Basics of Probability Theory

DAISUKE OYAMA

Faculty of Economics, University of Tokyo oyama@e.u-tokyo.ac.jp

This version: February 17, 2014

1 Measurable Spaces and Random Variables

Let Ω be a set, and \mathcal{F} a family of subsets of Ω . \mathcal{F} is a σ -algebra, or σ -field, if

(1) $\Omega \in \mathcal{F}$,

(2) $A \in \Omega$ implies $A^{c} \in \mathcal{F}$, and

(3) $A_1, A_2, \ldots \in \mathcal{F}$ implies $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

A pair (Ω, \mathcal{F}) of a set Ω and a σ -algebra \mathcal{F} of subsets of Ω is called a *measurable space*. An element of \mathcal{F} is called a *measurable set* or an *event*.

For a family \mathcal{A} of subsets of Ω , the σ -algebra generated by \mathcal{A} is the σ -algebra given by

 $\sigma(\mathcal{A}) = \bigcap \{ \mathcal{M} \mid \mathcal{M} \text{ is a } \sigma\text{-algebra containing } \mathcal{A} \},\$

which is the smallest σ -algebra containing \mathcal{A} . The *Borel algebra* for \mathbb{R} , which we denote $\mathcal{B}(\mathbb{R})$, is the σ -algebra generated by the family of all open sets in \mathbb{R} .

For a function $X \colon \Omega \to \mathbb{R}$, we write

 $\{X\in B\}=\{\omega\in\Omega\mid X(\omega)\in B\}$

for $B \in \mathbb{R}$, and $\{X \ge a\} = \{\omega \in \Omega \mid X(\omega) \ge a\}$ for $a \in \mathbb{R}$, and so on. For a measurable space (Ω, \mathcal{F}) , a function $X \colon \Omega \to \mathbb{R}$ is a (real-valued) random variable on (Ω, \mathcal{F}) if it is \mathcal{F} -measurable, i.e.,

 $\{X \in B\} \in \mathcal{F} \text{ for all } B \in \mathcal{B}(\mathbb{R}).$

For a random variable X on (Ω, \mathcal{F}) , the σ -algebra generated by X is the σ -algebra given by

$$\sigma(X) = \{ \{ X \in B \} \in \mathcal{F} \mid B \in \mathcal{B}(\mathbb{R}) \},\$$

which is the smallest σ -field with respect to which X is measurable. Likewise, for a family $(X_{\lambda})_{\lambda \in \Lambda}$ of random variables on (Ω, \mathcal{F}) , the σ -algebra generated by $(X_{\lambda})_{\lambda \in \Lambda}$,

 $\sigma((X_{\lambda})_{\lambda \in \Lambda})$, is the σ -algebra generated by the family of sets $\{X_{\lambda} \in B\}$, $B \in \mathcal{B}(\mathbb{R})$, $\lambda \in \Lambda$, which is the smallest σ -algebra with respect to which all X_{λ} 's are measurable.

For $A \subset \Omega$, we define the function $\mathbf{1}_A \colon \Omega \to \mathbb{R}$ by

$$\mathbf{1}_{A}(\omega) = \begin{cases} 1 & \text{if } \omega \in A, \\ 0 & \text{if } \omega \notin A, \end{cases}$$

which is called the indicator function of A. $\mathbf{1}_A$ is a random variable on (Ω, \mathcal{F}) if and only if $A \in \mathcal{F}$. We say that a random variable X on (Ω, \mathcal{F}) is simple if there are $A_1, \ldots, A_n \in \mathcal{F}, A_i \cap A_j = \emptyset, i \neq j$, such that $X = \sum_{i=1}^n a_i \mathbf{1}_{A_i}$ with $a_1, \ldots, a_n \in \mathbb{R}$.

2 Probability Measures

For a measurable space (Ω, \mathcal{F}) , a function $P \colon \mathcal{F} \to [0, 1]$ is a *probability measure* on (Ω, \mathcal{F}) if

(1) $P(\emptyset) = 0$ and $P(\Omega) = 1$, and

(2) if $A_1, A_2, \ldots \in \mathcal{F}$ and $A_i \cap A_j = \emptyset$ for $i \neq j$, then $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$.

