7. Separating Hyperplane Theorems I

Daisuke Oyama

Mathematics II

May 3, 2024

Separating Hyperplane Theorem

Proposition 7.1 (Separating Hyperplane Theorem)

Suppose that $C \subset \mathbb{R}^{N}, C \neq \emptyset$, is convex and closed, and that $b \notin C$.
Then there exist $p \in \mathbb{R}^{N}$ with $p \neq 0$ and $c \in \mathbb{R}$ such that

$$
p \cdot y \leq c<p \cdot b \text { for all } y \in C
$$

Lemma 7.2

Suppose that $C \subset \mathbb{R}^{N}, C \neq \emptyset$, is closed, and that $b \notin C$.
Let $\delta=\inf \{\|z-b\| \mid z \in C\}$.
Then $\delta>0$, and there exists $y^{*} \in C$ such that $\delta=\left\|y^{*}-b\right\|$.
Lemma 7.3
Suppose that $C \subset \mathbb{R}^{N}, C \neq \emptyset$, is closed and convex, and that $b \notin C$.
Let $y^{*} \in C$ be such that $\left\|y^{*}-b\right\|=\min \{\|z-b\| \mid z \in C\}$. Then

$$
\left(b-y^{*}\right) \cdot\left(z-y^{*}\right) \leq 0 \text { for all } z \in C .
$$

Lemma 7.4

Suppose that $C \subset \mathbb{R}^{N}, C \neq \emptyset$, is closed and convex, and that $b \notin C$.
Then there exists a unique $y^{*} \in C$ such that
$\left\|y^{*}-b\right\|=\min \{\|z-b\| \mid z \in C\}$.

Proof of Lemma 7.3

- Let $y^{*} \in C$ be such that $\left\|b-y^{*}\right\|=\min \{\|b-z\| \mid z \in C\}$.
- Take any $z \in C$ and any $\alpha \in(0,1)$.
- Since $(1-\alpha) y^{*}+\alpha z \in C$, we have

$$
\begin{aligned}
\left\|b-y^{*}\right\|^{2} & \leq\left\|b-\left[(1-\alpha) y^{*}+\alpha z\right]\right\|^{2} \\
& =\left\|\left(b-y^{*}\right)-\alpha\left(z-y^{*}\right)\right\|^{2} \\
& =\left\|b-y^{*}\right\|^{2}-2 \alpha\left(b-y^{*}\right) \cdot\left(z-y^{*}\right)+\alpha^{2}\left\|z-y^{*}\right\|^{2},
\end{aligned}
$$

and therefore,

$$
\left(b-y^{*}\right) \cdot\left(z-y^{*}\right) \leq \frac{\alpha}{2}\left\|z-y^{*}\right\|^{2}
$$

- Then let $\alpha \rightarrow 0$.

Proof of Proposition 7.1

- Let $y^{*} \in C$ be as in Lemma 7.4.
- By Lemma 7.2, $\left(y^{*}-b\right) \cdot\left(y^{*}-b\right)>0$.
- By Lemma 7.3, $\left(b-y^{*}\right) \cdot\left(z-y^{*}\right) \leq 0$ for all $z \in C$.
- Therefore,

$$
\left(b-y^{*}\right) \cdot z \leq\left(b-y^{*}\right) \cdot y^{*}<\left(b-y^{*}\right) \cdot b
$$

for all $z \in C$.

- Let $p=b-y^{*}$ and $c=\left(b-y^{*}\right) \cdot y^{*}$.

Dual Representation of a Convex Set

For $K \subset \mathbb{R}^{N}, K \neq \emptyset$, define the function $\phi_{K}: \mathbb{R}^{N} \rightarrow(-\infty, \infty]$ by

$$
\phi_{K}(p)=\sup _{x \in K} p \cdot x
$$

which is called the support function of K.

Proposition 7.5
Let $K \subset \mathbb{R}^{N}, K \neq \emptyset$, be a closed convex set. Then

$$
K=\left\{x \in \mathbb{R}^{N} \mid p \cdot x \leq \phi_{K}(p) \text { for all } p \in \mathbb{R}^{N}\right\}
$$

More generally, for any nonempty set K,

$$
\mathrm{Cl}(\operatorname{Co} K)=\left\{x \in \mathbb{R}^{N} \mid p \cdot x \leq \phi_{K}(p) \text { for all } p \in \mathbb{R}^{N}\right\}
$$

Proof

- $K \subset(\mathrm{RHS}):$ By definition.
- $K \supset(\mathrm{RHS})$:

Let $b \notin K$.

