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Separating Hyperplane Theorem

Proposition 7.1 (Separating Hyperplane Theorem)

Suppose that C C RN, C # (), is convex and closed, and
that b ¢ C.
Then there exist p € RN with p # 0 and ¢ € R such that

p-y<c<p-bforallyecC.
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Lemma 7.2

Suppose that C C RN, C # (), is closed, and that b ¢ C.
Let 6 = inf{||z —b|| | z € C}.

Then 6 > 0, and there exists y* € C such that § = ||y* — b].

Lemma 7.3

Suppose that C C RY, C +# (), is closed and convex, and

that b ¢ C.

Let y* € C be such that ||y* — b|| = min{||z —b|| | z € C'}. Then

b—y")-(z—y")<O0forall z€C.

Lemma 7.4

Suppose that C C RN, C # 0, is closed and convex, and
that b ¢ C.

Then there exists a unique y* € C such that

ly* — bll = min{[|z — b[| | z € C}.
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Proof of Lemma 7.3

» Let y* € C be such that ||b — y*|| = min{||b — z| | z € C}.
» Take any z € C' and any a € (0, 1).

» Since (1 — a)y* + az € C, we have

I =y I* < lIb = [(1 = a)y” + az]|?
=I(b—y") — alz —y")|?
= b=y = 2a(b—y) - (z = y") + o®[|l2 = y"|I%,

and therefore,
* * a *
b—y") - (z—y") < Sz —y|%
» Then let « — 0.
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Proof of Proposition 7.1

> Let y* € C be as in Lemma 7.4.
» By Lemma 7.2, (y* —b) - (y* —b) > 0.
» By Lemma 7.3, (b—y*) - (z —y*) <O forall z € C.
» Therefore,
b=y) 2<(b-y") y <(b-y") b
for all z € C.

> Letp=b—y*and c = (b—y*) - y*.
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Dual Representation of a Convex Set
For K C RN, K # (), define the function ¢x : RY — (—o0, 00] by
¢k (p) =supp -z,
zeK

which is called the support function of K.

Proposition 7.5
let K cRN, K # (), be a closed convex set. Then

K={zcR" |p-z<ox(p) forallpc RV},

More generally, for any nonempty set K,

Cl(CoK)={z e RN |p-z < dx(p) for all p € RV},
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Proof

» K C (RHS): By definition.
» K O (RHS):
Letb ¢ K.

» Since K is closed and convex, by the Separating Hyperplane
Theorem, there exist p # 0 and ¢ € R such that

p-z<c<p-bforall ze€ K,

and hence

¢ (p) =supp-z<p-b.
zeK

» This means that b ¢ (RHS).
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Supporting Hyperplane Theorem

Proposition 7.6 (Supporting Hyperplane Theorem)

Suppose that C C RN, C # (), is convex, and that b ¢ Int C.
Then there exists p € RN with p # 0 such that

p-y<p-bforallyecC.

For proof, we will use the following fact:

Fact 1
For any convex set C C RV, Int C' = Int(C1C).

The equality does not hold in general for nonconvex sets;
for example, [0,1/2) U (1/2,1].
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Proof

| 4

Let b ¢ Int C.
Since C' is convex, b ¢ Int(C1C) by Fact 1.

Therefore, there is a sequence {6} with b ¢ C1C such that
b"™ — b.

Since C' is convex, C1C' is also convex (Proposition 4.12).

Then by the Separating Hyperplane Theorem,
for each m there exists p™ € RV with p™ # 0 such that

p" oy <p™-b" forally e C.

Without loss of generality we assume that ||p"|| = 1 for all m.

{p"} has a convergent subsequence {p""*} with a limit p,
where p # 0 since ||p|| = 1.

Letting k — oo we have p-y <p-bforall y € C.
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Separating Hyperplane Theorem

Proposition 7.7 (Separating Hyperplane Theorem)

Suppose that A,B C RN, A, B # (), are convex, and
that ANB = 0.
Then there exists p € RV with p # 0 such that

p-x<p-yforallxz € Aandye€ B.
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Proof

» Since A and B are convex,
A-B={z—-yeRY |z €A, ye B} is also convex
(Proposition 4.5).

