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1 Introduction

Suppose that an analyst plans to model some strategic situation with a com-
plete information game g and has a Nash equilibrium a* of g in hand as his
prediction of the situation. While he believes that the complete information
game g correctly describes the situation with high probability, he is also
aware that there is some uncertainty about the payoffs, so that the players
may play some incomplete information game close to g. Is his prediction
a* still valid even in the presence of a small amount of incomplete infor-
mation? Kajii and Morris (1997, KM henceforth) formalize this robustness
question as follows: Nash equilibrium a* of complete information game g
is robust to incomplete information if every incomplete information game
in which the payoffs are given by g with high probability has a Bayesian
Nash equilibrium such that a* is played with high probability. This notion
allows for a very rich structure of correlated types in incomplete informa-
tion perturbations, making the robustness test very stringent. Indeed, even
strict Nash equilibria may fail to be robust! and there are games that have
no robust equilibrium,? whereas KM and subsequent studies have obtained
several sufficient conditions for an equilibrium to be robust.?

In this note, we demonstrate that there is a non-empty open set of sym-
metric 3 x 3 supermodular games that have no robust equilibrium. For each
game in this set, we construct a sequence of dominance-solvable incomplete
information perturbations in which one action profile is played everywhere
and another sequence of dominance-solvable perturbations in which another
action profile is played everywhere.* This has an important implication re-
garding the relationship between robust equilibrium and noise-independent
selection in global games.

Global games, first developed by Carlsson and van Damme (1993) for
2 x 2 games and subsequently used in various economic applications,® offer a
natural way of introducing incomplete information perturbations that gives
rise to equilibrium uniqueness through a “contagion” effect, where correla-
tion in beliefs is generated by noisy signals of the true payoff state with noise
errors independent of the state. For general supermodular games, Frankel

!See the earlier 2 x 2 example by Rubinstein (1989).

2KM construct a 3 x 3 x 3 (non-supermodular) game whose unique (strict) Nash
equilibrium is not robust. Morris (1999) demonstrates non-existence of robust equilibrium
in a symmetric 4 X 4 supermodular game.

3KM show that a p-dominant equilibrium with p sufficiently small is robust, while
Ui (2001) shows that in potential games, a potential maximizer is robust. Morris and
Ui (2005) introduce a generalized notion of potential that unifies and generalizes the
p-dominance and the potential maximization conditions and show that a generalized po-
tential maximizer is robust. See Oyama and Tercieux (2009) and Uno (2011) for further
developments.

“The conditions that define this set of games have been found by Honda (2010) to
show that these games have no monotone potential maximizer.

5See the survey by Morris and Shin (2003).



et al. (2003, FMP henceforth) show, with a setting with one-dimensional
signals, that as the signal noise vanishes, the global games always have a
unique equilibrium that survives iterative dominance, while the surviving
equilibrium may depend on the noise distribution.® While the global game
approach only considers a particular class of perturbations as opposed to
KM’s robustness to all elaborations,” in classes of games considered in the
literature so far the equilibrium that is played in global games independently
of the noise structure has turned out to be also robust to all elaborations.®
This might lead one to conjecture that noise-independent selection would
imply robustness in all supermodular games, or put differently, the global
game perturbations would constitute a critical class of perturbations that
determines whether or not an equilibrium is robust to incomplete informa-
tion. Here, we say that a class of elaborations is critical if robustness to
that class of elaborations implies robustness to all elaborations.

Our result in this note, combined with that by Basteck and Daniéls
(2010), falsifies this “critical class” conjecture on global games. Basteck and
Daniéls (2010) show in the setting of FMP that generic symmetric 3 x 3
supermodular games have a noise-independent selection in global games,?
while the present note shows that some of these games have no robust equi-
librium. Hence, the set of incomplete information perturbations that KM’s
concept of robustness allows is significantly richer than the set that global
games generate. Moreover, the proof of our result reveals that what makes
the difference is the assumption in global games that the noise errors are in-
dependent of the state. To be precise, denote by t; = 6 + vn; the signal that
each player ¢ observes, where 6 is the state of the world, 7; is the noise error
which is assumed to be independent of 8, and v is a scale parameter. This
state-independence assumption implies that, conditional on a player’s signal
observation t;, the posterior distribution over the difference between his sig-
nal and that of the opponent, t_;—t; = v(n_;—n;), is (approximately) invari-
ant in the own signal ¢; when the noise parameter v is sufficiently small. We
show that this invariance property imposes a non-trivial restriction on the
contagion argument. That is, in our symmetric 3 x 3 supermouldar games,
the action that is played in global games independent of the noise distri-
bution is never played in some incomplete information perturbations whose
posterior beliefs are not necessarily invariant. These perturbations cannot
be generated by one-dimensional global games as FMP consider and may in

SFMP provide a symmetric 4 x 4 example in which different equilibria survive under
different noise distributions.