- Since K is closed and convex, by the Separating Hyperplane Theorem, there exist $\bar{p} \neq 0$ and $c \in \mathbb{R}$ such that

$$
\bar{p} \cdot z \leq c<\bar{p} \cdot b \text { for all } z \in K
$$

and hence

$$
\phi_{K}(\bar{p})=\sup _{z \in K} \bar{p} \cdot z<\bar{p} \cdot b .
$$

- This means that $b \notin(\mathrm{RHS})$.

Supporting Hyperplane Theorem

Proposition 7.6 (Supporting Hyperplane Theorem)

Suppose that $C \subset \mathbb{R}^{N}, C \neq \emptyset$, is convex, and that $b \notin \operatorname{Int} C$.
Then there exists $p \in \mathbb{R}^{N}$ with $p \neq 0$ such that

$$
p \cdot y \leq p \cdot b \text { for all } y \in C
$$

For proof, we will use the following fact:
Fact 1
For any convex set $C \subset \mathbb{R}^{N}$, $\operatorname{Int} C=\operatorname{Int}(\mathrm{ClC})$.
The equality does not hold in general for nonconvex sets; for example, $[0,1 / 2) \cup(1 / 2,1]$.

Proof

- Let $b \notin \operatorname{Int} C$.

Since C is convex, $b \notin \operatorname{Int}(\mathrm{ClC})$ by Fact 1 .

- Therefore, there is a sequence $\left\{b^{m}\right\}$ with $b^{m} \notin \mathrm{ClC}$ such that $b^{m} \rightarrow b$.
- Since C is convex, $\mathrm{Cl} C$ is also convex (Proposition 4.12).
- Then by the Separating Hyperplane Theorem, for each m there exists $p^{m} \in \mathbb{R}^{N}$ with $p^{m} \neq 0$ such that

$$
p^{m} \cdot y<p^{m} \cdot b^{m} \text { for all } y \in C
$$

- Without loss of generality we assume that $\left\|p^{m}\right\|=1$ for all m.
- $\left\{p^{m}\right\}$ has a convergent subsequence $\left\{p^{m_{k}}\right\}$ with a limit p, where $p \neq 0$ since $\|p\|=1$.
- Letting $k \rightarrow \infty$ we have $p \cdot y \leq p \cdot b$ for all $y \in C$.

Separating Hyperplane Theorem

Proposition 7.7 (Separating Hyperplane Theorem)

Suppose that $A, B \subset \mathbb{R}^{N}, A, B \neq \emptyset$, are convex, and that $A \cap B=\emptyset$.
Then there exists $p \in \mathbb{R}^{N}$ with $p \neq 0$ such that

$$
p \cdot x \leq p \cdot y \text { for all } x \in A \text { and } y \in B
$$

Proof

- Since A and B are convex, $A-B=\left\{x-y \in \mathbb{R}^{N} \mid x \in A, y \in B\right\}$ is also convex (Proposition 4.5).
- Since $A \cap B=\emptyset, 0 \notin A-B$.
- Thus by the Supporting Hyperplane Theorem, there exists $p \in \mathbb{R}^{N}$ with $p \neq 0$ such that

$$
p \cdot z \leq p \cdot 0 \text { for all } z \in A-B
$$

or

$$
p \cdot x \leq p \cdot y \text { for all } x \in A \text { and } y \in B
$$

Separating Hyperplane Theorem

Proposition 7.8 (Strong Separating Hyperplane Theorem)
Suppose that $A, B \subset \mathbb{R}^{N}, A, B \neq \emptyset$, are convex and closed, and that $A \cap B=\emptyset$.
If A or B is bounded, then there exist $p \in \mathbb{R}^{N}$ with $p \neq 0$ and $c_{1}, c_{2} \in \mathbb{R}$ such that

$$
p \cdot x \leq c_{1}<c_{2} \leq p \cdot y \text { for all } x \in A \text { and } y \in B .
$$

