Basics of Probability Theory

Daisuke Oyama
Faculty of Economics, University of Tokyo
oyama@e.u-tokyo.ac.jp

This version: February 17, 2014

1 Measurable Spaces and Random Variables

Let Ω be a set, and \mathcal{F} a family of subsets of Ω. \mathcal{F} is a σ-algebra, or σ-field, if
(1) $\Omega \in \mathcal{F}$,
(2) $A \in \Omega$ implies $A^{\mathrm{c}} \in \mathcal{F}$, and
(3) $A_{1}, A_{2}, \ldots \in \mathcal{F}$ implies $\bigcup_{i=1}^{\infty} A_{i} \in \mathcal{F}$.

A pair (Ω, \mathcal{F}) of a set Ω and a σ-algebra \mathcal{F} of subsets of Ω is called a measurable space. An element of \mathcal{F} is called a measurable set or an event.

For a family \mathcal{A} of subsets of Ω, the σ-algebra generated by \mathcal{A} is the σ-algebra given by

$$
\sigma(\mathcal{A})=\bigcap\{\mathcal{M} \mid \mathcal{M} \text { is a } \sigma \text {-algebra containing } \mathcal{A}\}
$$

which is the smallest σ-algebra containing \mathcal{A}. The Borel algebra for \mathbb{R}, which we denote $\mathcal{B}(\mathbb{R})$, is the σ-algebra generated by the family of all open sets in \mathbb{R}.

For a function $X: \Omega \rightarrow \mathbb{R}$, we write

$$
\{X \in B\}=\{\omega \in \Omega \mid X(\omega) \in B\}
$$

for $B \in \mathbb{R}$, and $\{X \geq a\}=\{\omega \in \Omega \mid X(\omega) \geq a\}$ for $a \in \mathbb{R}$, and so on. For a measurable space (Ω, \mathcal{F}), a function $X: \Omega \rightarrow \mathbb{R}$ is a (real-valued) random variable on (Ω, \mathcal{F}) if it is \mathcal{F}-measurable, i.e.,

$$
\{X \in B\} \in \mathcal{F} \text { for all } B \in \mathcal{B}(\mathbb{R})
$$

For a random variable X on (Ω, \mathcal{F}), the σ-algebra generated by X is the σ-algebra given by

$$
\sigma(X)=\{\{X \in B\} \in \mathcal{F} \mid B \in \mathcal{B}(\mathbb{R})\}
$$

which is the smallest σ-field with respect to which X is measurable. Likewise, for a family $\left(X_{\lambda}\right)_{\lambda \in \Lambda}$ of random variables on (Ω, \mathcal{F}), the σ-algebra generated by $\left(X_{\lambda}\right)_{\lambda \in \Lambda}$,
$\sigma\left(\left(X_{\lambda}\right)_{\lambda \in \Lambda}\right)$, is the σ-algebra generated by the family of sets $\left\{X_{\lambda} \in B\right\}, B \in \mathcal{B}(\mathbb{R})$, $\lambda \in \Lambda$, which is the smallest σ-algebra with respect to which all X_{λ} 's are measurable.

For $A \subset \Omega$, we define the function $\mathbf{1}_{A}: \Omega \rightarrow \mathbb{R}$ by

$$
\mathbf{1}_{A}(\omega)= \begin{cases}1 & \text { if } \omega \in A, \\ 0 & \text { if } \omega \notin A,\end{cases}
$$

which is called the indicator function of $A . \mathbf{1}_{A}$ is a random variable on (Ω, \mathcal{F}) if and only if $A \in \mathcal{F}$. We say that a random variable X on (Ω, \mathcal{F}) is simple if there are $A_{1}, \ldots, A_{n} \in \mathcal{F}, A_{i} \cap A_{j}=\emptyset, i \neq j$, such that $X=\sum_{i=1}^{n} a_{i} \mathbf{1}_{A_{i}}$ with $a_{1}, \ldots, a_{n} \in \mathbb{R}$.