"In fact, Oury and Tercieux (2007) and Basteck et al. (2010) show that in super-
modular games, a robust equilibrium is a noise-independent selection in global games.

8For example, the sufficient condition for noise-independent selection provided by FMP
in terms of a generalized notion of potential is also sufficient for robustness (Morris and
Ui (2005)).

9See also FMP (Section 5) for a heuristic argument with symmetric noise distributions.



effect be considered as “two-dimensional” perturbations, where types with
different values in the first coordinate have very different posterior beliefs
over the opponent’s types.' We will elaborate on this point in Section 5.

2 Preliminaries

2.1 Complete Information Games

We focus on two-player games. The set of players is denoted by Z = {1, 2},
and for ¢ € 7 we write —i for player j # ¢. Each player ¢ € 7 has a linearly
ordered, finite set of actions A; = {0,1,...,n;}. These action sets are fixed
throughout the analysis. A complete information game is thus represented
by a profile of payoff functions g = (g;)icz, where g;: A = [[.c7 Ai — R,
i € I. Let A(S) denote the set of probability distributions over a set S. We
denote by br;(m;) the set of player i’s pure best responses to m; € A(A_;):

bri(m;) = arg max g;(a;, 7;),
(lieAi

where g;(a;, ™) = >, .ca . mila—i)gi(ai,a—;).
Complete information game g is supermodular if for each ¢ € 7,

gi(a{m a*i) - gi(ai7 a*i) g gi(a{ia al_z) - gi(aia al_l)

whenever a; < a} and a_; < a’;. It is well known that the best response
correspondence of a supermodular game is nondecreasing in the stochastic
dominance order. For m;, 7w, € A(A_;), we write m; 3 7} (and 7} 7 m;) if 7}

~

stochastically dominates 7;, i.e., if 7, -, mi(a’ ;) <>, 5,  7i(a’,) for
all a_; € A_;. If g is supermodular, then for each i € Z,

min br;(m;) < min br; (7))

max br;(m;) < max br;(m})

whenever ; X .

2.2 c-Elaborations and Robust Equilibria

Given the game g, we consider the following class of incomplete information
games. Each player ¢ € 7 has a countable set of types, denoted by 7;, and
we write T' = [[,c7z T;. The (common) prior probability distribution on 7' is

0ury (2009) studies global games with a multi-dimensional state space while
maintaining the assumption that the noise errors are independent of the state. Un-
der this independence assumption, she shows that noise-independent selection in one-
dimensional global games extends to multi-dimensional global games. Our notion of
“multi-dimensionality” is different from Oury’s, and in particular, our “two-dimensional”
perturbations do not fall within her multi-dimensional framework.



given by P. We assume that P satisfies that >, . = P(t;,t—;) > 0 for all
1 € Z and t; € T;. Under this assumption, the conditional probability of ¢_;
given ti, P(t,i|ti), is well defined by P(t,i|ti> = P(ti, t,i)/ Zt’ €T P(ti, t/—z)
The payoff function for player ¢ € Z is a bounded function u;: A x T" — R.
Denote u = (u;);ez. The tuple (T, P,u) defines an incomplete information
game.

A (behavioral) strategy for player i is a function o;: T; — A(A4;). Denote
by X; the set of strategies for player i, and write ¥ = [[,.7 2. For a strategy
o; € %;, we denote by o;(a;|t;) the probability that a; € A; is chosen at
t; € T;. For o € ¥, we write op € A(A) for the probability distribution over
A generated by o, i.e., op(a) = Y ,cp P(t) [ Lier 0i(ailti) for a = (a;)iez € A.

