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Abstract

This paper studies equilibrium selection in binary supermodular
games based on perfect foresight dynamics. We provide complete char-
acterizations of absorbing and globally accessible equilibria and apply
them to two subclasses of games. First, for unanimity games, it is
shown that our selection criterion is not in agreement with that in
terms of Nash products, and an example is presented in which two
strict Nash equilibria are simultaneously globally accessible when the
friction is sufficiently small. Second, a class of games with invariant
diagonal are proposed and shown to generically admit an absorbing
and globally accessible equilibrium for small frictions. Journal of Eco-
nomic Literature Classification Numbers: C72, C73.

Keywords: equilibrium selection; perfect foresight dynamics; super-
modular game; strategic complementarity; unanimity game; invariant
diagonal game.



1 Introduction

In this paper we study N -player bipolar games (Selten 1995), where each
player has binary actions 0 and 1, and the profiles 0 (“all 0”) and 1 (“all
1”) are strict Nash equilibria. We also assume a certain monotonicity condi-
tion of the incentive functions which is equivalent to the game being super-
modular. Such games form a simple and natural class of coordination games
for which the problem of equilibrium selection arises.

We employ the approach of perfect foresight dynamics due to Matsui and
Matsuyama (1995); see also Hofbauer and Sorger (1999, 2002), Oyama (2002),
Oyama et al. (2008, OTH henceforth), and Takahashi (2008).1 An N -player
normal form game is played repeatedly in a random-matching fashion in a
large society of N continua of agents (one for each player role of the game).
Opportunities at which agents can revise their actions arrive according to in-
dependent Poisson processes, which along with time discounting constitutes
the friction of the model. Each agent, given a revision opportunity, takes a
best response to the future course of play in the society. This forward-looking
behavior of agents has an effect to destabilize some strict Nash equilibria
when the degree of friction is small. A Nash equilibrium a∗ is globally acces-
sible if for any initial action distribution, there exists an equilibrium path
that converges to a∗; a∗ is linearly absorbing if the path linearly converges
to a∗ is the unique equilibrium path from each initial action distribution in
a neighborhood of a∗. If an equilibrium that is globally accessible (linearly
absorbing, resp.) is also linearly absorbing (globally accessible, resp.), then
it is a unique such equilibrium.

In Section 3, for arbitrary binary supermodular games we obtain com-
plete characterizations for linear absorption and for global accessibility of
a strict Nash equilibrium. These characterizations are applied to two sub-
classes in Sections 4 and 5. First, for unanimity games, we show that our
selection criterion is not in agreement with that in terms of Nash products.
In fact, the perfect foresight dynamics fails to select a single Nash equilib-
rium for some unanimity games. A nondegenerate example (Example 4.1)
demonstrates that both the two strict Nash equilibria can be globally ac-
cessible for a small friction. Second, for games with invariant diagonal, we
obtain the generic existence of a linearly absorbing and globally accessible
equilibrium for a small friction. This equilibrium maximizes the potential
along the diagonal. In general the potential does not extend to the whole
state space; in fact we provide a simple example for this (Example 5.1).
Nevertheless, the maximizer of the potential along the diagonal turns out to
have the stability properties, as if the potential extended to the whole state

1Other studies include Burdzy et al. (2001), Kojima (2006), Kojima and Takahashi
(2007, 2008), Matsui and Oyama (2006), Oyama and Tercieux (2009), Rapp
(2008), Tercieux (2006). Economic applications of this class of dynamics include
Matsuyama (1991, 1992), Kaneda (1995, 2003), Oyama (2009), and Amaya (2010).
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space.2

In OTH (2008) we analyzed many-action supermodular games with mono-
tone potentials and showed that a monotone potential maximizer is globally
accessible and linearly absorbing for small frictions. However, it need not
always exist, and in fact, the results obtained in OTH (2008) invoking mono-
tone potentials do not cover the two subclasses studied in the present paper.
This will be illustrated in Examples 4.1 and 5.1 mentioned above.

2 Preliminaries

2.1 Binary Supermodular Games

We consider an N ≥ 2 player binary game G = (I, A, (ui)i∈I), where I =
{1, . . . , N} is the set of players, A = {0, 1} the action set for each player,
and ui : AN → R the payoff function for player i ∈ I. Payoff functions
are extended to mixed strategy profiles in the usual way. We denote by
pi ∈ [0, 1] the probability assigned by player i on action 1, and hence that
assigned on action 0 is 1 − pi. The incentive function di : [0, 1]N → R for
player i is defined by

di(p1, . . . , pN ) = ui

(
1, (pj , 1 − pj)j 6=i

)
− ui

(
0, (pj , 1 − pj)j 6=i

)
.

We identify a = (ai)i∈I ∈ AN with the vector p = (p1, . . . , pN ) ∈ [0, 1]N such
that pi = 0 if ai = 0 and pi = 1 if ai = 1. We assume that action profiles
0, where all players play 0, and 1, where all players play 1, are strict Nash
equilibria, i.e., di(0) < 0 < di(1) for all i ∈ I. We further assume that di is
nondecreasing in each pj (j 6= i) so that the game is supermodular. Thus,
the game is a bipolar supermodular game (Selten 1995).

