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This document collects some useful topological properties of convex sets. Proofs are

mostly from Rockafellar (1970).

Proposition 1. For any convex set C ⊂ RN , if x ∈ intC and y ∈ clC, then (1− λ)x+

λy ∈ intC for any λ ∈ [0, 1).

Proof. Let x ∈ intC and y ∈ clC. Fix any λ ∈ [0, 1). We want to show that there exists

ε̄ > 0 such that (1− λ)x+ λy + ε̄u ∈ C for all u ∈ B, where B is the unit open ball in

RN around 0.

Since x ∈ intC, we can take an ε0 > 0 such that x + ε0u ∈ C for all u ∈ B. Given

this ε0 > 0, let ε̄ = ε0(1− λ)/(1 + λ) > 0. Since y ∈ clC, we can take u0 ∈ B such that

y − ε̄u0 ∈ C.

Fix any u ∈ B. Let u′ = [λ/(1+ λ)]u0 + [1/(1+ λ)]u, where u′ ∈ B by the convexity

of B. Then, (1− λ)x+ λy + ε̄u can be expressed as

(1− λ)x+ λy + ε̄u = (1− λ)x+ λ(y − ε̄u0) + λε̄u0 + ε̄u

= (1− λ)

(
x+

λε̄

1− λ
u0 +

ε̄

1− λ
u

)
+ λ(y − ε̄u0)

= (1− λ)(x+ ε0u
′) + λ(y − ε̄u0)

(note that ε̄λ/(1−λ) = ε0λ/(1+λ), ε̄/(1−λ) = ε0/(1+λ) by the definition of ε̄). Since

x + ε0u
′ ∈ C by the choice of ε0, we have (1 − λ)(x + ε0u

′) + λ(y − ε̄u0) ∈ C by the

convexity of C.

Proposition 2. For any convex set C ⊂ RN , clC and intC are convex.

Proof. The convexity of clC follows from the formula clC =
∩

ε>0(C + εB) (where B

is the unit ball in RN around 0, which is convex). The convexity of intC follows from

Proposition 1.

For x0, . . . , xm ∈ RN , write

aff({x0, . . . , xm}) = {x0 +
∑m

i=1 λi(x
i − x0) | λ1, . . . , λm ∈ R},

which is called the affine space spanned by x0, . . . , xm, or the affine hull of x0, . . . , xm.
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Proposition 3. For x0, . . . , xm ∈ RN , aff({x0, . . . , xm}) is a closed set.

Proof. Let A ∈ RN×ℓ consist of a maximal linearly independent subset of {x1 −
x0, . . . , xm − x0} (as columns). Take any sequence {xk} in aff({x0, . . . , xm}), where

for each k, xk = x0 + Aλk for some λk ∈ Rℓ, and assume that xk → x∗. We have

AT(xk − x0) = ATAλk, where ATA is non-singular. To see this, let ATAz = 0. Then

we have zTATAz = 0, or ∥Az∥2 = 0, which holds only if Az = 0. Since the columns of

A are linearly independent, this holds only if z = 0.

Thus, we have λk = (ATA)−1AT(xk − x0). Then letting k → ∞, we have λk →
λ∗ = (ATA)−1AT(x∗ − x0). Hence, we have x∗ = limk→∞(x0 + Aλk) = x0 + Aλ∗ ∈
aff({x0, . . . , xm}). This proves that aff({x0, . . . , xm}) is closed.

A finite set {x0, . . . , xm} ⊂ RN is affinely independent if {x1 − x0, . . . , xm − x0} is

linearly independent. The dimension of C ⊂ RN , denoted dimC, is the largest number

m such that C contains some affinely independent set {x0, . . . , xm}. If {x0, . . . , xm} is

affinely independent, then dim(aff({x0, . . . , xm})) = m.

Proposition 4. Let C ⊂ RN .

(1) dim(clC) = dimC.

(2) If intC ̸= ∅, then dimC = N .

(3) Suppose that C is convex. If dimC = N , then intC ̸= ∅.

Proof. (1) Let {x0, . . . , xm} be a maximal affinely independent subset of C. By max-

imality, C ⊂ aff({x0, . . . , xm}), and by the closedness of aff({x0, . . . , xm}, clC ⊂
aff({x0, . . . , xm}). This implies that dim(clC) ≤ m = dimC. The converse inequal-

ity holds obviously.

(2) Suppose that intC ̸= ∅, and let x0 ∈ intC. We can take an ε > 0 such that

x0 + εei ∈ C for all i = 1, . . . , N , where ei is the ith unit vector of RN , and {x0, x0 +
εe1, . . . , x0 + εeN} is affinely independent. Hence, dimC = N .

(3) Suppose that C is convex and dimC = N . Let {x0, . . . , xN} ⊂ C be affinely

independent, and let A ∈ RN×N consist of x1−x0, . . . , xN −x0 (as columns), where A is

invertible. Denote S = {x ∈ RN | xi > 0,
∑N

i=1 xi < 1}, which is nonempty and open.

Then {x0 +
∑N

i=1 λi(x
i − x0) | λi > 0,

∑N
i=1 λi < 1} = {x0} + A(S) is nonempty and

open and is contained in C. Hence, intC ̸= ∅.

Proposition 5. For any convex set C ⊂ RN , if int(clC) ̸= ∅, then intC ̸= ∅.

Proof. By Proposition 4,

int(clC) ̸= ∅ =⇒ dim(clC) = N

=⇒ dimC = N

=⇒ intC ̸= ∅,

as claimed.
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Proposition 6. For any convex set C ⊂ RN , int(clC) = intC.

Proof. It suffices to show that int(clC) ⊂ intC. Suppose that int(clC) ̸= ∅ (otherwise

the conclusion holds trivially). Then, by the convexity of C, it follows from Proposition 5

that intC ̸= ∅. Let z ∈ int(clC). We want to show that z ∈ intC. Take any x ∈ intC

(̸= ∅). Suppose that x ̸= z (otherwise z ∈ intC holds trivially). For ε > 0, let

y = z − ε(x− z),

and let ε be sufficiently small so that y ∈ clC. Then z can be written as z = [1− 1/(1+

ε)]x+ [1/(1 + ε)]y, where x ∈ intC and y ∈ clC. Therefore, by Proposition 1 it follows

that z ∈ intC.

Remark 1. The property stated in Proposition 6 is used when reducing the weak version

of the separating hyperplane theorem to the strict version, in a step that shows that if

C is a convex set and b /∈ intC, then b /∈ int(clC), so that there exists a sequence {bk}
such that bk /∈ clC and bk → b, a statement which sounds intuitive, but is not obvious

at all. In fact, Propositions 5 and 6 do not hold if one drops the convexity of C. For

example, let N = 1 and C = Q∩ [0, 1]. Then clC = [0, 1] and therefore int(clC) = (0, 1)

and bd(clC) = {0, 1}, whereas intC = ∅ and bdC = [0, 1].
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