The expected payoff to player ¢ of type t; € T; playing a; € A; against
the opponent’s strategy o_; € ¥_; is given by

Uilai,o—ilt) = > P(toilt) ui((ai,0—i(t—)), (ti, 1)),

t_;€T_;

where ui((ai, U_i(t_i», t) = Za,ieA,i U_i(a_i]t_i)ui((ai, a_i), t). Let
BR;(0_4|t;) denote the set of pure best responses of player i of type t; € T;
against o_; € X _;:

BRz‘(U—i|ti) = arg max Ui(ai, O'_i’ti).
aieAi

A strategy profile o € ¥ is a Bayesian Nash equilibrium of (T, P,u) if for
alli € 7, all a; € A;, and all t; € Tj,
0'7;((11'|tl') >0=a; € BRi(OLiHi)-

Given g, let T be the set of types t; such that payoffs of player i of
type t; are given by g; and he knows his payoffs:

T = {t; € Ti|ui(a, (ti,t—:)) = gi(a)
for all a € A and all t_; € T_; with P(t;,t_;) > 0}.

Denote T8 =[], T7".

Definition 1. Let £ € [0,1]. An incomplete information game (7', P,u) is
an e-elaboration of g if P(T8) =1 —«¢.

Following KM, we say that an action distribution p € A(A) is robust if,
for small € > 0, every e-elaboration of g has a Bayesian Nash equilibrium o
such that the action distribution it generates, op, is close to pu.

Definition 2. Action distribution p € A(A) is robust to incomplete infor-
mation in g if for every & > 0, there exists & > 0 such that for all € < g,
any e-elaboration (7', P,u) of g has a Bayesian Nash equilibrium o such that
maxgeA p(a) —op(a)| < 4.



If u € A(A) is robust in g, then it must be a correlated equilibrium of g
(KM, Corollary 3.5). We say that an action profile a € A is robust in g if
the degenerate action distribution on a (i.e., u € A(A) such that u(a) =1)
is robust in g.

Given o_; € ¥_;, let m;(0_;|t;) € A(A_;) be the belief of player i of type
t; over the opponent’s actions, i.e.,

mi(o—ilti)(a—i) = Y Plt-ilti)o—i(a—ilt—)

t_,e€T_;
for a_; € A_;. Observe that
BR,;(O'_i’tl‘) = bTi(ﬂl‘(U_iHi))

for all ¢; € T}

Several sufficient conditions for robustness to incomplete information
have been obtained. In particular, Morris and Ui (2005) introduce general-
ized notions of potential and show, among others, that a monotone potential
mazximizer (MP-mazimizer), a special form of their generalized potential
maximizer concept, is robust in supermodular games (and in games that
admit a monotone potential function that is supermodular). Their result
unifies and generalizes the previous results by KM in terms of p-dominance
and by Ui (2001) in terms of potential maximization. On the other hand,
Morris (1999) presents an example of a symmetric 4 X 4 supermodular game
that has no robust equilibrium.

3 Result

We now restrict our attention to 3 x 3 games, so that A; = Ay = {0, 1,2},
and assume that g is supermodular. The game g is symmetric if g1 (h, k) =
g2(k,h) for all h,k € {0,1,2}. We associate a symmetric 3 x 3 game with
an element in R?. We prove the following:

Proposition 1. There is a non-empty open set of symmetric 3 X 3 super-
modular games that have no robust equilibrium.

Here, openness is relative to RY.11

The proof proceeds as follows. In Lemma 1, we present a condition
under which there is a sequence of e-elaborations with a unique Bayesian
Nash equilibrium where action 2 is played everywhere. It implies that if
the game satisfies this condition, no action distribution other than (the
degenerate distribution on) (2, 2) is robust. In Lemma 2, we then present a
condition under which there is a sequence of e-elaborations with a unique

11n fact, the non-existence obtains in an open neighborhood of this set relative to R®,
including some asymmetric 3 X 3 games.



Bayesian Nash equilibrium where action 0 is played everywhere. Thus, if
the game satisfies this condition, no action distribution other than (0,0) is
robust. Proposition 1 follows from the fact that there is a non-empty open
set of symmetric 3 x 3 supermodular games that satisfy the conditions in
Lemmata 1 and 2 simultaneously.'?

In fact, these conditions have been found (and shown to be satisfied by
some symmetric games) by Honda (2010) as a sufficient condition for a 3 x 3
game to have no MP-maximizer. He shows by direct computation that these
conditions imply non-existence of an MP-maximizer. Since, as shown by
Morris and Ui (2005), an MP-maximizer is robust, our non-existence result
of robust equilibrium gives an indirect, alternative proof of the non-existence
of MP-maximizer.