2.2 Perfect Foresight Dynamics

Given an N -player binary game as described above, which will be called
the stage game, we consider the following dynamic societal game. Society
consists of N large populations of infinitesimal agents, one for each role in
the stage game. In each population, agents are identical and anonymous.
At each point in time, one agent is selected randomly from each population
and matched to form an N -tuple and play the stage game. Agents cannot
switch actions at every point in time. Instead, every agent must make
a commitment to a particular action for a random time interval. Time
instants at which each agent can switch actions follow a Poisson process
with the arrival rate λ > 0. The processes are independent across agents.

2Kim (1996) compares several equilibrium selection approaches for the class of sym-
metric binary supermodular games. These games are known to have a potential on the
whole state space. For general potential games, Hofbauer and Sorger (2002) show that
the potential maximizer has the stability properties under the perfect foresight dynamics.
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We choose without loss of generality the unit of time in such a way that
λ = 1.

The action distribution in population i ∈ I at time t ∈ R+ is denoted by

φ(t) = (φ1(t), . . . , φN (t)) ∈ [0, 1]N ,

where φi(t) (1−φi(t), resp.) is the fraction of agents in population i who are
committing to action 1 (action 0, resp.) at time t. The initial condition φ(0)
is exogenously given. Due to the assumption that the switching times follow
independent Poisson processes with arrival rate λ = 1, φi(·) is Lipschitz
continuous with Lipschitz constant 1, which implies in particular that it is
differentiable at almost all t ≥ 0. We call such a path φ(·) a feasible path.

Definition 2.1. A path φ : R+ → [0, 1]N is said to be feasible if it is
Lipschitz continuous, and for almost all t ≥ 0 there exists α(t) = (αi(t))i∈I ∈
[0, 1]N such that

φ̇(t) = α(t) − φ(t). (2.1)

Denote by Φ the set of feasible paths, which is convex and compact in the
topology of uniform convergence on compact intervals. In Equation (2.1),
αi(t) ∈ [0, 1] denotes the fraction of the agents in population i who have
a revision opportunity and choose action 1 during the short time interval
[t, t+dt). In particular, if for some action profile a = (ai)i∈I ∈ AN , αi(t) = ai

for all i ∈ I and all t ≥ 0, then the resulting feasible path, which converges
linearly to a, is called a linear path to a.

An agent in population i anticipates the future evolution of the action
distribution, and, if given the opportunity to switch actions, commits to an
action that maximizes his expected discounted payoff. Since the duration of
the commitment has an exponential distribution with mean 1, the expected
discounted payoff of committing to action h ∈ A at time t with a given
anticipated path φ ∈ Φ is represented by

V θ
ih(φ)(t) = (1 + θ)

∫ ∞

0

∫ t+s

t
e−θ(z−t)ui

(
h, (φj(z), 1 − φj(z))j 6=i

)
dz e−sds

= (1 + θ)
∫ ∞

t
e−(1+θ)(s−t)ui

(
h, (φj(s), 1 − φj(s))j 6=i

)
ds,

where θ > 0 is the common rate of time preference relative to λ = 1. We view
the discounted average duration of a commitment, θ/λ = θ, as the degree of
friction. Note that V is well-defined whenever θ > −1, and particularly for
θ = 0. Denote

∆V θ
i (φ)(t) = V θ

i1(φ)(t) − V θ
i0(φ)(t) = (1 + θ)

∫ ∞

t
e−(1+θ)(s−t)di(φ(s)) ds.
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Given a feasible path φ ∈ Φ, let Bi(φ)(t) ⊂ [0, 1] be the set of best
responses in mixed strategies to φ−i = (φj)j 6=i at time t, i.e.,

Bi(φ)(t) =


{1} if ∆V θ

i (φ)(t) > 0,
[0, 1] if ∆V θ

i (φ)(t) = 0,
{0} if ∆V θ

i (φ)(t) < 0.

Denote B(φ)(t) =
∏

i∈I Bi(φ)(t) ⊂ [0, 1]N . A perfect foresight path is an
equilibrium path of the dynamic model, that is, a feasible path along which
each agent optimizes against the correctly anticipated future path.

Definition 2.2. A feasible path φ is said to be a perfect foresight path from
p ∈ [0, 1]N if for almost all t ≥ 0,

φ̇(t) ∈ B(φ)(t) − φ(t), φ(0) = p. (2.2)

If φ̇i(t) > −φi(t) (φ̇i(t) < 1−φi(t), resp.), then action 1 (action 0, resp.)
is taken by some positive fraction of the agents in population i having a
revision opportunity during the short time interval [t, t+dt). The definition
says that such an action must be a best response to the path φ itself. It
is known that a perfect foresight path exists for each initial condition (see
OTH 2008, Subsection 2.3).

