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In these notes, we study the theory of set-valued dynamical systems, with applica-

tions in mind to population game dynamics, especially to the best response dynamics

(Gilboa and Matsui (1991) and Hofbauer (1995)) and the sampling best response dy-

namics (Oyama et al. (2009, OST henceforth)). These classes of dynamics are defined

by differential inclusions, and they naturally induce set-valued dynamical systems. In

Section 1, we consider a specific class of differential inclusions relevant for our applica-

tions and present the existence and key properties of their solutions. In Sections 2–6, we

review stability concepts defined through a set-valued dynamical system. These sections

are based on Benäım et al. (2005, BHS henceforth), while here we only allow for systems

with forward time. Section 7 and Section 8 present theorems that play important roles

in the study of the sampling best response dynamics in OST. In Section 7, we prove the

transitivity property of asymptotic stability for nested sets, where we extend the result

by Conley (1978) to set-valued dynamical systems that are defined only for forward

time. Section 8 contains a result on the partial order of solutions to dynamical systems

satisfying a certain monotonicity property that corresponds to the supermodularity in

games. Definitions and theorems about correspondences and function spaces that are

needed along our study are available in the Appendix.

1 Differential Inclusions

A differential inclusion is an expression of the form

ẋ ∈ F (x),

where F is a correspondence (set-valued map). Given our applications to population

game dynamics, we restrict our attention to the following class of differential inclusions

on a nonempty convex compact set X ⊂ Rn:

ẋ ∈ G(x)− x, (DI)

where G : X → X is a correspondence that satisfies the following properties:
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(i) G is nonempty-valued;

(ii) G is convex-valued;

(iii) G has a closed graph.

Since X is compact, property (iii) is equivalent to the following:

(iii′) G is compact-valued and upper semi-continuous.

A solution to (DI) with initial condition ξ ∈ X is a Lipschitz function x : [0,∞) → X

such that x(0) = ξ and

ẋ(t) + x(t) ∈ G(x(t))

for almost all t ≥ 0. We show the existence of solutions for this particular class, and

study their properties.

Let L = max{|a − b| | a, b ∈ X}, and let CL be the set of Lipschitz continuos

functions from [0,∞) to X with Lipschitz constant L. Solutions to (DI) are contained in

CL. Denote by C the space of bounded continuous functions from [0,∞) to Rn equipped

with the topology of uniform convergence on compact intervals. This space is a complete

normed space (i.e., a Banach space) with the norm

∥x∥ =

∞∑
k=1

1

2k
sup

t∈[0,k]
|x(t)|,

or

∥x∥ = sup
t∈[0,∞)

e−rt|x(t)|, r > 0.

Then CL is a compact subset of C; see Appendix C.

For the differential inclusion (DI), we have the following.

Theorem 1.1. For each ξ ∈ X, there exists a solution to (DI) with initial condition ξ.

The set of solutions to (DI) is compact in C.

Proof. See Appendix E.

Given the solutions to (DI), define the correspondence Φ: [0,∞)×X → X by

Φt(ξ) = {x(t) ∈ X | x ∈ CL is a solution to (DI) with x(0) = ξ}. (1.1)

Proposition 1.2. Φ satisfies the following properties.

(0) Φt(ξ) ̸= ∅ for all t ≥ 0 and all ξ ∈ X;

(1) Φ0(ξ) = {ξ} for all ξ ∈ X;

(2) Φt(Φs(ξ)) = Φt+s(ξ) for all t, s ≥ 0 and all ξ ∈ X; and

(3) Φ is compact-valued and upper semi-continuous.
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2 Set-Valued Dynamical Systems

Let X be a nonempty compact subset of Rn. A set-valued dynamical system is a corre-

spondence Φ: [0,∞)×X → X such that

(0) Φt(ξ) ̸= ∅ for all t ≥ 0 and all ξ ∈ X;

(1) Φ0(ξ) = {ξ} for all ξ ∈ X;

(2) Φt(Φs(ξ)) = Φt+s(ξ) for all t, s ≥ 0 and all ξ ∈ X; and

(3) Φ is compact-valued and upper semi-continuous.

For I ⊂ [0,∞) and A ⊂ X, we write

Φt(A) =
∪
ξ∈A

Φt(ξ), ΦI(ξ) =
∪
t∈I

Φt(ξ), and ΦI(A) =
∪
t∈I

∪
ξ∈A

Φt(ξ).

As we have seen in the previous section, the differential inclusion (DI) induces a

set-valued dynamical system by (1.1). In what follows, we study a general set-valued

dynamical system, which may or may not be induced by a differential inclusion; all the

results are derived from the key properties (0)–(3).

Lemma 2.1. For any compact interval I ⊂ [0,∞), ξ 7→ ΦI(ξ) is compact-valued and

upper semi-continuous.

For any compact set A ⊂ X, t 7→ Φt(A) is compact-valued and upper semi-continuous.

Let Φ−1 : [0,∞)×X → X be the correspondence defined by

Φ−1
t (z) = {ξ ∈ X | z ∈ Φt(ξ)}.

Note that Φ−1
t (z) may be empty in general, while Φ−1

t (z) ̸= ∅ whenever z ∈ Φt′(ξ) for

some t′ > t and ξ ∈ X, as there must be some y ∈ Φt′−t(ξ) such that z ∈ Φt(y), or

y ∈ Φ−1
t (z).

Proposition 2.2. Φ−1 is compact-valued and upper semi-continuous.

Proof. Φ−1 has a closed graph, and its codomain X is compact.

We will in particular use the following.

Corollary 2.3. Φ−1
t (z) is upper semi-continuous in t at t = 0.

