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Abstract

This paper studies ex post individually rational, efficient partner-
ship dissolution in a setting with interdependent valuations. We derive
a sufficient condition that ensures the existence of an efficient dissolu-
tion mechanism that satisfies Bayesian incentive compatibility, ex post
budget balancedness, and ex post individual rationality. For equal-
share partnerships, we show that our sufficient condition is satisfied for
any symmetric type distribution whenever the interdependence in val-
uations is non-positive. This result improves former existence results,
demonstrating that the stronger requirement of ex post individual ra-
tionality does not always rule out efficiency. We also show that if we
allow for two-stage revelation mechanisms, in which agents report their
realized payoffs from the allocation, as well as imposing penalties off
the equilibrium path, efficient dissolution is always possible even when
the interdependence is positive. We further discuss the possibility of
efficient dissolution with ex post quitting rights. Journal of Economic
Literature Classification Numbers: D02, D40, D44, D82, C72.

Keywords: mechanism design; efficient trade; ex post individual
rationality; Groves mechanism; interdependent valuation.



1 Introduction

Many business projects involve partnerships such as joint ventures and
strategic alliances. A partnership comes to an end, for example when the
project (e.g., development of a new product or technology) has been com-
pleted, or simply when the partners have conflicting opinions about future
management of their business. Efficient dissolution of a partnership consists
in allocating the partnership’s asset (e.g., the developed product/technology
or the company itself) to the partner with the highest valuation, in ex-
change for monetary compensations. Cramton et al. (1987, CGK henceforth)
first consider the problem of efficient partnership dissolution in a symmet-
ric model with independent private values. CGK show that while efficient
dissolution is impossible when the initial ownership of the partnership is ex-
treme as in the buyer-seller situation (Myerson and Satterthwaite (1983)),
it is always (i.e., for all type distributions) possible when the partnership
is equally shared among the agents.1 In the present paper, focusing mainly
on equal-share partnerships, we study the possibility of efficient dissolution
in a symmetric interdependent valuation setting as in the subsequent con-
tribution by Fieseler et al. (2003, FKM henceforth).2 The distinguishing
feature of our study is that, in contrast to CGK and FKM where individual
rationality constraints are required to be fulfilled at the interim stage, we
impose the stronger requirement of ex post individual rationality.

Interdependence in valuations naturally arises in many situations, e.g.,
where each agent is responsible for a different part of the project and thus
receives a different piece of private information which also affects the oth-
ers’ valuations of the entire project. In an environment where the private
and common value components are additively separable, FKM show that
when the interdependence is positive (i.e., valuations are increasing in the
other agents’ signals), efficient dissolution is not always possible even for
the equal-share case, while it becomes easier when the interdependence is
negative (i.e., valuations are decreasing in the other agents’ signals). In the
case of negative interdependence, efficiency is easier to achieve as winning
and losing are each a blessing: winning reveals that the other agents’ signals
are lower than one’s own which contributes to raising the winner’s valua-
tion, and a symmetric argument applies to losing. In the case of positive
interdependence, conversely, winning and losing are bad news, and winner’s
and loser’s curses make efficiency more difficult to achieve.

1Insights obtained in analysis of partnership dissolution apply to more general “a-
positional traders” situations (Galavotti (2009)) in which traders are not ex ante identified
as a buyer or a seller, i.e., each trader may become a buyer or a seller depending on the
realization of the valuations. Interesting studies of such situations include Eliaz and
Spiegler (2007, 2009) and Gershkov and Schweinzer (2008) among others.

2Related papers, other than FKM, that consider partnership dissolution with
interdependent valuations include Kittsteiner (2003), Morgan (2004), Jehiel and
Pauzner (2006), Chien (2007), and Li (2009) among others.
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Both CGK and FKM consider efficient mechanisms that satisfy interim
individual rationality (IIR) as well as Bayesian (i.e., interim) incentive com-
patibility (IC) and (ex post) budget balancedness (BB). Our point of de-
parture in the present paper is to require the outcomes of a mechanism to
satisfy the property that no agent regrets his participation ex post, and thus
we look for efficient mechanisms that satisfy ex post individual rationality
(EPIR) along with IC and BB. Given the result of FKM, we restrict our
attention to the case where interdependence in valuations is non-positive
(i.e., valuations are private or negatively interdependent).3 For this case,
we show that efficient dissolution of an equal-share partnership is always
possible even with EPIR. This demonstrates, for the case of equal-share
partnerships, that whenever efficient dissolution is always possible with IIR,
one can safely replace IIR with EPIR incurring no loss in efficiency as well as
IC and BB. The proof is done by construction of a mechanism that satisfies
the desired properties.4

EPIR mechanisms are also considered by Gresik (1991), Makowski
and Mezzetti (1994), and Kosmopoulou (1999). Gresik (1991) considers
EPIR and Bayesian IC bilateral trading mechanisms that maximize ex ante
expected gains from trade. In a general setting with independent pri-
vate valuations, Makowski and Mezzetti (1994) provide characterizations
of ex post efficient, IIR, ex post BB, Bayesian IC mechanisms and ex
post efficient, EPIR, ex ante BB, dominant strategy IC mechanisms, while
Kosmopoulou (1999) shows a payoff equivalence result between these two
classes of mechanisms in a restricted environment. Different from these pa-
pers, our approach concerns Bayesian IC mechanisms that satisfy ex post
efficiency, EPIR, and ex post BB.

When, as we assume, types are interdependent, observing the realized
payoff provides the agent with additional information about the types of the
other agents. The mechanism designer could thus collect this information,
thereby obtaining a broader set of mechanisms at his disposal. This is pre-
cisely the point made by Mezzetti (2004, 2007). We consider, in our context

3While valuations may be assumed to be positively interdependent in “standard” cases,
e.g., when the information is about quality (anyone prefers high quality), they may well
be negatively interdependent in other cases, e.g., when the agents have opposite charac-
teristics in that they derive utility from mutually exclusive properties of the asset, i.e.,
“if information about the increased likelihood of property A (which yields relatively more
utility for partner i) means that property B (which yields relatively more utility for part-
ner j) becomes less likely” (FKM, Footnote 6). Such a situation arises for example when
two partners who produce different goods possess different pieces of private information
over the relative demand of the two goods of different groups of consumers. If the relative
demand for one partner’s product over the other’s is high, this is good news for the former
partner and bad news for the latter.

4In the private valuation case, our mechanism coincides with the one proposed by
Fujinaka (2006) in a different context of envy-free allocation of an indivisible good. See
also Athanassoglou et al. (2008), who study EPIR in two-agent partnership dissolution
with private valuations.

2



of partnership dissolution, two-stage mechanisms in which agents first report
their types and then the winning agent reports his realized payoff from the
allocation, which allows the designer to cross-check the first-stage reports.
We show in particular that by punishing first-stage lies with penalties (thus
violating BB off the equilibrium path), the “shoot-the-liar” mechanism à la
Mezzetti (2007) always efficiently dissolves the partnership satisfying EPIR
for any ownership shares even when types are positively interdependent.

While we motivate our study of EPIR mechanisms by the requirement
that the outcomes of a mechanism should be ex post regret-free in partic-
ipation, one may consider a situation in which agents are allowed to quit
or veto the mechanism ex post in any event. As noted by Matthews and
Postlewaite (1989) and Forges (1999), with quitting rights off as well as on
equilibrium the IC constraints are also modified.5 We examine the modified
IC constraints in our environment, and show that our (single-stage) mech-
anism always dissolves the partnership efficiently even with quitting rights
when the degree of negative interdependence is large.

The paper is organized as follows. Section 2 describes our partnership
dissolution problem. Section 3 derives our main sufficient condition for ef-
ficient dissolution with EPIR. Section 4 applies it to the symmetric and
separable environment and obtains the possibility result for non-positively
interdependent types. Section 5 studies two-stage mechanisms, while Sec-
tion 6 discusses ex post quitting rights. Section 7 concludes.

2 Setup

In this section, we describe our problem of partnership dissolution, where
we mostly follow the setup of FKM. There are one asset, and n risk-neutral
agents indexed by i ∈ N = {1, . . . , n}, where n ≥ 2. Each agent i initially
owns a share αi of the asset (0 ≤ αi ≤ 1 and

∑
i∈N αi = 1). Each agent i has

private information represented by type θi. We will denote θ = (θ1, . . . , θn)
and θ−i = (θ1, . . . , θi−1, θi+1, . . . , θn). Agents’ types are statistically inde-
pendent. The type θi is distributed according to a commonly known distri-
bution Fi with support Θi = [θi, θi] and positive continuous density fi. We
denote Θ =

∏
i∈N Θi.

Agent i’s valuation for the entire asset is given by a function vi(θi, θ−i),
where the arguments are always ordered by the agents’ indices: vi(θi, θ−i) =
vi(θ1, . . . , θn). The function vi(θi, θ−i) is assumed to be strictly increasing
in θi, and continuously differentiable. We further assume the single crossing
property:

vi,i(θ) > vj,i(θ)

5See also Compte and Jehiel (2007, 2009), who show that with ex post quitting/veto
rights, inefficiencies are inevitable in their bargaining model (even with correlations in
types).
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for all i, j ̸= i and θ ∈ Θ, where vk,i = ∂vk/∂θi. The ex post utility of agent
i with valuation vi, share si, and money mi is given by visi + mi.