Since 1 and 0 are Nash equilibria of the stage game, the constant paths
φ̄ and ψ̄ such that φ̄(t) = 1 and ψ̄(t) = 0 for all t ≥ 0 are perfect foresight
paths. Nevertheless, there may exist another perfect foresight path from
a Nash equilibrium which converges to a different Nash equilibrium. In
fact, in 2× 2 coordination games, there exists a perfect foresight path from
the risk-dominated equilibrium to the risk-dominant equilibrium for small
θ > 0, but not vice versa (Matsui and Matsuyama 1995). Following Matsui
and Matsuyama (1995) and OTH (2008), we employ the following stability
concepts (Bε(a∗) denotes the ε-neighborhood of a∗ ∈ AN in [0, 1]N ).

Definition 2.3. (a) a∗ ∈ AN is absorbing if there exists ε > 0 such that
any perfect foresight path from any p ∈ Bε(a∗) converges to a∗.

(b) a∗ ∈ AN is linearly absorbing if there exists ε > 0 such that for any
p ∈ Bε(a∗), the linear path to a∗ is a unique perfect foresight path from p.

(c) a∗ ∈ AN is accessible from p ∈ [0, 1]N if there exists a perfect foresight
path from p that converges to a∗. a∗ is globally accessible if it is accessible
from any p.

Any absorbing or globally accessible state must be a Nash equilibrium
of the stage game (OTH 2008, Proposition 2.1). In supermodular games,
absorption and linear absorption are equivalent (OTH 2008, Proposition
3.3). We are interested in a (unique, by definition) Nash equilibrium that is
linearly absorbing and globally accessible when the degree of friction θ > 0
is sufficiently small.
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3 General Results

In this section, we give complete characterizations for the strict Nash equi-
librium 1 to be globally accessible and to be absorbing (or, equivalently,
linearly absorbing), respectively. By reversing the orders of actions, the
results can be applied to the other Nash equilibrium 0. The subsequent
sections then consider two subclasses of binary supermodular games.

For T = (Ti)i∈I ∈ RN
+ , let φu

T be the feasible path given by

(φu
T)i(t) =

{
0 if t < Ti

1 − e−(t−Ti) if t ≥ Ti,
(3.1)

which goes upwards (hence denoted with superscript “u”) starting at 0 and
converging to 1. Along φu

T, agents in population i ∈ I start choosing action
1 at time Ti.

Denote R̄+ = R+ ∪ {∞}. For T = (Ti)i∈I ∈ R̄N
+ , let ψd

T be the feasible
path given by

(ψd
T)i(t) =

{
1 if t < Ti

e−(t−Ti) if t ≥ Ti

for i ∈ S, (3.2)

and
(ψd

T)i(t) = 1 for i /∈ S, (3.3)

where S = {i ∈ I |Ti 6= ∞}. Let 0S be the action profile such that i chooses
0 if i ∈ S and 1 if i /∈ S. Along ψd

T, which goes downwards (hence denoted
with “d”) from 1 to 0, agents in population i ∈ S start choosing action 0 at
time Ti, while those in population i /∈ S always play action 1.

First, we provide a necessary and sufficient condition for the state 1 to be
globally accessible for any small degree of friction. The condition is stated
in terms of existence of a subpath of the form (3.1).

Proposition 3.1. There exists θ̄ > 0 such that the strict Nash equilibrium 1
is globally accessible for all θ ∈ (0, θ̄) if and only if there exists T = (Ti)i∈I ∈
RN

+ such that for all i ∈ I,

∆V 0
i (φu

T)(Ti) > 0.

Proof. See Appendix.

Next, we provide a necessary and sufficient condition for the state 1 to
be absorbing for any degree of friction. The condition is stated in terms of
nonexistence of a superpath of the form (3.2)–(3.3) with 0S being a Nash
equilibrium of the stage game such that the players in S have strict incen-
tives.
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Proposition 3.2. The strict Nash equilibrium 1 is absorbing for all θ > 0
if and only if for any T = (Ti)i∈I ∈ R̄N

+ such that S = {i ∈ I |Ti 6= ∞} is
nonempty and 0S is a Nash equilibrium with di(0S) < 0 for all i ∈ S, there
exists i ∈ S such that

∆V 0
i (ψd

T)(Ti) ≥ 0.

Proof. See Appendix.

Importantly, the characterizations of global accessibility and absorption
in Propositions 3.1 and 3.2 are stated in terms of finite dimensional objects
T, whereas their definitions are given in terms of perfect foresight paths
which belong to the infinite dimensional set Φ of feasible paths. It is the
supermodularity that allows us to obtain these simple characterizations.

