \rightarrow \mathbb{Q}$ are onto mappings.

Proof

1. There is an onto mapping from \mathbb{N} to \mathbb{Z} :

$$
0,1,-1,2,-2,3,-3,4,-4, \ldots
$$

2. There is an onto mapping from \mathbb{Z} to \mathbb{Q} :

$$
\begin{aligned}
& \text { for } \mathbb{Z}_{+}: 0, \frac{1}{1}, \frac{1}{2}, \frac{2}{1}, \frac{1}{3}, \frac{2}{2}, \frac{3}{1}, \frac{1}{4}, \frac{2}{3}, \frac{3}{2}, \frac{4}{1}, \ldots, \\
& \text { for } \mathbb{Z}_{--}:-\frac{1}{1},-\frac{1}{2},-\frac{2}{1},-\frac{1}{3},-\frac{2}{2},-\frac{3}{1},-\frac{1}{4},-\frac{2}{3},-\frac{3}{2},-\frac{4}{1}, \ldots
\end{aligned}
$$

3. There is an onto mapping from $(0,1)$ to \mathbb{R} :

$$
f(x)=\tan \left(-\frac{\pi}{2}+\pi x\right)
$$

Proof-Cantor's Diagonal Argument

4. There is no onto mapping from \mathbb{N} to $(0,1)$:

Assume that there were an onto mapping f :

$$
\begin{aligned}
1 & \mapsto 0 . a_{11} a_{12} a_{13} \cdots \\
2 & \mapsto 0 . a_{21} a_{22} a_{23} \cdots \\
& \vdots \\
n & \mapsto 0 . a_{n 1} a_{n 2} a_{n 3} \cdots a_{n n} \cdots
\end{aligned}
$$

Let $x=0 . x_{1} x_{2} x_{3} \cdots x_{n} \cdots$ be defined by

$$
x_{n}= \begin{cases}1 & \text { if } a_{n n} \text { is even }, \\ 2 & \text { if } a_{n n} \text { is odd }\end{cases}
$$

Then there is no $m \in \mathbb{N}$ such that $f(m)=x$, a contradiction.

Application: Lexicographic Preference Relation

- Let \succsim be the lexicographic preference relation on \mathbb{R}^{2}, i.e.,

$$
\begin{aligned}
& (x, y) \succ\left(x^{\prime}, y^{\prime}\right) \text { if and only if } \\
& \text { - } x>x^{\prime} \text { or } \\
& x=x^{\prime} \text { and } y>y^{\prime} .
\end{aligned}
$$

Proposition 1.11
There exists no utility function that represents the lexicographic preference relation \succsim.

Proof

Assume that \succsim is represented by a utility function $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$.

- For each $x \in \mathbb{R}$, let

$$
I_{x}=(\inf u(x, \mathbb{R}), \sup u(x, \mathbb{R})) \quad(\neq \emptyset)
$$

where $u(x, \mathbb{R})=\{z \in \mathbb{R} \mid z=u(x, y)$ for some $y \in \mathbb{R}\} \neq \emptyset$.

- Note that $I_{x} \cap I_{x^{\prime}}=\emptyset$ whenever $x \neq x^{\prime}$.
- Define the function $f: \mathbb{Q} \rightarrow \mathbb{R}$ by

$$
f(q)= \begin{cases}x & \text { if } q \in I_{x} \\ 0 & \text { if there is no } x \in \mathbb{R} \text { such that } q \in I_{x}\end{cases}
$$

- This f is onto, because for any $x \in \mathbb{R}$, there exists a $q \in \mathbb{Q}$ such that $q \in I_{x}$ by Proposition 1.3 (the denseness of \mathbb{Q} in \mathbb{R}).
- But this contradicts Proposition 1.10.