In a direct revelation mechanism, or simply mechanism, each agent i
simultaneously reports his own type θi, and then receives a share si(θ) of
the asset and a monetary transfer ti(θ). More precisely, a mechanism is a
pair (s, t) of (measurable) functions s : Θ → [0, 1]n such that

∑
i∈N si(θ) = 1

(an assignment rule) and t : Θ → Rn (a transfer rule). Given a mechanism
(s, t), the interim utility of agent i with type θi, when he reports θ̂i while
the other agents report their types θ−i truthfully, is given by

Ui(θi, θ̂i) = Eθ−i
[vi(θi, θ−i)si(θ̂i, θ−i)] + Eθ−i

[ti(θ̂i, θ−i)],

where Eθ−i
[·] is the expectation operator with respect to θ−i. We denote

Ui(θi) = Ui(θi, θi).
A mechanism (s, t) is interim incentive compatible (IC) if truth-telling

constitutes a Bayesian Nash equilibrium in the incomplete information game
induced by (s, t), i.e., for all i ∈ N ,

Ui(θi) ≥ Ui(θi, θ̂i) (IC)

for all θi, θ̂i ∈ Θi. It is ex post budget balanced (BB) if the monetary transfers
sum to zero for each realization of the types, i.e.,

∑
i∈N ti(θ) = 0 for all

θ ∈ Θ. It is ex post efficient (EF) if it allocates the asset to an agent with
the highest valuation for each realization, i.e., for all i ∈ N and all θ ∈ Θ,
si(θ) > 0 ⇒ i ∈ arg maxj vj(θ). It is sufficient to consider the efficient
assignment rule s∗ defined by

s∗i (θ) =

{
1 if i = m(θ),
0 if i ̸= m(θ),

(2.1)

where m(θ) = max(arg maxj vj(θ)).6

In the present study, we are interested in mechanisms that satisfy no ex
post regret of participation, or ex post individual rationality, as a desideratum
additional to the above three, while much work in the literature, including
that of Myerson and Satterthwaite (1983), CGK, and FKM, is concerned
with interim individual rationality. Let ui(θ) be agent i’s ex post utility
under truth-telling:

ui(θ) = vi(θ)si(θ) + ti(θ),

and u0
i (θ) the outside option to agent i: u0

i (θ) = αivi(θ). The mechanism
(s, t) is ex post individually rational (EPIR) if, for any realization of types,

6That is, when more than one agent have the highest valuation, we let m(θ) be the
agent with the largest index. Our analysis is not affected by this particular choice of the
tie-breaking rule.
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no agent regrets his participating in the mechanism even after observing the
realized values of his initial and final payoffs, i.e., for all i ∈ N ,

ui(θ) ≥ u0
i (θ) (EPIR)

for all θ ∈ Θ; (s, t) is interim individually rational (IIR) if given his type,
but before he learns the other agent’s type, each agent prefers to participate
in the mechanism, i.e., for all i ∈ N ,

Ui(θi) ≥ Eθ−i

[
u0

i (θi, θ−i)
]

(IIR)

for all θi ∈ Θi. Clearly, EPIR implies IIR, but not vice versa.
We say that the partnership is EPIR-dissolvable (IIR-dissolvable, resp.)

if there exists an IC, EF, and BB mechanism that is also EPIR (IIR, resp.).
Our task in the present paper is to explore the possibility of EPIR-, rather
than IIR-, dissolution. Note that IIR guarantees the agents non-negative
net payoffs only on average, so that it may well happen that some agents’
actual (i.e., ex post) net payoffs are negative. EPIR rules out this possibility,
so that no agent will ever regret his participation in the mechanism.7

3 A Sufficient Condition for Existence

Let us recall the revenue equivalence property of efficient IC mechanisms in
our environment (see, e.g., FKM or Fieseler et al. (2001, Theorem 1)).

Revenue Equivalence. Let s∗ be the EF assignment rule. Then, (s∗, t) is
IC if and only if for all i ∈ N ,

Ui(θi) = Ui(θi) +
∫ θi

θi

Eθ−i
[vi,i(x, θ−i)s∗i (x, θ−i)] dx (3.1)

for all θi ∈ Θi.

As in FKM, for each i let θ∗i (θ−i) ∈ Θi be defined by

vi(θ∗i (θ−i), θ−i) = max
j ̸=i

vj(θ∗i (θ−i), θ−i)

if the equation has a solution, and arbitrarily if not. Let tG denote the
generalized Groves mechanism defined by

tGi (θ) =

{
0 if i = m(θ),
vi(θ∗i (θ−i), θ−i) if i ̸= m(θ).

(3.2)

7Recall that Myerson and Satterthwaite (1983) prove an impossibility theorem and
thus the weaker requirement of IIR makes their result stronger. CGK and FKM maintain
the IIR requirement to highlight the crucial roles of ownership distributions (CGK) and
interdependence in valuations (FKM).
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Observe that (s∗, tG) is IC, and in fact, ex post IC (truth-telling is an ex
post equilibrium). Due to the Revenue Equivalence, (s∗, t) is IC if and
only if t yields, up to constant, the same interim expected transfer as the
generalized Groves mechanism tG. Therefore, (s∗, t) is IC if and only if there
exist functions ki : Θ → R, i ∈ N , such that

ti(θ) = tGi (θ) − ki(θ)

and
Eθ−i

[ki(θi, θ−i)] = Eθ−i
[ki(θ′i, θ−i)] (3.3)

for all θi, θ
′
i ∈ Θi.

The other properties, BB and EPIR, are also rewritten in terms of the
ki functions as above. Denote by bG(θ) the budget deficit generated by the
generalized Groves mechanism tG:

bG(θ) =
∑
i∈N

tGi (θ).

Then, t satisfies BB if and only if∑
i∈N

ki(θ) = bG(θ) (3.4)

for all θ ∈ Θ. Let uG
i (θ) denote the ex post utility of agent i under (s∗, tG):

uG
i (θ) = vi(θ)s∗i (θ) + tGi (θ).

Then, t satisfies EPIR if and only if for all i ∈ N , uG
i (θ)− ki(θ) ≥ u0

i (θ) for
all θ ∈ Θ, or equivalently,

inf
θ∈Θ

{uG
i (θ) − u0

i (θ) − ki(θ)} ≥ 0. (3.5)

In summary, the partnership is EPIR-dissolvable if and only if there exist
functions k1, . . . , kn that satisfy the conditions (3.3), (3.4), and (3.5).

We focus on a specific form of ki functions. Specifically, our approach is
to set

ki(θ) = bi(θ) − Eθ−i
[bi(θ)] +

1
n − 1

∑
j ̸=i

Eθ−j
[bj(θ)] + Ci

for some functions bi that satisfy∑
i∈N

bi(θ) = bG(θ)

and constants Ci with
∑

i∈N Ci = 0. It is immediate to verify that these
ki functions satisfy the IC condition (3.3) and the BB condition (3.4). The
resulting transfer rule t = tG − k is then written as

ti(θ) = tGi (θ) − bi(θ) + Eθ−i
[bi(θ)] −

1
n − 1

∑
j ̸=i

Eθ−j
[bj(θ)] − Ci. (3.6)
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This can be given the following interpretation. The starting point is the
Groves transfer rule tGi , which generates a budget deficit bG. Functions bi are
considered as defining a burden sharing rule of the budget deficit bG, where
bi(θ) is the burden borne by agent i. The term Eθ−i

[bi(θ)] is added to give
the agent the right incentives to report the truth, while the other two terms,
which are independent of θi, are to keep the budget balance unaffected.
Notice that when n ≥ 3, subtracting the term {1/(n − 1)}

∑
j ̸=i Eθ−j

[bj(θ)]
is not the only way to balance the budget.

It remains to determine a condition under which the EPIR condition
(3.5) is satisfied. The following result offers a sufficient condition for EPIR-
dissolution in terms of burden sharing functions bi.

Theorem 1. If there exist functions b1, . . . , bn such that
∑

i∈N bi(θ) =∑
i∈N tGi (θ) for all θ and

∑
i∈N

inf
θ∈Θ

uG
i (θ) − u0

i (θ) − bi(θ) + Eθ−i
[bi(θ)] −

1
n − 1

∑
j ̸=i

Eθ−j
[bj(θ)]

 ≥ 0,

(3.7)
then the partnership is EPIR-dissolvable.

When n = 2, the condition (3.7) is also necessary for EPIR-dissolution
(note that {1/(n − 1)}

∑
j ̸=i Eθ−j

[bj(θ)] = Eθi
[b−i(θ)] in this case).

Proof. Suppose that the condition (3.7) is satisfied with functions bi where∑
i∈N bi(θ) =

∑
i∈N tGi (θ), and let the transfer rule t be as in (3.6). By

construction, (s∗, t) satisfies EF and IC. It satisfies BB if and only if∑
i∈N Ci = 0.
Now, for each i ∈ N , define

C∗
i = inf

θ∈Θ

uG
i (θ) − u0

i (θ) − bi(θ) + Eθ−i
[bi(θ)] −

1
n − 1

∑
j ̸=i

Eθ−j
[bj(θ)]

 .

EPIR is thus satisfied if and only if C∗
i ≤ Ci. Therefore, BB and EPIR are

simultaneously satisfied if and only if
∑

i∈N C∗
i ≥ 0, which completes the

proof.

Remark 3.1. Theorem 1 in fact holds for a fairly general setup beyond part-
nership dissolution, under the assumptions of quasilinear utilities and inde-
pendently distributed, one-dimensional types along with the monotonicity
and the sorting conditions as in Bergemann and Välimäki (2002, Proposi-
tions 3 and 4), where the transfer function tG is to be adjusted accordingly
(Bergemann and Välimäki (2002, Section 5)). The monotonicity condition is
more general than the single crossing condition we assume, while the sorting
condition is implied by our assumption of vi strictly increasing in θi.
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Remark 3.2. This class of transfer rules defined by (3.6) contains the expected
externality (or AGV) mechanism tE as a special case. To see this, set bi(θ) =
tGi (θ) (and Ci = 0), and then we have

tEi (θ) = Eθ−i
[tGi (θ)] − 1

n − 1

∑
j ̸=i

Eθ−j
[tGj (θ)]. (3.8)

Another natural transfer rule is induced by what we call the equal burden
sharing :

bi(θ) =
1
n

bG(θ). (3.9)

This rule will be discussed in Section 4 (Example 4.1).

4 Symmetric n-Agent Partnerships

In this section, we restrict our attention to the symmetric and separable
environment as in FKM: we assume that for all i ∈ N , [θi, θi] = [θ, θ],
Fi = F , and

vi(θ) = g(θi) +
∑
j ̸=i

h(θj),

where g and h are continuously differentiable and satisfy g′ > 0 and g′ >
h′. Under this assumption, vi(θ) ≥ vj(θ) if and only if θi ≥ θj , so that
m(θ) = max(arg maxj vj(θ)) = max(arg maxj θj). Then, the generalized
Groves mechanism becomes

tGi (θ) =

{
0 if i = m(θ),
g
(
θm(θ)

)
+

∑
j ̸=i h(θj) if i ̸= m(θ),

(4.1)

and thus its budget deficit is

bG(θ) = (n − 1)g
(
θm(θ)

)
+

∑
i̸=m(θ)

∑
j ̸=i

h(θj)

= (n − 1)g
(
θm(θ)

)
+ h

(
θm(θ)

)
+ (n − 2)

∑
j∈N

h(θj). (4.2)

In this environment, FKM obtain the following results for partnership
dissolution with IIR.