While this is a corollary to the upper semi-continuity of Φ−1, one may directly prove

it as follows: Let V be an open neighborhood of Φ−1
0 (z) = {z}. Then X \ {z} is a

neighborhood of X \ V = Φ0(X \ V ). By the upper semi-continuity of Φt(X \ V ) in t at

t = 0, there exists δ > 0 such that Φ[0,δ)(X \ V ) ⊂ X \ {z}. Then for any s ∈ [0, δ), if

ξ ∈ Φ−1
s (z), or z ∈ Φs(ξ), then we must have ξ /∈ X \ V , i.e., ξ ∈ V .

Corollary 2.4. Suppose that z ∈ Φt0(ξ) for t0 > 0. Then for any neighborhood V of z,

there exists δ ∈ (0, t0] such that for any s ∈ (0, δ) and for any y ∈ Φt0−s(ξ) such that

z ∈ Φs(y), we have y ∈ V .
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Proof. Since V is a neighborhood of {z} = Φ−1
0 (z), by the upper semi-continuity of

Φ−1
t (z) in t at t = 0 there exists δ ∈ (0, t0] such that Φ−1

s (z) ⊂ V for all s ∈ (0, δ). Then

for any s ∈ (0, δ) and for any y ∈ Φt0−s(ξ) such that z ∈ Φs(y), we have y ∈ V .

3 Invariant Sets and Limit Sets

Definition 3.1. A set A ⊂ X is strongly positively invariant if Φt(A) ⊂ A for all t ≥ 0.

Remark 3.1. In BHS, where Φ is induced by a differential inclusion, A is said to be

invariant if for every ξ ∈ A, there exists a complete trajectory x (i.e., a solution defined

for positive and negative time) of the differential inclusion such that x(0) = ξ and

x(R) ⊂ A. Note, in contrast, that in our setting, Φ is the primitive, and it is defined

only for nonnegative time.

For ξ ∈ X, define

ω(ξ) =
∩
t≥0

Φ[t,∞)(ξ),

and for A ⊂ X,

ω(A) =
∩
t≥0

Φ[t,∞)(A).

Since X is compact, ω(A) ̸= ∅ whenever A ̸= ∅ (Exercise 3.1). Note that z ∈ ω(A) if

and only if there exist {tn} ⊂ [0,∞), {zn} ⊂ X, and {ξn} ⊂ A such that zn ∈ Φtn(ξn),

and tn → ∞ and zn → z as n → ∞. Clearly, ω(A) ⊂ ω(B) if A ⊂ B, but in general∪
ξ∈A ω(ξ) ̸= ω(A).

Example 3.1. Let X = [0, 1], and consider ẋ = x(1− x).1 For any 0 < a ≤ b, ω([a, b]) =

{1} and ω((0, b]) = [0, 1], while
∪

ξ∈(0,1] ω(ξ) = {1}.

Exercise 3.1. Let X be a compact topological space, and {Cλ}λ∈Λ a family of closed

subsets of X. If for any finite subset {λ1, . . . , λn} of Λ,
∩n

i=1Cλi
̸= ∅ (in which case

{Cλ}λ∈Λ to said to have the finite intersection property), then
∩

λ∈ΛCλ ̸= ∅. Find a

counter-example when the compactness of X is dropped.

Lemma 3.1. Let A,B ⊂ X.

(1) ω(A) ⊂ Φt(ω(A)) for all t ≥ 0.

(2) ω(A) ⊂ ω(ω(A)).

(3) If ω(A) ⊂ B, then ω(A) ⊂ ω(B).

1We have Φt(ξ) = {0} if ξ = 0 and Φt(ξ) =
{
1/

[
1+ ((1− ξ)/ξ)e−t

]}
if ξ > 0 (consider differentiating

log[x/(1− x)]).
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Proof. Let z ∈ ω(A), and fix any t ≥ 0. By definition, there exist {tn} → ∞ and {zn}
such that zn ∈ Φtn(A) and zn → z. For each n such that tn ≥ t, since zn ∈ Φt(Φtn−t(A)),

there exists ξn ∈ X such that

ξn ∈ Φtn−t(A) (3.1)

and

zn ∈ Φt(ξn). (3.2)

By the compactness of X, there exists a convergent subsequence with limit ξ ∈ X. From

(3.1) we have ξ ∈ ω(A), and from (3.2) we have z ∈ Φt(ξ) by the upper semi-continuity

of Φt. Thus, we have z ∈ Φt(ω(A)) as desired.

In general, Φt(ω(A)) ̸⊂ ω(A), i.e., ω(A) may not be strongly positively invariant; see

Example 3.7 in BHS.

Exercise 3.2. For any z ∈ ω(A), Φt(z) ∩ ω(A) ̸= ∅ for all t ≥ 0.

Thus, if Φ is single-valued, then ω(A) = Φt(ω(A)) for all t ≥ 0, and hence ω(ω(A)) =

ω(A).

Exercise 3.3. If A ⊂ B and ω(B) = A, then ω(A) = A.

If ω(A) = A, then Φt(A) = A for all t ≥ 0.

4 Attracting Sets

For A ⊂ X, denote

N ε(A) = {ξ ∈ X | |ξ − a| < ε for some a ∈ A}.

Definition 4.1. A set A ⊂ X is an attracting set if it is a compact set and there exists

a neighborhood U of A such that for any ε > 0, there exists tε > 0 such that

Φ[tε,∞)(U) ⊂ N ε(A). (4.1)

Such a set U is called a fundamental neighborhood of A.2

Exercise 4.1. If attracting set A is a singleton, then it is strongly positively invariant.

(This follows from Proposition 4.1 and Exercise 3.3, but show it from the definition.)

Example 4.1. LetX = [0, 1], and consider ẋ = x(1−x). For any 0 < a ≤ b, ω([a, b]) = {1}
and ω((0, b]) = [0, 1], while

∪
x∈(0,1] ω(x) = {1}.

