Basics of Probability Theory

DAISUKE OYAMA

Faculty of Economics, University of Tokyo

oyama@e.u-tokyo.ac.jp

This version: February 17, 2014

1 Measurable Spaces and Random Variables

Let © be a set, and F a family of subsets of Q2. F is a g-algebra, or o-field, if

(1) Qe F,

(2) A€ Q implies A° € F, and

(3) A1, Ag,... € F implies | Ji2; A; € F.

A pair (2, F) of a set Q and a o-algebra F of subsets of  is called a measurable space.
An element of F is called a measurable set or an event.

For a family A of subsets of 2, the o-algebra generated by A is the o-algebra given
by

o(A) = ﬂ{M | M is a o-algebra containing A},

which is the smallest o-algebra containing A. The Borel algebra for R, which we denote
B(R), is the o-algebra generated by the family of all open sets in R.
For a function X: Q — R, we write

{XeB}={we]| X(w) € B}

for Be R, and {X > a} ={w e Q| X(w) > a} for a € R, and so on. For a measurable
space (2, F), a function X: Q — R is a (real-valued) random variable on (2, F) if it is

F-measurable, i.e.,
{X € B} € F for all B € B(R).

For a random variable X on (€, F), the o-algebra generated by X is the o-algebra
given by

o(X)={{X e B} e F|BecBR)},

which is the smallest o-field with respect to which X is measurable. Likewise, for a
family (X))xea of random variables on (2, F), the o-algebra generated by (X))iea,



o((Xx)xen), is the o-algebra generated by the family of sets {X, € B}, B € B(R),
A € A, which is the smallest o-algebra with respect to which all X’s are measurable.
For A C ), we define the function 14: Q2 — R by

14(w) 1 ifweA,
Alw) =
0 ifwé¢A,

which is called the indicator function of A. 14 is a random variable on (2, F) if and
only if A € F. We say that a random variable X on (£, F) is simple if there are
Ai, . A, e F,ANA =0, 0 +# 4, such that X =3 | a;14, with ay,...,a, € R.

2 Probability Measures

For a measurable space (2, F), a function P: F — [0,1] is a probability measure on
(Q, F) if

(1) P() =0 and P(R2) =1, and

(2) if A1, Ag,... € Fand A;NA; =0 for i # j, then P (U;2, Ai) =D ooy P(4).

A tuple (2, F, P) of a nonempty set €2, a o-algebra F of subsets of 2, and a probability

measure P on (2, F) is called a probability space.

Proposition 2.1.

(1) If A,B € F and A C B, then P(A) < P(B).

(2) If A1, Ag, ... € Fand Ay C Ay C -+ -, then P(Up2; An) = lim,, 00 P(Ay,).
(3) If Ay, Ag,...€ F and Ay D Ay D - -+, then P((,2 An) = limy, 00 P(A,,).
(4) If A1, Ag, ... € F, then P(U,2; An) <> 00 P(Ay).

The following is called the (first) Borel-Cantelli lemma.

Proposition 2.2. If A1, As,... € F and ;> | P(Ay) < 0o, then P (", Ure,, Ak) =
0.

Proof. Let By, = Up—,, Ax. Then (2, B,, C By, for any m. Thus
o oo
0<P (ﬂ Bn> < P(Bm) < > P(4)
n=1 k=m

holds for any m, and the sum in the last term tends to 0 as m — oo if ) 7| P(A,) <

co. |

If a property holds except on an event whose probability is zero, then this property
is said to hold almost surely, abbreviated “a.s.”.



3 Expectation
Let a probability space (2, F, P) be given.

Definition 3.1. For a nonnegative simple random variable X = 3" | a;14,, the expec-
tation of X is defined by

n

E[X] =) a,P(Ay).

i=1

Lemma 3.1. For any nonnegative random variable X, there exists a nondecreasing
sequence of nonnegative simple random variables (Xy,) such that lim,_,~ X, = X.
If (X,) and (Y,,) are nondecreasing sequences of nonnegative simple random vari-

ables, and limy,,_, o0 Xy, = lim, 00 Y, = X, then lim, oo E[X,] = limy, o0 E[Y3].

Definition 3.2. For a nonnegative random variable X, the expectation of X is defined
by
E[X] = lim E[X,],

n—0o0

where (X,,) is a nondecreasing sequence of nonnegative simple random variables such
that lim,, o X, = X.

Note that this is well defined, i.e., the value does not depend on the choice of an
approximating sequence.

A random variable X is said to be integrable if E[|X|] < oo.

Write

XtT=XVv0, X =—-(XA0).
Note that
X=X"—-X", |X|=XT+X",
and that if X is integrable, then X+ and X~ are integrable.

Definition 3.3. For an integrable random variable X, the expectation of X is defined
by

E[X]=E[XT]-E[X"].
For A € F, we write
E[X,A] = E[X14].
Observe that if E[X, A] = 0 whenever P(A) = 0.

Proposition 3.2. Let X,Y be integrable random variables.



(1) Fora,b e R, aX + bY is integrable, and

ElaX +bY] = aE[X] + bE[Y].