Fact 1 (FKM). (1) If h′ > 0, then the equal-share partnership is not IIR-
dissolvable for some distribution function F .

(2) If h′ ≤ 0, then the equal-share partnership is IIR-dissolvable for any
distribution function F .
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A trivial corollary to Fact 1 is that if h′ > 0, then the equal-share
partnership is not EPIR-dissolvable for some distribution function F . In
the following section, we consider whether the equal-share partnership is
always (i.e., for all distribution functions) EPIR-dissolvable in the case of
non-positively interdependent valuations, i.e., when h′ ≤ 0. While valua-
tions may be assumed to be positively interdependent in “standard” cases
(e.g., when the information is about the quality of the asset), they may well
be negatively interdependent in other cases, when the information is about
properties which different agents evaluate differently. As such an example,
consider two firms 1 and 2 having a joint project of collecting data (such as
address, age, and so on) of consumers, where each firm has access to only
a part of the whole data set. Assume that it is known that the products
of the two firms have opposite characteristics, so that the product of firm
1 is preferred by a certain category of consumers, say younger consumers,
whereas that of firm 2 is preferred by the opposite category, say older con-
sumers. Then, information suggesting that the data set contains a larger
number of younger consumers makes the data more valuable for firm 1 but
less valuable for firm 2.

Now, we apply Theorem 1 to the problem of EPIR-dissolution of n-agent
partnerships with equal ownership shares, where αi = 1/n so that

u0
i (θ) =

1
n

vi(θ).

Our main question here is whether the equal-share partnership is EPIR-
dissolvable for any type distribution F . Given Fact 1, we restrict our atten-
tion to the case of non-positive interdependence, i.e., h′ ≤ 0. For this case,
we show that the answer to our question is the affirmative.

Theorem 2. Assume h′ ≤ 0. Then, the equal-share partnership is EPIR-
dissolvable for any distribution function F .

Proof. See Appendix A.1.

The proof consists in finding burden sharing functions bi as in Theorem 1.
Denote θ1 = θm(θ) and θ2 = maxj ̸=m(θ) θj . We set the functions bi to be

bi(θ) =
1
n

bG(θ) + di(θ), (4.3)

where

di(θ) =


−n − 1

n

∫ θ1

θ2

F (x) dg(x) if i = m(θ),

1
n

∫ θ1

θ2

F (x) dg(x) if i ̸= m(θ).

We verify in Appendix A.1 that the sufficient condition in Theorem 1 is
satisfied with this choice of bi for any type distribution F , provided that
h′ ≤ 0.
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Example 4.1 (Symmetric Two-Agent Partnerships). To illustrate this re-
sult, let us focus on the two-agent case, where n = 2 and α1 = α2 = 1/2
so that u0

i (θ) = 1
2vi(θ).8 Two-agent equal-share partnerships are impor-

tant empirically9 as well as in the theoretical literature.10 In this case, the
generalized Groves mechanism and its budget deficit are given by

tGi (θ) =

{
0 if i = m(θ),
v(θ1) if i ̸= m(θ)

and bG(θ) = v(θ1), respectively, where we denote

v(x) = g(x) + h(x)

for x ∈ [θ, θ]. The implementing mechanism t∗ (obtained by (3.6)) is then
given by

t∗i (θ) =


−1

2

[
v(θ1) −

∫ θ1

θ2

F (x) dv(x)

]
if i = m(θ),

1
2

[
v(θ1) −

∫ θ1

θ2

F (x) dv(x)

]
if i ̸= m(θ).

(4.4)

Actually, for the case of n = 2 the mechanism t∗ is also obtained by setting
the function bi in Theorem 1 to be the equal burden sharing

bi(θ) =
1
2
bG(θ),

since in this case, the function di in (4.3), which has the form di(θ) =
−

(
A(θi) − A(θ−i)

)
, satisfies

−di(θ) + Eθ−i
[di(θ)] − Eθi

[d−i(θ)] = 0

for any θ, where we write −i for the agent j ̸= i.
Figure 1 illustrates the EPIR mechanism graphically (assuming v > 0

and v′ > 0). The shaded area in the figure depicts the bracketed term in
(4.4), which may be interpreted as the price of the asset (per unit) which
we denote p∗(θ1, θ2) as a function of θ1 and θ2:

p∗(θ1, θ2) = v(θ1) −
∫ θ1

θ2

F (x) dv(x), (4.5)

8When n = 2, if a deterministic mechanism (i.e., such that for all θ ∈ Θ, si(θ) = 1 for
some i ∈ N) satisfies EPIR and BB, then it also satisfies EF, whereas it is not the case
when n ≥ 3.

9Hauswald and Hege (2006) report that, among their sample of U.S. joint ventures
between 1985 and 2000, about 80% have two partners, and 68% of all two-partner part-
nerships exhibit equal-share ownership.

10Theoretical studies that focus on two-agent equal-share partnerships include
Kittsteiner (2003), Morgan (2004), and de Frutos and Kittsteiner (2008).
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v(x)0

1

F (x)

v(θ2) v(θ1)

Figure 1: Pricing rule p∗(θ1, θ2)

where the “winner” (or ex post buyer) pays (1/2)p∗(θ1, θ2) to the “loser”
(or ex post seller) for the 1/2 units of the asset the loser owns. Then EPIR
reduces to the condition that for any θ the price must lie between the win-
ner’s and the loser’s ex post utilities, vm(θ)(θ) and v−m(θ)(θ). The figure
immediately shows that v(θ2) ≤ p∗(θ1, θ2) ≤ v(θ1). Since if h′ ≤ 0, then

v(θ2) = g(θ2) + h(θ2) ≥ g(θ2) + h(θ1) = v−m(θ)(θ),

v(θ1) = g(θ1) + h(θ1) ≤ g(θ1) + h(θ2) = vm(θ)(θ),

it follows that v−m(θ)(θ) ≤ p∗(θ1, θ2) ≤ vm(θ)(θ), which implies EPIR.

5 Two-Stage Mechanisms

In requiring EPIR, we are concerned with the ex post stage in which each
agent observes his payoff that results from the outcome of the mechanism.
When, as we assume, types are interdependent, observing the realized payoff
provides the agent with additional information about the types of the other
agents. The mechanism designer could thus collect this information, thereby
obtaining a broader set of mechanisms at his disposal. This is precisely the
point made by Mezzetti (2004, 2007). In this section, we consider two-
stage mechanisms à la Mezzetti (2004, 2007) in our context of partnership
dissolution.

In a two-stage mechanism (s∗, τ) with the efficient allocation rule s∗,
agents first report their types θ̂i, based on which the outcome decision
is made: the asset of the partnership is allocated to the agent m(θ̂)
(= max(arg maxj vj(θ̂))). In the second stage, the winning agent m(θ̂) re-
ports his realized decision-outcome value v̂m(θ̂). Then, transfers are made:

each agent i receives the monetary transfer τi(θ̂, v̂m(θ̂)), which may depend
on the report in the second stage as well as those in the first.

11



Specifically, we study the two classes of two-stage mechanisms intro-
duced by Mezzetti (2004, 2007), namely, the two-stage Groves mechanism
(Mezzetti (2004)) and the “shoot-the-liar” mechanism (Mezzetti (2007)),11

and ask whether these mechanisms help to achieve EPIR-dissolution in the
case of positive interdependence. In Subsection 5.1, we show that, in the
symmetric and separable environment as considered in the previous section,
if types are positively interdependent (i.e., h′ > 0), then no mechanism in
the class of two-stage Groves mechanisms in expectations IIR- (a fortiori,
EPIR-)dissolves the equal-share partnership for all type distributions. In
Subsection 5.2, we consider the general setting as introduced in Section 2
and show that under certain conditions similar to those in Mezzetti (2007),
which are satisfied in particular when h′ > 0 in the symmetric and separable
environment, by punishing first-stage lies with penalties the shoot-the-liar
mechanism EPIR-dissolves the partnership for any ownership distribution.

5.1 Two-Stage Groves Mechanism

The two-stage Groves mechanism (s∗, τG) consists of the efficient allocation
rule s∗ and the transfer rule τG defined by

τG
i

(
θ̂, v̂m(θ̂)

)
=

{
0 if i = m(θ̂),
v̂m(θ̂) if i ̸= m(θ̂).

This mechanism achieves efficiency in ex post IC (Mezzetti (2004) shows
this for a much more general setting): In the second stage, it is (weakly)
optimal for the winning agent to report truthfully, v̂m(θ̂) = vm(θ̂), since the
transfer to him does not depend on his report. Given this, in the first stage
game, truth-telling constitutes an ex post equilibrium. The budget deficit,
bG , and the ex post utilities, uG

i , generated (on the equilibrium path) by the
two-stage mechanism are given respectively by

bG(θ) = (n − 1)vm(θ)(θ)

and
uG

i (θ) = vm(θ)(θ).

Analogous to Makowski and Mezzetti (1994), we call (s∗, τ) a two-
stage Groves mechanism in expectations if for each i ∈ N , τi is writ-
ten as τi(θ̂, v̂m(θ̂)) = τG

i (θ̂, v̂m(θ̂)) − ki(θ̂) with some function ki such that
Eθ−i

[ki(θi, θ−i)] = Eθ−i
[ki(θ′i, θ−i)] for all θi, θ

′
i ∈ Θi. Given truth-telling in

the second reporting stage, it is clear that a two-stage Groves mechanism
in expectations satisfies IC, i.e., truth-telling constitutes a Bayesian Nash
equilibrium in the induced first stage game. Note also that our Theorem 1
remains valid with τG

i and uG
i in place of tGi and uG

i .
11See also the working paper version Mezzetti (2002).
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We again assume the symmetric and separable environment: [θi, θi] =
[θ, θ], Fi = F , and vi(θ) = g(θi) +

∑
j ̸=i h(θj) for all i ∈ N . For the

case of h′ > 0, we show that allowing for two-stage Groves mechanisms in
expectations does not suffice to obtain the possibility of EPIR-dissolution
of the equal-share partnership. In fact, we prove a stronger result, that
IIR-dissolution for all F is impossible.