Any compact set that contains 1 is an attracting set, while any [a, 1] is asymptotically

stable; recall that we require only forward invariance for asymptotic stability. When

a > 0, a fundamental neighborhood must be a proper subset of (0, 1].
2In BHS, A is said to be an attractor if in addition A is invariant, whereas we will not use this

concept.
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Proposition 4.1. Let A be a nonempty compact subset of X, and U a neighborhood of

A. Then A is an attracting set with fundamental neighborhood U if and only if ω(U) ⊂ A.

The compactness condition is indispensable. Let X = (0, 1] and consider ẋ = −x.

Then, for any x ∈ (0, 1] and any neighborhood U of x, we have ω(U) = ∅. For another

example, let X = [0,∞) and consider ẋ = x(x − 1). Consider A = {0} ∪ {2}. For any

neighborhood U of A that does not intersect a neighborhood of 1, we have ω(U) = {0},
but A is not an attracting set.

Proof. If A is an attracting set with fundamental neighborhood U , then

ω(U) ⊂
∩
ε>0

N ε(A) = A = A.

Conversely, for t ≥ 0, Vt = Φ[t,∞)(U) defines a decreasing family of closed subsets of

a compact set X such that
∩

t≥0 Vt = ω(U). Hence,
∩

t≥0 Vt ⊂ A implies that for any

ε > 0, there exists tε such that Vtε ⊂ N ε(A) (Exercise 4.2).

Remark 4.1. By the characterization given by BHS (Proposition 3.10(ii)), one may define

an attractor to be a compact set A such that ω(U) = A for some neighborhood U of A.

Exercise 4.2. Let {Vt}t≥0 be a family of closed subsets of a compact topological space

X such that Vt ⊃ Vs if t < s. Let U be an open set such that
∩

t≥0 Vt ⊂ U . Then there

exists t′ such that Vt′ ⊂ U .

5 Asymptotic Stability

Definition 5.1. A set A ⊂ X is Lyapunov stable if for any neighborhood V of A, there

exists a neighborhood U of A such that

Φ[0,∞)(U) ⊂ V. (5.1)

A is attractive if there exists a neighborhood U of A such that∪
x∈U

ω(x) ⊂ A. (5.2)

If U = X, then A is said to be globally attractive. A is asymptotically stable if it is

attractive and Lyapunov stable.3

Theorem 5.1. A compact set A is attracting and strongly positively invariant if and

only if it is asymptotically stable.

If a compact set A is asymptotically stable and if U is a neighborhood of A such that∪
x∈U ω(x) ⊂ A, then any compact neighborhood of A contained in U is a fundamental

neighborhood of A.
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This theorem follows from the following lemmas.

Lemma 5.2. If a set A is attracting, then it is attractive.

Proof. Follows from Proposition 4.1.

Lemma 5.3. If a closed set A is Lyapunov stable, then it is strongly positively invariant.

Proof. For each ε > 0, there is a neighborhood of A, Vε, such that Φ[0,∞)(Vε) ⊂ N ε(A),

so that Φ[0,∞)(A) ⊂ N ε(A). By the closedness of A, we have Φ[0,∞)(A) ⊂
∩

ε>0N
ε(A) =

A = A.

Lemma 5.4. If a compact set A is asymptotically stable and if U is a neighborhood of A

such that
∪

x∈U ω(x) ⊂ A, then A is an attracting set of which any compact neighborhood

contained in U is a fundamental neighborhood.

Proof. Let B be any compact neighborhood of A contained in U . Let W be any neigh-

borhood of A. We want to show that there exists T such that Φ[T,∞)(B) ⊂ W .

By the Lyapunov stability of A, we can take an open neighborhood V of A such that

Φ[0,∞)(V ) ⊂ W . By the attractiveness of A, for each x ∈ U there exists tx such that

Φtx(x) ∈ V , and hence Φ[tx,∞)(x) ⊂ W by the Lyapunov stability. By the upper semi-

continuity of Φtx(·), each x ∈ B has an open neighborhood Nx such that Φtx(Nx) ⊂ V .

By the compactness of B, there are finitely many x1, . . . , xm such that Nx1 ∪ · · · ∪
Nxm ⊃ B. Let T = max{tx1 , . . . , txm}. Then for i = 1, . . . ,m, we have Φ[T,∞)(Nxi) ⊂
Φ[txi ,∞)(Nxi) = Φ[0,∞)(Φtxi

(Nxi)) ⊂ Φ[0,∞)(V ) ⊂ W , as desired.

Lemma 5.5. If a set A is attracting and strongly positively invariant, then it is Lyapunov

stable.

Proof. Let V be any neighborhood of A. We want to show that there exists a neighbor-

hood W of A such that Φ[0,∞)(W ) ⊂ V .

Let U be a fundamental neighborhood of A. Since A is compact, there exists ε > 0

such that N ε(A) ⊂ V (Exercise 5.1). By the attraction of A, there exists T such that

Φ[T,∞)(U) ⊂ N ε(A) ⊂ V . By the strong positive invariance of A, we have Φ[0,T ](A) ⊂ A.

By the upper semi-continuity of Φ[0,T ], there exists a neighborhood W of A such that

3BHS require that A be also invariant to be asymptotically stable, whereas we do not.
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Φ[0,T ](W ) ⊂ V and W ⊂ U . By the choice of T , we have Φ[T,∞)(W ) ⊂ V . Hence, we

have Φ[0,∞)(W ) ⊂ V , as desired.

Exercise 5.1. Let A be a compact subset of a metric space, and V an open set containing

A. Then there exists ε > 0 such that N ε(A) ⊂ V . Find a counter example when the

compactness is dropped.

6 Lyapunov Functions

Theorem 6.1. Let Λ ⊂ X be a compact set, U an open neighborhood of Λ, and V : U →
R a continuous function. Assume that the following conditions hold:

(i) U is strongly positively invariant;

(ii) argmaxx∈U V (x) = Λ; and

(iii) V (y) > V (x) for all x ∈ U \ Λ, y ∈ Φt(x), and t > 0.

Then Λ is asymptotically stable.