4 Proof

Let, for p € (0,1/2),

and for ¢,r € (0,1), r < ¢,

c_ (1+q 1—q d__ (1=r r e _ q+r g—r
71—_(270)2)7 7T—<2,0,2), W_(O’Zq’2q>'

The conditions are stated in terms of best responses to these beliefs.

—_

Lemma 1. If there exists p € (0,1/2) such that
min br;(7%) > 1, min bry(7°) = 2, (1)

then for all € > 0, there exists an e-elaboration where the strategy profile o*
such that o (2|t;) = 1 for allt; € T; is the unique Bayesian Nash equilibrium.

Lemma 2. If there exist q,r € (0,1) with r < q such that
max br;(7¢) = 0, max bry(7%) <1, max br;(7¢) = 0, (2)

then for all € > 0, there exists an e-elaboration where the strategy profile o*
such that o (0[t;) = 1 for allt; € T; is the unique Bayesian Nash equilibrium.

Our constructions of the desirable elaborations exploit the subtle struc-
ture of best responses to the above beliefs (7% and 7* in Lemma 1 and
¢ through 7¢ in Lemma 2) and are more involved than, for example, the

2Tn these games, action profiles (0,0) and (2,2) are the only pure Nash equilibria.
Oyama and Takahashi (2009) show that symmetric 3 x 3 supermodular coordination games,
where the three symmetric action profiles are all Nash equilibria, generically have an MP-
maximizer and hence a robust equilibrium by Morris and Ui (2005).



construction of KM (Lemma 5.5), in which they demonstrate contagion
of a strict p-dominant equilibrium with p = (p;)iezr € [0,1)% such that
YoierPi < 1.3 As in the definition of p-dominance, KM’s construction
exploits the “coarse” property of the equilibrium action being the best re-
sponse to all the beliefs that assign at least probability p; to the opponent’s
equilibrium action, and thus along the contagion it suffices to confirm that
each type of the players assigns at least p; to the opponent playing the equi-
librium action. Consequently, the contagion argument in KM effectively
treats the game as a binary game, where each player plays either the equi-
librium action or “the other actions”, so that the p-dominance condition
pins down the behavior of the players in one step for each type. In contrast,
our contagion argument will proceed with two steps, where in each step, the
player’s belief over the opponent’s actions will turn out to be larger (in the
stochastic dominance order) than 7% or 7® in Lemma 1, or smaller than 7°,
7¢, or ¢ in Lemma 2, thereby the condition (1) or (2) will narrow down the
behavior of the players to a single action. See the proofs below for details.

Proof of Lemma 1. Let p € (0,1/2) be such that condition (1) is satisfied.
We construct a sequence of elaborations (7', P, u)c>0, where P¢(78) — 1
as € — 0, as follows. Let T; = Z for each i € Z. Define P* € A(T) by

Pi(r+1,7)=P(r,7+1)=pe(1—e) L, 7>1,

1
Pi(t+4+2,7)=P(r,7+2) = <2 —p> e(l—e)", >0,

and P¢(t1,t2) = 0 otherwise; see Table 1. Define u;: A x T'— R for each
1 €7 by
gi(a) ift; #0,1,
ui(a,t) =<1 ift; =0,1 and a; = 2,
0 if t; = 0,1 and a; # 2.

That is, types 0 and 1 are “crazy types” for which action 2 is a dominant
action, and TY" = Z4 \ {0,1}. (The constructed elaboration is an {1+ (1 —
2p)(1 — €) }-elaboration.)

Observe that the posterior beliefs generated by P¢ are invariant in trans-
lation, i.e., PE(t_; = 7'+ 1|t; =7+ 1) = P*(t_; = 7'|t; = 7) for all 7 > 2
and 7/ > 0. We will use the following relationships between posterior prob-
abilities and beliefs 7¢ and °:

13 An action profile a* is a strict p-dominant equilibrium if for each i € Z, br;(m;) = {a}}
holds for all m; € (A—;) such that m;(a*;) > p;.