Proof

- Since A and B are convex, $A-B$ is also convex.
- Since A and B are closed and A or B is bounded, $A-B$ is closed. (\rightarrow Homework)
- Since $A \cap B=\emptyset, 0 \notin A-B$.
- Thus by the Separating Hyperplane Theorem, there exist $p \in \mathbb{R}^{N}$ with $p \neq 0$ and $c \in \mathbb{R}$ such that

$$
p \cdot z \leq c<p \cdot 0 \text { for all } z \in A-B
$$

or

$$
p \cdot(x-y) \leq c<0 \text { for all } x \in A \text { and } y \in B
$$

- Thus we have

$$
\sup _{x \in A} p \cdot x-\inf _{y \in B} p \cdot y \leq c<0 .
$$

Let $c_{1}=\sup _{x \in A} p \cdot x$ and $c_{2}=\inf _{y \in B} p \cdot y$, where $c_{1}<c_{2}$.

Separation with Nonnegative/Positive Vectors

Lemma 7.9
For $A \subset \mathbb{R}^{N}, A \neq \emptyset$, suppose that $A-\mathbb{R}_{++}^{N} \subset A$.
For $p \in \mathbb{R}^{N}$, if there exists $c \in \mathbb{R}$ such that $p \cdot x \leq c$ for all $x \in A$, then $p \geq 0$.

Proof

- Assume that $p_{n}<0$.
- Fix any $x^{0} \in A$ and any $\varepsilon>0$.

We have $x^{0}-\left(t e_{n}+\varepsilon \mathbf{1}\right) \in A-\mathbb{R}_{++}^{N} \subset A$ for all $t>0$, while $p \cdot\left[x^{0}-\left(t e_{n}+\varepsilon \mathbf{1}\right)\right]=p \cdot x^{0}-t p_{n}-\varepsilon p \cdot \mathbf{1} \rightarrow \infty$ as $t \rightarrow \infty$, contradicting the assumption that $p \cdot x \leq c$ for all $x \in A$.

Separation with Nonnegative/Positive Vectors

Proposition 7.10
Suppose that $C \subset \mathbb{R}^{N}, C \neq \emptyset$, is convex.
If $C \cap \mathbb{R}_{++}^{N}=\emptyset$, then there exists $p \geq 0$ with $p \neq 0$ such that

$$
p \cdot x \leq 0 \text { for all } x \in C .
$$

Proof

- Let $A=C-\mathbb{R}_{++}^{N}$.
- Since C and \mathbb{R}_{++}^{N} are convex, A is also convex.
- Since $C \cap \mathbb{R}_{++}^{N}=\emptyset, 0 \notin A$.
- Thus by the Supporting Hyperplane Theorem, there exists $p \in \mathbb{R}^{N}$ with $p \neq 0$ such that

$$
p \cdot z \leq p \cdot 0 \text { for all } z \in A
$$

- Since $A-\mathbb{R}_{++}^{N} \subset A$, we have $p \geq 0$ by Lemma 7.9.
- We have

$$
p \cdot x \leq p \cdot y \text { for all } x \in C \text { and } y \in \mathbb{R}_{++}^{N} .
$$

Letting $y \rightarrow 0$, we have $p \cdot x \leq 0$ for all $x \in C$.

Separation with Nonnegative/Positive Vectors

Proposition 7.11
Suppose that $C \subset \mathbb{R}^{N}, C \neq \emptyset$, is convex and closed.
If $C \cap \mathbb{R}_{+}^{N}=\{0\}$, then there exist $p \gg 0$ and $c \geq 0$ such that

$$
p \cdot x \leq c \text { for all } x \in C .
$$

Proof

- Let $\Delta=\left\{x \in \mathbb{R}_{+}^{N} \mid x_{1}+\cdots+x_{N}=1\right\}$.
- C is convex and closed and Δ is convex and compact.
- Since $C \cap \mathbb{R}_{+}^{N}=\{0\}, C \cap \Delta=\emptyset$.
- Thus by Proposition 7.8, there exist $p \in \mathbb{R}^{N}$ with $p \neq 0$ and $c \in \mathbb{R}$ such that

$$
p \cdot x \leq c<p \cdot y \text { for all } x \in C \text { and } y \in \Delta
$$

where $c \geq 0$ since $0 \in C$.

- For each n, since $e_{n} \in \Delta$, we have $0 \leq c<p \cdot e_{n}=p_{n}$.