Proof. In light of Theorem 5.1, it is sufficient to show that Λ is Lyapunov stable and

attracting. Let M = maxx∈U V (x), and for r > 0, let Ur = {x ∈ U | V (x) > M − r}.
Then {U r}r>0 defines a decreasing family of closed subsets of a compact set U such that∩

r>0 U r = Λ, so that there is some r̄ > 0 such that U r ⊂ U for all r < r̄. We first show

that for any r < r̄, we have Φt(U r) ⊂ U r for all t ≥ 0.

Let r < r̄, and fix any t > 0. Let α ∈ R, z ∈ U , and t′ ∈ [0, t] be such that

α = minx∈Φ[0,t](Ur)
V (x), V (z) = α, and z ∈ Φt′(U r), which are well defined by the

compactness of Φ[0,t](U r) and the continuity of V . If α < M−r, and hence z ∈ U \U r ⊂
U \Λ and t′ > 0, then by Corollary 2.4, there exist s ∈ (0, t′) and y ∈ Φt′−s(U r)∩ (U \Λ)
such that z ∈ Φs(y), which implies that V (y) < V (z), contradicting the assumption that

z minimizes V on Φ[0,t](U r). Thus, α ≥ M − r and hence Φ[0,t](U r) ⊂ U r.

It thus follows that for any r < r̄, Φ[0,∞)(U r) ⊂ U r, which implies that Λ is Lyapunov

stable, since for any neighborhood W of Λ, there is some r < r̄ such that U r ⊂ W , for

which we have Φ[0,∞)(U r) ⊂ U r ⊂ W .

It remains to show that Λ is attracting. Fix any r < r̄, and let A = ω(U r) ⊂ U r ⊂ U .

Let β = minx∈A V (x) be reached at z ∈ A ⊂ U . If β < M and hence z ∈ U \ Λ, then
by the upper semi-continuity of Φ−1

t (z) in t at t = 0, there exists some s > 0 such that

Φ−1
s (z) ⊂ U \ Λ. By Lemma 3.1, z ∈ Φs(y) for some y ∈ A, but for such a y we have

y ∈ U \Λ and therefore V (y) < V (z), which contradicts the assumption that z minimizes

V on A. Thus, β = M and hence A = ω(U r) ⊂ Λ, which implies that Λ is attracting by

Proposition 4.1.
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7 Transitivity Theorem

For Y,Z ⊂ X with Z ⊂ Y , we say that Z is asymptotically stable in Y if Y is strongly

positively invariant and Z is asymptotically stable with respect to Φ|Y , the restriction

of Φ to Y . We say that Y ⊂ X is strongly negatively invariant if Φ−1
t (Y ) ⊂ Y for all

t ≥ 0, where Φ−1
t (Y ) is the upper inverse image of Y under Φt, i.e.,

Φ−1
t (Y ) = {ξ ∈ X | Φt(ξ) ⊂ Y }.

Theorem 7.1 (Transitivity Theorem). Let Y, Z ⊂ X be compact sets with Z ⊂ Y . If

Y is strongly negatively invariant and asymptotically stable (in X) and if Z is asymp-

totically stable in Y , then Z is asymptotically stable (in X).

The proof is a modification of that of 5.3.D in Conley (1978) to the case of set-valued

dynamical systems defined only for forward time.

Proof. Let UY be a fundamental neighborhood of Y in X (so that ω(UY ) ⊂ Y by

Proposition 4.1 and Theorem 5.1), and UZ a fundamental neighborhood of Z in Y (so

that ω(UY ) ⊂ Z). Let U be a compact neighborhood of Z in X such that U ⊂ UY and

U ∩ Y ⊂ UZ .

Claim 1. For all z ∈ ∂ U , there exists tz > 0 such that Φ−1
t (z) ∩ U = ∅ for all t ≥ tz.

Proof. Suppose not. Then there exist z ∈ ∂ U and a sequence {tn} → ∞ such that

Φ−1
tn (z) ∩ U ̸= ∅. Let {ξn} be such that, for each n, ξn ∈ Φ−1

tn (z) ∩ U , i.e., z ∈ Φtn(ξn)

and ξn ∈ U . If z ∈ ∂ U \ Y , then, since {ξn} ⊂ U ⊂ UY , we have z ∈ ω(UY ), which

contradicts ω(UY ) ⊂ Y . If z ∈ ∂ U ∩ Y , then, since {ξn} ⊂ Y by the strong negative

invariance of Y and hence {ξn} ⊂ U ∩ Y ⊂ UZ , we have z ∈ ω(UZ), which contradicts

ω(UZ) ⊂ Z.

Since Φ−1
t is upper semi-continuous for any t, for each z ∈ ∂ U there exists an open

neighborhood Vz of z such that Φ−1
tz (z′) ⊂ U c for all z′ ∈ Vz, where tz is as in Claim 1.

Since ∂ U is compact, there are z1, . . . , zN ∈ ∂ U such that
∪

i Vzi ⊃ ∂ U . Thus, if

z ∈ ∂ U , then for some zi, z ∈ Vzi and Φ−1
tiz

(z) ⊂ U c. Let T = maxi tzi .

Claim 2. For all ξ ∈ U , if Φ[0,T ](ξ) ⊂ U , then Φ[0,∞)(ξ) ⊂ U .

Proof. Suppose that Φ[0,T ](ξ) ⊂ U . Let t′ = sup{t | Φ[0,t](ξ) ⊂ U} (≥ T ). Assume that

t′ < ∞. Then we have Φt′(ξ) ⊂ U = U by the lower semi-continuity of Φt(ξ) in t (see

Corollary 2.4) and the closedness of U , and thus Φ[t′−T,t′](ξ) ⊂ U . If Φt′(ξ) ∩ ∂ U ̸= ∅,
then for any z ∈ Φt′(ξ) ∩ ∂ U , we have Φ−1

tiz
(z) ⊂ U c (where zi is such that z ∈ Vzi) and

hence Φt−tiz
(ξ) ∩ U c ̸= ∅, which is a contradiction. Therefore Φt′(ξ) ∩ ∂ U = ∅, which

implies that Φt′+ε(ξ) ⊂ U for some ε > 0 by the upper semi-continuity, but then t′ could

not be the supremum as defined. Hence, t′ = ∞.
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Let U0 be the upper inverse image of U under the correspondence Φ[0,T ](·), i.e.,

U0 = {ξ ∈ X | Φ[0,T ](ξ) ⊂ U}. Note that U0 ⊂ U . Since Z is strongly positively

invariant, we have Φ[0,T ](Z) ⊂ Z ⊂ U . Therefore, by the upper semi-continuity of

Φ[0,T ](·), U0 is a neighborhood of Z in X.