A tuple (Ω, \mathcal{F}, P) of a nonempty set Ω , a σ -algebra \mathcal{F} of subsets of Ω , and a probability measure P on (Ω, \mathcal{F}) is called a *probability space*.

Proposition 2.1.

(1) If $A, B \in \mathcal{F}$ and $A \subset B$, then $P(A) \leq P(B)$.

- (2) If $A_1, A_2, \ldots \in \mathcal{F}$ and $A_1 \subset A_2 \subset \cdots$, then $P(\bigcup_{n=1}^{\infty} A_n) = \lim_{n \to \infty} P(A_n)$.
- (3) If $A_1, A_2, \ldots \in \mathcal{F}$ and $A_1 \supset A_2 \supset \cdots$, then $P(\bigcap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} P(A_n)$.
- (4) If $A_1, A_2, \ldots \in \mathcal{F}$, then $P(\bigcup_{n=1}^{\infty} A_n) \le \sum_{n=1}^{\infty} P(A_n)$.

The following is called the (first) Borel-Cantelli lemma.

Proposition 2.2. If $A_1, A_2, \ldots \in \mathcal{F}$ and $\sum_{n=1}^{\infty} P(A_n) < \infty$, then $P(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k) = 0$.

Proof. Let $B_m = \bigcup_{k=m}^{\infty} A_k$. Then $\bigcap_{n=1}^{\infty} B_n \subset B_m$ for any m. Thus

$$0 \le P\left(\bigcap_{n=1}^{\infty} B_n\right) \le P(B_m) \le \sum_{k=m}^{\infty} P(A_k)$$

holds for any m, and the sum in the last term tends to 0 as $m \to \infty$ if $\sum_{n=1}^{\infty} P(A_n) < \infty$.

If a property holds except on an event whose probability is zero, then this property is said to hold *almost surely*, abbreviated "a.s.".

3 Expectation

Let a probability space (Ω, \mathcal{F}, P) be given.

Definition 3.1. For a nonnegative simple random variable $X = \sum_{i=1}^{n} a_i \mathbf{1}_{A_i}$, the expectation of X is defined by

$$E[X] = \sum_{i=1}^{n} a_n P(A_n).$$

Lemma 3.1. For any nonnegative random variable X, there exists a nondecreasing sequence of nonnegative simple random variables (X_n) such that $\lim_{n\to\infty} X_n = X$.

If (X_n) and (Y_n) are nondecreasing sequences of nonnegative simple random variables, and $\lim_{n\to\infty} X_n = \lim_{n\to\infty} Y_n = X$, then $\lim_{n\to\infty} E[X_n] = \lim_{n\to\infty} E[Y_n]$.

Definition 3.2. For a nonnegative random variable X, the expectation of X is defined by

$$E[X] = \lim_{n \to \infty} E[X_n],$$

where (X_n) is a nondecreasing sequence of nonnegative simple random variables such that $\lim_{n\to\infty} X_n = X$.

Note that this is well defined, i.e., the value does not depend on the choice of an approximating sequence.

A random variable X is said to be *integrable* if $E[|X|] < \infty$. Write

$$X^+ = X \lor 0, \quad X^- = -(X \land 0).$$

Note that

$$X = X^{+} - X^{-}, \quad |X| = X^{+} + X^{-},$$

and that if X is integrable, then X^+ and X^- are integrable.

Definition 3.3. For an integrable random variable X, the expectation of X is defined by

$$E[X] = E[X^+] - E[X^-].$$

For $A \in \mathcal{F}$, we write

$$E[X,A] = E[X\mathbf{1}_A].$$

Observe that if E[X, A] = 0 whenever P(A) = 0.

Proposition 3.2. Let X, Y be integrable random variables.