Theorem 3. Assume h′ > 0. Then, there exists a distribution function F
such that the equal-share partnership is not IIR-dissolvable by any two-stage
Groves mechanism in expectations.

Proof. See Appendix A.2.

Let
V G

i (θi) = Eθ−i

[
uG

i (θ) − u0
i (θ)

]
,

where u0
i is the outside option of agent i. The necessary and sufficient

condition for a two-stage Groves mechanism in expectations to achieve IIR-
dissolution is that

Eθ

[
bG(θ)

]
≤

∑
i∈N

min
θi∈Θi

V G
i (θi) (5.1)

(Mezzetti (2002); see also Makowski and Mezzetti (1994, Theorem 3.1) and
FKM (2003, Theorem 1)). The proof consists in constructing a distribution
function F that violates this condition (5.1).

Intuitively speaking, the two-stage Groves mechanism (or those in ex-
pectations) achieves efficiency even with interdependent valuations since it
makes the ex post utilities as if they came from a private valuation model,
so that the standard VCG insights apply. One might therefore conjecture
that EPIR-dissolution of the equal-share partnership, which is possible for
private values, is also made possible by two-stage Groves mechanisms even
when h′ > 0. The impossibility of IIR-dissolution (and hence of EPIR
dissolution) holds, however, since the two-stage Groves mechanism does not
affect the outside options, and consequently the impossibility result by FKM
continues to hold even with two-stage Groves mechanisms in expectations.

While with a single reporting stage an efficient IC mechanism must be
a (generalized) Groves mechanism in expectations (as we considered in Sec-
tion 3), there are other two-stage mechanisms, besides the two-stage Groves
mechanisms, that implement efficiency, as emphasized in Mezzetti (2004)
and indeed seen in the next subsection.

5.2 Shoot-the-Liar Mechanism

This subsection considers the “shoot-the-liar” mechanism, proposed by
Mezzetti (2007) for the problem of full surplus extraction. We show that
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even when types are positively interdependent, for any ownership distribu-
tion EPIR-dissolution is possible with this class of mechanism. The result
will be proven with the general setting introduced in Section 2.

For ownership shares (αi)i∈N and a constant P > 0, we consider the
version of shoot-the-liar mechanism (s∗, τP ) that consists of the efficient
allocation rule s∗ and the transfer rule τP defined by

τP
i

(
θ̂, v̂m(θ̂)

)
=


−(1 − αi)vi(θ̂) if i = m(θ̂),
αivm(θ̂)(θ̂) if i ̸= m(θ̂) and v̂m(θ̂) = vm(θ̂)(θ̂),

−P if i ̸= m(θ̂) and v̂m(θ̂) ̸= vm(θ̂)(θ̂).

(5.2)

As in the two-stage Groves mechanism, the winning agent m(θ̂) reports his
ex post valuation of the asset in the second stage. Since the transfer for
this agent does not depend on his reported valuation, he has no incentive
to deviate from truth-telling. Given this, if all the agents truthfully report
their types in the first stage (i.e., θ̂i = θi), then the value vm(θ̂)(θ̂) estimated

based on the reported type profile θ̂ will be equal to the report v̂m(θ̂) in
the second stage. In this case, the ex post payoff (net of the transfer) is
αivm(θ)(θ) (= αi maxj vj(θ)) for all agents i, so that EPIR is satisfied. By
construction, BB is satisfied as well.

If, conversely, v̂m(θ̂) ̸= vm(θ̂)(θ̂), it implies that some agent has made a
false report, and the designer then imposes penalty P on all the losing agents.
Thus, truth-telling will constitute an equilibrium in the first reporting stage
if existence of false reports can be detected with positive probability and the
penalty level P is set sufficiently large. We impose the following assumption
similar to Assumption 1 in Mezzetti (2007).

Assumption 5.1. There exist M1,M2 ≥ 0 such that for all i ∈ N and all
θi, θ̂i ∈ Θi with θ̂i ̸= θi,

Eθ−i

[
1{i=m(θ̂i,θ−i)}

(
vi(θi, θ−i) − vi(θ̂i, θ−i)

)]
≤ M1

∑
j ̸=i

Eθ−i

[
1{j=m(θ̂i,θ−i), vj(θi,θ−i )̸=vj(θ̂i,θ−i)}

]
, (5.3)

and∑
j ̸=i

Eθ−i

[
1{j=m(θ̂i,θ−i), vj(θi,θ−i)=vj(θ̂i,θ−i)}

]
≤ M2

∑
j ̸=i

Eθ−i

[
1{j=m(θ̂i,θ−i), vj(θi,θ−i )̸=vj(θ̂i,θ−i)}

]
. (5.4)

Condition (5.3) implies in particular that, whenever θ̂i ̸= θi and
Eθ−i

[
1{i=m(θ̂i,θ−i)}

]
> 0,∑

j ̸=i

Eθ−i

[
1{j=m(θ̂i,θ−i), vj(θi,θ−i )̸=vj(θ̂i,θ−i)}

]
> 0,
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which ensures that any profitable false report in the first stage be detected
with positive probability. Note that the assumption is violated in the case
of private valuations. Conditions (5.3)–(5.4) together will guarantee a finite
bound of the necessary level of penalty P .12

The symmetric and separable environment with h′ > 0 (or h′ < 0) satis-
fies Assumption 5.1 for all distributions F with M1 = maxx∈[θ,θ]

(
g′(x)/f(x)

)
and M2 = 0. In fact, we have in this case

Eθ−i

[
1{i=m(θ̂i,θ−i)}

(
vi(θi, θ−i) − vi(θ̂i, θ−i)

)]
∑

j ̸=i Eθ−i

[
1{j=m(θ̂i,θ−i), vj(θi,θ−i )̸=vj(θ̂i,θ−i)}

] =
F (θ̂i)n−1(g(θ) − g(θ̂i))

(1 − F (θ̂i)n−1)/(n − 1)

≤ max
x∈[θ,θ]

g′(x)
f(x)

and ∑
j ̸=i

Eθ−i

[
1{j=m(θ̂i,θ−i), vj(θi,θ−i)=vj(θ̂i,θ−i)}

]
= 0

for all i and all θi and θ̂i with θ̂i ̸= θi, θ.
Under Assumption 5.1, we have the following possibility result.

Theorem 4. For all valuation functions (vi)i∈N and all distribution func-
tions (Fi)i∈N that satisfy Assumption 5.1, there exists P < ∞ such that for
any ownership shares (αi)i∈N , the shoot-the-liar mechanism (s∗, τP ) EPIR-
dissolves the partnership.

Proof. It is sufficient to show that truth-telling constitutes a Bayesian Nash
equilibrium in the first reporting stage (assuming truth-telling in the second
stage). Consider an agent i of type θi. If he reports θ̂i ̸= θi while the other
agents report truthfully, then

Ui(θi, θ̂i) = Eθ−i

[
1{i=m(θ̂i,θ−i)}

(
vi(θi, θ−i) − (1 − αi)vi(θ̂i, θ−i)

)
+

∑
j ̸=i1{j=m(θ̂i,θ−i), vj(θi,θ−i)=vj(θ̂i,θ−i)}αivj(θ̂i, θ−i)

−
∑

j ̸=i1{j=m(θ̂i,θ−i), vj(θi,θ−i) ̸=vj(θ̂i,θ−i)}P
]
.

On the other hand, if this agent reports truthfully,

Ui(θi) = Eθ−i

[
1{i=m(θ)}αivi(θ) + 1{i̸=m(θ)}αivm(θ)(θ)

]
≥ Eθ−i

[αivi(θ)] .

12Our assumption is slightly stronger than that of Mezzetti (2007, Assumption 1). Con-
dition (5.4) is not needed for the full surplus extraction result of Mezzetti (2007), while
it is imposed here for our goal of EPIR-dissolution, where transfer has to be made also
for losing agents. Condition (5.3) is necessary also in the model of Mezzetti (2007) for
the implementing penalty P to be finite. We present an example in Appendix A.3 which
shows that an unbounded penalty is required when condition (5.3) or (5.4) does not hold.
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Therefore,

Ui(θi) − Ui(θi, θ̂i)

≥ Eθ−i

[∑
j ̸=i1{j=m(θ̂i,θ−i), vj(θi,θ−i) ̸=vj(θ̂i,θ−i)}

(
P + αivi(θi, θ−i)

)
− 1{i=m(θ̂i,θ−i)}(1 − αi)

(
vi(θi, θ−i) − vi(θ̂i, θ−i)

)
−

∑
j ̸=i1{j=m(θ̂i,θ−i), vj(θi,θ−i)=vj(θ̂i,θ−i)}αi

(
vj(θ̂i, θ−i) − vi(θi, θ−i)

)]
≥

∑
j ̸=iEθ−i

[
1{j=m(θ̂i,θ−i), vj(θi,θ−i) ̸=vj(θ̂i,θ−i)}

] (
P − max

j, θ
|vj(θ)|

)
− Eθ−i

[
1{i=m(θ̂i,θ−i)}

(
vi(θi, θ−i) − vi(θ̂i, θ−i)

)]
−

∑
j ̸=iEθ−i

[
1{j=m(θ̂i,θ−i), vj(θi,θ−i)=vj(θ̂i,θ−i)}

]
2max

j, θ
|vj(θ)|.

Setting penalty P large enough that P ≥ M1+(2M2+1)maxj,θ |vj(θ)| where
M1 and M2 are as in Assumption 5.1, we have Ui(θi) − Ui(θi, θ̂i) ≥ 0, as
desired.

Clearly, the shoot-the-liar mechanism violates BB off the equilibrium
path. The mechanism designer is thus required to play an active role here,
as opposed to the premise behind the BB assumption in the previous sections
that a mechanism represents a decentralized institution and the designer is
just a mediator who helps the agents to coordinate. This result is meant to
demonstrate how far the full power of a two-stage mechanism theoretically
enables us to reach.

Remark 5.1. As already noted by Mezzetti (2004, 2007), a setting in which
agents’ valuations are interdependent while types are statistically indepen-
dent is similar to a setting in which agents’ types are correlated, in that corre-
lation in types also can be exploited to achieve first-best outcomes (Crémer
and McLean (1985, 1988), McAfee and Reny (1992)). Kosmopoulou and
Williams (1998) show, both in private value and in interdependent value
settings, that if the transfers are bounded, then inefficiency results in mod-
els with independent types continue to hold when correlation is sufficiently
small. One can show as in Kosmopolou and Williams (1998, Theorem 4)
that the transfers must be bounded in a BB and EPIR mechanism also in
our environment.