Now, by Claim 2, we have Φ[0,∞)(U
0) ⊂ U = U , and hence, ω(U0) ⊂ U by the

closedness of U . Since U0 ⊂ UY , ω(U
0) ⊂ ω(UY ) ⊂ Y by the attraction of Y . Thus,

ω(U0) ⊂ U ∩ Y ⊂ UZ . Therefore, we have ω(U0) ⊂ ω(UZ) ⊂ Z by Lemma 3.1 and the

attraction of Z in Y , and hence Z is an attracting set in X by Lemma 4.1. Since Z is

strongly positively invariant, it follows from Lemma 5.1 that Z is asymptotically stable

in X.

8 Comparison Theorem

Let X ⊂ Rn be partially ordered by the usual vector order ≤. The following is from

Walter (1970).

Theorem 8.1 (Comparison Theorem). Let f : X → Rn be a Lipschitz continuous func-

tion such that fi(x) is nondecreasing in xj for all j ̸= i. If absolutely continuous functions

y, z : [0,∞) → X satisfy y(0) ≪ z(0), ẏ(t) ≤ f(y(t)), and ż(t) ≥ f(z(t)) for almost all

t ≥ 0, then y(t) ≪ z(t) for all t ≥ 0.

Proof. Let T = sup{t ≥ 0 | y(s) ≪ z(s) for all s ∈ [0, t)}, where T > 0 by the continuity

of y and z. Suppose by way of contradiction that T < ∞. Then z(t) − y(t) ≥ 0 for all

t ∈ [0, T ] and zi(T )− yi(T ) = 0 for some i. For any such i,

d

dt
(zi(t)− yi(t)) ≥ fi(z(t))− fi(y(t))

≥ fi(y1(t), . . . , yi−1(t), zi(t), yi+1(t), . . . , yn(t))− fi(y(t))

≥ −K(zi(t)− yi(t))

for almost all t ∈ [0, T ], where the second inequality follows from the assumption that

∂fi/∂xj ≥ 0 ≥ 0 for all j ̸= i, and the third from the Lipschitz continuity of f with

Lipschitz constant K > 0. Then we have

d

dt
eKt(zi(t)− yi(t)) ≥ 0

for almost all t ∈ [0, T ], and then integrate both sides to obtain

zi(T )− yi(T ) ≥ e−KT (zi(0)− yi(0)).

But since the right hand side of this inequality is positive, we have a contradiction to

the definition of T .

This theorem has the following implication. Let Φ: X → X and φ : X → X be

the set-valued and point-valued dynamical systems induced by a differential inclusion
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ẋ ∈ F (x) and a differential equation ẋ = f(x), respectively, where we assume that

f is Lipschitz continuous and that Φ satisfies properties (0)–(3). To be concrete, let

X = {ξ ∈ Rn | 0 ≤ ξn ≤ · · · ≤ ξ1 ≤ 1} as in the application in OST. Note that

0 = minX.

Proposition 8.2. Suppose that y ≤ f(x) for all x ∈ X and all y ∈ F (x) and that fi(x)

is nondecreasing in xj for all j ̸= i. If 0 is asymptotically stable under φ, then it is

asymptotically stable also under Φ.

Proof. In light of Theorem 5.1 and Exercise 4.1, it suffices to show that the singleton

set {0} is attracting. Let ξ ∈ X be such that ξ ≫ 0 and φt(ξ) → minX as t → ∞. Let

U = {z ∈ X | z ≪ ξ}, which is a neighborhood of 0 (relative to X). By Theorem 8.1, for

all z ∈ Φt(U), z ≤ φt(ξ) for all t ≥ 0. Given any ε > 0, let tε be such that ϕt(ξ) ∈ N ε(0)

for all t ≥ tε. Then we have Φ[tε,∞)(U) ⊂ N ε(0) as desired.

9 Sampling Best Response Dynamics

See OST.

Appendix

A Compact Sets in Metric Spaces

Proposition A.1. A compact subset of a metric space is closed and bounded.

Proposition A.2. Let K be a subset of a metric space. The following conditions are

equivalent:

(1) K is compact.

(2) K is sequentially compact.

(3) K is totally bounded and complete.

Proposition A.3. A closed subset of a complete metric space is complete.

Exercise A.1. Let (X, d) be a compact metric space, and letX∞ =
∏∞

k=1X be endowed

with the distance D(x,y) = supk
1
2k
d(xk, yk), where x = (x1, x2, . . . ),y = (y1, y2, . . . ) ∈

X∞. Then (X∞, D) is a compact metric space. (Show this without using the Tychonoff

theorem.)

B Continuity of Correspondences

Let X and Y be topological spaces. A correspondence F : X → Y is a mapping that

associates with each x ∈ X a subset F (x) ⊂ Y . Recall that a set U is a neighborhood

of a set A if there exists an open set V such that A ⊂ V ⊂ U .
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Definition B.1. A correspondence F : X → Y is upper semi-continuous at x ∈ X if for

any neighborhood V of F (x), there exists a neighborhood U of x such that F (U) ⊂ V .

F is upper semi-continuous if F is upper semi-continuous at all x ∈ X.

