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1 Measurable Spaces and Random Variables

Let Ω be a set, and F a family of subsets of Ω. F is a σ-algebra, or σ-field, if

(1) Ω ∈ F ,

(2) A ∈ Ω implies Ac ∈ F , and

(3) A1, A2, . . . ∈ F implies
∪∞

i=1Ai ∈ F .

A pair (Ω,F) of a set Ω and a σ-algebra F of subsets of Ω is called a measurable space.

An element of F is called a measurable set or an event.

For a family A of subsets of Ω, the σ-algebra generated by A is the σ-algebra given

by

σ(A) =
∩

{M | M is a σ-algebra containing A},

which is the smallest σ-algebra containing A. The Borel algebra for R, which we denote

B(R), is the σ-algebra generated by the family of all open sets in R.
For a function X : Ω → R, we write

{X ∈ B} = {ω ∈ Ω | X(ω) ∈ B}

for B ∈ R, and {X ≥ a} = {ω ∈ Ω | X(ω) ≥ a} for a ∈ R, and so on. For a measurable

space (Ω,F), a function X : Ω → R is a (real-valued) random variable on (Ω,F) if it is

F-measurable, i.e.,

{X ∈ B} ∈ F for all B ∈ B(R).

For a random variable X on (Ω,F), the σ-algebra generated by X is the σ-algebra

given by

σ(X) = {{X ∈ B} ∈ F | B ∈ B(R)},

which is the smallest σ-field with respect to which X is measurable. Likewise, for a

family (Xλ)λ∈Λ of random variables on (Ω,F), the σ-algebra generated by (Xλ)λ∈Λ,
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σ((Xλ)λ∈Λ), is the σ-algebra generated by the family of sets {Xλ ∈ B}, B ∈ B(R),
λ ∈ Λ, which is the smallest σ-algebra with respect to which all Xλ’s are measurable.

For A ⊂ Ω, we define the function 1A : Ω → R by

1A(ω) =

1 if ω ∈ A,

0 if ω /∈ A,

which is called the indicator function of A. 1A is a random variable on (Ω,F) if and

only if A ∈ F . We say that a random variable X on (Ω,F) is simple if there are

A1, . . . , An ∈ F , Ai ∩Aj = ∅, i ̸= j, such that X =
∑n

i=1 ai1Ai with a1, . . . , an ∈ R.

2 Probability Measures

For a measurable space (Ω,F), a function P : F → [0, 1] is a probability measure on

(Ω,F) if

(1) P (∅) = 0 and P (Ω) = 1, and

(2) if A1, A2, . . . ∈ F and Ai ∩Aj = ∅ for i ̸= j, then P (
∪∞

i=1Ai) =
∑∞

i=1 P (Ai).

A tuple (Ω,F , P ) of a nonempty set Ω, a σ-algebra F of subsets of Ω, and a probability

measure P on (Ω,F) is called a probability space.

Proposition 2.1.

(1) If A,B ∈ F and A ⊂ B, then P (A) ≤ P (B).

(2) If A1, A2, . . . ∈ F and A1 ⊂ A2 ⊂ · · · , then P (
∪∞

n=1An) = limn→∞ P (An).

(3) If A1, A2, . . . ∈ F and A1 ⊃ A2 ⊃ · · · , then P (
∩∞

n=1An) = limn→∞ P (An).

(4) If A1, A2, . . . ∈ F , then P (
∪∞

n=1An) ≤
∑∞

n=1 P (An).

The following is called the (first) Borel-Cantelli lemma.

Proposition 2.2. If A1, A2, . . . ∈ F and
∑∞

n=1 P (An) < ∞, then P (
∩∞

n=1

∪∞
k=nAk) =

0.

Proof. Let Bm =
∪∞

k=mAk. Then
∩∞

n=1Bn ⊂ Bm for any m. Thus

0 ≤ P

( ∞∩
n=1

Bn

)
≤ P (Bm) ≤

∞∑
k=m

P (Ak)

holds for any m, and the sum in the last term tends to 0 as m → ∞ if
∑∞

n=1 P (An) <

∞.