6 Ex Post Quitting Right

While we motivated our study of EPIR mechanisms by our desire that a
mechanism be free from ex post regret of participation, one may imagine a
situation in which agents actually reserve the right to quit the mechanism af-
ter observing the outcome. Matthews and Postlewaite (1989), Forges (1999),

16



and Compte and Jehiel (2007, 2009) consider models with (ex post) quitting
rights or veto, in which agents may enjoy their outside option on and off
the equilibrium paths. Note, in contrast, that EPIR is imposed only on the
equilibrium path (i.e., at the truth-telling outcome). In this section, we ex-
amine the performance of the mechanism (s∗, t∗) when we allow for quitting
rights.

Introducing ex post quitting rights implies requiring EPIR. It also mod-
ifies the IC constraints, as each agent may assert the quitting right after he
makes a false report, thus affecting the incentives to deviate. To formulate
the modified IC constraints, let

ui(θi, θ̂i, θ−i) = vi(θi, θ−i)si(θ̂i, θ−i) + ti(θ̂i, θ−i)

and

U∗
i (θi, θ̂i) = Eθ−i

[
max

{
ui(θi, θ̂i, θ−i),

1
2
vi(θi, θ−i)

}]
,

and denote U∗
i (θi) = U∗

i (θi, θi). The max operator in U∗
i (θi, θ̂i), the expected

utility of agent i with type θi when he reports θ̂i, represents the assumption
that the agent can take the outside option (1/2)vi(θi, θ−i) whenever it is
larger than his ex post utility ui(θi, θ̂i, θ−i). A mechanism (s, t) satisfies in-
terim incentive compatibility with ex post quitting rights, or interim incentive
compatibility starred (IC*), if for all i ∈ N ,

U∗
i (θi) ≥ U∗

i (θi, θ̂i) (IC*)

for all θ̂i ∈ [θ, θ]. We say that the partnership is dissolvable with quitting
rights if there exists a mechanism that satisfies EF, BB, IC*, and EPIR.

Clearly, IC* is a stronger condition than IC. The following result shows
that efficient dissolution of the equal-share partnership is always possible
even with IC* when the degree of negative dependence is large enough that
g′ + h′ ≤ 0.

Proposition 5. Consider the two-agent equal-share partnership. The mech-
anism (s∗, t∗) defined by (2.1) and (4.4) satisfies IC* for any distribution F
if and only if g′ + h′ ≤ 0.

Proof. See Appendix A.4.

To understand the intuition behind the result, consider the borderline
case where g′+h′ ≡ 0. In this case, we may assume without loss of generality
that g(x) + h(x) = 0 for all x ∈ [θ, θ], so that t∗i (θi, θ−i) = 0 for all θi, θ−i ∈
[θ, θ], i.e., the mechanism is such that the agent with a higher report receives
the entire asset with no monetary transfer. Now consider agent i with type
θi, and suppose that his report θ̂i overstates his type θi (i.e., θ̂i > θi). Define

∆(θ−i) =
1
2
v(θi, θ−i) − ui(θi, θ̂i, θ−i),
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θ−i0
θi θ̂i

ui(θi, θ̂i, θ−i)

1
2vi(θi, θ−i)

∆(θ−i) > 0

Figure 2: Case of g′ + h′ ≡ 0

which is the “ex post regret” of agent i when agent −i truthfully reports θ−i

(here we assume θ−i ̸= θi, θ̂i). Agent i has a (strict) incentive to exercise the
quitting right ex post if and only if ∆(θ−i) > 0. In the current case, ∆(θ−i) >
0 if and only if θ−i ∈ (θi, θ̂i) as in Figure 2, which depicts the graphs of the ex
post utility ui(θi, θ̂i, θ−i) and the outside option (1/2)vi(θi, θ−i) as functions
of θ−i. If θi < θ−i < θ̂i, agent i receives the asset and obtains ex post
utility ui(θi, θ̂i, θ−i) = vi(θi, θ−i) = g(θi) + h(θ−i) < g(θi) + h(θi) = 0, which
is smaller than his outside option (1/2)vi(θi, θ−i). But the outside option
(1/2)vi(θi, θ−i) (< 0) that agent i will take when θ−i ∈ (θi, θ̂i) is smaller
than the ex post utility ui(θi, θ̂i, θ−i) (= 0) that he would have obtained
if he reported his type truthfully. If θ−i < θi or θ−i > θ̂i, the outcome is
no different from the one under truth telling. After all, the agent has no
incentive to overstate his type even with ex post quitting rights (a symmetric
argument applies to understatements). In fact, we have

U∗
i (θi, θ̂i) − U∗

i (θi) =
1
2
(
Ui(θi, θ̂i) − Ui(θi)

)
,

which is negative by IC. When g′+h′ < 0, the set of θ−i’s such that ∆(θ−i) >
0 becomes smaller, which in effect makes false reports less profitable than
in the case of g′ + h′ ≡ 0. In this case, it holds that U∗

i (θi, θ̂i) − U∗
i (θi) <

(1/2)(Ui(θi, θ̂i) − Ui(θi)).
When g′+h′ > 0, on the other hand, the set of θ−i’s such that ∆(θ−i) > 0

exceeds the interval (θi, θ̂i). Indeed, consider θ−i slightly smaller than θ.
Then, agent i has to make a considerable amount of monetary transfer,
according to t∗i (θ̂i, θi), compared to his valuation vi(θi, θ−i), in which case
he exercises the quitting right, thereby enjoying a discrete marginal gain. If
such θ−i’s are assigned sufficiently larger probability densities than those in
(θi, θ̂i), the marginal gain that results from quitting can give a significant
impact on U∗

i (θi, θ̂i), violating IC*.

Example 6.1. Suppose that g(x) = x and h(x) = −γx, so that the valua-
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tion function vi is given by

vi(θ) = θi − γθ−i,

where γ ≥ 0, and thus v(x) = vi(x, x) = (1 − γ)x. By Proposition 5, the
necessary and sufficient condition for our mechanism (s∗, t∗) to satisfy IC*
for all type distributions is that 1 − γ ≤ 0, or γ ≥ 1.

Now, we fix a type distribution F , and examine the condition for γ
under which IC* is satisfied for this given distribution F . Specifically, let
[θ, θ] = [0, 1], and F be the uniform distribution on [0, 1]: F (x) = x. Then
the transfer function t∗ is written as

t∗i (θ) =


−1

2
(1 − γ)

[
θi −

1
2

{
(θi)2 − (θ−i)2

}]
if θi > θ−i,

1
2
(1 − γ)

[
θ−i −

1
2

{
(θ−i)2 − (θi)2

}]
if θi < θ−i.

(6.1)

In this case, we can show that the necessary and sufficient condition for our
mechanism (s∗, t∗) to satisfy IC* is that 1 − 2γ ≤ 0, or γ ≥ 1/2. The proof
is given in Appendix A.5.

Remark 6.1. In the buyer-seller setting with private values, Matthews and
Postlewaite (1989, Theorem 3) show that any deterministic and monotonic
mechanism that is IC, BB, and EPIR satisfies IC*. Our result implies that
this does not hold in the case of equal-share partnership, as our mecha-
nism (s∗, t∗) is deterministic and monotonic and satisfies IC, BB, and EPIR
when h′ ≤ 0 but not IC* when h′ > −g′. In the buyer-seller case, the
buyer (seller, resp.) has no incentive to quit when trade occurs based on
an under-statement (over-statement, resp.) of his type, in which case the
IC* condition has no bite, while in ours, agents are not ex ante a buyer or
a seller, so that IC* is relevant for both under- and over-statements.

7 Conclusion

In this paper, we have studied, in the context of partnership dissolution, the
possibility of designing Bayesian IC and ex post BB trading mechanisms
that yield efficient and EPIR outcomes. In a setting with interdependent
valuations, we derived a simple sufficient condition for the existence of such
a mechanism in terms of “burden sharing rule” used to cover the budget
deficit induced by the (generalized) Groves mechanism. As an application
to dissolution of partnerships with equal ownership shares in a symmetric
and separable environment, we showed that EPIR efficient dissolution is pos-
sible for all symmetric type distributions whenever the interdependence in
valuations is non-positive. This demonstrates, for the equal-ownership case,
that the positive results under IIR due to CGK and FKM remain valid even
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if the stronger requirement of EPIR is imposed. We further showed that
if we allow the designer to use two-stage mechanisms and impose penal-
ties off the equilibrium path, then the “shoot-the-liar” mechanism always
EPIR-dissolves the partnership with any ownership shares even when types
are positively interdependent. We also discussed the possibility of efficient
dissolution with ex post veto/quitting rights.

Appendix

A.1 Proof of Theorem 2

Recall that in the symmetric n-agent environment in consideration,

uG
i (θ) = vi(θ)s∗i (θ) + tGi (θ) =

{
g(θi) +

∑
j ̸=i h(θj) if i = m(θ),

g(θ1) +
∑

j ̸=i h(θj) if i ̸= m(θ).

Proof of Theorem 2. We set

bi(θ) =
1
n

bG(θ) +


−n − 1

n

∫ θ1

θ2

F (x) dg(x) if i = m(θ),

1
n

∫ θ1

θ2

F (x) dg(x) if i ̸= m(θ),

where
bG(θ) = (n − 1)g(θ1) + h(θ1) + (n − 2)

∑
j∈N

h(θj),

and show that it satisfies the condition (3.7) in Theorem 1. For each i ∈ N ,
let

Ci(θ) = uG
i (θ) − u0

i (θ) − bi(θ) + Eθ−i
[bi(θ)] −

1
n − 1

∑
j ̸=i

Eθ−j
[bj(θ)].