Consider games such that for any Nash equilibrium 0S with S 6= ∅, I, at
least one player in S and at least one player in I \S are indifferent between
the actions 0 and 1 (i.e., di(0S) = 0 holds for some i ∈ S and for some
i /∈ S). For such games, it follows from Propositions 3.1 and 3.2 that if
one of the strict Nash equilibria 0 and 1 is not globally accessible for any
sufficiently small θ > 0 (not absorbing for any θ > 0, resp.), then the other
one is absorbing for any θ > 0 (globally accessible for any sufficiently small
θ > 0, resp.). Among such games are unanimity games as considered in the
next section.

4 Unanimity Games

This section considers N -player unanimity games. The stage game is given
by

ui(a) =


yi if a = 0
zi if a = 1
0 otherwise,

(4.1)

where yi, zi > 0. The incentive function for player i is then given by

di(p1, · · · , pN ) = zi
∏
j 6=i

pj − yi

∏
j 6=i

(1 − pj).

Note that this game is supermodular.
For T = (Ti)i∈I ∈ RN

+ , let

πi(T) =
∫ ∞

Ti

e−(t−Ti)
∏
j 6=i

[
0 ∨

{
1 − e−(t−Tj)

}]
dt

=
∫ ∞

maxj Tj

e−(t−Ti)
∏
j 6=i

{
1 − e−(t−Tj)

}
dt, (4.2)

ρi(T) =
∫ ∞

Ti

e−(t−Ti)
∏
j 6=i

{
1 ∧ e−(t−Tj)

}
dt. (4.3)
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4.1 Global Accessibility

For a feasible path φu
T defined by (3.1) with a given T = (Ti)i∈I ∈ RN

+ , the
discounted payoff difference is given by

∆V 0
i (φu

T)(Ti) = ziπi(T) − yiρi(T),

so that ∆V 0
i (φu

T)(Ti) > 0 if and only if zi/yi > ρi(T)/πi(T). Thus we
immediately have the following from Proposition 3.1.

Proposition 4.1. Suppose that the stage game is a unanimity game given
by (4.1). Then there exists θ̄ > 0 such that 1 is globally accessible for all
θ ∈ (0, θ̄) if and only if there exists T ∈ RN

+ such that for all i ∈ I,

zi
yi
>
ρi(T)
πi(T)

.

Symmetrically, there exists θ̄ > 0 such that 0 is globally accessible for all
θ ∈ (0, θ̄) if and only if there exists T ∈ RN

+ such that for all i ∈ I,

yi

zi
>
ρi(T)
πi(T)

.

4.2 Absorption

For a feasible path ψd
T defined by (3.2) with a given T = (Ti)i∈I ∈ RN

+ , the
discounted payoff difference is given by

∆V 0
i (ψd

T)(Ti) = ziρi(T) − yiπi(T),

so that ∆V 0
i (ψd

T)(Ti) ≥ 0 if and only if zi/yi ≥ πi(T)/ρi(T). Thus we have
the following from Proposition 3.2. Observe that in this case, S satisfies the
condition in Proposition 3.2 only if S = I.

Proposition 4.2. Suppose that the stage game is a unanimity game given
by (4.1). Then 1 is absorbing for all θ > 0 if and only if for any T ∈ RN

+ ,
there exists i ∈ I such that

zi
yi

≥ πi(T)
ρi(T)

.

Symmetrically, 0 is absorbing for all θ > 0 if and only if for any T ∈ RN
+ ,

there exists i ∈ I such that
yi

zi
≥ πi(T)
ρi(T)

.

7



4.3 Two-Player Case

In the case where N = 2, there exists T ∈ R2
+ such that

z1
y1

>
ρ1(T)
π1(T)

,
z2
y2

>
ρ2(T)
π2(T)

if and only if z1z2 > y1y2. Therefore, by Propositions 4.1 and 4.2, 1 is
absorbing and globally accessible for any small degree of friction if and only
if 1 has the higher Nash product over 0. In the two-player case, this is
equivalent to that 1 risk-dominates 0.

4.4 Three-Player Case

When N ≥ 3, the complete characterizations given in Propositions 4.1 and
4.2 turn out to be rather complex. Here we consider three-player binary
games with a symmetry between players 2 and 3. We demonstrate that
even for this simple class of games, both Nash equilibria 1 and 0 may be
simultaneously globally accessible states when the friction is small.

Specifically, we consider the case where

(z1/y1, z2/y2, z3/y3) = (r, s, s). (4.4)

We can exploit the symmetry due to the following fact. Note here that if
Ti = Tj , then πi(T) = πj(T) and ρi(T) = ρj(T).

Lemma 4.3. Suppose that the stage game is given by (4.1). Then 1 is
globally accessible for any small degree of friction if and only if there exists
T such that for all i ∈ I,

zi
yi
>
ρi(T)
πi(T)

, (4.5)

and
zi
yi

≥ zj
yj

⇒ Ti ≤ Tj . (4.6)

Proof. It suffices to show that if there exists T that satisfies (4.5), then there
exists T′ that satisfies both (4.5) and (4.6).

Take T that satisfies (4.5) and define T′ by

T ′
i = min

j : zj/yj≤zi/yi

Tj

for each i. Note that T ′
i ≤ Ti for any i.

