Topological Properties of Convex Sets

Daisuke Oyama
Faculty of Economics, University of Tokyo
oyama@e.u-tokyo.ac.jp

This version: April 19, 2023

This document collects some useful topological properties of convex sets. Proofs are mostly from Rockafellar (1970).

Proposition 1. For any convex set $C \subset \mathbb{R}^{N}$, if $x \in \operatorname{int} C$ and $y \in \operatorname{cl} C$, then $(1-\lambda) x+$ $\lambda y \in \operatorname{int} C$ for any $\lambda \in[0,1)$.

Proof. Let $x \in \operatorname{int} C$ and $y \in \operatorname{cl} C$. Fix any $\lambda \in[0,1)$. We want to show that there exists $\bar{\varepsilon}>0$ such that $(1-\lambda) x+\lambda y+\bar{\varepsilon} u \in C$ for all $u \in B$, where B is the unit open ball in \mathbb{R}^{N} around 0 .

Since $x \in \operatorname{int} C$, we can take an $\varepsilon_{0}>0$ such that $x+\varepsilon_{0} u \in C$ for all $u \in B$. Given this $\varepsilon_{0}>0$, let $\bar{\varepsilon}=\varepsilon_{0}(1-\lambda) /(1+\lambda)>0$. Since $y \in \operatorname{cl} C$, we can take $u_{0} \in B$ such that $y-\bar{\varepsilon} u_{0} \in C$.

Fix any $u \in B$. Let $u^{\prime}=[\lambda /(1+\lambda)] u_{0}+[1 /(1+\lambda)] u$, where $u^{\prime} \in B$ by the convexity of B. Then, $(1-\lambda) x+\lambda y+\bar{\varepsilon} u$ can be expressed as

$$
\begin{aligned}
(1-\lambda) x+\lambda y+\bar{\varepsilon} u & =(1-\lambda) x+\lambda\left(y-\bar{\varepsilon} u_{0}\right)+\lambda \bar{\varepsilon} u_{0}+\bar{\varepsilon} u \\
& =(1-\lambda)\left(x+\frac{\lambda \bar{\varepsilon}}{1-\lambda} u_{0}+\frac{\bar{\varepsilon}}{1-\lambda} u\right)+\lambda\left(y-\bar{\varepsilon} u_{0}\right) \\
& =(1-\lambda)\left(x+\varepsilon_{0} u^{\prime}\right)+\lambda\left(y-\bar{\varepsilon} u_{0}\right)
\end{aligned}
$$

(note that $\bar{\varepsilon} \lambda /(1-\lambda)=\varepsilon_{0} \lambda /(1+\lambda), \bar{\varepsilon} /(1-\lambda)=\varepsilon_{0} /(1+\lambda)$ by the definition of $\left.\bar{\varepsilon}\right)$. Since $x+\varepsilon_{0} u^{\prime} \in C$ by the choice of ε_{0}, we have $(1-\lambda)\left(x+\varepsilon_{0} u^{\prime}\right)+\lambda\left(y-\bar{\varepsilon} u_{0}\right) \in C$ by the convexity of C.

Proposition 2. For any convex set $C \subset \mathbb{R}^{N}, \operatorname{cl} C$ and int C are convex.
Proof. The convexity of $\mathrm{cl} C$ follows from the formula $\mathrm{cl} C=\bigcap_{\varepsilon>0}(C+\varepsilon B)$ (where B is the unit ball in \mathbb{R}^{N} around 0 , which is convex). The convexity of $\operatorname{int} C$ follows from Proposition 1.

For $x^{0}, \ldots, x^{m} \in \mathbb{R}^{N}$, write

$$
\operatorname{aff}\left(\left\{x^{0}, \ldots, x^{m}\right\}\right)=\left\{x^{0}+\sum_{i=1}^{m} \lambda_{i}\left(x^{i}-x^{0}\right) \mid \lambda_{1}, \ldots, \lambda_{m} \in \mathbb{R}\right\}
$$

which is called the affine space spanned by x^{0}, \ldots, x^{m}, or the affine hull of x^{0}, \ldots, x^{m}.