(a) m mw*=(1/2,p,1/2 —p) for all m; € A(A_;) such that

1/2 —
7T,L(2) > Pe(t,i =T — 1|tl' :T+1) = 1/_ 6/129’
; 1/2
mi(1)+m(2) > Pty =7—17|ti=7+1) = 1_6/2;

(b) m; o7’ = (1/2 — p,p,1/2) for all m; € A(A_;) such that

~

T 2 1/2

i2) 2P (i=7-27—1ti=7) = 1 —/5/2’

s + 7 1/24+p—
1(1) 1(2) ZPE(t_Z T 277-_177-_’_]_’151—7-)—/1];/21)8

We want to show that (7, P¢, u) has a unique Bayesian Nash equilibrium,
which plays action 2 everywhere. Consider any Bayesian Nash equilibrium
o* of (T, P?,u). We show by induction that

o;(2ltT—=2)=0;(2/r—1)=1and o;(0|7) =0, i =1,2 €

for all 7 > 2. We note that by the assumption (1) and the supermodularity
of g;, for any t; € T},

min BR;(o*,;|t;) > 1 if m(o™,|t;) 2 77, (3)
min BR;(c*,|t;) = 2 if mi(o™,|t:) = 70 (4)

We first show (x2). Indeed, o7(2|0) = o;(2|1) = 1 by construction, and
therefore, type t; = 2 assigns at least probability P¢(t_; = 0, 1[t; = 2) to
the opponent playing action 2, so that m;(c*,|2) 2z 7. Thus, ¢7(0[2) =0
by (3).

Assume (*;). Then, type t; = 7+ 1 assigns at least probability P¢(t_; =
7—1Jt; = 7+1) to the opponent playing 2 and at least probability P¢(t_; =
T —1,7|t; = 7 4+ 1) to the opponent playing 1 or 2. Therefore, we have
mi(o*,;|T + 1) o m® (recall (a)), so that o} (0|7 + 1) = 0 by (3). Given
this, go back to type t; = 7. This type now assigns at least probability
Pi(t_; =7—2,7— 1,7+ 1|t; = 7) to the opponent playing 1 or 2 (and at
least probability P(t_; = 7 — 2,7 — 1|t; = 7) to the opponent playing 2).
Therefore, we have m;(c* ;|7) % 7® (recall (b)), so that o}(2|7) = 1 by (4).
Thus, (*,4+1) holds. |

Proof of Lemma 2. Let ¢,r € (0,1), » < g, be such that condition (2)
is satisfied. We construct a sequence of elaborations (7', P¢,u).~0, where
PE(T8) — 1 as ¢ — 0, as follows. Let T; = {a, 8} x Z4 for each i € 7.



Define P¢ € A(T) by

Py + 1), (7)) = P=((, 7). (a7 4 1)) = 2(11_+qq)5(1 _er,
PE((0,7),(8,7) = P8, 7). (7)) = 5 el =)
P((a, 7 +1),(8,7)) = P((B,7), (a, T + 1)) = 2(‘]117'(1)5(1 — o),

and P¢(t1,t2) = 0 otherwise; see Table 2. Define u;: A x T' — R for each
1 €Z by
gi(a) ift; # («,0),
ui(a,t) =<1 if t; = (o, 0) and a; = 0,
0 if t; = («,0) and a; # 0.

That is, type (a,0) is a “crazy type” for which action 0 is a dominant
action, and T = ({a, 8} x Z1) \ {(«,0)}. (The constructed elaboration is
an £(1+7)/(1 + g)-elaboration.)

Observe that the posterior beliefs generated by P¢ are invariant in trans-
lation in the second coordinate, i.e., PE(t_; = (-, 7 + 1)|t; = (a, 7+ 1)) =
Pe(t_; = (,7)|ti = (a,7)) for all 7 > 1 and 7/ > 0 and P(t_; =
(7' + Dt = (B,7+ 1) = P(t—; = (-,7)|t: = (B,7)) for all 7,7/ > 0.
We will use the following relationships between posterior probabilities and
beliefs 7¢, 7¢, and 7°:

(¢) m 27 =((14¢)/2,0,(1 — q)/2) for all m; € A(A_;) such that

~

mi(0) > P(t—; = (a, 7), (B, 7), (B, 7+ V|t = (a, 7+ 1))
_l4+qg—(g+r)e

2—(1+4r)e ’
(d) m 7= ((1-7)/2,0,(1+7)/2) for all m; € A(A_;) such that
e, o - 1—r
m(0) 2 PA(t-s = (0, (37 = (o7 + 1) = =

(e) m 27 =1(0,(¢+7)/(29),(qg—1)/(2q)) for all m; € A(A_;) such that

~

mi(0) +mi(1) = PE(toi = (o, 7+ Dty = (8,7 + 1)) = q;qr.