If a property holds except on an event whose probability is zero, then this property

is said to hold almost surely, abbreviated “a.s.”.
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3 Expectation

Let a probability space (Ω,F , P ) be given.

Definition 3.1. For a nonnegative simple random variable X =
∑n

i=1 ai1Ai , the expec-

tation of X is defined by

E[X] =

n∑
i=1

anP (An).

Lemma 3.1. For any nonnegative random variable X, there exists a nondecreasing

sequence of nonnegative simple random variables (Xn) such that limn→∞Xn = X.

If (Xn) and (Yn) are nondecreasing sequences of nonnegative simple random vari-

ables, and limn→∞Xn = limn→∞ Yn = X, then limn→∞E[Xn] = limn→∞E[Yn].

Definition 3.2. For a nonnegative random variable X, the expectation of X is defined

by

E[X] = lim
n→∞

E[Xn],

where (Xn) is a nondecreasing sequence of nonnegative simple random variables such

that limn→∞Xn = X.

Note that this is well defined, i.e., the value does not depend on the choice of an

approximating sequence.

A random variable X is said to be integrable if E[|X|] < ∞.

Write

X+ = X ∨ 0, X− = −(X ∧ 0).

Note that

X = X+ −X−, |X| = X+ +X−,

and that if X is integrable, then X+ and X− are integrable.

Definition 3.3. For an integrable random variable X, the expectation of X is defined

by

E[X] = E[X+]− E[X−].

For A ∈ F , we write

E[X,A] = E[X1A].

Observe that if E[X,A] = 0 whenever P (A) = 0.

Proposition 3.2. Let X,Y be integrable random variables.
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(1) For a, b ∈ R, aX + bY is integrable, and

E[aX + bY ] = aE[X] + bE[Y ].

(2) If A,B ∈ F and A ∩B = ∅, then

E[X,A ∪B] = E[X,A] + E[X,B].

(3) If X ≥ Y a.s., then

E[X] ≥ E[Y ].

Proposition 3.3 (Markov’s Inequality). Let X be a random variable such that X ≥ 0

a.s. Then for any α ∈ R and any A ∈ F ,

αP ({X ≥ α} ∩A) ≤ E[X,A].

Proof. Observe that

X ≥ X1{X≥α} ≥ α1{X≥α} a.s.

Thus we have E[X,A] ≥ E
[
α1{X≥α}∩A

]
= αP ({X ≥ α} ∩A).

Proposition 3.4 (Lebesgue’s Convergence Theorem). Let (Xn) be a sequence of random

variables, and suppose that there exists an integrable random variable Y such that for

all n, |Xn| ≤ Y a.s. If limn→∞Xn = X a.s., then

lim
n→∞

E[Xn] = E[X].

Proposition 3.5. Suppose that f : I×Ω → R, where I ⊂ R is an open interval, satisfies

the following conditions:

(i) for all t ∈ I, f(t, ·) is integrable; and

(ii) for almost all ω ∈ Ω, f(·, ω) is differentiable, and there exists an integrable function

g : Ω → R such that for almost all ω ∈ Ω, |ft(t, ω)| ≤ g(ω) for all t ∈ I.

Then E[f(t, ·)] is differentiable in t on I with

d

dt
E[f(t, ·)] = E[ft(t, ·)].

Proof. Fix any t0 ∈ I. For any sequence (tn) such that tn ̸= t0 and tn → t0, let

Xn(ω) =
f(tn, ω)− f(t0, ω)

tn − t0
.

Thus

E[f(tn, ·)]− E[f(t0, ·)]
tn − t0

= E[Xn].
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We want to show that

lim
n→∞

E[Xn] = E[ft(t0, ·)].

Fix any ω ∈ Ω as in condition (ii). First, limn→∞Xn(ω) = ft(t0, ω). Second, for

each n, by the mean value theorem we have

f(tn, ω)− f(t0, ω)

tn − t0
= ft(s, ω)

for some s between t0 and tn, but the right hand side is bounded in absolute value by

g(ω), so that we have

|Xn(ω)| ≤ g(ω)

for all n. Hence, it follows from Lebesgue’s convergence theorem that

lim
n→∞

E[Xn] = E
[
lim
n→∞

Xn

]
= E[ft(t0, ·)]

as desired.

