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This paper studies global stability of spatial configurations in a dynamic two-region

model with quadratic adjustment costs where rational migrants make migration

decisions so as to maximize their discounted future utilities. A global analysis is

conducted to show that, except for knife–edge cases with symmetric regions, there

exists a unique spatial configuration that is absorbing and globally accessible whenever

the degree of friction is sufficiently small, and such a configuration is characterized as

the unique maximizer of the potential function of the underlying static model.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

This paper addresses the issue of ‘history versus expectations’ in the context of ‘new economic geography’
(Krugman, 1991a). This literature, typically using a two-region general equilibrium framework with monopolistic
competition, demonstrates how the interplay of pecuniary externalities, market competition, and trade costs
determines the spatial distribution of mobile production factor. In particular, when trade costs are low enough,
agglomeration forces arising from scale economies dominate dispersion forces due to market competition effects,
giving rise to multiple equilibria, two ‘core-periphery’ (CP) equilibria with full agglomeration of mobile factor in each
region as well as an interior equilibrium. In studying locational adjustment dynamics, most models in the literature
abstract from the possibility of forward-looking behavior of migrants: instead, migrants are assumed to be myopic and base
their migration decisions on current utility differences, so that CP equilibria are all locally stable under the myopic
dynamics.1

In the present paper, we consider a class of adjustment dynamics with forward-looking migrants in a new economic
geography model with two regions based on Ottaviano (2001) but incorporating exogenous asymmetries in trade costs and
market size. Specifically, we employ the equilibrium dynamics due to Krugman (1991b) and Fukao and Benabou (1993)
(KFB dynamics, in short), where migration requires moving costs which depend on the size of the current flow of migrants,
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so that migrants care about the future migration behavior of the economy. An equilibrium path of this dynamics is
characterized by a no-arbitrage condition, that migrants are indifferent between staying in the current region and paying
the cost to move to the other. The dynamics has stationary states, which correspond to the equilibria of the underlying
static model.

Our main goal is to identify a state that is absorbing (i.e., if the initial condition is in a neighborhood of this state, then
any equilibrium path converges to it) and globally accessible (i.e., for any initial condition, there exists an equilibrium path
that converges to this state) for small frictions (i.e., when the migration cost is small and/or the rate of time discounting is
small). We show that such a state generically exists (which is unique by definition) and is characterized as a unique

maximizer of a potential function (Monderer and Shapley, 1996; Sandholm, 2001) of the static model. Even if all the agents
are initially located in one region, there exists a set of self-fulfilling expectations that leads the economy toward full
agglomeration in the other region, provided that the latter configuration is the potential maximizer, whenever the degree
of friction is small, and once alarge fraction of agents have been located there, no self-fulfilling expectation can reverse this
outcome. This may be seen as an equilibrium selection result which discriminates a unique equilibrium from others based
on its distinctive stability properties under the KFB dynamics.

This result is to be contrasted with that by Ottaviano (2001), who, as many others in the literature, considers the case
with completely symmetric regions. He shows that, when agglomeration economies are strong, both CP equilibria are
absorbing under the KFB dynamics for any (positive) degree of friction (indeed they both are maximizers of the potential
function by symmetry).2It should be noted that one of the aims of early studies in the literature has been to explore when
the symmetric spatial configuration over exogenously identical regions becomes unstable while an asymmetric one
endogenously emerges as a (locally) stable long run outcome (see e.g., Fujita et al., 1999), and that under myopic dynamics,
the local stability properties are in fact not altered by introduction of small exogenous asymmetries. By contrast, our
equilibrium selection result demonstrates that when one incorporates forward-looking expectations, the case of perfect
symmetry should be considered as a knife-edge case, and insights obtained may not be robust to exogenous asymmetries
between regions.

The proof strategy for our result follows that of Hofbauer and Sorger (1999), who study stability under a different class
of perfect foresight dynamics due to Matsuyama (1991) and Matsui and Matsuyama (1995) (MM dynamics, in short)3 in
potential games. First, we show that optimal solutions to an associated optimal control problem, whose objective
functional is, roughly, a ‘dynamical extension’ of the potential function of the static model, are equilibrium paths of our
dynamics and that those solutions, regardless of the initial condition, must visit small neighborhoods of the unique
maximizer of the potential function for sufficiently small degrees of friction. Together with the absorption property below,
this proves the global accessibility of the potential maximizer. Second, we show that the maximized Hamiltonian of the
above optimal control problem serves as a Lyapunov function for equilibrium trajectories, from which the absorption of the
potential maximizer follows.

In comparison with the MM dynamics, the KFB dynamics involves extra technical complications due to the assumption
that agents are assumed to be able to migrate at any point in time (with the migration costs). This assumption implies that
feasible paths of the aggregate spatial configuration may hit the boundary of the state space (the one-dimensional simplex)
in finite time, which can make binding the constraint that the state variable must be contained in the simplex. This fact
considerably complicates the formal definition of equilibrium paths of the dynamics: we have to carefully incorporate
transition between the phases, one in which the constraint does not bind and the other in which it does.4 When considering
the associated optimal control problem in our proofs, moreover, we need to rely on non-standard techniques for
problems with state-variable inequality constraints (Hartl et al., 1995). Accordingly, the KFB dynamics requires a
mathematically subtle treatment compared to the MM dynamics, while, as the results by Hofbauer and Sorger (1999) and
the present paper show, these classes of dynamics share the same stability property when the underlying model admits
a potential.