Here we fix any i. By definition, there exists j such that T ′
i = Tj and

zj/yj ≤ zi/yi. Take such a j. Note that T−j ≥ T′
−j and Tj = T ′

j . Since T
satisfies (4.5), πj is decreasing in T−j , and ρj is increasing in T−j , we have

zj
yj
>
ρj(T)
πj(T)

≥ ρj(T′)
πj(T′)

.
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On the other hand, πi(T′) = πj(T′) and ρi(T′) = ρj(T′) since T ′
i = T ′

j .
Therefore, it follows from zj/yj ≤ zi/yi that

zi
yi

≥ zj
yj
>
ρj(T′)
πj(T′)

=
ρi(T′)
πi(T′)

,

which completes the proof.

A direct computation utilizing Lemma 4.3 shows that 1 is globally ac-
cessible for a small friction if and only if

r < s and r >
2

(s− 1)
√

9s2 − 12s+ 12 + 3s2 − 5s+ 4
or

r ≥ s and r >
2
s
− 1.

(4.7)

The condition for the global accessibility of 0 is given by replacing r and s
with 1/r and 1/s.

In the game given by (4.4), 1 has the higher Nash product over 0 if
rs2 > 1. A direct comparison between r > 1/s2 and the above expressions
gives the following sufficient condition in terms of Nash product.

Proposition 4.4. In the three-player unanimity game given by (4.4), the
Nash equilibrium with a higher Nash product is globally accessible for any
small degree of friction.

Equivalently, if an equilibrium is absorbing for any degree of friction,
then its Nash product is no lower than that of the other equilibrium (recall
that, for unanimity games, one equilibrium is absorbing if and only if the
other is not globally accessible).

The converse of Proposition 4.4 is not true, as the following example
shows (the result of which has been reported without proof in OTH 2008).

Example 4.1. Let y1 = 6 + c > 0, y2 = y3 = 1, and z1 = z2 = z3 = 2,
where c > −6 (see Figure 1). This game is a modified version of an example
in Morris and Ui (2005, Example 1).3 Substituting r = 2/(6 + c) and s = 2
into (4.7) shows that 1 is globally accessible for a small friction if and only if
c < 2

√
6, while substituting r = (6 + c)/2 and s = 1/2 into (4.7) shows that

0 is globally accessible for a small friction if and only if c > 0. Therefore,
if 0 < c < 2

√
6, the game has two globally accessible states simultaneously

when the friction is small. Note that 1 (0, resp.) has a higher Nash product
if c < 2 (c > 2, resp.).

3One can verify that 0 is not an MP-maximizer for any c, while 1 is an MP-maximizer
if and only if c < −2.
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0

1

0 1

0

6 + c, 1, 1 0, 0, 0

0, 0, 0 0, 0, 0

0

1

0 1

1

0, 0, 0 0, 0, 0

0, 0, 0 2, 2, 2

Figure 1: Unanimity game with multiple globally accessible states

5 Binary Games with Invariant Diagonal

This section considers N -player binary supermodular games with invariant
diagonal. A binary game is said to have an invariant diagonal if the incentive
functions satisfy

d1(ξ, . . . , ξ) = · · · = dN (ξ, . . . , ξ) (5.1)

for all ξ ∈ [0, 1]. This class of games includes games with “equistable bi-
forms” introduced in Selten (1995). We maintain the assumption that di is
nondecreasing in each pj (j 6= i) so that the game is supermodular.

Denote by D(ξ) the restriction of any di to the diagonal ξ = p1 = · · · =
pN . Observe that D(ξ) is nondecreasing in ξ. This game has a potential
function along the diagonal, which is defined by

v(ξ) =
∫ ξ

0
D(ξ′) dξ′. (5.2)

Games with an invariant diagonal may not have a potential function de-
fined on the whole state space, so that the result of Hofbauer and Sorger
(2002) does not apply. Furthermore, they may not have a monotone poten-
tial function as considered in OTH (2008), one of the most general concepts
of potential; see Example 5.1 below. The following result demonstrates that
the supermodularity allows us to obtain equilibrium selection in the absence
of a global potential function; a potential function defined on the diagonal
suffices in supermodular games.

Proposition 5.1. Suppose that the stage game is a binary supermodular
game with an invariant diagonal. Let v be the potential function along the
diagonal given by (5.2). If v(1) > v(0), then

(a) there exists θ̄ > 0 such that 1 is globally accessible for all θ ∈ (0, θ̄);
(b) 1 is absorbing for all θ > 0.
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Proof. (a) Along the linear path φ from 0 to 1, which is given by φi(t) =
1 − e−t for all i ∈ I,

∆V 0
i (φ)(0) =

∫ ∞

0
e−sD(1 − e−s) ds =

∫ 1

0
D(ξ) dξ = v(1).

Hence, if v(1) > v(0) = 0, then ∆V 0
i (φ)(0) > 0, implying that 1 is globally

accessible for any small θ > 0 by Proposition 3.1.
(b) If v(1) > v(0) = 0, then there exists ξ0 < 1 such that v(ξ0) > 0.

