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Separating Hyperplane Theorem

Proposition 7.1 (Separating Hyperplane Theorem)

Suppose that C ⊂ RN , C 6= ∅, is convex and closed, and
that b /∈ C.
Then there exist p ∈ RN with p 6= 0 and c ∈ R such that

p · y ≤ c < p · b for all y ∈ C.
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Lemma 7.2
Suppose that C ⊂ RN , C 6= ∅, is closed, and that b /∈ C.
Let δ = inf{‖z − b‖ | z ∈ C}.
Then δ > 0, and there exists y∗ ∈ C such that δ = ‖y∗ − b‖.

Lemma 7.3
Suppose that C ⊂ RN , C 6= ∅, is closed and convex, and
that b /∈ C.
Let y∗ ∈ C be such that ‖y∗ − b‖ = min{‖z − b‖ | z ∈ C}. Then

(b− y∗) · (z − y∗) ≤ 0 for all z ∈ C.

Lemma 7.4
Suppose that C ⊂ RN , C 6= ∅, is closed and convex, and
that b /∈ C.
Then there exists a unique y∗ ∈ C such that
‖y∗ − b‖ = min{‖z − b‖ | z ∈ C}.
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Proof of Lemma 7.3

▶ Let y∗ ∈ C be such that ‖b− y∗‖ = min{‖b− z‖ | z ∈ C}.

▶ Take any z ∈ C and any α ∈ (0, 1).

▶ Since (1− α)y∗ + αz ∈ C, we have

‖b− y∗‖2 ≤ ‖b− [(1− α)y∗ + αz]‖2

= ‖(b− y∗)− α(z − y∗)‖2

= ‖b− y∗‖2 − 2α(b− y∗) · (z − y∗) + α2‖z − y∗‖2,

and therefore,

(b− y∗) · (z − y∗) ≤ α

2
‖z − y∗‖2.

▶ Then let α → 0.
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Proof of Proposition 7.1

▶ Let y∗ ∈ C be as in Lemma 7.4.

▶ By Lemma 7.2, (y∗ − b) · (y∗ − b) > 0.

▶ By Lemma 7.3, (b− y∗) · (z − y∗) ≤ 0 for all z ∈ C.

▶ Therefore,

(b− y∗) · z ≤ (b− y∗) · y∗ < (b− y∗) · b

for all z ∈ C.

▶ Let p = b− y∗ and c = (b− y∗) · y∗.
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Dual Representation of a Convex Set

For K ⊂ RN , K 6= ∅, define the function ϕK : RN → (−∞,∞] by

ϕK(p) = sup
x∈K

p · x,

which is called the support function of K.

Proposition 7.5

Let K ⊂ RN , K 6= ∅, be a closed convex set. Then

K = {x ∈ RN | p · x ≤ ϕK(p) for all p ∈ RN}.

More generally, for any nonempty set K,

Cl(CoK) = {x ∈ RN | p · x ≤ ϕK(p) for all p ∈ RN}.
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Proof

▶ K ⊂ (RHS): By definition.

▶ K ⊃ (RHS):

Let b /∈ K.

▶ Since K is closed and convex, by the Separating Hyperplane
Theorem, there exist p̄ 6= 0 and c ∈ R such that

p̄ · z ≤ c < p̄ · b for all z ∈ K,

and hence

ϕK(p̄) = sup
z∈K

p̄ · z < p̄ · b.

▶ This means that b /∈ (RHS).
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Supporting Hyperplane Theorem

Proposition 7.6 (Supporting Hyperplane Theorem)

Suppose that C ⊂ RN , C 6= ∅, is convex, and that b /∈ IntC.
Then there exists p ∈ RN with p 6= 0 such that

p · y ≤ p · b for all y ∈ C.

For proof, we will use the following fact:

Fact 1
For any convex set C ⊂ RN , IntC = Int(ClC).

The equality does not hold in general for nonconvex sets;
for example, [0, 1/2) ∪ (1/2, 1].
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Proof
▶ Let b /∈ IntC.

Since C is convex, b /∈ Int(ClC) by Fact 1.

▶ Therefore, there is a sequence {bm} with bm /∈ ClC such that
bm → b.

▶ Since C is convex, ClC is also convex (Proposition 4.12).

▶ Then by the Separating Hyperplane Theorem,
for each m there exists pm ∈ RN with pm 6= 0 such that

pm · y < pm · bm for all y ∈ C.

▶ Without loss of generality we assume that ‖pm‖ = 1 for all m.

▶ {pm} has a convergent subsequence {pmk} with a limit p,
where p 6= 0 since ‖p‖ = 1.

▶ Letting k → ∞ we have p · y ≤ p · b for all y ∈ C.
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Separating Hyperplane Theorem

Proposition 7.7 (Separating Hyperplane Theorem)

Suppose that A,B ⊂ RN , A,B 6= ∅, are convex, and
that A ∩B = ∅.
Then there exists p ∈ RN with p 6= 0 such that

p · x ≤ p · y for all x ∈ A and y ∈ B.
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Proof

▶ Since A and B are convex,
A−B = {x− y ∈ RN | x ∈ A, y ∈ B} is also convex
(Proposition 4.5).

