7. Separating Hyperplane Theorems I

Daisuke Oyama

Mathematics II

May 3, 2024

Proposition 7.1 (Separating Hyperplane Theorem) Suppose that $C \subset \mathbb{R}^N$, $C \neq \emptyset$, is convex and closed, and that $b \notin C$. Then there exist $p \in \mathbb{R}^N$ with $p \neq 0$ and $c \in \mathbb{R}$ such that

 $p \cdot y \leq c for all <math>y \in C$.

Lemma 7.2

Suppose that $C \subset \mathbb{R}^N$, $C \neq \emptyset$, is closed, and that $b \notin C$. Let $\delta = \inf\{\|z - b\| \mid z \in C\}$. Then $\delta > 0$, and there exists $y^* \in C$ such that $\delta = \|y^* - b\|$.

Lemma 7.3

Suppose that $C \subset \mathbb{R}^N$, $C \neq \emptyset$, is closed and convex, and that $b \notin C$. Let $y^* \in C$ be such that $||y^* - b|| = \min\{||z - b|| \mid z \in C\}$. Then

$$(b-y^*) \cdot (z-y^*) \leq 0$$
 for all $z \in C$.

Lemma 7.4

Suppose that $C \subset \mathbb{R}^N$, $C \neq \emptyset$, is closed and convex, and that $b \notin C$. Then there exists a unique $y^* \in C$ such that $\|y^* - b\| = \min\{\|z - b\| \mid z \in C\}.$

Proof of Lemma 7.3

• Let $y^* \in C$ be such that $||b - y^*|| = \min\{||b - z|| \mid z \in C\}$.

• Take any
$$z \in C$$
 and any $\alpha \in (0, 1)$.

• Since
$$(1 - \alpha)y^* + \alpha z \in C$$
, we have

$$\begin{split} \|b - y^*\|^2 &\leq \|b - [(1 - \alpha)y^* + \alpha z]\|^2 \\ &= \|(b - y^*) - \alpha(z - y^*)\|^2 \\ &= \|b - y^*\|^2 - 2\alpha(b - y^*) \cdot (z - y^*) + \alpha^2 \|z - y^*\|^2, \end{split}$$

and therefore,

$$(b - y^*) \cdot (z - y^*) \le \frac{\alpha}{2} ||z - y^*||^2.$$

• Then let $\alpha \to 0$.

Proof of Proposition 7.1

• Let $y^* \in C$ be as in Lemma 7.4.

• By Lemma 7.2,
$$(y^* - b) \cdot (y^* - b) > 0$$
.

▶ By Lemma 7.3,
$$(b - y^*) \cdot (z - y^*) \leq 0$$
 for all $z \in C$.

► Therefore,

$$(b - y^*) \cdot z \le (b - y^*) \cdot y^* < (b - y^*) \cdot b$$

for all $z \in C$.

• Let
$$p = b - y^*$$
 and $c = (b - y^*) \cdot y^*$.

Dual Representation of a Convex Set

For $K \subset \mathbb{R}^N$, $K \neq \emptyset$, define the function $\phi_K \colon \mathbb{R}^N \to (-\infty, \infty]$ by $\phi_K(p) = \sup_{x \in K} p \cdot x$,

which is called the *support function* of K.

Proposition 7.5
Let
$$K \subset \mathbb{R}^N$$
, $K \neq \emptyset$, be a closed convex set. Then
 $K = \{x \in \mathbb{R}^N \mid p \cdot x \leq \phi_K(p) \text{ for all } p \in \mathbb{R}^N\}.$

More generally, for any nonempty set K,

$$Cl(Co K) = \{ x \in \mathbb{R}^N \mid p \cdot x \le \phi_K(p) \text{ for all } p \in \mathbb{R}^N \}.$$

- $K \subset (RHS)$: By definition.
- $\blacktriangleright K \supset (\mathsf{RHS}):$

Let $b \notin K$.

