Topological Properties of Convex Sets

DAISUKE OYAMA

Faculty of Economics, University of Tokyo oyama@e.u-tokyo.ac.jp

This version: April 19, 2023

This document collects some useful topological properties of convex sets. Proofs are mostly from Rockafellar (1970).

Proposition 1. For any convex set $C \subset \mathbb{R}^N$, if $x \in \text{int } C$ and $y \in \text{cl } C$, then $(1 - \lambda)x + \lambda y \in \text{int } C$ for any $\lambda \in [0, 1)$.

Proof. Let $x \in \text{int } C$ and $y \in \text{cl } C$. Fix any $\lambda \in [0, 1)$. We want to show that there exists $\overline{\varepsilon} > 0$ such that $(1 - \lambda)x + \lambda y + \overline{\varepsilon}u \in C$ for all $u \in B$, where B is the unit open ball in \mathbb{R}^N around 0.

Since $x \in \text{int } C$, we can take an $\varepsilon_0 > 0$ such that $x + \varepsilon_0 u \in C$ for all $u \in B$. Given this $\varepsilon_0 > 0$, let $\overline{\varepsilon} = \varepsilon_0(1-\lambda)/(1+\lambda) > 0$. Since $y \in \text{cl } C$, we can take $u_0 \in B$ such that $y - \overline{\varepsilon} u_0 \in C$.

Fix any $u \in B$. Let $u' = [\lambda/(1+\lambda)]u_0 + [1/(1+\lambda)]u$, where $u' \in B$ by the convexity of B. Then, $(1-\lambda)x + \lambda y + \overline{\varepsilon}u$ can be expressed as

$$(1 - \lambda)x + \lambda y + \bar{\varepsilon}u = (1 - \lambda)x + \lambda(y - \bar{\varepsilon}u_0) + \lambda\bar{\varepsilon}u_0 + \bar{\varepsilon}u$$
$$= (1 - \lambda)\left(x + \frac{\lambda\bar{\varepsilon}}{1 - \lambda}u_0 + \frac{\bar{\varepsilon}}{1 - \lambda}u\right) + \lambda(y - \bar{\varepsilon}u_0)$$
$$= (1 - \lambda)(x + \varepsilon_0 u') + \lambda(y - \bar{\varepsilon}u_0)$$

(note that $\bar{\varepsilon}\lambda/(1-\lambda) = \varepsilon_0\lambda/(1+\lambda)$, $\bar{\varepsilon}/(1-\lambda) = \varepsilon_0/(1+\lambda)$ by the definition of $\bar{\varepsilon}$). Since $x + \varepsilon_0 u' \in C$ by the choice of ε_0 , we have $(1-\lambda)(x + \varepsilon_0 u') + \lambda(y - \bar{\varepsilon}u_0) \in C$ by the convexity of C.

Proposition 2. For any convex set $C \subset \mathbb{R}^N$, cl C and int C are convex.

Proof. The convexity of cl C follows from the formula cl $C = \bigcap_{\varepsilon > 0} (C + \varepsilon B)$ (where B is the unit ball in \mathbb{R}^N around 0, which is convex). The convexity of int C follows from Proposition 1.

For
$$x^0, \ldots, x^m \in \mathbb{R}^N$$
, write
aff $(\{x^0, \ldots, x^m\}) = \{x^0 + \sum_{i=1}^m \lambda_i (x^i - x^0) \mid \lambda_1, \ldots, \lambda_m \in \mathbb{R}\},\$

which is called the affine space spanned by x^0, \ldots, x^m , or the affine hull of x^0, \ldots, x^m .

Proposition 3. For $x^0, \ldots, x^m \in \mathbb{R}^N$, aff $(\{x^0, \ldots, x^m\})$ is a closed set.

Proof. Let $A \in \mathbb{R}^{N \times \ell}$ consist of a maximal linearly independent subset of $\{x^1 - x^0, \ldots, x^m - x^0\}$ (as columns). Take any sequence $\{x^k\}$ in $\operatorname{aff}(\{x^0, \ldots, x^m\})$, where for each $k, x^k = x^0 + A\lambda^k$ for some $\lambda^k \in \mathbb{R}^{\ell}$, and assume that $x^k \to x^*$. We have $A^{\mathrm{T}}(x^k - x^0) = A^{\mathrm{T}}A\lambda^k$, where $A^{\mathrm{T}}A$ is non-singular. To see this, let $A^{\mathrm{T}}Az = 0$. Then we have $z^{\mathrm{T}}A^{\mathrm{T}}Az = 0$, or $||Az||^2 = 0$, which holds only if Az = 0. Since the columns of A are linearly independent, this holds only if z = 0.

Thus, we have $\lambda^k = (A^T A)^{-1} A^T (x^k - x^0)$. Then letting $k \to \infty$, we have $\lambda^k \to \lambda^* = (A^T A)^{-1} A^T (x^* - x^0)$. Hence, we have $x^* = \lim_{k\to\infty} (x^0 + A\lambda^k) = x^0 + A\lambda^* \in \operatorname{aff}(\{x^0, \ldots, x^m\})$. This proves that $\operatorname{aff}(\{x^0, \ldots, x^m\})$ is closed.