A correspondence F : X → Y is lower semi-continuous at x ∈ X if for any open set

V such that F (x) ∩ V ̸= ∅, there exists a neighborhood U of x such that F (z) ∩ V ̸= ∅
for all z ∈ U . F is lower semi-continuous if F is lower semi-continuous at all x ∈ X.

For V ⊂ Y , we denote

F−1(V ) = {x ∈ X | F (x) ⊂ V },
F−1(V ) = {x ∈ X | F (x) ∩ V ̸= ∅}.

F−1(V ) is called the upper inverse image (or strong inverse image) of V under F , while

F−1(V ) is called the lower inverse image (or weak inverse image) of V under F . Verify

that F−1(V ) = X \ F−1(Y \ V ) and F−1(V ) = X \ F−1(Y \ V ), and F−1(
∩

λ Vλ) =∩
λ F

−1(Vλ) and F−1(
∪

λ Vλ) =
∪

λ F−1(Vλ).

Proposition B.1. Let X and Y be topological spaces. A correspondence F : X → Y is

upper (lower, resp.) semi-continuous if and only if F−1(V ) is open (closed, resp.) for

any open (closed, resp.) subset V of Y .

A correspondence F : X → Y is upper (lower, resp.) semi-continuous if and only if

F−1(V ) is closed (open, resp.) for any closed (open, resp.) subset V of Y .

Proposition B.2. Let X and Y be topological spaces, and F : T ×X → Y a compact-

valued upper semi-continuous correspondence. Then for any compact set A ⊂ X, F (A)

is compact in Y .

Proposition B.3. Let X, Y , and Z be topological spaces. If correspondences F : X → Y

and G : Y → Z are upper semi-continuous, then the correspondence G ◦ F : X → Z

defined by (G ◦ F )(x) =
∪

y∈F (x)G(y) is upper semi-continuous. If, in addition, F and

G are compact-valued, then G ◦ F is compact-valued.

Proposition B.4. Let X and Y be topological spaces, and T a compact topological space.

If a correspondence F : T ×X → Y is upper semi-continuous, then the correspondence

FT : X → Y defined by FT (x) =
∪

t∈T F (t, x) is upper semi-continuous. If, in addition,

F is compact-valued, then FT is compact-valued.

Proof. Let V be a neighborhood of FT (x). By the upper semi-continuity of F , for each

t ∈ T there exist open neighborhoods Wt ⊂ T and Ut ⊂ X of t and x, respectively, such

that F (Wt × Ut) ⊂ V . By the compactness of T , there exist t1, . . . , tK ⊂ T such that∪K
k=1Wtk = T . Let U =

∩K
k=1 Utk , which is a neighborhood of x. Then for any x′ ∈ U

and any t ∈ T , we have F (t, x′) ⊂ F (Wtk × Utk) ⊂ V for some tk.

The graph of F is the set

{(x, y) ∈ X × Y | y ∈ F (x)}.

F has a closed graph, or is closed, if its graph is closed in X × Y .
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Proposition B.5. Let X and Y be metric spaces. A correspondence F : X → Y is upper

semi-continuous at x and F (x) is compact if and only if for any sequence {xn} ⊂ X such

that xn → x, any sequence {yn} ⊂ Y such that yn ∈ F (xn) has a convergent subsequence

with a limit in F (x).

Proof. The “only if” part: Almost same as the proof of the theorem that in metric

spaces, compactness implies sequential compactness.

The “if” part: If F is not upper semi-continuous at x, there exists a neighborhood V

of F (x) such that for each n, there exist xn and yn such that xn ∈ B1/n(x), yn ∈ F (xn),

and yn /∈ V . Clearly, {yn} has no limit point in F (x).

Corollary B.6. Let X and Y be metric spaces. If a correspondence F : X → Y is upper

semi-continuous and compact-valued, then it has a closed graph.

Suppose that Y is compact. Then if a correspondence F : X → Y has a closed graph,

then it is upper semi-continuous and closed- (hence compact-)valued.

The compactness of Y is indispensable. For example, let X = Y = R, and F (x) =

{1/x} if x ̸= 0 and F (0) = R (this has a closed graph, but is not compact-valued), or

F (0) = {0} (this has a closed graph, but is not upper semi-continuous).

Proposition B.7. Let X and Y be metric spaces. A correspondence F : X → Y is

lower semi-continuous at x if and only if for any sequence {xn} ⊂ X such that xn → x

and any y ∈ F (x), there exist a subsequence {xnk
} of {xn} and yk ∈ F (xnk

) for each k

such that yk → y.

Proof. The “only if” part: For each k, let Uk be a neighborhood of x such that F (z) ∩
N1/k(y) ̸= ∅ for all z ∈ Uk. Let nk be such that xnk

∈ Uk, and let yk ∈ F (xnk
)∩N1/k(y).

Then yk → y.

The “if” part: If F is not lower semi-continuous at x, there exists an open set V with

F (x) ⊂ V ̸= ∅ such that for any neighborhood U of x, F (z) ∩ V = ∅ for some z ∈ U .

For each n, let xn ∈ N1/n(x) be such that F (xn)∩V = ∅. Then any sequence {yn} such

that yn ∈ F (xn) has no limit point in F (x) ∩ V .

A subset of a topological space is called an Fσ set if it is written as a countable union

of closed sets.4 The following is from Aubin and Cellina (1984, Proposition 1.1.4, p.43)

Proposition B.8. Let X be a topological space, and Y a metric space. If a correspon-

dence F : X → Y is upper semi-continuous, then the lower inverse image of any open

set is an Fσ set.

Proof. Let V ⊂ Y be open. Let Kn = {y ∈ Y | d(y, z) ≥ 1/n for all z /∈ V }, which is

closed. Then, V =
∪∞

n=1Kn. By the upper semi-continuity of F , F−1(Kn) is closed.

Therefore, F−1(V ) =
∪∞

n=1 F−1(Kn) is an Fσ set.