▶ Since A ∩B = ∅, 0 /∈ A−B.

▶ Thus by the Supporting Hyperplane Theorem, there exists
p ∈ RN with p 6= 0 such that

p · z ≤ p · 0 for all z ∈ A−B,

or

p · x ≤ p · y for all x ∈ A and y ∈ B.

10 / 28



Separating Hyperplane Theorem

Proposition 7.8 (Strong Separating Hyperplane Theorem)

Suppose that A,B ⊂ RN , A,B 6= ∅, are convex and closed, and
that A ∩B = ∅.
If A or B is bounded, then there exist p ∈ RN with p 6= 0 and
c1, c2 ∈ R such that

p · x ≤ c1 < c2 ≤ p · y for all x ∈ A and y ∈ B.
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Proof
▶ Since A and B are convex, A−B is also convex.

▶ Since A and B are closed and A or B is bounded, A−B is
closed. (→ Homework)

▶ Since A ∩B = ∅, 0 /∈ A−B.

▶ Thus by the Separating Hyperplane Theorem, there exist
p ∈ RN with p 6= 0 and c ∈ R such that

p · z ≤ c < p · 0 for all z ∈ A−B,

or

p · (x− y) ≤ c < 0 for all x ∈ A and y ∈ B.

▶ Thus we have

sup
x∈A

p · x− inf
y∈B

p · y ≤ c < 0.

Let c1 = supx∈A p · x and c2 = infy∈B p · y, where c1 < c2.
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Separation with Nonnegative/Positive Vectors

Lemma 7.9
For A ⊂ RN , A 6= ∅, suppose that A− RN

++ ⊂ A.
For p ∈ RN , if there exists c ∈ R such that p · x ≤ c for all x ∈ A,
then p ≥ 0.

Proof

▶ Assume that pn < 0.

▶ Fix any x0 ∈ A and any ε > 0.

We have x0 − (ten + ε1) ∈ A− RN
++ ⊂ A for all t > 0, while

p · [x0 − (ten + ε1)] = p · x0 − tpn − εp · 1 → ∞ as t → ∞,
contradicting the assumption that p · x ≤ c for all x ∈ A.
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Separation with Nonnegative/Positive Vectors

Proposition 7.10

Suppose that C ⊂ RN , C 6= ∅, is convex.
If C ∩ RN

++ = ∅, then there exists p ≥ 0 with p 6= 0 such that

p · x ≤ 0 for all x ∈ C.
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Proof

▶ Let A = C − RN
++.

▶ Since C and RN
++ are convex, A is also convex.

▶ Since C ∩ RN
++ = ∅, 0 /∈ A.

▶ Thus by the Supporting Hyperplane Theorem, there exists
p ∈ RN with p 6= 0 such that

p · z ≤ p · 0 for all z ∈ A.

▶ Since A− RN
++ ⊂ A, we have p ≥ 0 by Lemma 7.9.

▶ We have

p · x ≤ p · y for all x ∈ C and y ∈ RN
++.

Letting y → 0, we have p · x ≤ 0 for all x ∈ C.
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Separation with Nonnegative/Positive Vectors

Proposition 7.11

Suppose that C ⊂ RN , C 6= ∅, is convex and closed.
If C ∩ RN

+ = {0}, then there exist p � 0 and c ≥ 0 such that

p · x ≤ c for all x ∈ C.
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Proof

▶ Let ∆ = {x ∈ RN
+ | x1 + · · ·+ xN = 1}.

▶ C is convex and closed and ∆ is convex and compact.

▶ Since C ∩ RN
+ = {0}, C ∩∆ = ∅.

▶ Thus by Proposition 7.8, there exist p ∈ RN with p 6= 0 and
c ∈ R such that

p · x ≤ c < p · y for all x ∈ C and y ∈ ∆,

where c ≥ 0 since 0 ∈ C.

▶ For each n, since en ∈ ∆, we have 0 ≤ c < p · en = pn.
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Efficient Production

Let Y ⊂ RN be the production set of a firm.

Definition 7.1
▶ A production vector y ∈ Y is efficient if

there is no y′ ∈ Y such that y′ ≥ y and y′ 6= y.

▶ y ∈ Y is weakly efficient if there is no y′ ∈ Y such that
y′ � y.

▶ y: efficient ⇒ y: weakly efficient
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Proposition 7.12

Suppose that Y is convex.
Then for any weakly efficient production vector ȳ ∈ Y , there exists
p ≥ 0 with p 6= 0 such that

p · ȳ ≥ p · y for all y ∈ Y .

Proof

▶ Let ȳ ∈ Y be weakly efficient.

▶ Then (Y − {ȳ}) ∩ RN
++ = ∅, where Y − {ȳ} is convex.

▶ Thus by Proposition 7.10, there exists p ≥ 0 with p 6= 0 such
that p · z ≤ 0 for all z ∈ Y −{ȳ}, or p · y ≤ p · ȳ for all y ∈ Y .
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From Profit Function to Production Set

▶ Let Y ⊂ RN , Y 6= ∅, be the production set of a firm, and let
ϕY : RN → (−∞,∞] be the support function of Y :

ϕY (p) = sup
y∈Y

p · y.