2 Probability Measures

For a measurable space (Ω, \mathcal{F}), a function $P: \mathcal{F} \rightarrow[0,1]$ is a probability measure on (Ω, \mathcal{F}) if
(1) $P(\emptyset)=0$ and $P(\Omega)=1$, and
(2) if $A_{1}, A_{2}, \ldots \in \mathcal{F}$ and $A_{i} \cap A_{j}=\emptyset$ for $i \neq j$, then $P\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)$.

A tuple (Ω, \mathcal{F}, P) of a nonempty set Ω, a σ-algebra \mathcal{F} of subsets of Ω, and a probability measure P on (Ω, \mathcal{F}) is called a probability space.

Proposition 2.1.

(1) If $A, B \in \mathcal{F}$ and $A \subset B$, then $P(A) \leq P(B)$.
(2) If $A_{1}, A_{2}, \ldots \in \mathcal{F}$ and $A_{1} \subset A_{2} \subset \cdots$, then $P\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\lim _{n \rightarrow \infty} P\left(A_{n}\right)$.
(3) If $A_{1}, A_{2}, \ldots \in \mathcal{F}$ and $A_{1} \supset A_{2} \supset \cdots$, then $P\left(\bigcap_{n=1}^{\infty} A_{n}\right)=\lim _{n \rightarrow \infty} P\left(A_{n}\right)$.
(4) If $A_{1}, A_{2}, \ldots \in \mathcal{F}$, then $P\left(\bigcup_{n=1}^{\infty} A_{n}\right) \leq \sum_{n=1}^{\infty} P\left(A_{n}\right)$.

The following is called the (first) Borel-Cantelli lemma.
Proposition 2.2. If $A_{1}, A_{2}, \ldots \in \mathcal{F}$ and $\sum_{n=1}^{\infty} P\left(A_{n}\right)<\infty$, then $P\left(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k}\right)=$ 0 .

Proof. Let $B_{m}=\bigcup_{k=m}^{\infty} A_{k}$. Then $\bigcap_{n=1}^{\infty} B_{n} \subset B_{m}$ for any m. Thus

$$
0 \leq P\left(\bigcap_{n=1}^{\infty} B_{n}\right) \leq P\left(B_{m}\right) \leq \sum_{k=m}^{\infty} P\left(A_{k}\right)
$$

holds for any m, and the sum in the last term tends to 0 as $m \rightarrow \infty$ if $\sum_{n=1}^{\infty} P\left(A_{n}\right)<$ ∞.

If a property holds except on an event whose probability is zero, then this property is said to hold almost surely, abbreviated "a.s.".

3 Expectation

Let a probability space (Ω, \mathcal{F}, P) be given.
Definition 3.1. For a nonnegative simple random variable $X=\sum_{i=1}^{n} a_{i} \mathbf{1}_{A_{i}}$, the expectation of X is defined by

$$
E[X]=\sum_{i=1}^{n} a_{n} P\left(A_{n}\right) .
$$

Lemma 3.1. For any nonnegative random variable X, there exists a nondecreasing sequence of nonnegative simple random variables $\left(X_{n}\right)$ such that $\lim _{n \rightarrow \infty} X_{n}=X$.

If $\left(X_{n}\right)$ and $\left(Y_{n}\right)$ are nondecreasing sequences of nonnegative simple random variables, and $\lim _{n \rightarrow \infty} X_{n}=\lim _{n \rightarrow \infty} Y_{n}=X$, then $\lim _{n \rightarrow \infty} E\left[X_{n}\right]=\lim _{n \rightarrow \infty} E\left[Y_{n}\right]$.

Definition 3.2. For a nonnegative random variable X, the expectation of X is defined by

$$
E[X]=\lim _{n \rightarrow \infty} E\left[X_{n}\right],
$$

where $\left(X_{n}\right)$ is a nondecreasing sequence of nonnegative simple random variables such that $\lim _{n \rightarrow \infty} X_{n}=X$.