4A set that is written as a countable intersection of open sets is called a Gδ set.
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Exercise B.1. Let X be a topological space, Y a convex compact subset of Rn, and

for each k = 1, 2, . . ., F k : X → Y a compact-valued upper semi-continuous correspon-

dence. Let {λk}∞k=1 be such that λk ≥ 0 and
∑

k λk = 1. Then the correspondence

F : X → Y defined by F (x) =
∑

k λkF
k(x) is a compact-valued upper semi-continuous

correspondence.

C Some Facts from Functional Analysis

Definition C.1. x : [0, T ] → Rn is absolutely continuous if for any ε > 0, there exists

δ > 0 such that for any countable collection of disjoint subintervals [ak, bk] of [0, T ] such

that ∑
(bk − ak) < δ,

we have∑
|x(bk)− x(ak)| < ε.

x : [0,∞) → Rn is absolutely continuous if it is absolutely continuous on [0, T ] for all

T > 0.

Definition C.2. x : [0,∞) → Rn is Lipschitz continuous with Lipschitz constant L > 0

if

|x(t)− x(s)| ≤ L|t− s|

for all t, s ≥ 0.

Proposition C.1. An absolutely continuous function is continuous. A Lipschitz con-

tinuous function is absolutely continuous.

Proposition C.2. An absolutely continuous function is differentiable almost every-

where.

Proposition C.3. x : [0, T ] → Rn is absolutely continuous if and only if there exists an

integrable function v : [0, T ] → Rn such that

x(t) = x(0) +

∫ t

0
v(s) ds

for all t ∈ [0, T ]. In this case, ẋ = v almost everywhere.

Thus, absolutely continuous functions are precisely the functions that are represented

as

x(t) = x(0) +

∫ t

0
ẋ(s) ds.
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Denote by C([0, T ],Rn) the space of continuous functions from [0, T ] to Rn equipped

with the norm

∥x∥ = sup
t∈[0,T ]

|x(t)|.

Proposition C.4. C([0, T ],Rn) is a Banach space, i.e., a complete normed vector space.

K ⊂ C([0, T ],Rn) is uniformly bounded if there exists M > 0 such that for all x ∈ K,

|x(t)| ≤ M for all t ∈ [0, T ]. K is equicontinuous if for any ε > 0, there exists δ > 0 such

that for all x ∈ K, |x(t)− x(s)| < ε for all t, s ∈ [0, T ] such that |t− s| < δ.

Proposition C.5 (Ascoli-Arzelà theorem). K ⊂ C([0, T ],Rn) is totally bounded if and

only if it is uniformly bounded and equicontinuous.

Denote by C([0,∞),Rn) the space of bounded continuous functions from [0,∞) to

Rn equipped with the topology of uniform convergence on compact intervals. This space

is a Banach space with the norm

∥x∥ =
∞∑
k=1

1

2k
sup

t∈[0,k]
|x(t)|,

or

∥x∥ = sup
t∈[0,∞)

e−rt|x(t)|, r > 0.

Proposition C.6. If K ⊂ C([0,∞),Rn) is uniformly bounded and equicontinuous, then

it is totally bounded.

D Some Facts about Correspondences

The following statement of Kakutani’s Fixed Point Theorem is from Aubin and Cel-

lina (1984, Corollary 1.12.1, p.85).

Theorem D.1 (Kakutani’s Fixed Point Theorem). Let K be a convex compact subset

of a Banach space, and F : K → K a nonempty-, convex-, and compact-valued upper

semi-continuous correspondence. Then F has a fixed point, i.e., there exists x∗ ∈ K

such that x∗ ∈ F (x∗).

Let (X,Σ) be a measurable space, and Y a topological space. A correspondence

F : X → Y is weakly measurable if F−1(V ) ∈ Σ for any open set V ⊂ Y . The following

is due to Kuratowski and Ryll-Nardzewski (see, e.g., Aubin and Cellina (1984, Corollary

1.12.1, p.85) or Aliprantis and Border (2006, Theorem 18.13)).

Theorem D.2. Let (X,Σ) be a measurable space, and Y a complete separable metric

space. If a correspondence F : X → Y is nonempty- and closed-valued and weakly mea-

surable, then it has a Σ-measurable selection, i.e., there exists a Σ-measurable function

f : X → Y such that f(x) ∈ F (x) for all x ∈ X.
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Given Proposition B.8, we have the following as a corollary to the above theorem.

Corollary D.3 (Measurable Selection Theorem). Let X be a topological space with

its Borel algebra BX , and Y a complete separable metric space. If a correspondence

F : X → Y is nonempty- and closed-valued and upper semi-continuous, then it has a

BX-measurable selection.

E Existence of Solutions to Differential Inclusions

Let X be a nonempty convex compact subset of Rn, and let G : X → X be a nonempty-,

convex-, and compact-valued upper semi-continuous correspondence. We want to prove

the existence of solutions to a differential inclusion of the form

ẋ ∈ G(x)− x. (DI)

A solution to (DI) with initial condition ξ ∈ X is defined to be an absolutely continuous

function x : [0,∞) → X that satisfies x(0) = ξ and

ẋ(t) + x(t) ∈ G(x(t)) (E.1)

for almost all t ≥ 0. In fact, any solution x to (DI) is Lipschitz continuous with Lipschitz

constant L, where L = max{|a− b| | a, b ∈ X}, since |ẋ(t)| ≤ L for almost all t ≥ 0, so

that |x(t′)−x(t)| ≤
∫ t′

t |ẋ(s)| ds ≤ L|t′− t|. Hence, there is no loss of generality to define

a solution to (DI) with initial condition ξ ∈ X to be a Lipschitz continuous function

x : [0,∞) → X with Lipschitz constant L that satisfies x(0) = ξ and (E.1) for almost all

t ≥ 0.

Observation E.1. Any absolutely continuous function that satisfies (E.1) for almost all

t ≥ 0 is Lipschitz continuous with Lipschitz constant L.