Take such a ξ0 and any perfect foresight path φ with φi(0) ≥ ξ0 for all i ∈ I.
Note that φi(t) ≥ ξ0e−t. Then,

∆V θ
i (φ)(0) = (1 + θ)

∫ ∞

0
e−(1+θ)sdi((φi(s))i∈I) ds

≥ (1 + θ)
∫ ∞

0
e−(1+θ)sD(ξ0e−s) ds

≥
∫ ∞

0
e−sD(ξ0e−s) ds

=
1
ξ0

∫ ξ0

0
D(ξ) dξ =

v(ξ0)
ξ0

> 0,

where the first inequality follows from the monotonicity of di, and the sec-
ond inequality follows from the stochastic dominance relation between the
distributions on [0,∞) with the density functions (1 + θ)e−(1+θ)s and e−s.
Hence, we have φi(t) = 1 − (1 − φi(0))e−t for all t ≥ 0, and therefore, φ
converges to 1, implying that 1 is absorbing (independently of θ > 0).

Similarly, if v(0) > v(1), then 0 is globally accessible for any small θ > 0
and absorbing for any θ > 0. Therefore, for generic binary supermodular
games with invariant diagonal, either 0 or 1 is a unique absorbing and
globally accessible state for any small degree of friction (even though there
may be other strict equilibria).

Remark 5.1. A state x∗ ∈
∏

i ∆(Ai) is linearly stable if for any x ∈
∏

i ∆(Ai),
the linear path from x to x∗ is a perfect foresight path. One can verify that
for binary supermodular games with invariant diagonal, if v(1) > v(0), then
1 is linearly stable for any small degree of friction θ > 0.

Remark 5.2. The result here does not follow from Remark 1A in Matsui
and Matsuyama (1995), since we work with a multi-population setting with
the state space [0, 1]N and allow for asymmetric paths out of the diagonal
of [0, 1]N , which in principle must be taken into account for stability con-
siderations. It is thanks to the diagonal invariance (5.1) that it suffices to
consider only symmetric paths in (5.2).

Remark 5.3. The above result extends to the class of games with “monotone
diagonal”. Let Di(ξ) = di(ξ, . . . , ξ) and vi(ξ) =

∫ ξ
0 Di(ξ′) dξ′. It can be
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shown precisely in the same way as in Proposition 5.1 that if vi(1) > vi(0)
for all i ∈ I, then 1 is globally accessible for any small θ > 0 and absorbing
for any θ > 0.

Example 5.1. Consider the following three player game (see Figure 2). If
all three players match their actions, then their payoffs are given by ui(0) =
a > 0 and ui(1) = d > 0. For other action profiles, if i matches i + 1 with
action 0, then i’s payoff is b > 0; if i matches i + 1 with action 1, then i’s
payoff is c > 0; otherwise, all players receive payoff 0. Suppose here that
a > b and d > c. Note that this game is supermodular and has an invariant
diagonal.4 Proposition 5.1 implies that if 2a+b > c+2d, then 0 is absorbing
and globally accessible for a small friction, while if 2a+ b < c+ 2d, then 1
is absorbing and globally accessible for a small friction.

The selection criterion based on MP-maximization, on the other hand,
yields a limited prediction: One can verify that 0 is an MP-maximizer if and
only if a > c+ d, while 1 is an MP-maximizer if and only if a+ b < d. For
this game, the notion of u-dominance introduced by Kojima (2006) gives
the same condition: 0 is u-dominant if and only if a > c + d, while 1 is
u-dominant if and only if a+ b < d.5

Spatial dominance due to Hofbauer (1999) selects a different equilibrium
for this game, namely, the equilibrium with the larger best response region
on the diagonal, i.e., 0 is spatially dominant if and only if a + b > c + d,
while 1 is spatially dominant if and only if a+ b < c+ d.

0

1

0 1

0

a, a, a 0, 0, b

0, b, 0 c, 0, 0

0

1

0 1

1

b, 0, 0 0, c, 0

0, 0, c d, d, d

Figure 2: Game with invariant diagonal

4This game is not a (weighted) potential game, since it has a better reply cycle.
5In general, MP-maximization and u-dominance give different conditions.
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Appendix

A.1 Supermodularity and Monotonicity

For p, q ∈ [0, 1]N , write p ≤ q if pi ≤ qi for all i = 1, . . . , N . Due to the
supermodularity assumption on the stage game, di(p) ≤ di(q) if p ≤ q,
the perfect foresight dynamics has several nice monotonicity properties as
demonstrated in OTH (2008), some of which will be used in the subsequent
proofs.

For φ, ψ ∈ Φ, define φ - ψ by φ(t) ≤ ψ(t) for all t ≥ 0. The monotonicity
of di is immediately inherited by ∆V θ

i . That is, it holds that if φ - ψ, then
∆V θ

i (φ)(t) ≤ ∆V θ
i (ψ)(t) for all i ∈ I and all t ≥ 0.