Efficient Production

Let $Y \subset \mathbb{R}^{N}$ be the production set of a firm.
Definition 7.1

- A production vector $y \in Y$ is efficient if there is no $y^{\prime} \in Y$ such that $y^{\prime} \geq y$ and $y^{\prime} \neq y$.
- $y \in Y$ is weakly efficient if there is no $y^{\prime} \in Y$ such that $y^{\prime} \gg y$.
- y : efficient $\Rightarrow y$: weakly efficient

Proposition 7.12

Suppose that Y is convex.
Then for any weakly efficient production vector $\bar{y} \in Y$, there exists $p \geq 0$ with $p \neq 0$ such that

$$
p \cdot \bar{y} \geq p \cdot y \text { for all } y \in Y
$$

Proof

- Let $\bar{y} \in Y$ be weakly efficient.
- Then $(Y-\{\bar{y}\}) \cap \mathbb{R}_{++}^{N}=\emptyset$, where $Y-\{\bar{y}\}$ is convex.
- Thus by Proposition 7.10, there exists $p \geq 0$ with $p \neq 0$ such that $p \cdot z \leq 0$ for all $z \in Y-\{\bar{y}\}$, or $p \cdot y \leq p \cdot \bar{y}$ for all $y \in Y$.

From Profit Function to Production Set

- Let $Y \subset \mathbb{R}^{N}, Y \neq \emptyset$, be the production set of a firm, and let $\phi_{Y}: \mathbb{R}^{N} \rightarrow(-\infty, \infty]$ be the support function of Y :

$$
\phi_{Y}(p)=\sup _{y \in Y} p \cdot y
$$

- Suppose that Y is convex and closed.

Then, as we have seen,

$$
Y=\left\{y \in \mathbb{R}^{N} \mid p \cdot y \leq \phi_{Y}(p) \text { for all } p \in \mathbb{R}^{N}\right\}
$$

- What additional assumptions are needed to recover Y from the profit function, which is defined only for nonnegative, or positive, price vectors (where we allow the profit function to take values in $(-\infty, \infty])$?
- Free disposal: $Y-\mathbb{R}_{+}^{N} \subset Y$.
- No free production: $Y \cap \mathbb{R}_{+}^{N} \subset\{0\}$.
- The ability to shut down: $0 \in Y$.

Proposition 7.13

1. If Y is nonempty, convex, and closed and satisfies free disposal, then

$$
Y=\left\{y \in \mathbb{R}^{N} \mid p \cdot y \leq \phi_{Y}(p) \text { for all } p \in \mathbb{R}_{+}^{N}\right\}
$$

2. If Y is nonempty, convex, and closed and satisfies free disposal, no free production, and the ability to shut down, then

$$
Y=\left\{y \in \mathbb{R}^{N} \mid p \cdot y \leq \phi_{Y}(p) \text { for all } p \in \mathbb{R}_{++}^{N}\right\}
$$

Proof

1

- $Y \subset(\mathrm{RHS}):$ Immediate.
- $Y^{\mathrm{c}} \subset(\mathrm{RHS})^{\mathrm{c}}:$ Suppose that $\bar{y} \notin Y$.
- Since Y is nonempty, convex, and closed, there exist $\bar{p} \neq 0$ and c such that

$$
\bar{p} \cdot y \leq c<\bar{p} \cdot \bar{y} \text { for all } y \in Y
$$

and hence $\phi_{Y}(\bar{p})<\bar{p} \cdot \bar{y}$, by the Separating Hyperplane Theorem.

- Since Y satisfies free disposal, i.e., $Y-\mathbb{R}_{+}^{N} \subset Y$ (which implies $Y-\mathbb{R}_{++}^{N} \subset Y$), we have $\bar{p} \geq 0$ by Lemma 7.9.
- Hence, $\bar{y} \notin(\mathrm{RHS})$.