Note that this is well defined, i.e., the value does not depend on the choice of an approximating sequence.

A random variable X is said to be integrable if $E[|X|]<\infty$.
Write

$$
X^{+}=X \vee 0, \quad X^{-}=-(X \wedge 0) .
$$

Note that

$$
X=X^{+}-X^{-}, \quad|X|=X^{+}+X^{-},
$$

and that if X is integrable, then X^{+}and X^{-}are integrable.
Definition 3.3. For an integrable random variable X, the expectation of X is defined by

$$
E[X]=E\left[X^{+}\right]-E\left[X^{-}\right] .
$$

For $A \in \mathcal{F}$, we write

$$
E[X, A]=E\left[X \mathbf{1}_{A}\right] .
$$

Observe that if $E[X, A]=0$ whenever $P(A)=0$.
Proposition 3.2. Let X, Y be integrable random variables.
(1) For $a, b \in \mathbb{R}, a X+b Y$ is integrable, and

$$
E[a X+b Y]=a E[X]+b E[Y]
$$

(2) If $A, B \in \mathcal{F}$ and $A \cap B=\emptyset$, then

$$
E[X, A \cup B]=E[X, A]+E[X, B]
$$

(3) If $X \geq Y$ a.s., then

$$
E[X] \geq E[Y]
$$

Proposition 3.3 (Markov's Inequality). Let X be a random variable such that $X \geq 0$ a.s. Then for any $\alpha \in \mathbb{R}$ and any $A \in \mathcal{F}$,

$$
\alpha P(\{X \geq \alpha\} \cap A) \leq E[X, A]
$$

Proof. Observe that

$$
X \geq X \mathbf{1}_{\{X \geq \alpha\}} \geq \alpha \mathbf{1}_{\{X \geq \alpha\}} \text { a.s. }
$$

Thus we have $E[X, A] \geq E\left[\alpha \mathbf{1}_{\{X \geq \alpha\} \cap A}\right]=\alpha P(\{X \geq \alpha\} \cap A)$.
Proposition 3.4 (Lebesgue's Convergence Theorem). Let $\left(X_{n}\right)$ be a sequence of random variables, and suppose that there exists an integrable random variable Y such that for all $n,\left|X_{n}\right| \leq Y$ a.s. If $\lim _{n \rightarrow \infty} X_{n}=X$ a.s., then

$$
\lim _{n \rightarrow \infty} E\left[X_{n}\right]=E[X]
$$

Proposition 3.5. Suppose that $f: I \times \Omega \rightarrow \mathbb{R}$, where $I \subset \mathbb{R}$ is an open interval, satisfies the following conditions:
(i) for all $t \in I, f(t, \cdot)$ is integrable; and
(ii) for almost all $\omega \in \Omega, f(\cdot, \omega)$ is differentiable, and there exists an integrable function $g: \Omega \rightarrow \mathbb{R}$ such that for almost all $\omega \in \Omega,\left|f_{t}(t, \omega)\right| \leq g(\omega)$ for all $t \in I$.
Then $E[f(t, \cdot)]$ is differentiable in t on I with

$$
\frac{d}{d t} E[f(t, \cdot)]=E\left[f_{t}(t, \cdot)\right]
$$

Proof. Fix any $t_{0} \in I$. For any sequence $\left(t_{n}\right)$ such that $t_{n} \neq t_{0}$ and $t_{n} \rightarrow t_{0}$, let

$$
X_{n}(\omega)=\frac{f\left(t_{n}, \omega\right)-f\left(t_{0}, \omega\right)}{t_{n}-t_{0}}
$$

Thus

$$
\frac{E\left[f\left(t_{n}, \cdot\right)\right]-E\left[f\left(t_{0}, \cdot\right)\right]}{t_{n}-t_{0}}=E\left[X_{n}\right]
$$