We say that a feasible path φ is a superpath if

∆V θ
i (φ)(t) > 0 ⇒ φ̇i(t) = 1 − φi(t)

for all i ∈ I and almost all t ≥ 0; a feasible path ψ is a subpath if

∆V θ
i (φ)(t) < 0 ⇒ φ̇i(t) = −φi(t)

for all i ∈ I and almost all t ≥ 0 Note that φ is a perfect foresight path if
and only if it is both a superpath and a subpath. We have the following.

Lemma A.1 (OTH 2008, Lemma 3.3). Let p, q ∈ [0, 1]N be such that q ≤ p.
(a) If there exists a superpath φ with φ(0) = p, then there exists a perfect

foresight path ψ∗ with ψ∗(0) = q such that ψ∗ - φ.
(b) If there exists a subpath ψ with ψ(0) = q, then there exists a perfect

foresight path φ∗ with φ∗(0) = p such that ψ - φ∗.

We will need the following lemma.

Lemma A.2. For all i ∈ I and all t ≥ 0,
(a) for any T ∈ RN

+ , ∆V θ
i (φu

T)(t) is decreasing in θ ≥ 0,
(b) for any T ∈ R̄N

+ with S = {i ∈ I |Ti 6= ∞}, ∆V θ
i (ψd

T)(t) is nonde-
creasing in θ ≥ 0, and is increasing in θ ≥ 0 if di(1) > di(0S).

This lemma is a consequence of the stochastic dominance relation among
distributions on [t,∞) induced by discount rates: the distribution on [t,∞)
with density function (1 + θ)e−(1+θ)(s−t) strictly stochastically dominates
the one with density function (1 + θ′)e−(1+θ′)(s−t) for 0 ≤ θ < θ′. The
statements follow from the facts that di((φu

T)(s)) is nondecreasing in s ≥ 0
and increasing in s ≥ maxj∈I Tj , and that di((ψd

T)(s)) is nonincreasing in
s ≥ 0, and decreasing in s ≥ maxj∈S Tj if di(1) > di(0S).

13



A.2 Proofs of Propositions 3.1 and 3.2

We first prove the global accessibility results. Lemma A.3 gives a necessary
and sufficient condition for the state 1 to be globally accessible for a given
degree of friction, from which Proposition 3.1 follows.

Lemma A.3. Let θ > 0 be given. The strict Nash equilibrium 1 is globally
accessible for θ if and only if there exists T = (Ti)i∈I ∈ RN

+ such that for all
i ∈ I,

∆V θ
i (φu

T)(Ti) ≥ 0.

Proof. “If” part: Suppose that there exists T = (Ti)i∈I such that for all i,

∆V θ
i (φu

T)(Ti) ≥ 0.

Since ∆V θ
i (φu

T)(t) is increasing in t, ∆V θ
i (φu

T)(t) ≥ 0 holds for all i ∈ I and
all t ≥ Ti. By the definition of φu

T, this implies that φu
T is a subpath. It

follows from Lemma A.1 that for any x ∈
∏

i ∆(Ai), there exists a perfect
foresight path φ∗ from x such that φu

T - φ∗. Since φu
T converges to 1, φ∗

also converges to 1. Therefore, 1 is globally accessible.
“Only if” part: Suppose that 1 is globally accessible, so that there exists

a perfect foresight path φ such that φ(0) = 0 and limt→∞ φ(t) = 1. Take
such a perfect foresight path φ and let

Ti = inf{t ≥ 0 | φ̇i(t) > −φi(t)}

for each i ∈ I. Note that Ti <∞ for all i ∈ I.
For T = (Ti)i∈I defined above, define φu

T as in (3.1). Since φ - φu
T, we

have
∆V θ

i (φu
T)(Ti) ≥ ∆V θ

i (φ)(Ti) ≥ 0

due to the supermodularity.

Proof of Proposition 3.1. “If” part: Take a T = (Ti)i∈I ∈ RN
+ such that

∆V 0
i (φu

T)(Ti) > 0

for all i ∈ I. Since ∆V θ
i (φu

T)(Ti) is continuous in θ, there exists θ̄ > 0 such
that for all θ ∈ (0, θ̄),

∆V θ
i (φu

T)(Ti) > 0

for all i ∈ I, implying that 1 is globally accessible for all θ ∈ (0, θ̄) by
Lemma A.3.

“Only if” part: Suppose that 1 is globally accessible for a small θ > 0.
Then, by Lemma A.3 there exists T such that

∆V θ
i (φu

T)(Ti) ≥ 0
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for all i ∈ I. Since ∆V θ
i (φu

T)(Ti) is decreasing in θ by Lemma A.2, it follows
that

∆V 0
i (φu

T)(Ti) > ∆V θ
i (φu

T)(Ti) ≥ 0

for all i ∈ I.