Proof

2

- $Y \subset(\mathrm{RHS}):$ Immediate.
- $Y^{\mathrm{c}} \subset(\mathrm{RHS})^{\mathrm{c}}:$ Suppose that $\bar{y} \notin Y$.
- Since Y is nonempty, convex, and closed and satisfies free disposal, there exist $p^{1} \neq 0$ with $p^{1} \geq 0$ and c_{1} such that

$$
p^{1} \cdot y \leq c_{1}<p^{1} \cdot \bar{y} \text { for all } y \in Y
$$

- Since $Y \cap \mathbb{R}_{+}^{N}=\{0\}$ by no free production and the ability to shut down, by Proposition 7.11 there exist $p^{2} \gg 0$ and c_{2} such that

$$
p^{2} \cdot y \leq c_{2} \text { for all } y \in Y
$$

- Let $\varepsilon>0$ be small enough that $c_{1}+\varepsilon c_{2}<p^{1} \cdot \bar{y}+\varepsilon p^{2} \cdot \bar{y}$.
- Then we have

$$
\left(p^{1}+\varepsilon p^{2}\right) \cdot y \leq c_{1}+\varepsilon c_{2}<\left(p^{1}+\varepsilon p^{2}\right) \cdot \bar{y} \text { for all } y \in Y
$$

and hence, $\phi_{Y}\left(p^{1}+\varepsilon p^{2}\right)<\left(p^{1}+\varepsilon p^{2}\right) \cdot \bar{y}$. where $p^{1}+\varepsilon p^{2} \gg 0$.

- Hence, $\bar{y} \notin(\mathrm{RHS})$.

Subgradients and Subdifferentials

Let $X \subset \mathbb{R}^{N}$ be a non-empty convex set.
Definition 7.2
For a function $f: X \rightarrow \mathbb{R}$ and $\bar{x} \in X$, if

$$
f(x) \leq f(\bar{x})+p \cdot(x-\bar{x})
$$

holds for all $x \in X$, then

- $p \in \mathbb{R}^{N}$ is called a subgradient of f at \bar{x},
- the set of all subgradients of f at \bar{x}, denoted by $\partial f(\bar{x})$, is called the subdifferential of f at \bar{x}, and
- the correspondence $x \mapsto \partial f(x)$ is called the subdifferential of f.
(Usually a subgradient is defined to be p that satisfies the converse inequality, and sometimes p that satisfies the above inequality is called a supergradient.)

Subgradients and Subdifferentials

Let $X \subset \mathbb{R}^{N}$ be a non-empty convex set.
Proposition 7.14
Suppose that $f: X \rightarrow \mathbb{R}$ is concave.
If $\bar{x} \in \operatorname{Int} X$ and f is differentiable at \bar{x}, then $\partial f(\bar{x})=\{\nabla f(\bar{x})\}$.
Proposition 7.15
Suppose that $f: X \rightarrow \mathbb{R}$ is concave.
Then $\partial f(\bar{x}) \neq \emptyset$ for all $\bar{x} \in \operatorname{Int} X$.

Fact 2

Suppose that $f: X \rightarrow \mathbb{R}$ is concave.
If $\partial f(\bar{x})=\{p\}$, then f is differentiable at \bar{x} (and $p=\nabla f(\bar{x})$).

Proof of Proposition 7.15

- Let $f: X \rightarrow \mathbb{R}$ be a concave function, and let $\bar{x} \in \operatorname{Int} X$.
- hyp f is convex by the concavity of f.
- We also have $(\bar{x}, f(\bar{x})) \notin \operatorname{Int}(\operatorname{hyp} f)$.
- Thus by the Supporting Hyperplane Theorem, there exists $(p, q) \in \mathbb{R}^{N} \times \mathbb{R}$ with $(p, q) \neq(0,0)$ such that

$$
p \cdot x+q y \geq p \cdot \bar{x}+q(f(\bar{x})) \text { for all }(x, y) \in \operatorname{hyp} f
$$

- We must have $q<0$:
- If $q>0$, as $y \rightarrow-\infty$ the inequality would be violated.
- If $q=0$, we would have $p \neq 0$ and $p \cdot x \geq p \cdot \bar{x}$ for all $x \in X$, where $\bar{x} \in \operatorname{Int} X$.

Letting $x=\bar{x}-\varepsilon p$ for sufficiently small $\varepsilon>0$ leads to a contradiction.

So that we may let $q=-1$.

- Therefore, we in particular have

$$
p \cdot x-f(x) \geq p \cdot \bar{x}-f(\bar{x}) \text { for all } x \in X
$$

or

$$
f(x) \leq f(\bar{x})+p \cdot(x-\bar{x}) \text { for all } x \in X,
$$

which means that $p \in \partial f(\bar{x})$.