It suffices to show that Ci(θ) ≥ 0 for all θ ∈ Θ.
First,

uG
i (θ) − u0

i (θ) − bi(θ) = Γi(θ) −
1
n

h(θ1) − n − 2
n

h(θi) +
1
n

∑
j ̸=i

h(θj),

where

Γi(θ) =


n − 1

n

∫ θ1

θ2

F (x) dg(x) if i = m(θ),

1
n

(
g(θ1) − g(θi)

)
− 1

n

∫ θ1

θ2

F (x) dg(x) if i ̸= m(θ).
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Note that Γi(θ) ≥ 0 since, if i ̸= m(θ),

(
g(θ1) − g(θi)

)
−

∫ θ1

θ2

F (x) dg(x) ≥
(
g(θ1) − g(θ2)

)
−

∫ θ1

θ2

F (x) dg(x)

=
∫ θ1

θ2

(
1 − F (x)

)
dg(x) ≥ 0,

and that Γi(θ) = 0 when θ1 = · · · = θn.
Second,

Eθ−i
[bi(θ)] =

n − 1
n

(
g(θi)Fn−1(θi) +

∫ θ

θi

g(x) dFn−1(x)

)

+
1
n

(
h(θi)Fn−1(θi) +

∫ θ

θi

h(x) dFn−1(x)

)

+
n − 2

n

(
h(θi) + (n − 1)

∫ θ

θ
h(x) dF (x)

)

+
∫ θi

θ

(
−n − 1

n

) ∫ θi

y
F (x) dg(x) dFn−1(y)

+
∫ θ

θi

1
n

∫ y

θi

F (x) dg(x) Fn−2(θi) (n − 1) dF (y)

+
∫ θ

θi

∫ y1

θi

1
n

∫ y1

y2

F (x) dg(x) dFn−2(y2) (n − 1) dF (y1)

=
n − 1

n

(
g(θ) −

∫ θ

θi

Fn−1(x) dg(x)

)

+
1
n

(∫ θi

θ
F (x) dh(x) +

∫ θ

θ
h(x) dFn−1(x)

)

+
n − 2

n

(
h(θi) + (n − 1)

∫ θ

θ
h(x) dF (x)

)

− n − 1
n

∫ θi

θ
Fn(x) dg(x)

+
n − 1

n

∫ θ

θi

(
F (x) − F 2(x)

)
Fn−2(θi) dg(x)

+
n − 1

n

∫ θ

θi

(
F (x) − F 2(x)

)(
Fn−2(x) − Fn−2(θi)

)
dg(x)
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=
n − 2

n
h(θi) +

1
n

∫ θi

θ
F (x) dh(x) +

n − 1
n

∫ θ

θ
g(x) dFn(x)

+
1
n

∫ θ

θ
h(x) dFn−1(x) +

(n − 1)(n − 2)
n

∫ θ

θ
h(x) dF (x).

Thus, we have

Ci(θ) = Γi(θ) −
1
n

h(θ1) +
1
n

∑
j ̸=i

h(θj) +
1
n

∫ θi

θ
F (x) dh(x)

− 1
n − 1

∑
j ̸=i

(
n − 2

n
h(θj) +

1
n

∫ θj

θ
F (x) dh(x)

)
= Γi(θ) −

1
n(n − 1)

∑
j ̸=i

(
h(θ1) − h(θj)

)
+

1
n(n − 1)

∑
j ̸=i

∫ θi

θj

F (x) dh(x)

≥ Γi(θ) +
1

n(n − 1)

∑
j ̸=i

∫ θ1

θj

(
1 − F (x)

)
d(−h)(x) ≥ 0,

with equality when θ1 = · · · = θn.

The implementing mechanism is written as follows:

t∗i (θ) = −n − 1
n

[
g(θ1) −

∫ θ1

θ2

F (x) dg(x)

]

− 1
n

h(θ1) +
1

n − 1

∑
j ̸=i

h(θj) +
1

n(n − 1)

∑
j ̸=i

∫ θi

θj

Fn−1(x) dh(x)

−
∑
j ̸=i

h(θj) (A.1)

if i = m(θ), and

t∗i (θ) =
1
n

[
g(θ1) −

∫ θ1

θ2

F (x) dg(x)

]

− 1
n

h(θ1) +
1

n − 1

∑
j ̸=i

h(θj) +
1

n(n − 1)

∑
j ̸=i

∫ θi

θj

Fn−1(x) dh(x)

(A.2)

if i ̸= m(θ). When n = 2, the transfer rule (A.1)–(A.2) reduces to (4.4).
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A.2 Proof of Theorem 3

The budget deficit generated (on the equilibrium path) by the two-stage
Groves mechanism (s∗, τG) is

bG(θ) = (n − 1)vm(θ)(θ)

= (n − 1)g
(
θm(θ)

)
+ (n − 1)

∑
j ̸=m(θ)

h(θj)

= (n − 1)(g − h)
(
θm(θ)

)
+ (n − 1)

∑
j∈N

h(θj).

The ex post utility and the outside option are

uG
i (θ) = vm(θ)(θ)

= (g − h)
(
θm(θ)

)
+

∑
j∈N

h(θj)

and
u0

i (θ) =
1
n

(g − h)(θi) +
1
n

∑
j∈N

h(θj)

for all i ∈ N . Let
V G

i (θi) = Eθ−i

[
uG

i (θ) − u0
i (θ)

]
.

The necessary and sufficient condition for a two-stage Groves mechanism in
expectations to achieve IIR-dissolution is

Eθ

[
bG(θ)

]
≤

∑
i∈N

min
θi∈Θi

V G
i (θi). (A.3)

Proof of Theorem 3. We show that when h′ > 0, there exists a distribution
function F that violates the condition (A.3).

Observe that

V G
i (θi) = (g − h)(θi)

(
Fn−1(θi) − αi

)
+

∫ θ

θi

(g − h)(x) dFn−1(x)

+ (1 − αi)h(θi) + (1 − αi)(n − 1)
∫ θ

θ
h(x) dF (x),

and hence,

∑
i∈N

V G
i (θ̃i) =

∑
i∈N

∫ θ

θ̃i

(g − h)(x) dFn−1(x)

+
∑
i∈N

(1 − αi)h(θi) + (n − 1)2
∫ θ

θ
h(x) dF (x),
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while

Eθ

[
bG(θ)

]
= (n − 1)

∫ θ

θ
(g − h)(x) dFn(x) + n(n − 1)

∫ θ

θ
h(x) dF (x)

= n

∫ θ

θ
(g − h)(x)F (x) dFn−1(x) + n(n − 1)

∫ θ

θ
h(x) dF (x).

Let θ̃i be defined by Fn−1(θ̃i) = αi. Then, a necessary condition for
(A.3) is

∑
i∈N

{∫ θ

θ̃i

(g − h)(x) dFn−1(x) −
∫ θ

θ
(g − h)(x)F (x) dFn−1(x)

}

+
∑
i∈N

(1 − αi)h(θ̃i) − (n − 1)
∫ θ

θ
h(x) dF (x) ≥ 0. (A.4)

When αi = 1/n, inequality (A.4) reads

n

∫ θ

θ̃
(g − h)(x) dFn−1(x) − n

∫ θ

θ
(g − h)(x)F (x) dFn−1(x)

+ (n − 1)h(θ̃) − (n − 1)
∫ θ

θ
h(x) dF (x) ≥ 0, (A.5)

where θ̃ = F−1
(
(1/n)1/(n−1)

)
. We have

(LHS of (A.5))

=

{
n
[
(g − h)(x)Fn−1(x)

]θ

θ̃
− n

∫ θ

θ̃
Fn−1(x) d(g − h)(x)

}

−

{
(n − 1)

[
(g − h)(x)Fn(x)

]θ

θ
− (n − 1)

∫ θ

θ
Fn(x) d(g − h)(x)

}

+ (n − 1)h(θ̃) −

{
(n − 1)

[
h(x)F (x)

]θ

θ
− (n − 1)

∫ θ

θ
F (x) dh(x)

}

=
{

(g − h)(θ) − n(g − h)(θ̃)Fn−1(θ̃)
}
− n

∫ θ

θ̃
Fn−1(x) d(g − h)(x)

+ (n − 1)
∫ θ

θ̃
Fn(x) d(g − h)(x) + (n − 1)

∫ θ̃

θ
Fn(x) d(g − h)(x)

− (n − 1)
(
h(θ) − h(θ̃)

)
+ (n − 1)

∫ θ

θ̃
F (x) dh(x)

+ (n − 1)
∫ θ̃

θ
F (x) dh(x),
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=
∫ θ

θ̃

{
1 − nFn−1(x) + (n − 1)Fn(x)

}
d(g − h)(x)

+ (n − 1)
∫ θ̃

θ
Fn(x) d(g − h)(x)

− (n − 1)
∫ θ

θ̃

(
1 − F (x)

)
dh(x) + (n − 1)

∫ θ̃

θ
F (x) dh(x).

Recall Fn−1(θ̃) = 1/n.
Given g and h (such that g′ > h′ > 0), we want to find a distribution F

such that inequality (A.5) is violated, that is,

∫ θ

θ̃

{
1−nFn−1(x)+(n−1)Fn(x)

}
d(g−h)(x)+(n−1)

∫ θ̃

θ
Fn(x) d(g−h)(x)

− (n − 1)
∫ θ

θ̃

(
1 − F (x)

)
dh(x) + (n − 1)

∫ θ̃

θ
F (x) dh(x) < 0. (A.6)

Let a = maxx∈[θ,θ] g
′(x) > 0 and b = minx∈[θ,θ] h

′(x) > 0. Note that
a > b. Define

ϕ(z) =
{
1 − nzn−1 + (n − 1)zn

}
(a − b) − (n − 1)(1 − z)b.

Since ϕ(1) = 0 and ϕ′(1) = (n − 1)b > 0, there exists δ ∈ (1/n1/(n−1), 1)
such that ϕ(δ) < 0. Take such a δ.

Now define

F ∗(x) =

{
δ if x ∈ [θ, θ),
1 if x = θ,

and thus set θ̃ = θ. Then,

(LHS of (A.6))

=
∫ θ

θ

{
1 − nδn−1 + (n − 1)δn

}
d(g − h)(x) − (n − 1)

∫ θ

θ
(1 − δ) dh(x)

≤
∫ θ

θ

{
1 − nδn−1 + (n − 1)δn

}
(a − b) dx − (n − 1)

∫ θ

θ
(1 − δ)b dx

= ϕ(δ)
(
θ − θ

)
< 0,

where 1−nzn−1+(n−1)zn > 0 for all z ∈ (0, 1). This implies that inequality
(A.6) is satisfied for F = F ∗. The result thus follows since F ∗ can be
approximated arbitrarily close by continuously differentiable distribution,
strictly increasing functions.
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A.3 An Example Violating Assumption 5.1

We present an example showing that Assumption 5.1 is necessary for EPIR-
dissolution with a finite penalty P .