We want to show that (7, P¢,u) has a unique Bayesian Nash equilibrium,
which plays action 0 everywhere. Consider any Bayesian Nash equilibrium
o* of (T, P¢,u). We show by induction that

0; (0/(a, 7)) = 07 (0[(8,7)) =1, i = 1,2 (%r)



for all 7 > 0. We note that by the assumption (2) and the supermodularity
of g;, for any t; € T,

max BR;(o*,|t;) =0 if m;(o*,|t;) 2 7€, (5)
max BR;(c*,|t;) <1 if m(o*,|t;) =3 n¢, (6)
max BR; (07 ,[t;) =0 if m;(o”,;|t;) 2 7°. (7)

We first show (xg). Indeed, o} (0|(cr,0)) = 1 by construction, and there-
fore, type t; = (3,0) assigns at least probability P(t_; = («,0)|t; = (53,0))
to the opponent playing action 0, so that m;(c*;/(3,0)) 3 7° Thus,
52 (01(8,0)) = 1 by (7).

Assume (*;). Then, type t; = (o, 7 + 1) assigns at least probability
Pe(t_; = (a, 1), (B, 7)|ti = (v, 7+ 1)) to the opponent playing 0, and there-
fore, we have m;(c* ;|(a, 7+ 1)) 3 ¢ (recall (d)), so that o} (2|(a, 7+1)) = 0
by (6). Then, type t; = (8,7 + 1) assigns at least probability P¢(t_; =
(a, 7+ 1)|t; = (6,7 + 1)) to the opponent playing 0 or 1, and therefore, we
have m;(o*,;|(8, 7+ 1)) 2 m© (recall (e)), so that o (0|(8,7+ 1)) =1 by (7).
Therefore, going back to type t; = (o, 7 + 1), since this type now assigns
at least probability P(t_; = (a,7),(5,7), (8,7 + 1)|t; = (o, 7 + 1)) to the
opponent playing 0, we have m;(c*,[(or,7 + 1)) 3 7€ (recall (c)), so that
o7 (0|(a, 7+ 1)) =1 by (5). Thus, (*r41) holds. |

We close the proof of Proposition 1 by presenting two examples that
satisfy the hypotheses of Lemmata 1 and 2 simultaneously. Example 1
is taken from Honda (2010). Example 2 presents a game involving some
economic context, the so-called “Bilingual Game” studied by Galesloot and
Goyal (1997), Goyal and Janssen (1997), and Oyama and Takahashi (2010),
among others. Clearly, the conditions will continue to be satisfied with small
perturbations of the payoffs.

Example 1 (Honda (2010)). Let the game g be given by

0 1 2
0| 13,13 3,5 0,0

1| 53 0,0 13,2
2 0,0 2,13 | 16,16

where (0, 0) and (2, 2) are the only pure Nash equilibria. One can verify
that conditions 1 and 2 in Lemmata 1 and 2 are satisfied (with equalities)
for p € (1/7,5/32) and for ¢ and r such that ¢ > 5/21, r < 1/4, and
(15/17)q < r < g, respectively (Honda (2010, Example 1)). This game thus
has no robust equilibrium.

10



Example 2 (Bilingual Game). Two players are to choose between two com-
puter programing languages, or two types of technologies in general, A and
B. Assume that A is more efficient while B is less risky: if both players
choose A, then they each receive a payoff of 11, while if both choose B, then
they both receive 10; if they choose different options, then the A-player
receives 0, while the B-player receives 3. Thus, (A, A) Pareto-dominates
(B, B), while (B, B) pairwise risk-dominates (A4, A). In this 2 x 2 coordina-
tion game, the risk-dominant, and Pareto-dominated, equilibrium (B, B) is
robust to incomplete information.

Now suppose that a “bilingual option”, or compatible technology, AB is
available with some cost e > 0. An AB-player adopts A against an A-player
to receive a (gross) payoff 11 and adopts B against a B-player to receive 10.
If both players choose AB, then they use the efficient option A and receive
11. This situation is described by

0 1 2

0 11,11 11,11 —e 0,3

1| 11—¢,11 |1l1—e,11—e | 10—¢,10

2 3,0 10,10 —e 10,10

where the actions A, AB, and B are denoted 0, 1, and 2, respectively, and
with the order 0 < 1 < 2 the game is supermodular. The profiles (A, A) and
(B, B) are the only pure Nash equilibria of this game (against AB, A is the
best response).