We want to show that

$$
\lim _{n \rightarrow \infty} E\left[X_{n}\right]=E\left[f_{t}\left(t_{0}, \cdot\right)\right] .
$$

Fix any $\omega \in \Omega$ as in condition (ii). First, $\lim _{n \rightarrow \infty} X_{n}(\omega)=f_{t}\left(t_{0}, \omega\right)$. Second, for each n, by the mean value theorem we have

$$
\frac{f\left(t_{n}, \omega\right)-f\left(t_{0}, \omega\right)}{t_{n}-t_{0}}=f_{t}(s, \omega)
$$

for some s between t_{0} and t_{n}, but the right hand side is bounded in absolute value by $g(\omega)$, so that we have

$$
\left|X_{n}(\omega)\right| \leq g(\omega)
$$

for all n. Hence, it follows from Lebesgue's convergence theorem that

$$
\lim _{n \rightarrow \infty} E\left[X_{n}\right]=E\left[\lim _{n \rightarrow \infty} X_{n}\right]=E\left[f_{t}\left(t_{0}, \cdot\right)\right]
$$

as desired.

4 Independence

Sub- σ-algebras $\left(\mathcal{F}_{\lambda}\right)_{\lambda \in \Lambda}$ of \mathcal{F} are independent if for any finite subfamily $\mathcal{F}_{\lambda_{1}}, \ldots, \mathcal{F}_{\lambda_{n}}$,

$$
P\left(A_{1} \cap \cdots \cap A_{n}\right)=P\left(A_{1}\right) \cdots P\left(A_{n}\right)
$$

for all $A_{i} \in \mathcal{F}_{\lambda_{i}}, i=1, \ldots, n$. Random variables $\left(X_{\lambda}\right)_{\lambda \in \Lambda}$ are independent if $\left(\sigma\left(X_{\lambda}\right)\right)_{\lambda \in \Lambda}$ are independent.

Proposition 4.1. If X_{1}, \ldots, X_{n} are independent and integrable, then $X_{1} \cdots X_{n}$ is integrable and

$$
E\left[X_{1} \cdots X_{n}\right]=E\left[X_{1}\right] \cdots E\left[X_{n}\right] .
$$

In particular, if X_{1} and X_{2} are independent and integrable, then

$$
E\left[X_{1} X_{2}, A\right]=E\left[X_{1}, A\right] E\left[X_{2}\right]
$$

for $A \in \sigma\left(X_{1}\right)$. Indeed, if $A \in \sigma\left(X_{1}\right)$, then $X_{1} \mathbf{1}_{A}$ and X_{2} are independent, and therefore by Proposition 4.1, $E\left[X_{1} X_{2}, A\right]=E\left[X_{1} \mathbf{1}_{A} \cdot X_{2}\right]=E\left[X_{1} \mathbf{1}_{A}\right] E\left[X_{2}\right]=E\left[X_{1}, A\right] E\left[X_{2}\right]$.

5 Martingales

For a thorough account, see e.g., Billingsley (2012, Section 35).
A sequence of random variables $\left(Z_{k}\right)_{k \in \mathbb{Z}_{+}}$is a supermartingale if $E\left[\left|Z_{k}\right|\right]<\infty$ for all $k \in \mathbb{Z}_{+}$, and

$$
E\left[Z_{k}, A\right] \leq E\left[Z_{k-1}, A\right] \text { for all } A \in \sigma\left(Z_{0}, \ldots, Z_{k-1}\right)
$$

for all $k \geq 1$.