There are several ways to prove the existence of solution to a differential inclusion;

see, e.g., Aubin and Cellina (1984) or Smirnov (2002). We economists or game theorists

are familiar with the idea of associating a “solution”, whatever it is, with a fixed point

of some map, so here we follow such an approach.

Denote by CL([0,∞), X) the set of Lipschitz continuos functions from [0,∞) to X

with Lipschitz constant L, where L = max{|a − b| | a, b ∈ X}, and for ξ ∈ X, denote

CL
ξ ([0,∞), X) = {x ∈ CL([0,∞), X) | x(0) = ξ}.

Lemma E.2. CL([0,∞), X) is convex and compact in C([0,∞),Rn).

Denote by AC ([0,∞),Rn) the set of absolutely continuous functions from [0,∞) to

Rn. For x ∈ C([0,∞), X), where C([0,∞), X) denotes the set of continuous functions

from [0,∞) to Rn, define

β(x) = {y ∈ AC ([0,∞),Rn) | y(0) = x(0) and

ẏ(t) + y(t) ∈ G(x(t)) for almost all t ≥ 0}. (E.2)
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Denote by Sξ the set of solutions to (DI) with initial condition ξ ∈ X, and denote

S =
∪

ξ∈X Sξ.

Observation E.3. x ∈ S if and only if x is a fixed point of β, i.e., x ∈ β(x).

To apply Kakutani’s Fixed Point Theorem, we show that β is a nonempty-, convex-,

and compact-valued upper semi-continuous correspondence that maps C([0,∞), X) into

CL([0,∞), X).

Lemma E.4. For any x ∈ C([0,∞), X), β(x) ̸= ∅ and β(x) ⊂ CL([0,∞), X).

We will use the following (see, e.g., Aubin and Cellina (1984, Theorem 0.6.3, p.21)).

Lemma E.5. Let A ⊂ Rn be a closed convex set. Let f : [0, T ] → R+ be an integrable

function such that
∫ T
0 f(s) ds = 1. If v : [0, T ] → Rn is an integrable function such that

v(t) ∈ A for almost all t ∈ [0, T ], then∫ T

0
v(s)f(s) ds ∈ A.

Proof of Lemma E.4. t 7→ G(x(t)) is a nonempty- and compact-valued upper semi-

continuous correspondence. Thus by the Measurable Selection Theorem, there exists

a measurable function v : [0,∞) → X such that v(t) ∈ G(x(t)) for all t ≥ 0. Then define

y ∈ AC ([0,∞) by y(0) = ξ, and

y(t) = e−ty(0) + (1− e−t)

∫ t

0
v(s)

es−t

1− e−t
ds.

Then, y(t) ∈ X for all t ≥ 0 by Lemma E.5, y is L-Lipschitz, and ẏ(t) = v(t) − y(t) ∈
G(x(t))− y(t) for almost all t ≥ 0. This implies that β(x) ̸= ∅.

If y ∈ β(x), then |ẏ(t)| ≤ L for almost all t ≥ 0. Therefore, |y(t′) − y(t)| ≤∫ t′

t |ẏ(s)| ds ≤ L|t′ − t|. Hence y ∈ CL.

Lemma E.6. β is convex- and compact-valued and upper semi-continuous.

Proof. Let y, z ∈ β(x). For any t ≥ 0 at which y and z are differentiable, ((1 − α)y +

αz)′(t) + ((1 − α)y + αz)(t) = (1 − α)(ẏ(t) + y(t)) + α(ż(t) + z(t)) ∈ G(x(t)) by the

convexity of G(x(t)).

Since the values are contained in the compact set CL, it suffices to show that β has

a closed graph. Let {xk}∞k=1 and {xk}∞k=1 be such that yk ∈ β(xk), and assume that

xk → x ∈ CL and yk → y ∈ CL as k → ∞. Take any t0 at which y is differentiable. We

want to show that ẏ(t0) ∈ G(x(t0))− y(t0).

Fix any ε > 0. By the upper semi-continuity of G, there exists δ > 0 such that if

|ξ−x(t0)| < δ and |ζ−y(t0)| < δ then G(ξ) ⊂ G(x(t0))+(ε/2)B and ζ ∈ y(t0)+(ε/2)B

so that

G(ξ)− ζ ⊂ G(x(t0))− y(t0) + εB,
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where B is the closed unit ball in Rn. By the continuity of x and y, we can take an

η > 0 such that

|x(t)− x(t0)| <
δ

2
, |y(t)− y(t0)| <

δ

2

for all t ∈ (t0 − η, t0 + η). Since xk and yk uniformly converge to x and y, respectively,

there exists K such that for all k ≥ K,

|xk(t)− x(t)| < δ

2
, |yk(t)− y(t)| < δ

2

for all t ∈ (t0 − η, t0 + η). Therefore, for k ≥ K and for almost all t ∈ (t0 − η, t0 + η), we

have |xk(t)− x(t0)| < δ and |yk(t)− y(t0)| < δ, and hence,

ẏk(t) ∈ G(xk(t))− yk(t) ⊂ G(x(t0))− y(t0) + εB

by the choice of δ. Since ẏk ∈ L1 and G(x(t0)) − y(t0) + εB is closed and convex, we

have

yk(t0 + h)− yk(t0)

h
=

1

h

∫ t0+h

t0

ẏk(s) ds ∈ G(x(t0))− y(t0) + εB

for all k ≥ K and all small h > 0 by Lemma E.5. By letting k → ∞, we have

y(t0 + h)− y(t0)

h
∈ G(x(t0))− y(t0) + εB.

Finally, by letting h → 0, we have

ẏ(t0) ∈ G(x(t0))− y(t0) + εB.

Since ε > 0 has been taken arbitrarily and G(x(t0)) − y(t0) is closed, we have ẏ(t0) ∈
G(x(t0))− y(t0) as desired.

Theorem E.7. Sξ ̸= ∅ for all ξ ∈ X. Sξ and S are compact in C([0,∞),Rn).
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