Next we prove the absorption results. The following lemma is a special
case of Proposition 3 in Takahashi (2008).

Lemma A.4. Let θ > 0 be given. The state 1 is absorbing for θ if and only
if for any T = (Ti)i∈I ∈ R̄N

+ such that S = {i ∈ I |Ti 6= ∞} is nonempty,
there exists i ∈ S such that

∆V θ
i (ψd

T)(Ti) > 0.

Lemma A.5 gives a necessary and sufficient condition for the state 1
to be absorbing for a given degree of friction, from which Proposition 3.2
follows.

Lemma A.5. Let θ > 0 be given. The strict Nash equilibrium 1 is absorbing
for θ if and only if for any T = (Ti)i∈I ∈ R̄N

+ such that S = {i ∈ I |Ti 6= ∞}
is nonempty and 0S is a Nash equilibrium with di(0S) < 0 for all i ∈ S,
there exists i ∈ S such that

∆V θ
i (ψd

T)(Ti) > 0.

Proof. In light of Lemma A.4, it suffices to show that for any T such that
S = {i ∈ I |Ti 6= ∞} is nonempty and 0S is not a Nash equilibrium with
di(0S) < 0 for all i ∈ S, there exists i ∈ S such that ∆V θ

i (ψd
T)(Ti) > 0.

Suppose not, and choose T and S such that S is maximal among all the
subsets that violate the condition. Thus ∆V θ

i (ψd
T)(Ti) ≤ 0 for all i ∈ S.

We first claim that di(0S) < 0 for all i ∈ S. Indeed, for any i ∈ S, by
supermodularity we have di(0S) ≤ ∆V θ

i (ψd
T)(Ti) ≤ 0, and since

di(ψd
T(t)) =

∑
S′⊂S\{i}

∏
j /∈S′∪{i}

(ψd
T)j(t)

∏
j∈S′

(
1 − (ψd

T)j(t)
)
di(0S′)

and 0∅ (= 1) is a strict Nash equilibrium so that di(0∅) > 0, it must be that
di(0S′) < 0 for some S′ ⊂ S, implying that di(0S) < 0 by supermodularity.
Therefore, there must exist j /∈ S such that dj(0S) < 0 (so that 0S is not a
Nash equilibrium). Choose such a j.

Define T′ = (T ′
1, . . . , T

′
N ) by T ′

i = Ti for i 6= j and T ′
j as a sufficiently

large but finite number. Then ψd
T′ - ψd

T, so that

∆V θ
i (ψd

T′)(T ′
i ) ≤ ∆V θ

i (ψd
T)(Ti) ≤ 0
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for i ∈ S by the supermodularity. Moreover, since ∆V θ
j (ψd

T′)(T ′
j) converges

to dj(0S) < 0 as T ′
j → ∞, we have

∆V θ
j (ψd

T′)(T ′
j) < 0.

This contradicts the maximality of S.

Proposition 3.2 follows immediately from the following.

Lemma A.6. The following conditions are equivalent:
(a) 1 is absorbing for all θ > 0;
(b) there exists θ̄ such that 1 is absorbing for all θ ∈ (0, θ̄);
(c) for any T = (Ti)i∈I ∈ R̄N

+ such that S = {i ∈ I |Ti 6= ∞} is
nonempty and 0S is a Nash equilibrium with di(0S) < 0 for all i ∈ S,
there exists i ∈ S such that

∆V 0
i (ψd

T)(Ti) ≥ 0.

Proof. (a) ⇒ (b): Obvious.
(b) ⇒ (c): Suppose that there exists T = (Ti)i∈I ∈ R̄N

+ such that S =
{i ∈ I |Ti 6= ∞} is nonempty, 0S is a Nash equilibrium with di(0S) < 0 for all
i ∈ S, and ∆V 0

i (ψd
T)(Ti) < 0 for all i ∈ S. Fix such a T. Since ∆V θ

i (ψd
T)(Ti)

is continuous in θ, there exists θ̄ > 0 such that for all θ ∈ (0, θ̄),

∆V θ
i (ψd

T)(Ti) < 0

for all i ∈ S, implying that 1 is not absorbing for any θ ∈ (0, θ̄) by
Lemma A.5.

(c) ⇒ (a): Suppose (c). For each T = (Ti)i∈I ∈ R̄N
+ such that S = {i ∈

I |Ti 6= ∞} is nonempty and 0S is a Nash equilibrium, take i ∈ S as in (c).
By the monotonicity of di, we have di(1) ≥ di(0S). If di(1) = di(0S),

then for any θ > 0,
∆V θ

i (ψd
T)(Ti) = di(1) > 0

by the monotonicity of di. If di(1) > di(0S), then ∆V θ
i (ψd

T)(Ti) is increasing
in θ by Lemma A.2, so that for any θ > 0,

∆V θ
i (ψd

T)(Ti) > ∆V 0
i (ψd

T)(Ti) ≥ 0.

It follows that 1 is absorbing for all θ > 0 by Lemma A.5.
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