Lemma 5.1. Let $\left(Z_{k}\right)_{k \in \mathbb{Z}_{+}}$be a supermartingale. For $\alpha \in \mathbb{R}$, let

$$
\tau=\min \left\{k \in \mathbb{Z}_{+} \mid Z_{k} \geq \alpha\right\}
$$

Then for any $n \in \mathbb{Z}_{+}$,

$$
E\left[Z_{\tau \wedge n}\right] \leq E\left[Z_{0}\right]
$$

Proof. Observe first that

$$
\begin{aligned}
& Z_{\tau \wedge n}-Z_{0} \\
& =\left(Z_{n} \mathbf{1}_{\{\tau=n\}}+Z_{n-1} \mathbf{1}_{\{\tau=n-1\}}+\cdots+Z_{1} \mathbf{1}_{\{\tau=1\}}+Z_{0} \mathbf{1}_{\{\tau=0\}}\right)-Z_{0} \\
& =\left(Z_{n}-Z_{n-1}\right) \mathbf{1}_{\{\tau \geq n\}}+\left(Z_{n-1}-Z_{n-2}\right) \mathbf{1}_{\{\tau \geq n-1\}}+\cdots+\left(Z_{1}-Z_{0}\right) \mathbf{1}_{\{\tau \geq 1\}}
\end{aligned}
$$

(note that $\mathbf{1}_{\{\tau=k-1\}}=\mathbf{1}_{\{\tau \geq k-1\}}-\mathbf{1}_{\{\tau \geq k\}}$), so that

$$
E\left[Z_{\tau \wedge n}-Z_{0}\right]=\sum_{k=1}^{n} E\left[Z_{k}-Z_{k-1},\{\tau \geq k\}\right]
$$

For each $k=1, \ldots, n$, we have

$$
\{\tau \geq k\}=\left\{Z_{0}<\alpha\right\} \cap\left\{Z_{1}<\alpha\right\} \cap \cdots \cap\left\{Z_{k-1}<\alpha\right\} \in \sigma\left(Z_{0}, \ldots, Z_{k-1}\right)
$$

and therefore

$$
E\left[Z_{k}-Z_{k-1},\{\tau \geq k\}\right] \leq 0
$$

by the assumption that $\left(Z_{k}\right)_{k \in \mathbb{Z}_{+}}$is a supermartingale. Hence, we have $E\left[Z_{\tau \wedge n}-Z_{0}\right] \leq$ 0 .

Proposition 5.2 (Doob's Supermartingale Inequality). Let $\left(Z_{k}\right)_{k \in \mathbb{Z}_{+}}$be a supermartingale such that for all $k \in \mathbb{Z}_{+}, Z_{k} \geq 0$ a.s. Then for any $\alpha \in \mathbb{R}$ and for any $n \in \mathbb{Z}_{+}$,

$$
\alpha P\left(\max _{0 \leq k \leq n} Z_{k} \geq \alpha\right) \leq E\left[Z_{0}\right]
$$

Proof. Let $\tau=\min \left\{k \in \mathbb{Z}_{+} \mid Z_{k} \geq \alpha\right\}$. Note that

$$
\left\{\max _{0 \leq k \leq n} Z_{k} \geq \alpha\right\}=\left\{Z_{\tau} \geq \alpha\right\} \cap\{\tau \leq n\}
$$

We have

$$
\begin{aligned}
E\left[Z_{\tau \wedge n}\right] & =E\left[Z_{\tau},\{\tau \leq n\}\right]+E\left[Z_{n},\{\tau>n\}\right] \\
& \geq E\left[Z_{\tau},\{\tau \leq n\}\right] \\
& \geq \alpha P\left(\left\{Z_{\tau} \geq \alpha\right\} \cap\{\tau \leq n\}\right)=\alpha P\left(\max _{0 \leq k \leq n} Z_{k} \geq \alpha\right)
\end{aligned}
$$

where the first inequality follows from the assumption that for all $k \in \mathbb{Z}_{+}, Z_{k} \geq 0$ a.s., while the second follows from Markov's inequality. But $E\left[Z_{0}\right] \geq E\left[Z_{\tau \wedge n}\right]$ by Lemma 5.1, and hence we have the desired inequality.

References

Billingsley, P. (2012). Probability and Measure, John Wiley \& Sons, Hoboken.

