1. Real Numbers

Daisuke Oyama

Mathematics II

April 5, 2024

Notations

- ▶ $\mathbb{N} = \{1, 2, 3, ...\}$: the set of natural numbers (often 0 included)
- \blacktriangleright \mathbb{Z} : the set of integers
- Q: the set of rational numbers
- \blacktriangleright \mathbb{R} : the set of real numbers

Properties of ${\mathbb R}$

(We do not discuss how to construct real numbers.)

- 1. Binary operations, addition + and multiplication ·, are defined (commutative, associative, distributive).
- Complete ordering ≤ is defined (complete, transitive, antisymmetric).
- 3. Every nonempty subset of \mathbb{R} that has an upper bound (or is bounded above) has a least upper bound (or supremum).
 - ··· "Axiom of Real Numbers"

Property 3 is the property that differentiates R from Q.
 Q does not satisfy property 3.
 Example:

 $A = \{x \in \mathbb{Q} \mid x^2 < 2\}$ has no least upper bound in \mathbb{Q} .

Maximum/Minimum

Let A be a subset of \mathbb{R} .

 x ∈ ℝ is the greatest element of A or the maximum of A, denoted max A, if

• $x \in A$, and

•
$$a \leq x$$
 for all $a \in A$.

• $x \in \mathbb{R}$ is the *least element* of A or the *minimum* of A, denoted min A, if

• $x \in A$, and

 $\blacktriangleright \ x \le a \text{ for all } a \in A.$

Upper/Lower Bounds, Supremum/Infimum

Let A be a nonempty subset of \mathbb{R} .

• $x \in \mathbb{R}$ is an upper bound of A if $a \leq x$ for all $a \in A$.

x ∈ ℝ is the supremum of A, denoted sup A, if it is the least upper bound of A, i.e.,

▶ x is an upper bound of A, and

• if y is an upper bound of A, then $x \leq y$.

Likewise,

- $x \in \mathbb{R}$ is a lower bound of A if $x \leq a$ for all $a \in A$.
- ▶ $x \in \mathbb{R}$ is the infimum of A, denoted $\inf A$, if it is the greatest lower bound of A.

Recap

Let A be a nonempty subset of \mathbb{R} .

• $\sup A = \text{least upper bound of } A$

• $\inf A =$ greatest lower bound of A

- Property 3 says that $\sup A$ exists if A is bounded above.
- Property 3 implies that $\inf A$ exists if A is bounded below.

Example

- Let $A = (0, 1] = \{ a \in \mathbb{R} \mid 0 < a \le 1 \}.$
 - $\blacktriangleright \max A = \sup A = 1.$

• $\min A$ does not exist, while $\inf A = 0$.

Characterization of \sup and \inf

Proposition 1.1

x = sup A if and only if

 a ≤ x for all a ∈ A, and
 for all ε > 0, there exists a ∈ A such that x - ε < a.

 x = inf A if and only if

 x ≤ a for all a ∈ A, and
 for all ε > 0, there exists a ∈ A such that a < x + ε.

Derived Properties of $\ensuremath{\mathbb{R}}$

Proposition 1.2 (Archimedean Property)

 \mathbb{N} is unbounded above (i.e., \mathbb{N} has no upper bound) in \mathbb{R} .

Proof

- Assume that \mathbb{N} is bounded above.
- Then $\alpha = \sup \mathbb{N}$ exists by the Axiom of Real Numbers.
- ▶ By the definition of \sup , there is some $n \in \mathbb{N}$ such that $\alpha 1 < n$.
- Then $\alpha < n+1$, where $n+1 \in \mathbb{N}$.
- This contradicts the assumption that $\alpha = \sup \mathbb{N}$.

Derived Properties of \mathbb{R}

Proposition 1.3 (Denseness of \mathbb{Q} in \mathbb{R})

For any $a, b \in \mathbb{R}$ with a < b, there exists $r \in \mathbb{Q}$ such that a < r < b.

Proof

- We only consider the case where $0 \le a < b$.
- ▶ By the Archimedean Property, there is some $n \in \mathbb{N}$ such that $n > \frac{1}{b-a}$.
- ▶ Let $m \in \mathbb{N}$ be such that $m 1 \le na < m$. ⇒ $a < \frac{m}{n}$.