▶ Suppose that Y is convex and closed.

Then, as we have seen,

Y = {y ∈ RN | p · y ≤ ϕY (p) for all p ∈ RN}.

▶ What additional assumptions are needed to recover Y from
the profit function, which is defined only for nonnegative, or
positive, price vectors (where we allow the profit function to
take values in (−∞,∞])?
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▶ Free disposal: Y − RN
+ ⊂ Y .

▶ No free production: Y ∩ RN
+ ⊂ {0}.

▶ The ability to shut down: 0 ∈ Y .

Proposition 7.13

1. If Y is nonempty, convex, and closed and satisfies free
disposal, then

Y = {y ∈ RN | p · y ≤ ϕY (p) for all p ∈ RN
+}.

2. If Y is nonempty, convex, and closed and satisfies free
disposal, no free production, and the ability to shut down,
then

Y = {y ∈ RN | p · y ≤ ϕY (p) for all p ∈ RN
++}.
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Proof

1

▶ Y ⊂ (RHS): Immediate.

▶ Y c ⊂ (RHS)c: Suppose that ȳ /∈ Y .

▶ Since Y is nonempty, convex, and closed, there exist p̄ 6= 0
and c such that

p̄ · y ≤ c < p̄ · ȳ for all y ∈ Y ,

and hence ϕY (p̄) < p̄ · ȳ, by the Separating Hyperplane
Theorem.

▶ Since Y satisfies free disposal, i.e., Y − RN
+ ⊂ Y (which

implies Y − RN
++ ⊂ Y ), we have p̄ ≥ 0 by Lemma 7.9.

▶ Hence, ȳ /∈ (RHS).
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Proof
2

▶ Y ⊂ (RHS): Immediate.

▶ Y c ⊂ (RHS)c: Suppose that ȳ /∈ Y .

▶ Since Y is nonempty, convex, and closed and satisfies free
disposal, there exist p1 6= 0 with p1 ≥ 0 and c1 such that

p1 · y ≤ c1 < p1 · ȳ for all y ∈ Y .

▶ Since Y ∩ RN
+ = {0} by no free production and the ability to

shut down, by Proposition 7.11 there exist p2 � 0 and c2
such that

p2 · y ≤ c2 for all y ∈ Y .

▶ Let ε > 0 be small enough that c1 + εc2 < p1 · ȳ + εp2 · ȳ.
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▶ Then we have

(p1 + εp2) · y ≤ c1 + εc2 < (p1 + εp2) · ȳ for all y ∈ Y ,

and hence, ϕY (p
1+ εp2) < (p1+ εp2) · ȳ. where p1+ εp2 � 0.

▶ Hence, ȳ /∈ (RHS).
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Subgradients and Subdifferentials
Let X ⊂ RN be a non-empty convex set.

Definition 7.2
For a function f : X → R and x̄ ∈ X, if

f(x) ≤ f(x̄) + p · (x− x̄)

holds for all x ∈ X, then

▶ p ∈ RN is called a subgradient of f at x̄,

▶ the set of all subgradients of f at x̄, denoted by ∂f(x̄), is
called the subdifferential of f at x̄, and

▶ the correspondence x 7→ ∂f(x) is called the subdifferential of
f .

(Usually a subgradient is defined to be p that satisfies the converse inequality,

and sometimes p that satisfies the above inequality is called a supergradient.)
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Subgradients and Subdifferentials

Let X ⊂ RN be a non-empty convex set.

Proposition 7.14

Suppose that f : X → R is concave.
If x̄ ∈ IntX and f is differentiable at x̄, then ∂f(x̄) = {∇f(x̄)}.

Proposition 7.15

Suppose that f : X → R is concave.
Then ∂f(x̄) 6= ∅ for all x̄ ∈ IntX.

Fact 2
Suppose that f : X → R is concave.
If ∂f(x̄) = {p}, then f is differentiable at x̄ (and p = ∇f(x̄)).
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Proof of Proposition 7.15
▶ Let f : X → R be a concave function, and let x̄ ∈ IntX.

▶ hyp f is convex by the concavity of f .

▶ We also have (x̄, f(x̄)) /∈ Int(hyp f).

▶ Thus by the Supporting Hyperplane Theorem, there exists
(p, q) ∈ RN × R with (p, q) 6= (0, 0) such that

p · x+ qy ≥ p · x̄+ q(f(x̄)) for all (x, y) ∈ hyp f.

▶ We must have q < 0:

▶ If q > 0, as y → −∞ the inequality would be violated.

▶ If q = 0, we would have p 6= 0 and p · x ≥ p · x̄ for all x ∈ X,
where x̄ ∈ IntX.

Letting x = x̄− εp for sufficiently small ε > 0 leads to
a contradiction.

So that we may let q = −1.
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▶ Therefore, we in particular have

p · x− f(x) ≥ p · x̄− f(x̄) for all x ∈ X,

or

f(x) ≤ f(x̄) + p · (x− x̄) for all x ∈ X,

which means that p ∈ ∂f(x̄).
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