▶ Since K is closed and convex, by the Separating Hyperplane Theorem, there exist $\bar{p} \neq 0$ and $c \in \mathbb{R}$ such that

$$\bar{p} \cdot z \leq c < \bar{p} \cdot b$$
 for all $z \in K$,

and hence

$$\phi_K(\bar{p}) = \sup_{z \in K} \bar{p} \cdot z < \bar{p} \cdot b.$$

• This means that $b \notin (RHS)$.

Supporting Hyperplane Theorem

Proposition 7.6 (Supporting Hyperplane Theorem) Suppose that $C \subset \mathbb{R}^N$, $C \neq \emptyset$, is convex, and that $b \notin \text{Int } C$. Then there exists $p \in \mathbb{R}^N$ with $p \neq 0$ such that

 $p \cdot y \leq p \cdot b$ for all $y \in C$.

For proof, we will use the following fact:

Fact 1

For any convex set $C \subset \mathbb{R}^N$, $\operatorname{Int} C = \operatorname{Int}(\operatorname{Cl} C)$.

The equality does not hold in general for nonconvex sets; for example, $[0, 1/2) \cup (1/2, 1]$.

▶ Let $b \notin Int C$.

Since C is convex, $b \notin Int(ClC)$ by Fact 1.

- ▶ Therefore, there is a sequence $\{b^m\}$ with $b^m \notin Cl C$ such that $b^m \to b$.
- Since C is convex, ClC is also convex (Proposition 4.12).
- ▶ Then by the Separating Hyperplane Theorem, for each m there exists $p^m \in \mathbb{R}^N$ with $p^m \neq 0$ such that

 $p^m \cdot y < p^m \cdot b^m$ for all $y \in C$.

- Without loss of generality we assume that $||p^m|| = 1$ for all m.
- ▶ $\{p^m\}$ has a convergent subsequence $\{p^{m_k}\}$ with a limit p, where $p \neq 0$ since ||p|| = 1.
- Letting $k \to \infty$ we have $p \cdot y \le p \cdot b$ for all $y \in C$.

Proposition 7.7 (Separating Hyperplane Theorem) Suppose that $A, B \subset \mathbb{R}^N$, $A, B \neq \emptyset$, are convex, and that $A \cap B = \emptyset$. Then there exists $p \in \mathbb{R}^N$ with $p \neq 0$ such that

$$p \cdot x \leq p \cdot y$$
 for all $x \in A$ and $y \in B$.

Since A and B are convex, $A - B = \{x - y \in \mathbb{R}^N \mid x \in A, y \in B\}$ is also convex (Proposition 4.5).

Since
$$A \cap B = \emptyset$$
, $0 \notin A - B$.

▶ Thus by the Supporting Hyperplane Theorem, there exists $p \in \mathbb{R}^N$ with $p \neq 0$ such that

$$p \cdot z \leq p \cdot 0$$
 for all $z \in A - B$,

or

$$p \cdot x \leq p \cdot y$$
 for all $x \in A$ and $y \in B$.

Proposition 7.8 (Strong Separating Hyperplane Theorem) Suppose that $A, B \subset \mathbb{R}^N$, $A, B \neq \emptyset$, are convex and closed, and that $A \cap B = \emptyset$. If A or B is bounded, then there exist $p \in \mathbb{R}^N$ with $p \neq 0$ and $c_1, c_2 \in \mathbb{R}$ such that

 $p \cdot x \leq c_1 < c_2 \leq p \cdot y$ for all $x \in A$ and $y \in B$.

- Since A and B are convex, A B is also convex.
- Since A and B are closed and A or B is bounded, A − B is closed. (→ Homework)

Since
$$A \cap B = \emptyset$$
, $0 \notin A - B$.

▶ Thus by the Separating Hyperplane Theorem, there exist $p \in \mathbb{R}^N$ with $p \neq 0$ and $c \in \mathbb{R}$ such that

$$p \cdot z \leq c for all $z \in A - B$,$$

or

$$p \cdot (x - y) \le c < 0$$
 for all $x \in A$ and $y \in B$.

