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This document collects some useful topological properties of convex sets. Proofs are
mostly from Rockafellar (1970).

Proposition 1. For any convez set C C RY, ifx € int C and y € clC, then (1 —\)z +
Ay € int C for any A € [0,1).

Proof. Let x € int C and y € clC. Fix any A € [0,1). We want to show that there exists
€ > 0 such that (1 — Nz + Ay + éu € C for all u € B, where B is the unit open ball in
R around 0.

Since x € int C, we can take an €9 > 0 such that z + equ € C for all u € B. Given
this €9 > 0, let € =¢e0(1 — A)/(1+ A) > 0. Since y € clC, we can take ug € B such that
y—&ug € C.

Fix any v € B. Let v/ = [A/(1+ N)]ug + [1/(1 4+ A)]u, where v’ € B by the convexity
of B. Then, (1 — A)x 4+ Ay + €u can be expressed as

(I=XNz+Ay+¢éu=(1—Nzx+ Ny — Eug) + Aeup + u

AE g _
=(1-2X) <a: + o + Hu) + XMy — €uop)
= (1= X)(z+eou') + Ay — up)
(note that EA/(1 —A) = eg\/(L+A), /(1 —A) =¢e0/(1+ ) by the definition of ). Since
x + gou’ € C by the choice of g9, we have (1 — \)(z + eou’) + My — Eug) € C by the
convexity of C. |

Proposition 2. For any convez set C C RN, c1C and int C' are convez.

Proof. The convexity of clC follows from the formula c1C' = (., ((C + eB) (where B
is the unit ball in RV around 0, which is convex). The convexity of int C' follows from
Proposition 1. |

For 20,..., 2™ € RY, write
aff ({20, ..., 2™} = {2 + 7 Ni(2' —2%) | Ap, .. A € R},

which is called the affine space spanned by 2V, ..., 2™, or the affine hull of z°,..., ™.



Proposition 3. For 2°,... 2™ € RN aff({2°,...,2™}) is a closed set.

Proof. Let A € RN*¢ consist of a maximal linearly independent subset of {z! —
29, ..., 2™ — 29} (as columns). Take any sequence {2*} in aff({z°,...,2™}), where
for each k, ¥ = 29 + AN* for some A\¥ € R’, and assume that z*¥ — z*. We have
AT(z% — 29) = ATANF| where AT A is non-singular. To see this, let ATAz = 0. Then
we have 2TATAz = 0, or |Az||> = 0, which holds only if Az = 0. Since the columns of
A are linearly independent, this holds only if z = 0.

Thus, we have \* = (ATA)"'AT(zF — 20). Then letting k& — oo, we have \¥ —
M= (ATA)7TAT (¥ — 20). Hence, we have 2* = limp_,o0 (2% + ANF) = 29 + AN* €
aff({2°,...,2™}). This proves that aff({2°,...,2™}) is closed. |

A finite set {z°,..., 2™} C RY is affinely independent if {x' — 2°,... 2™ — 20} is
linearly independent. The dimension of C C RY, denoted dim C, is the largest number
m such that C contains some affinely independent set {x°,... 2™}. If {z° ... 2™} is
affinely independent, then dim(aff({z?,...,2™})) = m.

Proposition 4. Let C C RY.

(1) dim(clC) =dim C.

(2) If int C # 0, then dimC = N.

(3) Suppose that C is convex. If dimC = N, then int C # ().

Proof. (1) Let {z°,...,2™} be a maximal affinely independent subset of C. By max-
imality, C C aff({2°,...,2™}), and by the closedness of aff({z°,.... 2™}, clC C
aff({z%,...,2™}). This implies that dim(clC) < m = dimC. The converse inequal-
ity holds obviously.

(2) Suppose that int C # (), and let 2 € int C. We can take an ¢ > 0 such that
20 +¢eet € C foralli =1,...,N, where €' is the ith unit vector of RV, and {20, 20 +
eel, ..., 2% +eeM} is affinely independent. Hence, dim C = N.

(3) Suppose that C is convex and dimC = N. Let {z°,...,2V} C C be affinely
independent, and let A € RV*N consist of 2t —29,..., 2" — 20 (as columns), where A is
invertible. Denote S = {z € RV | x; > 0, Zfil x; < 1}, which is nonempty and open.
Then {20 + N (2 — 2 | & > 0, 2N A < 1} = {2°} + A(S) is nonempty and
open and is contained in C. Hence, int C # (). |

Proposition 5. For any convez set C C RY, if int(clC) # 0, then int C' # ().
Proof. By Proposition 4,

int(clC) #0 = dim(clC) =N
— dimC =N
= intC # 0,

as claimed. |



Proposition 6. For any conver set C C RY int(clC) = int C.

Proof. Tt suffices to show that int(clC') C int C. Suppose that int(clC) # () (otherwise
the conclusion holds trivially). Then, by the convexity of C, it follows from Proposition 5
that int C' # (). Let z € int(clC). We want to show that z € int C. Take any z € int C
(# 0). Suppose that x # z (otherwise z € int C' holds trivially). For ¢ > 0, let

y:Z—€(IE—Z),

and let € be sufficiently small so that y € c1C. Then z can be written as z = [1—1/(1+
e)]z 4+ [1/(1 + ¢)]y, where z € int C and y € cl C. Therefore, by Proposition 1 it follows
that z € int C. |

Remark 1. The property stated in Proposition 6 is used when reducing the weak version
of the separating hyperplane theorem to the strict version, in a step that shows that if
C is a convex set and b ¢ int C, then b ¢ int(clC), so that there exists a sequence {b*}
such that b* ¢ clC and bk — b, a statement which sounds intuitive, but is not obvious
at all. In fact, Propositions 5 and 6 do not hold if one drops the convexity of C'. For
example, let N =1 and C = QnNJ0,1]. Then clC = [0, 1] and therefore int(cl C) = (0, 1)
and bd(clC') = {0, 1}, whereas int C = () and bd C' = [0, 1].
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