Then

$$nb = na + n(b - a) > (m - 1) + 1 = m.$$

$$\Rightarrow \frac{m}{n} < b.$$

$$\blacktriangleright \text{ So let } r = \frac{m}{n}.$$

Convergence in $\ensuremath{\mathbb{R}}$

• A sequence in \mathbb{R} is a function from \mathbb{N} to \mathbb{R} .

A sequence is denoted by $\{x^m\}_{m=1}^\infty$, or simply $\{x^m\}$, or x^m .

A sequence $\{x^m\}_{m=1}^{\infty}$ converges to $\alpha \in \mathbb{R}$ if for any $\varepsilon > 0$, there exists a natural number M such that

 $|x^m - \alpha| < \varepsilon$ for all $m \ge M$.

In this case, we write

$$\lim_{m \to \infty} x^m = \alpha \qquad \text{or} \qquad x^m \to \alpha \ (\text{as} \ m \to \infty).$$

•
$$\alpha$$
 is called the *limit* of $\{x^m\}_{m=1}^{\infty}$.
(If $x^m \to \alpha$ and $x^m \to \beta$, then $\alpha = \beta$.)

A sequence that converges to some $\alpha \in \mathbb{R}$ is said to be *convergent*.

Example

Let
$$x^m = \frac{1}{m}$$
.
Then $\lim_{m \to \infty} x^m = 0$

• Take any
$$\varepsilon > 0$$
.

▶ By the Archimedean Property, we can take a natural number $M > \frac{1}{\varepsilon}$.

▶ Then for all $m \ge M$, we have

$$|x^m - 0| = \frac{1}{m} \le \frac{1}{M} < \varepsilon.$$

•

Derived Properties of $\ensuremath{\mathbb{R}}$

Proposition 1.4 (Convergence of Monotone Sequences)

Every monotone increasing (decreasing, resp.) sequence $\{x^m\}$ in \mathbb{R} that is bounded above (below, resp.) is convergent, where the limit equals $\sup\{x^m\}$ ($\inf\{x^m\}$, resp.).

Proof

- For a monotone increasing and bounded sequence $\{x^m\}$, let $A = \{x^1, x^2, x^3, \ldots\}$.
- ► Since *A* is bounded above,

 $\alpha = \sup A$ exists by the Axiom of Real Numbers.

$$\Rightarrow x^m \leq \alpha \text{ for all } m \in \mathbb{N}.$$

- Fix any $\varepsilon > 0$.
- ▶ By the definition of $\sup A$, there exists $M \in \mathbb{N}$ such that $\alpha \varepsilon < x^M$.
- Since x^m is increasing, $\alpha \varepsilon < x^m$ for all $m \ge M$.
- Therefore, we have $|x^m \alpha| < \varepsilon$ for all $m \ge M$.

Derived Properties of $\mathbb R$

Write $[a, b] = \{x \in \mathbb{R} \mid a \le x \le b\}$ (called a *closed interval*).

Proposition 1.5 (Nested Intervals Theorem)

Suppose that closed intervals $I^m = [a^m, b^m]$, where $a^m \le b^m$, satisfy $I^m \supset I^{m+1}$, m = 1, 2, ... Then, $\bigcap_{m=1}^{\infty} I^m \ne \emptyset$. If $b^m - a^m \rightarrow 0$ as $m \rightarrow \infty$, then for some $\alpha \in \mathbb{R}$, $\lim_{m \to \infty} a^m = \lim_{m \to \infty} b^m = \alpha$ and $\bigcap_{m=1}^{\infty} I^m = \{\alpha\}$.

Proof

By Convergence of Bounded Monotone Sequences.

Proposition 1.6 (Bolzano-Weierstrass Theorem)

Every bounded sequence in \mathbb{R} has a convergent subsequence.

▶ For a sequence $\{x^m\}_{m=1}^{\infty}$ and a strictly increasing function m(k) from \mathbb{N} to \mathbb{N} , the sequence $\{x^{m(1)}, x^{m(2)}, \ldots\}$ (denoted $\{x^{m(k)}\}_{k=1}^{\infty}$) is called a *subsequence* of $\{x^m\}_{m=1}^{\infty}$.

Proof (1/2)

- ▶ Let $\{x^m\}$ be a bounded sequence, and let $I^1 = [a^1, b^1]$ be such that $x^m \in I^1$ for all $m \in \mathbb{N}$.
- ▶ Either $\{m \in \mathbb{N} \mid x^m \in [a^1, (a^1 + b^1)/2]\}$ or $\{m \in \mathbb{N} \mid x^m \in [(a^1 + b^1)/2, b^1]\}$ (or both) contains infinitely many elements of $\{x^m\}$.