A finite set $\{x^0, \ldots, x^m\} \subset \mathbb{R}^N$ is affinely independent if $\{x^1 - x^0, \ldots, x^m - x^0\}$ is linearly independent. The dimension of $C \subset \mathbb{R}^N$, denoted dim C, is the largest number m such that C contains some affinely independent set $\{x^0, \ldots, x^m\}$. If $\{x^0, \ldots, x^m\}$ is affinely independent, then dim $(aff(\{x^0, \ldots, x^m\})) = m$.

Proposition 4. Let $C \subset \mathbb{R}^N$.

- (1) $\dim(\operatorname{cl} C) = \dim C$.
- (2) If int $C \neq \emptyset$, then dim C = N.
- (3) Suppose that C is convex. If dim C = N, then int $C \neq \emptyset$.

Proof. (1) Let $\{x^0, \ldots, x^m\}$ be a maximal affinely independent subset of C. By maximality, $C \subset \operatorname{aff}(\{x^0, \ldots, x^m\})$, and by the closedness of $\operatorname{aff}(\{x^0, \ldots, x^m\}, \operatorname{cl} C \subset \operatorname{aff}(\{x^0, \ldots, x^m\})$. This implies that $\operatorname{dim}(\operatorname{cl} C) \leq m = \operatorname{dim} C$. The converse inequality holds obviously.

(2) Suppose that $\operatorname{int} C \neq \emptyset$, and let $x^0 \in \operatorname{int} C$. We can take an $\varepsilon > 0$ such that $x^0 + \varepsilon e^i \in C$ for all $i = 1, \ldots, N$, where e^i is the *i*th unit vector of \mathbb{R}^N , and $\{x^0, x^0 + \varepsilon e^1, \ldots, x^0 + \varepsilon e^N\}$ is affinely independent. Hence, dim C = N.

(3) Suppose that C is convex and dim C = N. Let $\{x^0, \ldots, x^N\} \subset C$ be affinely independent, and let $A \in \mathbb{R}^{N \times N}$ consist of $x^1 - x^0, \ldots, x^N - x^0$ (as columns), where A is invertible. Denote $S = \{x \in \mathbb{R}^N \mid x_i > 0, \sum_{i=1}^N x_i < 1\}$, which is nonempty and open. Then $\{x^0 + \sum_{i=1}^N \lambda_i (x^i - x^0) \mid \lambda_i > 0, \sum_{i=1}^N \lambda_i < 1\} = \{x^0\} + A(S)$ is nonempty and open and is contained in C. Hence, int $C \neq \emptyset$.

Proposition 5. For any convex set $C \subset \mathbb{R}^N$, if $int(cl C) \neq \emptyset$, then $int C \neq \emptyset$.

Proof. By Proposition 4,

$$\operatorname{int}(\operatorname{cl} C) \neq \emptyset \implies \operatorname{dim}(\operatorname{cl} C) = N$$
$$\implies \operatorname{dim} C = N$$
$$\implies \operatorname{int} C \neq \emptyset,$$

as claimed.

Proposition 6. For any convex set $C \subset \mathbb{R}^N$, int(cl C) = int C.

Proof. It suffices to show that $\operatorname{int}(\operatorname{cl} C) \subset \operatorname{int} C$. Suppose that $\operatorname{int}(\operatorname{cl} C) \neq \emptyset$ (otherwise the conclusion holds trivially). Then, by the convexity of C, it follows from Proposition 5 that $\operatorname{int} C \neq \emptyset$. Let $z \in \operatorname{int}(\operatorname{cl} C)$. We want to show that $z \in \operatorname{int} C$. Take any $x \in \operatorname{int} C$ ($\neq \emptyset$). Suppose that $x \neq z$ (otherwise $z \in \operatorname{int} C$ holds trivially). For $\varepsilon > 0$, let

$$y = z - \varepsilon (x - z),$$

and let ε be sufficiently small so that $y \in \operatorname{cl} C$. Then z can be written as $z = [1 - 1/(1 + \varepsilon)]x + [1/(1 + \varepsilon)]y$, where $x \in \operatorname{int} C$ and $y \in \operatorname{cl} C$. Therefore, by Proposition 1 it follows that $z \in \operatorname{int} C$.

Remark 1. The property stated in Proposition 6 is used when reducing the weak version of the separating hyperplane theorem to the strict version, in a step that shows that if C is a convex set and $b \notin \operatorname{int} C$, then $b \notin \operatorname{int}(\operatorname{cl} C)$, so that there exists a sequence $\{b^k\}$ such that $b^k \notin \operatorname{cl} C$ and $b^k \to b$, a statement which sounds intuitive, but is not obvious at all. In fact, Propositions 5 and 6 do not hold if one drops the convexity of C. For example, let N = 1 and $C = \mathbb{Q} \cap [0, 1]$. Then $\operatorname{cl} C = [0, 1]$ and therefore $\operatorname{int}(\operatorname{cl} C) = (0, 1)$ and $\operatorname{bd}(\operatorname{cl} C) = \{0, 1\}$, whereas $\operatorname{int} C = \emptyset$ and $\operatorname{bd} C = [0, 1]$.

References

ROCKAFELLAR, R. T. (1970). Convex Analysis, Princeton University Press, Princeton.