» Since ANB=0,0¢ A— B.

» Thus by the Supporting Hyperplane Theorem, there exists
p € RN with p # 0 such that

p-z<p-0forall z€ A— B,
or

p-x<p-yforallz € Aandyec B.
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Separating Hyperplane Theorem

Proposition 7.8 (Strong Separating Hyperplane Theorem)
Suppose that A, B C RN, A, B # (), are convex and closed, and

that AN B = 0.
If A or B is bounded, then there exist p € RY with p # 0 and

c1, ¢ € R such that

prx<ci<co<p-yforallxz € Aandyec B.
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Proof

» Since A and B are convex, A — B is also convex.

» Since A and B are closed and A or B is bounded, A — B is
closed. (— Homework)

> Since ANB=0,0¢ A—B.

» Thus by the Separating Hyperplane Theorem, there exist
p € RN with p # 0 and ¢ € R such that

p-z<c<p-0forall z€ A— B,
or

p-(x—y)<ec<Oforallze Aandy € B.

» Thus we have

supp-x — inf p-y <ec <0.
T€A yeB

Let c; = sup,c4p - and c3 = infyepp -y, where c; < co.
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Separation with Nonnegative/Positive Vectors

Lemma 7.9

For AC RN, A+, suppose that A—RY, C A.

For p € RV, if there exists ¢ € R such that p-x < ¢ for all x € A,
then p > 0.

Proof
> Assume that p, <O.

» Fix any 2° € A and any € > 0.

We have 20 — (te, +c1) € A—R¥Y, C A for all t > 0, while
p-[2%—(te, +el)]=p-2° —tp, —ep-1 = 00 as t — oo,
contradicting the assumption that p-x < ¢ for all x € A.
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Separation with Nonnegative/Positive Vectors

Proposition 7.10

Suppose that C Cc RN, C # (), is convex.
If CNRY, =0, then there exists p > 0 with p # 0 such that

p-x<0forallzeC.

14 /28



Proof
> LetA:C’—]RL.
» Since C and RL are convex, A is also convex.

> Since CNRY, =0,0¢ A

v

Thus by the Supporting Hyperplane Theorem, there exists
p € RN with p # 0 such that

p-z<p-0forall z € A.

» Since A—RY, C A, we have p > 0 by Lemma 7.9.

v

We have
p-azgp-yforallxGCandyERL.

Letting y — 0, we have p-x < 0 for all z € C.
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Separation with Nonnegative/Positive Vectors

Proposition 7.11

Suppose that C C RN, C # (), is convex and closed.
If C NRY = {0}, then there exist p > 0 and ¢ > 0 such that

p-xz<cforallzeC.
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Let A={z eRY |21+ +ay =1}
C' is convex and closed and A is convex and compact.
Since CNRY = {0}, CNA=0.

Thus by Proposition 7.8, there exist p € RY with p # 0 and
c € R such that

p-x<c<p-yforalaxeCandyecA,

where ¢ > 0 since 0 € C.

For each n, since e, € A, we have 0 < c < p-e, = p,.
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Efficient Production

Let Y ¢ RY be the production set of a firm.

Definition 7.1

> A production vector y € Y is efficient if
there is no ¢/ € Y such that ¢/ >y and 3/ # y.

» y €Y is weakly efficient if there is no 3/ € Y such that
y >

> y: efficient = y: weakly efficient
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Proposition 7.12

Suppose that Y is convex.
Then for any weakly efficient production vector iy € Y, there exists

p > 0 with p # 0 such that

p-y>p-yforallyeyY.

Proof
> Let § € Y be weakly efficient.
> Then (Y — {g}) NRY, =0, where Y — {ij} is convex.