Proposition 3. For $x^{0}, \ldots, x^{m} \in \mathbb{R}^{N}$, $\operatorname{aff}\left(\left\{x^{0}, \ldots, x^{m}\right\}\right)$ is a closed set.
Proof. Let $A \in \mathbb{R}^{N \times \ell}$ consist of a maximal linearly independent subset of $\left\{x^{1}-\right.$ $\left.x^{0}, \ldots, x^{m}-x^{0}\right\}$ (as columns). Take any sequence $\left\{x^{k}\right\}$ in $\operatorname{aff}\left(\left\{x^{0}, \ldots, x^{m}\right\}\right)$, where for each $k, x^{k}=x^{0}+A \lambda^{k}$ for some $\lambda^{k} \in \mathbb{R}^{\ell}$, and assume that $x^{k} \rightarrow x^{*}$. We have $A^{\mathrm{T}}\left(x^{k}-x^{0}\right)=A^{\mathrm{T}} A \lambda^{k}$, where $A^{\mathrm{T}} A$ is non-singular. To see this, let $A^{\mathrm{T}} A z=0$. Then we have $z^{\mathrm{T}} A^{\mathrm{T}} A z=0$, or $\|A z\|^{2}=0$, which holds only if $A z=0$. Since the columns of A are linearly independent, this holds only if $z=0$.

Thus, we have $\lambda^{k}=\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}}\left(x^{k}-x^{0}\right)$. Then letting $k \rightarrow \infty$, we have $\lambda^{k} \rightarrow$ $\lambda^{*}=\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}}\left(x^{*}-x^{0}\right)$. Hence, we have $x^{*}=\lim _{k \rightarrow \infty}\left(x^{0}+A \lambda^{k}\right)=x^{0}+A \lambda^{*} \in$ $\operatorname{aff}\left(\left\{x^{0}, \ldots, x^{m}\right\}\right)$. This proves that $\operatorname{aff}\left(\left\{x^{0}, \ldots, x^{m}\right\}\right)$ is closed.

A finite set $\left\{x^{0}, \ldots, x^{m}\right\} \subset \mathbb{R}^{N}$ is affinely independent if $\left\{x^{1}-x^{0}, \ldots, x^{m}-x^{0}\right\}$ is linearly independent. The dimension of $C \subset \mathbb{R}^{N}$, denoted $\operatorname{dim} C$, is the largest number m such that C contains some affinely independent set $\left\{x^{0}, \ldots, x^{m}\right\}$. If $\left\{x^{0}, \ldots, x^{m}\right\}$ is affinely independent, then $\operatorname{dim}\left(\operatorname{aff}\left(\left\{x^{0}, \ldots, x^{m}\right\}\right)\right)=m$.

Proposition 4. Let $C \subset \mathbb{R}^{N}$.
(1) $\operatorname{dim}(\operatorname{cl} C)=\operatorname{dim} C$.
(2) If $\operatorname{int} C \neq \emptyset$, then $\operatorname{dim} C=N$.
(3) Suppose that C is convex. If $\operatorname{dim} C=N$, then $\operatorname{int} C \neq \emptyset$.