There are three agents whose types are independently and uniformly
distributed on [0, 1]. Their valuation functions are defined by

v1(θ1, θ2, θ3) = 2θ1,

v2(θ1, θ2, θ3) =
1
2
θ1 + θ2 +

1
2
θ3,

v3(θ1, θ2, θ3) =
1
2
θ1 +

1
2
θ2 + θ3.

Note that v2 and v3 are symmetric. We assume α1 < 1 and α2, α3 > 0.
First consider agent i = 1. When agent 1 reports θ̂1 ̸= θ1, he is the

winner if and only if

2θ2 + θ3 < 3θ̂1 and θ2 + 2θ3 < 3θ̂1.

Suppose θ̂1 ≥ 2/3. Then the probability that each agent j = 2, 3 wins is
3(1− θ̂1)2/2. Since for each j = 2, 3 and for all θ−1, vj(θ1, θ−1) ̸= vj(θ̂1, θ−1)
whenever θ1 ̸= θ̂i, we have∑

j ̸=1

Eθ−1

[
1{j=m(θ̂1,θ−1), vj(θ1,θ−1) ̸=vj(θ̂1,θ−1)}

]
= 3(1 − θ̂1)2.

On the other hand,

Eθ−1

[
1{1=m(θ̂1,θ−1)}

(
v1(θ1, θ−1) − v1(θ̂1, θ−1)

)]
= 2

{
1 − 3(1 − θ̂1)2

}
(1 − θ̂1).

Since 2
{
1 − 3(1 − θ̂1)2

}
(1 − θ̂1)/

{
3(1 − θ̂1)2

}
→ ∞ as θ̂1 → θ1 = 1, there is

no M1 that satisfies condition (5.3) for all θ1, θ̂1. Indeed, if θ̂1 < θ1, then,
since U1(θ1) ≤ Eθ−1

[
11=m(θ̂1,θ−1)

]
α1 · 2θ1 +Eθ−1

[
11 ̸=m(θ̂1,θ−1)

]
α1 · 2, we have

U1(θ1) − U1(θ1, θ̂1)

≤ −2
{
1 − 3(1 − θ̂1)2

}
(1 − α1)(θ1 − θ̂1) + 3(1 − θ̂1)2(P + 2α1).

For any P < ∞, there exist θ1 and θ̂1 sufficiently close to 1 such that the
right hand side is negative. Hence, for any finite constant P , the IC condition
does not hold for some θ1, θ̂1.

Next consider agent i = 2. The probability that agent 3 wins converges to
zero as θ̂2 → θ2 = 1, while that of agent 1 converges to a positive probability
1/6. It follows that there is no M2 that satisfies (5.4) for all θ2, θ̂2. Indeed,
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if θ̂2 < θ2, then we have

U2(θ2) − U2(θ2, θ̂2) ≤ − Eθ−2

[
1{2=m(θ̂2,θ−2)}

]
(1 − α2)(θ2 − θ̂2)

− Eθ−2

[
1{1=m(θ̂2,θ−2)}

]
2α2

+ Eθ−2

[
1{3=m(θ̂2,θ−2)}

]
(P + 2α2).

For any P < ∞, there exist θ2 and θ̂2 sufficiently close to 1 such that the
right hand side is negative. Again, for any P , the IC condition does not
hold for some θ2, θ̂2.

A.4 Proof of Proposition 5

Fix any agent i ∈ N and his type θi ∈ [θ, θ], and suppose that agent i
reports θ̂i, while agent −i truthfully reports his type θ−i. Define the “ex
post regret” under (s∗, t∗),

∆(θ−i) =
1
2
vi(θi, θ−i) − ui(θi, θ̂i, θ−i), (A.7)

as a function of agent −i’s type θ−i. Then, we have

U∗
i (θi, θ̂i) = Ui(θi, θ̂i) + Eθ−i

[
∆(θ−i)1{∆(θ−i)≥0}

]
.

Notice that

∆(θ−i) =


−1

2
vi(θi, θ−i) − t∗i (θ̂i, θ−i) if θ̂i > θ−i,

1
2
vi(θi, θ−i) − t∗i (θ̂i, θ−i) if θ̂i < θ−i.

(A.8)

Lemma A.1. If θ̂i > θi, then ∆(θ−i) < 0 for all θ−i > θ̂i, while if θ̂i < θi,
then ∆(θ−i) < 0 for all θ−i < θ̂i.

Proof. Consider the former case where θ̂i > θi. Suppose that θ−i > θ̂i, so
that player −i obtains the entire asset. Then, we have

ui(θi, θ̂i, θ−i) = t∗i (θ̂i, θ−i) ≥
1
2
vi(θ̂i, θ−i) >

1
2
vi(θi, θ−i),

where the first inequality follows from the fact that (s∗, t∗) satisfies EPIR,
while the second inequality follows from the assumption that vi(θi, θ−i) is
strictly increasing in θi.

Consider then the latter case where θ̂i < θi. Suppose that θ−i < θ̂i, so
that player i obtains the asset. Then we have

ui(θi, θ̂i, θ−i) = vi(θi, θ−i) + t∗i (θ̂i, θ−i)

≥ vi(θi, θ−i) −
1
2
vi(θ̂i, θ−i) >

1
2
vi(θi, θ−i),
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where the first inequality follows from EPIR, vi(θ̂i, θ−i) + t∗i (θ̂i, θ−i) ≥
(1/2)vi(θ̂i, θ−i), while the second from the assumption that vi(θi, θ−i) is
strictly increasing in θi.

Lemma A.2. For each θ̂i ̸= θi, there exists β(θ̂i) ∈ [θ, θ] such that if θ̂i > θi,
then β(θ̂i) < θ̂i and

{θ−i ̸= θ̂i | ∆(θ−i) > 0} =
(
β(θ̂i), θ̂i

)
,

while if θ̂i < θi, then β(θ̂i) > θ̂i and

{θ−i ̸= θ̂i | ∆(θ−i) > 0} =
(
θ̂i, β(θ̂i)

)
.

Proof. Consider first the case where θ̂i > θi. By Lemma A.1, ∆(θ−i) < 0
for all θ−i > θ̂i, and thus we consider θ−i < θ̂i, where player i obtains the
entire asset. Since ∆(θ−i) is continuous (in fact differentiable) on [θ, θ̂i),
it is sufficient to show that ∆(θ−i) is strictly increasing on [θ, θ̂i) and that
limθ−i↗θ̂i

∆(θ−i) > 0. Indeed, recalling that

∆(θ−i) = −1
2
vi(θi, θ−i) − t∗i (θ̂i, θ−i)

= −1
2
vi(θi, θ−i) +

1
2

[
v(θ̂i) −

∫ θ̂i

θ−i

F (x) dv(x)

]
,

we have

∆′(θ−i) = −1
2
h′(θ−i) +

1
2
F (θ−i)

(
g′(θ−i) + h′(θ−i)

)
=

1
2
F (θ−i)g′(θ−i) −

1
2
(
1 − F (θ−i)

)
h′(θ−i) > 0 (A.9)

for all θ−i ∈ (θ, θ̂i), where the inequality follows from the assumption that
g′ > 0 and h′ ≤ 0. Since limθ−i↗θ̂i

t∗i (θ̂i, θ−i) = −(1/2)vi(θ̂i, θ̂i), we also have

lim
θ−i↗θ̂i

∆(θ−i) = −1
2
vi(θi, θ̂i) +

1
2
vi(θ̂i, θ̂i) > 0,

where the inequality follows from the assumption that vi(θi, θ−i) is strictly
increasing in θi. Thus, defining β(θ̂i) as follows gives the first expression in
the lemma:

β(θ̂i) =

{
θ if ∆(θ−i) > 0 for all θ−i ∈ [θ, θ̂i),
θ−i satisfying ∆(θ−i) = 0 otherwise.
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For the other case where θ̂i < θi, the similar argument shows that ∆(θ−i)
is strictly decreasing on (θ̂i, θ] and that limθ−i↘θ̂i

∆(θ−i) > 0. Thus, define

β(θ̂i) as follows:

β(θ̂i) =

{
θ if ∆(θ−i) > 0 for all θ−i ∈ (θ̂i, θ],
θ−i satisfying ∆(θ−i) = 0 otherwise.

This completes the proof.

Lemma A.3. Let β(θ̂i) be as in Lemma A.2. Then, for all i ∈ N and all
θi, θ̂i ∈ [θ, θ], {

β(θ̂i) ≥ θi if θ̂i > θi,

β(θ̂i) ≤ θi if θ̂i < θi

if and only if g′ + h′ ≤ 0.

Proof. It suffices to examine the sign of ∆(θ−i) at θ−i = θi. If θi < θ̂i, then

∆(θi) = −1
2
vi(θi, θi) − t∗i (θ̂i, θi)

= −1
2
vi(θi, θi) +

1
2

[
v(θ̂i) −

∫ θ̂i

θi

F (x) dv(x)

]

=
1
2

∫ θ̂i

θi

(
1 − F (x)

)
dv(x), (A.10)

while if θ̂i < θi, then

∆(θi) =
1
2
vi(θi, θi) − t∗i (θ̂i, θi)

=
1
2
vi(θi, θi) −

1
2

[
v(θi) −

∫ θi

θ̂i

F (x) dv(x)
]

=
1
2

∫ θi

θ̂i

F (x) dv(x).

It follows that ∆(θi) ≤ 0 for all θi ̸= θ̂i in both cases if and only if v′ =
g′ + h′ ≤ 0 (since 0 < F (x) < 1 for all x ∈ (θ, θ)). But, by Lemma A.2, for
all θi < θ̂i (θi > θ̂i, resp.), ∆(θi) ≤ 0 if and only if β(θ̂i) ≥ θi (β(θ̂i) ≤ θi,
resp.).