4 Independence

Sub-σ-algebras (Fλ)λ∈Λ of F are independent if for any finite subfamily Fλ1 , . . . ,Fλn ,

P (A1 ∩ · · · ∩An) = P (A1) · · ·P (An)

for all Ai ∈ Fλi
, i = 1, . . . , n. Random variables (Xλ)λ∈Λ are independent if (σ(Xλ))λ∈Λ

are independent.

Proposition 4.1. If X1, . . . , Xn are independent and integrable, then X1 · · ·Xn is inte-

grable and

E[X1 · · ·Xn] = E[X1] · · ·E[Xn].

In particular, if X1 and X2 are independent and integrable, then

E[X1X2, A] = E[X1, A]E[X2]

for A ∈ σ(X1). Indeed, if A ∈ σ(X1), then X11A and X2 are independent, and therefore

by Proposition 4.1, E[X1X2, A] = E[X11A ·X2] = E[X11A]E[X2] = E[X1, A]E[X2].

5 Martingales

For a thorough account, see e.g., Billingsley (2012, Section 35).

A sequence of random variables (Zk)k∈Z+ is a supermartingale if E[|Zk|] < ∞ for all

k ∈ Z+, and

E[Zk, A] ≤ E[Zk−1, A] for all A ∈ σ(Z0, . . . , Zk−1)

for all k ≥ 1.
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Lemma 5.1. Let (Zk)k∈Z+ be a supermartingale. For α ∈ R, let

τ = min{k ∈ Z+ | Zk ≥ α}.

Then for any n ∈ Z+,

E[Zτ∧n] ≤ E[Z0].

Proof. Observe first that

Zτ∧n − Z0

=
(
Zn1{τ=n} + Zn−11{τ=n−1} + · · ·+ Z11{τ=1} + Z01{τ=0}

)
− Z0

= (Zn − Zn−1)1{τ≥n} + (Zn−1 − Zn−2)1{τ≥n−1} + · · ·+ (Z1 − Z0)1{τ≥1}

(note that 1{τ=k−1} = 1{τ≥k−1} − 1{τ≥k}), so that

E[Zτ∧n − Z0] =

n∑
k=1

E[Zk − Zk−1, {τ ≥ k}].

For each k = 1, . . . , n, we have

{τ ≥ k} = {Z0 < α} ∩ {Z1 < α} ∩ · · · ∩ {Zk−1 < α} ∈ σ(Z0, . . . , Zk−1),

and therefore

E[Zk − Zk−1, {τ ≥ k}] ≤ 0

by the assumption that (Zk)k∈Z+ is a supermartingale. Hence, we have E[Zτ∧n −Z0] ≤
0.

Proposition 5.2 (Doob’s Supermartingale Inequality). Let (Zk)k∈Z+ be a supermartin-

gale such that for all k ∈ Z+, Zk ≥ 0 a.s. Then for any α ∈ R and for any n ∈ Z+,

αP

(
max
0≤k≤n

Zk ≥ α

)
≤ E[Z0].

Proof. Let τ = min{k ∈ Z+ | Zk ≥ α}. Note that{
max
0≤k≤n

Zk ≥ α

}
= {Zτ ≥ α} ∩ {τ ≤ n}.

We have

E[Zτ∧n] = E[Zτ , {τ ≤ n}] + E[Zn, {τ > n}]
≥ E[Zτ , {τ ≤ n}]

≥ αP ({Zτ ≥ α} ∩ {τ ≤ n}) = αP

(
max
0≤k≤n

Zk ≥ α

)
,

where the first inequality follows from the assumption that for all k ∈ Z+, Zk ≥ 0 a.s.,

while the second follows from Markov’s inequality. But E[Z0] ≥ E[Zτ∧n] by Lemma 5.1,

and hence we have the desired inequality.
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