(1) For $a, b \in \mathbb{R}$, aX + bY is integrable, and

$$E[aX + bY] = aE[X] + bE[Y].$$

(2) If $A, B \in \mathcal{F}$ and $A \cap B = \emptyset$, then

$$E[X, A \cup B] = E[X, A] + E[X, B].$$

(3) If $X \ge Y$ a.s., then

$$E[X] \ge E[Y].$$

Proposition 3.3 (Markov's Inequality). Let X be a random variable such that $X \ge 0$ a.s. Then for any $\alpha \in \mathbb{R}$ and any $A \in \mathcal{F}$,

$$\alpha P(\{X \ge \alpha\} \cap A) \le E[X, A].$$

Proof. Observe that

$$X \ge X \mathbf{1}_{\{X \ge \alpha\}} \ge \alpha \mathbf{1}_{\{X \ge \alpha\}}$$
 a.s

Thus we have $E[X, A] \ge E\left[\alpha \mathbf{1}_{\{X \ge \alpha\} \cap A}\right] = \alpha P(\{X \ge \alpha\} \cap A).$

Proposition 3.4 (Lebesgue's Convergence Theorem). Let (X_n) be a sequence of random variables, and suppose that there exists an integrable random variable Y such that for all n, $|X_n| \leq Y$ a.s. If $\lim_{n\to\infty} X_n = X$ a.s., then

$$\lim_{n \to \infty} E[X_n] = E[X].$$

Proposition 3.5. Suppose that $f: I \times \Omega \to \mathbb{R}$, where $I \subset \mathbb{R}$ is an open interval, satisfies the following conditions:

- (i) for all $t \in I$, $f(t, \cdot)$ is integrable; and
- (ii) for almost all $\omega \in \Omega$, $f(\cdot, \omega)$ is differentiable, and there exists an integrable function $g: \Omega \to \mathbb{R}$ such that for almost all $\omega \in \Omega$, $|f_t(t, \omega)| \leq g(\omega)$ for all $t \in I$.

Then $E[f(t, \cdot)]$ is differentiable in t on I with

$$\frac{d}{dt}E[f(t,\cdot)] = E[f_t(t,\cdot)].$$

Proof. Fix any $t_0 \in I$. For any sequence (t_n) such that $t_n \neq t_0$ and $t_n \to t_0$, let

$$X_n(\omega) = \frac{f(t_n, \omega) - f(t_0, \omega)}{t_n - t_0}.$$

Thus

$$\frac{E[f(t_n, \cdot)] - E[f(t_0, \cdot)]}{t_n - t_0} = E[X_n].$$

We want to show that

$$\lim_{n \to \infty} E[X_n] = E[f_t(t_0, \cdot)].$$

Fix any $\omega \in \Omega$ as in condition (ii). First, $\lim_{n\to\infty} X_n(\omega) = f_t(t_0, \omega)$. Second, for each n, by the mean value theorem we have

$$\frac{f(t_n,\omega)-f(t_0,\omega)}{t_n-t_0}=f_t(s,\omega)$$

for some s between t_0 and t_n , but the right hand side is bounded in absolute value by $g(\omega)$, so that we have

$$|X_n(\omega)| \le g(\omega)$$

for all n. Hence, it follows from Lebesgue's convergence theorem that

$$\lim_{n \to \infty} E[X_n] = E\left[\lim_{n \to \infty} X_n\right] = E[f_t(t_0, \cdot)]$$

as desired.

4 Independence

Sub- σ -algebras $(\mathcal{F}_{\lambda})_{\lambda \in \Lambda}$ of \mathcal{F} are *independent* if for any finite subfamily $\mathcal{F}_{\lambda_1}, \ldots, \mathcal{F}_{\lambda_n}$,

 $P(A_1 \cap \dots \cap A_n) = P(A_1) \cdots P(A_n)$

for all $A_i \in \mathcal{F}_{\lambda_i}$, i = 1, ..., n. Random variables $(X_\lambda)_{\lambda \in \Lambda}$ are independent if $(\sigma(X_\lambda))_{\lambda \in \Lambda}$ are independent.

Proposition 4.1. If X_1, \ldots, X_n are independent and integrable, then $X_1 \cdots X_n$ is integrable and

 $E[X_1 \cdots X_n] = E[X_1] \cdots E[X_n].$

In particular, if X_1 and X_2 are independent and integrable, then

$$E[X_1X_2, A] = E[X_1, A]E[X_2]$$

for $A \in \sigma(X_1)$. Indeed, if $A \in \sigma(X_1)$, then $X_1 \mathbf{1}_A$ and X_2 are independent, and therefore by Proposition 4.1, $E[X_1 X_2, A] = E[X_1 \mathbf{1}_A \cdot X_2] = E[X_1 \mathbf{1}_A]E[X_2] = E[X_1, A]E[X_2]$.