For this game, it is conceivable that if the cost e is large so that AB is
too costly, then the game is strategically similar to the original 2 x 2 game,
and thus the pairwise risk-dominant equilibrium (B, B) will be robust, while
if e is small enough, then B will tend to be abandoned in the presence of
the even less risky option AB, and thus the efficient option A will be robust.
In fact, by Oyama and Takahashi (2010), it turns out that if e > 40/19,
then (B, B) is an MP-maximizer and hence a robust equilibrium, while if
e < 5/3, then (A, A) is an MP-maximizer and hence a robust equilibrium;
in the middle case when 5/3 < e < 40/19, the conditions in Lemmata 1
and 2 are simultaneously satisfied and therefore the game has no robust
equilibrium.

5 Discussion

Let us discuss the relation to global-game noise-independent selection.
Global games, first introduced by Carlsson and van Damme (1993) for bi-
nary games, represent an important class of incomplete information games in

11



which equilibrium uniqueness arises through contagion effects along higher
order beliefs. General supermodular games (with many players and many
actions) are studied by FMP in the following setting. A state of the world
0 is drawn from the real line and determines the payoffs of the players, and
each player observes a noisy signal 8+ vn;, where 7, is a noise error that is in-
dependent of the state 8, and v > 0 is a scale parameter. It is assumed that
the payoff differences are monotone in opponents’ actions (supermodularity)
and in the state 6 (state monotonicity), and the players have a dominant ac-
tion when @ is sufficiently small or large (dominance regions). In this setting,
FMP show that as the signal noise vanishes, the game has a unique equilib-
rium that survives iterative dominance, while the selected equilibrium may
depend on the noise distribution. FMP provide a symmetric 4 x 4 example in
which different equilibria survive depending on the noise distribution. They
also provide sufficient conditions for the selection to be noise-independent.
In particular, they give a heuristic argument that generic symmetric 3 x 3
supermodular games have a noise-independent selection, which is formally
proved by Basteck and Daniéls (2010).

The crucial difference between the robustness and the global game ap-
proaches (besides the technical difference whether the type space is discrete
or continuous) is that the latter considers a certain subclass of payoff per-
turbations, while the former allows for all perturbations. In fact, as proved
by Oury and Tercieux (2007) and Basteck et al. (2010), robustness implies
global-game noise-independent selection in supermodular games: i.e., if an
action profile is robust in the game given by the payoffs at 6, then it must
be played at  in the global game independently of the noise distribution.'®

Our Proposition 1 shows that the converse of this result does not hold:
we demonstrated non-existence of robust equilibrium in symmetric 3 x 3
supermodular games, a class of games that admit noise independence in
global games, thus implying that a global-game noise-independent selection
may not be a robust equilibrium. That is, the global game perturbation is in
general not the only possible perturbation that yields a unique equilibrium
outcome.

Corollary 2. A global-game noise-independent selection may not be a robust
equilibrium.

More specifically, the result by Basteck and Daniéls (2010) in fact shows
that if the game g satisfies the condition (1) in Lemma 1, then (2,2) is
the global game selection of g. The incomplete information elaboration we
constructed in the proof of Lemma 1 can thus be seen as a type space repre-
sentation of a global game with some noise structure with a one-dimensional
state space as in FMP. On the other hand, their noise-independence result
implies that the elaboration we constructed in the proof of Lemma 2 for

'See Morris and Shin (2003, Section 4.5) for a heuristic argument for this claim.
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contagion of (0,0) cannot be generated by a global game perturbation. In
global games, due to the assumption that the noise term is independent of
the state 0, a player’s belief, given a signal observation, over the difference
between his signal and that of the opponent is (approximately) invariant in
the signal value when the noise is sufficiently small. The “one-dimensional”
elaboration in the proof of Lemma 1 has the corresponding property that
each player’s beliefs (except for the boundary types 0 and 1) over the op-
ponent’s are invariant up to translation. This property is shared, to the
best of our knowledge, by all the existing contagion constructions in the
robustness literature (e.g., KM (Lemma 5.5) and Morris (1999, Section 7)).
By contrast, the “two-dimensional” elaboration in the proof of Lemma 2
does not satisfy this property, where the posterior beliefs are invariant only
in translation 7 — 7 + 1 in the second coordinate and the beliefs of types
(o, 7) and those of types (3, 7) are entirely different. Such an elaboration
allowed us to obtain the contagion that would not occur in the perturbations
generated by global games with state-independent noise errors. To conclude,
it is the state-independence assumption on the noise errors that delineates
the boundary of the class of global game perturbations.
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