Thus we have

$$\begin{split} \sup_{x \in A} p \cdot x &- \inf_{y \in B} p \cdot y \leq c < 0. \\ \text{Let } c_1 &= \sup_{x \in A} p \cdot x \text{ and } c_2 = \inf_{y \in B} p \cdot y \text{, where } c_1 < c_2. \end{split}$$

Separation with Nonnegative/Positive Vectors

Lemma 7.9 For $A \subset \mathbb{R}^N$, $A \neq \emptyset$, suppose that $A - \mathbb{R}^N_{++} \subset A$. For $p \in \mathbb{R}^N$, if there exists $c \in \mathbb{R}$ such that $p \cdot x \leq c$ for all $x \in A$, then $p \geq 0$.

Proof

• Assume that $p_n < 0$.

► Fix any
$$x^0 \in A$$
 and any $\varepsilon > 0$.
We have $x^0 - (te_n + \varepsilon \mathbf{1}) \in A - \mathbb{R}^N_{++} \subset A$ for all $t > 0$, while $p \cdot [x^0 - (te_n + \varepsilon \mathbf{1})] = p \cdot x^0 - tp_n - \varepsilon p \cdot \mathbf{1} \to \infty$ as $t \to \infty$, contradicting the assumption that $p \cdot x \leq c$ for all $x \in A$.

Separation with Nonnegative/Positive Vectors

Proposition 7.10

Suppose that $C \subset \mathbb{R}^N$, $C \neq \emptyset$, is convex. If $C \cap \mathbb{R}^N_{++} = \emptyset$, then there exists $p \ge 0$ with $p \ne 0$ such that

$$p \cdot x \leq 0$$
 for all $x \in C$.

• Let
$$A = C - \mathbb{R}^N_{++}$$
.

Since C and \mathbb{R}^N_{++} are convex, A is also convex.

Since
$$C \cap \mathbb{R}^N_{++} = \emptyset$$
, $0 \notin A$.

▶ Thus by the Supporting Hyperplane Theorem, there exists $p \in \mathbb{R}^N$ with $p \neq 0$ such that

$$p \cdot z \leq p \cdot 0$$
 for all $z \in A$.

Since $A - \mathbb{R}^N_{++} \subset A$, we have $p \ge 0$ by Lemma 7.9.

We have

$$p \cdot x \leq p \cdot y$$
 for all $x \in C$ and $y \in \mathbb{R}^N_{++}$.

Letting $y \to 0$, we have $p \cdot x \leq 0$ for all $x \in C$.

Separation with Nonnegative/Positive Vectors

Proposition 7.11

Suppose that $C \subset \mathbb{R}^N$, $C \neq \emptyset$, is convex and closed. If $C \cap \mathbb{R}^N_+ = \{0\}$, then there exist $p \gg 0$ and $c \ge 0$ such that

$$p \cdot x \leq c$$
 for all $x \in C$.

- Let $\Delta = \{x \in \mathbb{R}^N_+ \mid x_1 + \dots + x_N = 1\}.$
- C is convex and closed and Δ is convex and compact.

Since
$$C \cap \mathbb{R}^N_+ = \{0\}$$
, $C \cap \Delta = \emptyset$.

▶ Thus by Proposition 7.8, there exist $p \in \mathbb{R}^N$ with $p \neq 0$ and $c \in \mathbb{R}$ such that

$$p \cdot x \leq c for all $x \in C$ and $y \in \Delta$,$$

where $c \ge 0$ since $0 \in C$.

For each n, since $e_n \in \Delta$, we have $0 \le c .$

Efficient Production

Let $Y \subset \mathbb{R}^N$ be the production set of a firm.

Definition 7.1

A production vector y ∈ Y is efficient if there is no y' ∈ Y such that y' ≥ y and y' ≠ y.