» Thus by Proposition 7.10, there exists p > 0 with p # 0 such
thatp-z<Oforall zeY —{g},orp-y<p-yforallyeV.
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From Profit Function to Production Set

> Let Y C RY, Y # (), be the production set of a firm, and let
dy : RN — (—o0, 00| be the support function of Y

¢y (p) =supp-y.
yey

» Suppose that Y is convex and closed.
Then, as we have seen,

Y ={yeRY |p-y < ¢y(p) forall pe RV},

» What additional assumptions are needed to recover Y from
the profit function, which is defined only for nonnegative, or
positive, price vectors (where we allow the profit function to
take values in (—o0, 0])?
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» Free disposal: Y — }Rf cY.
> No free production: Y NRY  {0}.
» The ability to shut down: 0 € Y.

Proposition 7.13

1. IfY is nonempty, convex, and closed and satisfies free
disposal, then

Y ={yeRY |p-y<oy(p) forallpec RY}.
2. If' Y is nonempty, convex, and closed and satisfies free

disposal, no free production, and the ability to shut down,
then

Y ={yeRN |p-y<oy(p) forallpeRY,}.
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Proof

Y C (RHS): Immediate.
Y¢ C (RHS)¢: Suppose that y ¢ Y.

Since Y is nonempty, convex, and closed, there exist p # 0
and c such that

pry<c<p-gforallyey,

and hence ¢y (p) < p- ¥, by the Separating Hyperplane
Theorem.

Since Y satisfies free disposal, i.e., Y — Rf C Y (which
implies Y —RY, C Y), we have p > 0 by Lemma 7.9.

Hence, §y ¢ (RHS).
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Proof

Y C (RHS): Immediate.
Y¢ C (RHS)®: Suppose that y ¢ Y.

Since Y is nonempty, convex, and closed and satisfies free
disposal, there exist p' # 0 with p! > 0 and ¢; such that

phoy<c <pt-gforallyey.
Since Y NRY = {0} by no free production and the ability to

shut down, by Proposition 7.11 there exist p? > 0 and ¢y
such that

p?y<cyforallyeY.

Let € > 0 be small enough that ¢; +ecy < p' -5 +ep? - 7.
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» Then we have
(p' +ep?) -y <ci+eca < (pt4ep?)-gforallyey,

and hence, ¢y (p' +¢ep?) < (p* +ep?) - 3. where p! +ep? > 0.
» Hence, 5 ¢ (RHS).
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Subgradients and Subdifferentials

Let X C RY be a non-empty convex set.
Definition 7.2

For a function f: X > Rand z € X, if
fl@) < f(Z)+p (z—Z)
holds for all x € X, then

» p c RV is called a subgradient of f at Z,

» the set of all subgradients of f at Z, denoted by 0f(Z), is
called the subdifferential of f at x, and

» the correspondence = — Of(x) is called the subdifferential of

f

(Usually a subgradient is defined to be p that satisfies the converse inequality,

and sometimes p that satisfies the above inequality is called a supergradient.)
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Subgradients and Subdifferentials

Let X C RY be a non-empty convex set.

Proposition 7.14

Suppose that f: X — R is concave.
If z € Int X and f is differentiable at Z, then 0f(Z) = {Vf(z)}.

Proposition 7.15

Suppose that f: X — R is concave.
Then Of (z) # 0 for all z € Int X .

Fact 2
Suppose that f: X — R is concave.
If 9f(z) = {p}, then f is differentiable at z (and p = Vf(Z)).
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Proof of Proposition 7.15
> Let f: X — R be a concave function, and let € Int X.

» hyp f is convex by the concavity of f.
» We also have (z, f(Z)) ¢ Int(hyp f).
» Thus by the Supporting Hyperplane Theorem, there exists
(p,q) € RN x R with (p,q) # (0,0) such that
prx+qy>p-T+q(f(z)) forall (z,y) € hyp f.

> We must have ¢ < 0:
» If ¢ >0, as y — —oo the inequality would be violated.

» If =0, we would have p£0Qand p-z > p-Z for all x € X,
where T € Int X.

Letting = T — ep for sufficiently small € > 0 leads to
a contradiction.

So that we may let ¢ = —1.
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» Therefore, we in particular have
p-x— f(x)>p-z— f(z) for all x € X,
or
fl@) < f(@)+p-(x—1Z)forallz e X,

which means that p € 0f(Z).
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