Let $I^2 = [a^2, b^2]$ be such an interval (let $I^2 = [a^1, (a^1 + b^1)/2]$ if both contain infinitely many elements).

▶ Repeat this procedure, and we have a sequence of closed intervals $I^1 \supset I^2 \supset I^3 \supset \cdots$, which satisfies $b^m - a^m = 2^{-(m-1)}(b^1 - a^1) \rightarrow 0$ as $m \rightarrow \infty$ by the Archimedean Property.

▶ By the Nested Intervals Theorem,

$$\lim_{m\to\infty} a^m = \lim_{m\to\infty} b^m = \alpha$$
 for some $\alpha \in \mathbb{R}$.

Proof (2/2)

• Define a subsequence $\{x^{m(k)}\}$ as follows:

Then, since $a^k \leq x^{m(k)} \leq b^k$ for all k and $\lim_{k\to\infty} a^k = \lim_{k\to\infty} b^k = \alpha$, we have $x^{m(k)} \to \alpha$ as $k \to \infty$.

Derived Properties of $\ensuremath{\mathbb{R}}$

A sequence {x^m}_{m=1}[∞] is a Cauchy sequence if for any ε > 0, there exists a natural number M such that

$$|x^m - x^n| < \varepsilon$$
 for all $m, n \ge M$.

► A Cauchy sequence is bounded.

A convergent sequence is a Cauchy sequence.

Proposition 1.7 (Completeness of \mathbb{R}) Every Cauchy sequence in \mathbb{R} is convergent.

Proof By the Bolzano-Weierstrass Theorem.

Derived Properties of ${\mathbb R}$

Proposition 1.8 (Decimal Representation of Real Numbers) Fix any $N \in \mathbb{N}$ with $N \ge 2$. For any $x \in \mathbb{R}$, there exists a sequence $\{k_m\}$ with $k_m = 0, 1, \dots, N - 1$ such that the sequence

$$a_m = [x] + \frac{k_1}{N} + \frac{k_2}{N^2} + \dots + \frac{k_m}{N^m}$$
 (*)

converges to x as $m \to \infty$. Conversely, a sequence $\{a_m\}$ of the form (*) converges to some real number.

Derived Properties of ${\mathbb R}$

If A ⊂ ℝ is a closed set, then it has the following property: for any convergent sequence {x^m} in A, we have lim_{m→∞} x^m ∈ A.

(Closed sets will be formally defined next class.)

Proposition 1.9 (Connectedness of \mathbb{R}) Let $A, B \subset \mathbb{R}$ be nonempty closed sets. If $\mathbb{R} = A \cup B$, then $A \cap B \neq \emptyset$.

Proof (1/2)

▶ Pick any $a \in A$ and $b \in B$.

Assume without loss of generality that a < b.

• Let
$$A^- = \{x \in A \mid x \le b\}.$$

• $A^- \neq \emptyset$ since $a \in A^-$, and A^- is bounded above by b.

Therefore, $a^* = \sup A^-$ exists by the Axiom of Real Numbers, where $a^* \leq b$.

By the definition of sup A⁻, for any m ∈ N there is some a^m ∈ A⁻ (⊂ A) such that a^{*} - ¹/_m < a^m ≤ a^{*}.
 By construction, a^m converges to a^{*} as m → ∞.

▶ Therefore,
$$a^* \in A$$
 since A is closed.

• If
$$a^* = b$$
, then we have $a^* = b \in B$.

Proof (2/2)

Suppose that $a^* < b$.

▶ For each $m \in \mathbb{N}$, let $b^m = a^* + \frac{b-a^*}{m}$, where $a^* < b^m \le b$.

- ▶ By construction, b^m converges to a^* as $m \to \infty$.
- Therefore, $a^* \in B$ since B is closed.

Any nonempty interval I in \mathbb{R} has the same property: Let $A, B \subset I$ be nonempty closed sets (relative to I). If $I = A \cup B$, then $A \cap B \neq \emptyset$.