Proof of Proposition 5. “If” part: Suppose that g′ + h′ ≤ 0. We want to
show that for each i ∈ N , U∗

i (θi) ≥ U∗
i (θi, θ̂i) for all θi, θ̂i ∈ [θ, θ]. We show

this only for the case where θi < θ̂i. In this case, we have β(θ̂i) < θ̂i as in
Lemma A.2, and

U∗
i (θi) − U∗

i (θi, θ̂i) =
(
Ui(θi) − Ui(θi, θ̂i)

)
−

∫ θ̂i

β(θ̂i)
∆(y) dF (y). (A.11)
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Recalling (A.8), we have

∆(y) = −1
2
(
g(θi) + h(y)

)
+

1
2

(
v(θ̂i) −

∫ θ̂i

y
F (x) dv(x)

)

=
1
2
(
g(y) − g(θi)

)
+

1
2

∫ θ̂i

y

(
1 − F (x)

)
dv(x),

and therefore,∫ θ̂i

β(θ̂i)
∆(y) dF (y)

=
1
2

∫ θ̂i

θi

(
g(y) − g(θi)

)
dF (y) − 1

2

∫ θ̂i

β(θ̂i)

(
g(y) − g(θi)

)
dF (y)

+
1
2

∫ θ̂i

β(θ̂i)

∫ θ̂i

y

(
1 − F (x)

)
dv(x) dF (y)

=
1
2
(
Ui(θi) − Ui(θi, θ̂i)

)
− 1

2

∫ θ̂i

β(θ̂i)

(
g(y) − g(θi)

)
dF (y)

+
1
2

∫ θ̂i

β(θ̂i)

∫ θ̂i

y

(
1 − F (x)

)
dv(x) dF (y),

where in the last equality we used the formula

Ui(θi) − Ui(θi, θ̂i) =
∫ θ̂i

θi

(
g(y) − g(θi)

)
dF (y),

which follows from the Revenue Equivalence. Hence,

(A.11) =
1
2
(
Ui(θi) − Ui(θi, θ̂i)

)
+

1
2

∫ β(θ̂i)

θi

(
g(y) − g(θi)

)
dF (y)

+
1
2

∫ θ̂i

β(θ̂i)

∫ θ̂i

y

(
1 − F (x)

)
d(−v)(x) dF (y). (A.12)

Here, the first term is non-negative by IC, and so are the other two since g
is increasing and v′ = g′ + h′ ≤ 0 by assumption. Thus, we have U∗

i (θi) −
U∗

i (θi, θ̂i) ≥ 0 as desired.
“Only if” part: Suppose that g′ + h′ > 0. We want to find a type

distribution and types θi, θ̂i ∈ [θ, θ] for which U∗
i (θi) < U∗

i (θi, θ̂i). For ease
of notation, we let [θ, θ] = [0, 1].

We first give a heuristic argument to outline the formal proof that follows.
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Let the type distribution F be given by

F (x) =


0 if 0 ≤ x <

1
4
,

1
2

if
1
4
≤ x <

3
4
,

1 if
3
4
≤ x ≤ 1,

which violates the full-support assumption, and set θi = 1/4 and θ̂i = 1/2.
Then we have

Ui(θi) − Ui(θi, θ̂i) =
∫ θ̂i

θi

(
g(y) − g(θi)

)
dF (y) = 0,

while, since β(θ̂i) < θi (< θ̂i) by Lemma A.3,∫ θ̂i

β(θ̂i)
∆(y) dF (y) = ∆(θi)F (θi) > 0.

Thus, from (A.11) we have U∗
i (θi) − U∗

i (θi, θ̂i) < 0.
Now let us consider the following sequence of distribution functions

(Fn)n=1,2,... with full support on [0, 1]:

Fn(x) =



4n + 3
2n + 3

x if 0 ≤ x <
1
4
,

24n+1

2n + 3

(
x − 1

2

)2n+1
+

1
2n + 3

(
x − 1

2

)
+

1
2

if
1
4
≤ x <

3
4
,

4n + 3
2n + 3

(x − 1) + 1 if
3
4
≤ x ≤ 1.

The function Fn is continuously differentiable on [0, 1], and satisfies Fn(0) =
0, Fn(1/2) = 1/2, and Fn(1) = 1. Note that for x ∈ [1/4, 3/4], Fn(x) → 1/2
as n → ∞. For each Fn, let ∆n and βn be as in (A.7) and Lemma A.2,
respectively. Set θi = 1/4 and θ̂i = 1/2, where βn(θ̂i) < θi by Lemma A.3.
We first have

Ui(θi) − Ui(θi, θ̂i) =
∫ θ̂i

θi

(
g(y) − g(θi)

)
dFn(y)

<
(
g(θ̂i) − g(θi)

)(
Fn(θ̂i) − Fn(θi)

)
→ 0 as n → ∞.

On the other hand, by (A.9), ∆′
n(x) is bounded from above uniformly for n

and x ∈ [0, θi], and by (A.10), ∆n(θi) is bounded from zero uniformly for n,
as

∆n(θi) =
1
2

∫ θ̂i

θi

(
1 − Fn(x)

)
dv(x)

≥ 1
2
(
v(θ̂i) − v(θi)

)
(1 − Fn(θ̂i)) =

1
4
(
v(θ̂i) − v(θi)

)
> 0.
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It follows that we can take a δ > 0 with θi − δ ≥ θ and a D > 0 such that
for all n, ∆n(x) > D for all x ∈ [θi − δ, θi]. Hence, we have∫ θ̂i

βn(θ̂i)
∆n(y) dFn(y) >

∫ θi

θi−δ
∆n(y) dFn(y)

> Dδ
4n + 3
2n + 3

> Dδ > 0

for all n. Thus, from (A.11) we have U∗
i (θi) − U∗

i (θi, θ̂i) < 0 for sufficiently
large n.

A.5 Proof for Example 6.1

We show the following.

Proposition A.4. Let [θ, θ] = [0, 1], and F be the uniform distribution on
[0, 1]. Assume that g(x) = x and h(x) = −γx, where γ ≥ 0. Then, (s∗, t∗)
satisfies IC* if and only if γ ≥ 1/2.

Proof. We have already shown in Proposition 5 that (s∗, t∗) satisfies IC* if
g′ + h′ = 1− γ ≤ 0. It is therefore sufficient to consider only the case where
1 − γ > 0. In this case, by Lemma A.3, θi falls between β(θ̂i) and θ̂i.

“If” part: Assume that 1/2 ≤ γ (< 1), or (0 <) 1 − γ ≤ 1/2. We want
to show that U∗

i (θi) ≥ U∗
i (θi, θ̂i) for all θi, θ̂i ∈ [θ, θ]. We show this only for

the case where θi < θ̂i. In this case, we have β(θ̂i) < θ̂i as in Lemma A.2.
By (A.12),

U∗
i (θi) − U∗

i (θi, θ̂i)

=
1
2

∫ θ̂i

θi

(y − θi) dy +
1
2

∫ β(θ̂i)

θi

(y − θi) dy

− 1
2
(1 − γ)

∫ θ̂i

β(θ̂i)

∫ θ̂i

y
(1 − x) dx dy

≥ 1
2

∫ θ̂i

θi

(y − θi) dy +
1
2

∫ β(θ̂i)

θi

(y − θi) dy − 1
4

∫ θ̂i

β(θ̂i)

∫ θ̂i

y
dx dy

=
1
4
(
θ̂i − θi

)2 +
1
4
(
θi − β(θ̂i)

)2 − 1
8
(
θ̂i − β(θ̂i)

)2

=
1
8
(
θ̂i + β(θ̂i) − 2θi

)2 ≥ 0,

as desired.
“Only if” part: Assume that γ < 1/2. We want to find θi, θ̂i ∈ [0, 1] for

which U∗
i (θi) < U∗

i (θi, θ̂i). Take a small number δ > 0 such that δ < 1− 2γ.
Note that (1 + δ)/2 < 1 − γ. Then take a large number A > 1 so that
1/(2A − 2)2 < δ, and let B = 2A − 1 (and hence 1/(B − 1)2 < δ). Finally
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let ε > 0 be a positive number, which will be taken to be sufficiently small.
Set θi = Aε and θ̂i = Bε. When θ−i = ε (< θ̂i),

∆(ε) = −1
2
vi(θi, θ−i) − t∗i (θ̂i, θ−i)

= −1
2
(Aε − γε) +

1
2
(1 − γ)

[
Bε − 1

2
{
(Bε)2 − ε2

}]
=

ε

2

[
−(A − γ) + (1 − γ)

{
B − 1

2
(B2 − 1)ε

}]
.

We claim that for sufficiently small ε, ∆(ε) > 0. Indeed, as ε → 0, the
bracketed term in the last line goes to −(A − γ) + (1 − γ)B = −(B −
1)γ − (A − γ) > −(B − 1)(1/2) − (A − 1/2) = 0. It therefore follows from
Lemma A.2 that β(Bε) < ε for sufficiently small ε.

By (A.12),

U∗
i (θi) − U∗

i (θi, θ̂i)

=
1
2

∫ θ̂i

θi

(y − θi) dy +
1
2

∫ β(θ̂i)

θi

(y − θi) dy

− 1
2
(1 − γ)

∫ θ̂i

β(θ̂i)

∫ θ̂i

y
(1 − x) dx dy

<
1
2

∫ θ̂i

θi

(y − θi) dy +
1
2

∫ β(θ̂i)

θi

(y − θi) dy

− 1
2

1 + δ

2

∫ θ̂i

β(θ̂i)

∫ θ̂i

y
(1 − θ̂i) dx dy

=
1
8
(
θ̂i + β(θ̂i) − 2θi

)2 − 1
8
{
(1 + δ)(1 − θ̂i) − 1

}(
θ̂i − β(θ̂i)

)2

=
1
8
(
−ε + β(Bε))2 − 1

8
{
(1 + δ)(1 − Bε) − 1

}(
Bε − β(Bε)

)2

<
1
8
ε2 − 1

8
{
(1 + δ)(1 − Bε) − 1

}
(Bε − ε)2

=
1
8
ε2

[
1 −

{
(1 + δ)(1 − Bε) − 1

}
(B − 1)2

]
,

where the second inequality follows from 0 ≤ β(Bε) < ε. We claim that for
sufficiently small ε, U∗

i (θi)−U∗
i (θi, θ̂i) < 0. Indeed, as ε → 0, the bracketed

term in the last line goes to 1 − δ(B − 1)2, which is negative by the choice
of δ and B.
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