Proof. (1) Let $\left\{x^{0}, \ldots, x^{m}\right\}$ be a maximal affinely independent subset of C. By maximality, $C \subset \operatorname{aff}\left(\left\{x^{0}, \ldots, x^{m}\right\}\right)$, and by the closedness of $\operatorname{aff}\left(\left\{x^{0}, \ldots, x^{m}\right\}, \operatorname{cl} C \subset\right.$ $\operatorname{aff}\left(\left\{x^{0}, \ldots, x^{m}\right\}\right)$. This implies that $\operatorname{dim}(\operatorname{cl} C) \leq m=\operatorname{dim} C$. The converse inequality holds obviously.
(2) Suppose that $\operatorname{int} C \neq \emptyset$, and let $x^{0} \in \operatorname{int} C$. We can take an $\varepsilon>0$ such that $x^{0}+\varepsilon e^{i} \in C$ for all $i=1, \ldots, N$, where e^{i} is the i th unit vector of \mathbb{R}^{N}, and $\left\{x^{0}, x^{0}+\right.$ $\left.\varepsilon e^{1}, \ldots, x^{0}+\varepsilon e^{N}\right\}$ is affinely independent. Hence, $\operatorname{dim} C=N$.
(3) Suppose that C is convex and $\operatorname{dim} C=N$. Let $\left\{x^{0}, \ldots, x^{N}\right\} \subset C$ be affinely independent, and let $A \in \mathbb{R}^{N \times N}$ consist of $x^{1}-x^{0}, \ldots, x^{N}-x^{0}$ (as columns), where A is invertible. Denote $S=\left\{x \in \mathbb{R}^{N} \mid x_{i}>0, \sum_{i=1}^{N} x_{i}<1\right\}$, which is nonempty and open. Then $\left\{x^{0}+\sum_{i=1}^{N} \lambda_{i}\left(x^{i}-x^{0}\right) \mid \lambda_{i}>0, \sum_{i=1}^{N} \lambda_{i}<1\right\}=\left\{x^{0}\right\}+A(S)$ is nonempty and open and is contained in C. Hence, $\operatorname{int} C \neq \emptyset$.

Proposition 5. For any convex set $C \subset \mathbb{R}^{N}$, if $\operatorname{int}(\operatorname{cl} C) \neq \emptyset$, then $\operatorname{int} C \neq \emptyset$.
Proof. By Proposition 4,

$$
\begin{aligned}
\operatorname{int}(\operatorname{cl} C) \neq \emptyset & \Longrightarrow \operatorname{dim}(\operatorname{cl} C)=N \\
& \Longrightarrow \operatorname{dim} C=N \\
& \Longrightarrow \operatorname{int} C \neq \emptyset
\end{aligned}
$$

as claimed.

Proposition 6. For any convex set $C \subset \mathbb{R}^{N}, \operatorname{int}(\operatorname{cl} C)=\operatorname{int} C$.
Proof. It suffices to show that $\operatorname{int}(\operatorname{cl} C) \subset \operatorname{int} C$. Suppose that $\operatorname{int}(\operatorname{cl} C) \neq \emptyset$ (otherwise the conclusion holds trivially). Then, by the convexity of C, it follows from Proposition 5 that $\operatorname{int} C \neq \emptyset$. Let $z \in \operatorname{int}(\operatorname{cl} C)$. We want to show that $z \in \operatorname{int} C$. Take any $x \in \operatorname{int} C$ $(\neq \emptyset)$. Suppose that $x \neq z$ (otherwise $z \in \operatorname{int} C$ holds trivially). For $\varepsilon>0$, let

$$
y=z-\varepsilon(x-z)
$$

and let ε be sufficiently small so that $y \in \operatorname{cl} C$. Then z can be written as $z=[1-1 /(1+$ $\varepsilon)] x+[1 /(1+\varepsilon)] y$, where $x \in \operatorname{int} C$ and $y \in \operatorname{cl} C$. Therefore, by Proposition 1 it follows that $z \in \operatorname{int} C$.

Remark 1. The property stated in Proposition 6 is used when reducing the weak version of the separating hyperplane theorem to the strict version, in a step that shows that if C is a convex set and $b \notin \operatorname{int} C$, then $b \notin \operatorname{int}(\mathrm{cl} C)$, so that there exists a sequence $\left\{b^{k}\right\}$ such that $b^{k} \notin \operatorname{cl} C$ and $b^{k} \rightarrow b$, a statement which sounds intuitive, but is not obvious at all. In fact, Propositions 5 and 6 do not hold if one drops the convexity of C. For example, let $N=1$ and $C=\mathbb{Q} \cap[0,1]$. Then $\operatorname{cl} C=[0,1]$ and therefore $\operatorname{int}(\operatorname{cl} C)=(0,1)$ and $\operatorname{bd}(\operatorname{cl} C)=\{0,1\}$, whereas int $C=\emptyset$ and $\operatorname{bd} C=[0,1]$.

References

Rockafellar, R. T. (1970). Convex Analysis, Princeton University Press, Princeton.