Cardinality of ${\mathbb R}$

For a function (or mapping) $f \colon X \to Y$,

- ▶ *f* is one-to-one (or an injection) if $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$.
- F is onto (or a surjection) if for any y ∈ Y, there exists x ∈ X such that y = f(x).
- f is a bijection if it is one-to-one and onto.
- ▶ If $f: X \to Y$ and $g: Y \to Z$ are one-to-one (onto, resp.), then $g \circ f: X \to Z$ is one-to-one (onto, resp.).

Proposition 1.10

- 1. There is an onto mapping from \mathbb{N} to \mathbb{Z} .
- 2. There is an onto mapping from \mathbb{Z} to \mathbb{Q} .
- 3. There is an onto mapping from (0,1) to \mathbb{R} .
- 4. There is no onto mapping from \mathbb{N} to (0,1).

1, 2, 4 \Rightarrow There is no onto mapping from \mathbb{Q} to \mathbb{R} .

: If $f: \mathbb{Q} \to \mathbb{R}$ was onto, then $g = f \circ f_2 \circ f_1 \colon \mathbb{N} \to \mathbb{R}$ would be onto, where $f_1: \mathbb{N} \to \mathbb{Z}$ and $f_2: \mathbb{Z} \to \mathbb{Q}$ are onto mappings.

Proof

1. There is an onto mapping from \mathbb{N} to \mathbb{Z} :

 $0, 1, -1, 2, -2, 3, -3, 4, -4, \ldots$

2. There is an onto mapping from \mathbb{Z} to \mathbb{Q} :

for
$$\mathbb{Z}_+$$
: $0, \frac{1}{1}, \frac{1}{2}, \frac{2}{1}, \frac{1}{3}, \frac{2}{2}, \frac{3}{1}, \frac{1}{4}, \frac{2}{3}, \frac{3}{2}, \frac{4}{1}, \dots,$
for \mathbb{Z}_{--} : $-\frac{1}{1}, -\frac{1}{2}, -\frac{2}{1}, -\frac{1}{3}, -\frac{2}{2}, -\frac{3}{1}, -\frac{1}{4}, -\frac{2}{3}, -\frac{3}{2}, -\frac{4}{1}, \dots.$

3. There is an onto mapping from (0,1) to \mathbb{R} :

$$f(x) = \tan\left(-\frac{\pi}{2} + \pi x\right).$$

Proof—Cantor's Diagonal Argument

4. There is no onto mapping from \mathbb{N} to (0,1):

Assume that there were an onto mapping f:

 $1 \mapsto 0.a_{11}a_{12}a_{13}\cdots$ $2 \mapsto 0.a_{21}a_{22}a_{23}\cdots$ $n \mapsto 0.a_{n1}a_{n2}a_{n3}\cdots a_{nn}\cdots$ Let $x = 0.x_1x_2x_3\cdots x_n\cdots$ be defined by $x_n = \begin{cases} 1 & \text{if } a_{nn} \text{ is even,} \\ 2 & \text{if } a_{nn} \text{ is odd.} \end{cases}$

Then there is no $m \in \mathbb{N}$ such that f(m) = x, a contradiction.

Application: Lexicographic Preference Relation

Let ≿ be the lexicographic preference relation on R², i.e., (x, y) ≻ (x', y') if and only if
x > x' or
x = x' and y > y'.

Proposition 1.11

There exists no utility function that represents the lexicographic preference relation \succeq .

Proof

Assume that \succeq is represented by a utility function $u \colon \mathbb{R}^2 \to \mathbb{R}$.

For each
$$x \in \mathbb{R}$$
, let

$$I_x = (\inf u(x, \mathbb{R}), \sup u(x, \mathbb{R})) \quad (\neq \emptyset),$$

where $u(x,\mathbb{R}) = \{z \in \mathbb{R} \mid z = u(x,y) \text{ for some } y \in \mathbb{R}\} \neq \emptyset.$

Note that
$$I_x \cap I_{x'} = \emptyset$$
 whenever $x \neq x'$.

• Define the function
$$f: \mathbb{Q} \to \mathbb{R}$$
 by

$$f(q) = \begin{cases} x & \text{if } q \in I_x, \\ 0 & \text{if there is no } x \in \mathbb{R} \text{ such that } q \in I_x. \end{cases}$$

- ► This f is onto, because for any x ∈ ℝ, there exists a q ∈ Q such that q ∈ I_x by Proposition 1.3 (the denseness of Q in ℝ).
- But this contradicts Proposition 1.10.