5 Martingales

For a thorough account, see e.g., Billingsley (2012, Section 35).

A sequence of random variables $(Z_k)_{k \in \mathbb{Z}_+}$ is a supermartingale if $E[|Z_k|] < \infty$ for all $k \in \mathbb{Z}_+$, and

$$E[Z_k, A] \leq E[Z_{k-1}, A]$$
 for all $A \in \sigma(Z_0, \dots, Z_{k-1})$

for all $k \geq 1$.

Lemma 5.1. Let $(Z_k)_{k \in \mathbb{Z}_+}$ be a supermartingale. For $\alpha \in \mathbb{R}$, let

 $\tau = \min\{k \in \mathbb{Z}_+ \mid Z_k \ge \alpha\}.$

Then for any $n \in \mathbb{Z}_+$,

$$E[Z_{\tau \wedge n}] \le E[Z_0]$$

Proof. Observe first that

$$Z_{\tau \wedge n} - Z_0$$

= $(Z_n \mathbf{1}_{\{\tau=n\}} + Z_{n-1} \mathbf{1}_{\{\tau=n-1\}} + \dots + Z_1 \mathbf{1}_{\{\tau=1\}} + Z_0 \mathbf{1}_{\{\tau=0\}}) - Z_0$
= $(Z_n - Z_{n-1}) \mathbf{1}_{\{\tau \ge n\}} + (Z_{n-1} - Z_{n-2}) \mathbf{1}_{\{\tau \ge n-1\}} + \dots + (Z_1 - Z_0) \mathbf{1}_{\{\tau \ge 1\}}$

(note that $\mathbf{1}_{\{\tau=k-1\}} = \mathbf{1}_{\{\tau \ge k-1\}} - \mathbf{1}_{\{\tau \ge k\}}$), so that

$$E[Z_{\tau \wedge n} - Z_0] = \sum_{k=1}^n E[Z_k - Z_{k-1}, \{\tau \ge k\}].$$

For each $k = 1, \ldots, n$, we have

$$\{\tau \ge k\} = \{Z_0 < \alpha\} \cap \{Z_1 < \alpha\} \cap \dots \cap \{Z_{k-1} < \alpha\} \in \sigma(Z_0, \dots, Z_{k-1}),$$

and therefore

$$E[Z_k - Z_{k-1}, \{\tau \ge k\}] \le 0$$

by the assumption that $(Z_k)_{k \in \mathbb{Z}_+}$ is a supermartingale. Hence, we have $E[Z_{\tau \wedge n} - Z_0] \leq 0$.

Proposition 5.2 (Doob's Supermartingale Inequality). Let $(Z_k)_{k \in \mathbb{Z}_+}$ be a supermartingale such that for all $k \in \mathbb{Z}_+$, $Z_k \ge 0$ a.s. Then for any $\alpha \in \mathbb{R}$ and for any $n \in \mathbb{Z}_+$,

$$\alpha P\left(\max_{0\leq k\leq n} Z_k \geq \alpha\right) \leq E[Z_0]$$

Proof. Let $\tau = \min\{k \in \mathbb{Z}_+ \mid Z_k \ge \alpha\}$. Note that

$$\left\{\max_{0\leq k\leq n} Z_k \geq \alpha\right\} = \{Z_\tau \geq \alpha\} \cap \{\tau \leq n\}.$$

We have

$$E[Z_{\tau \wedge n}] = E[Z_{\tau}, \{\tau \leq n\}] + E[Z_n, \{\tau > n\}]$$

$$\geq E[Z_{\tau}, \{\tau \leq n\}]$$

$$\geq \alpha P(\{Z_{\tau} \geq \alpha\} \cap \{\tau \leq n\}) = \alpha P\left(\max_{0 \leq k \leq n} Z_k \geq \alpha\right),$$

where the first inequality follows from the assumption that for all $k \in \mathbb{Z}_+$, $Z_k \ge 0$ a.s., while the second follows from Markov's inequality. But $E[Z_0] \ge E[Z_{\tau \land n}]$ by Lemma 5.1, and hence we have the desired inequality.

References

BILLINGSLEY, P. (2012). Probability and Measure, John Wiley & Sons, Hoboken.