▶ $y \in Y$ is weakly efficient if there is no $y' \in Y$ such that $y' \gg y$.

•
$$y$$
: efficient $\Rightarrow y$: weakly efficient

Proposition 7.12

Suppose that Y is convex. Then for any weakly efficient production vector $\bar{y} \in Y$, there exists $p \ge 0$ with $p \ne 0$ such that

 $p \cdot \bar{y} \ge p \cdot y$ for all $y \in Y$.

Proof

• Let
$$\bar{y} \in Y$$
 be weakly efficient.

▶ Then
$$(Y - \{\bar{y}\}) \cap \mathbb{R}^N_{++} = \emptyset$$
, where $Y - \{\bar{y}\}$ is convex.

Thus by Proposition 7.10, there exists p ≥ 0 with p ≠ 0 such that p ⋅ z ≤ 0 for all z ∈ Y − {ȳ}, or p ⋅ y ≤ p ⋅ ȳ for all y ∈ Y.

From Profit Function to Production Set

▶ Let $Y \subset \mathbb{R}^N$, $Y \neq \emptyset$, be the production set of a firm, and let $\phi_Y : \mathbb{R}^N \to (-\infty, \infty]$ be the support function of Y:

 $\phi_Y(p) = \sup_{y \in Y} p \cdot y.$

Suppose that Y is convex and closed.

Then, as we have seen,

$$Y = \{ y \in \mathbb{R}^N \mid p \cdot y \le \phi_Y(p) \text{ for all } p \in \mathbb{R}^N \}.$$

What additional assumptions are needed to recover Y from the profit function, which is defined only for nonnegative, or positive, price vectors (where we allow the profit function to take values in (-∞, ∞])?

- Free disposal: $Y \mathbb{R}^N_+ \subset Y$.
- No free production: $Y \cap \mathbb{R}^N_+ \subset \{0\}$.
- The ability to shut down: $0 \in Y$.

Proposition 7.13

1. If Y is nonempty, convex, and closed and satisfies free disposal, then

$$Y = \{ y \in \mathbb{R}^N \mid p \cdot y \le \phi_Y(p) \text{ for all } p \in \mathbb{R}^N_+ \}.$$

2. If Y is nonempty, convex, and closed and satisfies free disposal, no free production, and the ability to shut down, then

$$Y = \{ y \in \mathbb{R}^N \mid p \cdot y \le \phi_Y(p) \text{ for all } p \in \mathbb{R}^N_{++} \}.$$

1

- ▶ $Y \subset (\mathsf{RHS})$: Immediate.
- ▶ $Y^{c} \subset (\mathsf{RHS})^{c}$: Suppose that $\bar{y} \notin Y$.
- \blacktriangleright Since Y is nonempty, convex, and closed, there exist $\bar{p} \neq 0$ and c such that

$$\bar{p} \cdot y \leq c < \bar{p} \cdot \bar{y}$$
 for all $y \in Y$,

and hence $\phi_Y(\bar{p}) < \bar{p} \cdot \bar{y},$ by the Separating Hyperplane Theorem.

- Since Y satisfies free disposal, i.e., Y − ℝ^N₊ ⊂ Y (which implies Y − ℝ^N₊₊ ⊂ Y), we have p

 ≥ 0 by Lemma 7.9.
- ► Hence, $\bar{y} \notin (RHS)$.

2

- $Y \subset (\mathsf{RHS})$: Immediate.
- $Y^{c} \subset (\mathsf{RHS})^{c}$: Suppose that $\bar{y} \notin Y$.
- ▶ Since Y is nonempty, convex, and closed and satisfies free disposal, there exist $p^1 \neq 0$ with $p^1 \geq 0$ and c_1 such that

$$p^1 \cdot y \le c_1 < p^1 \cdot \overline{y}$$
 for all $y \in Y$.