(2) If A,Be€ F and AN B =10, then

E[X,AUB] = E[X, A] + E[X, B].

(3) If X >Y a.s., then

E[X] > E[Y].

Proposition 3.3 (Markov’s Inequality). Let X be a random variable such that X > 0
a.s. Then for any o € R and any A € F,

aP{X >a}NA) <EIX, A
Proof. Observe that
X > XI{XZQ} > al{XZQ} a.s.
Thus we have E[X,A] > E [al{x>q}na] = aP{X > a}NA). |

Proposition 3.4 (Lebesgue’s Convergence Theorem). Let (X,,) be a sequence of random
variables, and suppose that there exists an integrable random variable Y such that for
alln, | X,| <Y as. Iflim, o0 X, = X a.s., then

lim E[X,] = E[X].

n—00

Proposition 3.5. Suppose that f: I xQ — R, where I C R is an open interval, satisfies

the following conditions:

(i) for allt €I, f(t,-) is integrable; and

(i1) for almost allw € Q, f(-,w) is differentiable, and there exists an integrable function
g: 2 — R such that for almost all w € Q, |fi(t,w)| < g(w) for allt € I.

Then E[f(t,-)] is differentiable in t on I with

d

SEf(t.9)] = EUft.)

Proof. Fix any to € I. For any sequence (t,) such that ¢, # to and ¢, — to, let

Fltns ) = f(to,0)

Xn(w) = tn—to
n

Thus

Elf(tn, )] — E[f(to, )]
tn — to

= E[X,).



We want to show that

lim E[X,] = E[fi(to,)].

n—oo
Fix any w € Q as in condition (ii). First, lim,_ Xn(w) = fi(to,w). Second, for
each n, by the mean value theorem we have
f(tn,w) — f(to,w)
tn — to

for some s between ty and t,, but the right hand side is bounded in absolute value by

- ft(saw)

g(w), so that we have
X (@) < g()

for all n. Hence, it follows from Lebesgue’s convergence theorem that
lim E[X,] = E | lim X,| = E[fi(to, )]

as desired. |

4 Independence
Sub-o-algebras (Fy)aea of F are independent if for any finite subfamily Fy,,...,Fx,,
P(Ain---NA,) =P(A1)---P(4,)

for all A; € Fy,,i=1,...,n. Random variables (X))xeca are independent if (¢(X)))rea
are independent.

Proposition 4.1. If X;,...,X,, are independent and integrable, then X1 --- X,, is inte-
grable and

E[X:---X,]|=E[X1] - E[X,].
In particular, if X; and Xs are independent and integrable, then
E[X1 X5, Al = E[X1, A|E[X5]

for A € 0(X1). Indeed, if A € 0(X1), then X114 and X» are independent, and therefore
by Proposition 4.1, E[Xle, A] = E[Xl].A . Xg] = E[Xl].A]E[XQ} = E[Xl, A]E[XQ]

5 Martingales

For a thorough account, see e.g., Billingsley (2012, Section 35).

A sequence of random variables (Zy)rez, is a supermartingale if E[|Zy|] < oo for all
ke Z+, and

E[Zk,A] < E[Zk_l,A] for all A € O'(Z(), .. -,Zk—l)

for all kK > 1.



Lemma 5.1. Let (Zy)rez, be a supermartingale. For o € R, let
T =min{k € Z; | Z, > a}.
Then for anyn € Z,
E[Z:nn] < E[Zy).
Proof. Observe first that
Zran — Zo
= (Znlgeny + Znalppep- 1y + -+ Z11 iy + Zolgr—oy) — Zo
= (Zn = Zn-1)lgrony + (Zn-1 = Zn-2)lgron_1y + -+ (Z1 — Zo)1ir51y
(note that 1,1} = 17>k—1) — L{z>4}), S0 that

EZspn — Z0) = Y E[Zx — Zp—1, {7 > k}].
k=1

For each k =1,...,n, we have
{r>k}={Zy<a}n{Zi<a}ln---N{Zy_1 <a} €a(Zo,...,2Z51),
and therefore
ElZy — Zy—1,{T 2 k}] <0

by the assumption that (Zx)kez . is a supermartingale. Hence, we have F [Zran — Zo] <
0. 1

Proposition 5.2 (Doob’s Supermartingale Inequality). Let (Zy)rez, be a supermartin-
gale such that for all k € Z4, Zy, > 0 a.s. Then for any a € R and for any n € Z,

aP < max Zj > a> < E[Zy).
0<k<n
Proof. Let 7 = min{k € Zy | Zy, > a}. Note that
{max ZkZoz} ={Z, > a}n{r <n}.

0<k<n

‘We have

E[Zrnn) = E[Z;, {7 < n}] + E[Zy, {7 > n}]
> BElZy, {1 < n}]

> > < = >
>aP({Z; > a}n{r <n})=aP <0r£l?§Xn Z > a) ,

where the first inequality follows from the assumption that for all k € Z,, Z; > 0 a.s.,
while the second follows from Markov’s inequality. But E[Zy] > E[Z;p,] by Lemma 5.1,
and hence we have the desired inequality. |
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