Since $Y \cap \mathbb{R}^N_+ = \{0\}$ by no free production and the ability to shut down, by Proposition 7.11 there exist $p^2 \gg 0$ and c_2 such that

$$p^2 \cdot y \leq c_2$$
 for all $y \in Y$.

• Let $\varepsilon > 0$ be small enough that $c_1 + \varepsilon c_2 < p^1 \cdot \bar{y} + \varepsilon p^2 \cdot \bar{y}$.

► Then we have

$$(p^1 + \varepsilon p^2) \cdot y \leq c_1 + \varepsilon c_2 < (p^1 + \varepsilon p^2) \cdot \bar{y} \text{ for all } y \in Y,$$

and hence, $\phi_Y(p^1 + \varepsilon p^2) < (p^1 + \varepsilon p^2) \cdot \bar{y}$. where $p^1 + \varepsilon p^2 \gg 0$.
• Hence, $\bar{y} \notin (\mathsf{RHS})$.

Subgradients and Subdifferentials

Let $X \subset \mathbb{R}^N$ be a non-empty convex set.

Definition 7.2

For a function $f \colon X \to \mathbb{R}$ and $\bar{x} \in X$, if

 $f(x) \le f(\bar{x}) + p \cdot (x - \bar{x})$

holds for all $x \in X$, then

• $p \in \mathbb{R}^N$ is called a *subgradient* of f at \bar{x} ,

▶ the set of all subgradients of f at \bar{x} , denoted by $\partial f(\bar{x})$, is called the *subdifferential* of f at \bar{x} , and

• the correspondence $x \mapsto \partial f(x)$ is called the subdifferential of f.

(Usually a subgradient is defined to be p that satisfies the converse inequality, and sometimes p that satisfies the above inequality is called a *supergradient*.)

Subgradients and Subdifferentials

Let $X \subset \mathbb{R}^N$ be a non-empty convex set.

Proposition 7.14

Suppose that $f: X \to \mathbb{R}$ is concave. If $\bar{x} \in \text{Int } X$ and f is differentiable at \bar{x} , then $\partial f(\bar{x}) = \{\nabla f(\bar{x})\}$.

Proposition 7.15

Suppose that $f: X \to \mathbb{R}$ is concave. Then $\partial f(\bar{x}) \neq \emptyset$ for all $\bar{x} \in \text{Int } X$.

Fact 2

Suppose that $f: X \to \mathbb{R}$ is concave. If $\partial f(\bar{x}) = \{p\}$, then f is differentiable at \bar{x} (and $p = \nabla f(\bar{x})$).

Proof of Proposition 7.15

- Let $f: X \to \mathbb{R}$ be a concave function, and let $\bar{x} \in \operatorname{Int} X$.
- ▶ hyp *f* is convex by the concavity of *f*.
- We also have $(\bar{x}, f(\bar{x})) \notin \operatorname{Int}(\operatorname{hyp} f)$.
- ▶ Thus by the Supporting Hyperplane Theorem, there exists $(p,q) \in \mathbb{R}^N \times \mathbb{R}$ with $(p,q) \neq (0,0)$ such that

 $p \cdot x + qy \ge p \cdot \overline{x} + q(f(\overline{x}))$ for all $(x, y) \in \text{hyp } f$.

- We must have q < 0:
 - If q > 0, as $y \to -\infty$ the inequality would be violated.
 - If q = 0, we would have $p \neq 0$ and $p \cdot x \ge p \cdot \overline{x}$ for all $x \in X$, where $\overline{x} \in \text{Int } X$.

Letting $x=\bar{x}-\varepsilon p$ for sufficiently small $\varepsilon>0$ leads to a contradiction.

So that we may let q = -1.

$$p \cdot x - f(x) \ge p \cdot \bar{x} - f(\bar{x})$$
 for all $x \in X$,

or

$$f(x) \le f(\bar{x}) + p \cdot (x - \bar{x})$$
 for all $x \in X$,

which means that $p \in \partial f(\bar{x})$.