The rest of the paper is organized as follows. Section 2 presents our static model. Section 3 formally defines
our equilibrium dynamics. Section 4 states our main theorems, while their proofs are given in Section 5. Section 6
concludes.

2. Static model

In this section, we present our static model which will be embedded in the dynamic context in Section 3. Section 2.1
introduces a non-atomic game with binary actions as a canonical framework and defines its potential function, while
Section 2.2 outlines how a two-region general equilibrium model à la Krugman (1991a) reduces to such a non-atomic
game.
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(2002), Oyama (2002), and Oyama et al. (2008) for studies in random-matching game frameworks.
4 This is the source of the error in Krugman (1991b) pointed out by Fukao and Benabou (1993).
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2.1. Canonical framework

The economy consists of two regions, 0 and 1. There are a continuum of entrepreneurs with mass one, who are mobile
between the regions. We denote by x 2 ½0;1� the fraction of entrepreneurs who are located (to establish manufacturing
firms) in region 1. State i 2 f0;1g � ½0;1� thus corresponds to the CP state where all entrepreneurs are located in region i. For
i 2 f0;1g, we will write �i 2 f0;1gnfig. The (indirect) utility for an entrepreneur located in region i which depends on a given
state x 2 ½0;1� is denoted by f iðxÞ. We assume that the function f i : ½0;1� ! R is Lipschitz continuous. Let f : ½0;1� ! R be
defined by

f ðxÞ ¼ f 1ðxÞ � f 0ðxÞ.

Location choice exhibits strategic complementarity (substitutability, resp.) if the function f is increasing (decreasing, resp.).
The pair of functions ðf 0; f 1Þ in fact defines a non-atomic game in which a continuum of players choose between two

actions, 0 and 1, and the payoffs are determined solely by the fraction x of players choosing action 1 as well as one’s own
choice. Note that any two games ðf 0; f 1Þ and ðf 00; f 01Þ are equivalent if they share the same payoff difference function f ,
i.e., f 1ðxÞ � f 0ðxÞ ¼ f 01ðxÞ � f 00ðxÞ for all x 2 ½0;1�. A state x� 2 ½0;1� is an equilibrium state if x�40) f ðx�ÞX0 and
x�o1) f ðx�Þp0; and x� is a strict equilibrium state if x�40) f ðx�Þ40 and x�o1) f ðx�Þo0. The existence of an
equilibrium state immediately follows from the continuity of the function f . We further impose the following regularity
assumption.

Assumption 2.1. There are finitely many equilibrium states.

A sufficient assumption for this is that f be a real analytic function that is not identically zero.
We will invoke the concept of potential from game theory (Monderer and Shapley, 1996; Sandholm, 2001).

Definition 2.1. F : ½0;1� ! R is a potential function of f if

dF

dx
ðxÞ ¼ f ðxÞ

for all x 2 ½0;1�.

Note that such a function F is unique up to constant. Note also that if x� is a global maximizer of F over ½0;1�
(i.e., Fðx�ÞXFðxÞ for all x 2 ½0;1�), then x� is an equilibrium state (but not vice versa in general). We will be interested in the
generic case where F has a unique maximizer over ½0;1� (i.e., a x� such that Fðx�Þ4FðxÞ for all x 2 ½0;1�nfx�g).

While we proceed in the context of economic geography, the above abstract framework is more general and
captures many other economic scenarios such as sectoral adjustment as in Krugman (1991b) and Matsuyama (1991). The
reader most interested in the dynamic analysis independent of the context may skip the next subsection and go directly to
Section 3.

2.2. Analytically solvable CP model

We briefly review how the (indirect) utility difference f ðxÞ is derived from a general equilibrium model of trade and
migration. We employ the model by Ottaviano (2001), often referred to as the ‘footloose entrepreneur’ model, but with
asymmetries in trade cost and market size (see also Forslid and Ottaviano, 2003; Baldwin et al., 2003, Chapter 4). This is an
analytically solvable version of the original CP model of Krugman (1991a).

In addition to entrepreneurs, there are mass L of unskilled workers, who are immobile inter-regionally. Denote by Li the
exogenously given mass of workers in region i ¼ 0;1, so that L ¼ L0 þ L1. There are two consumption goods, a modern good
and a traditional good, where the traditional good is chosen to be the numeraire. All individuals share the same preference
given by the Cobb–Douglas utility function

UðMi;AiÞ ¼ a log Mi þ ð1� aÞ log Ai; 0oao1,

with

Mi ¼

Z ni

0
diiðzÞ

ðs�1Þ=s dzþ

Z nj

0
djiðzÞ

ðs�1Þ=s dz

� �s=ðs�1Þ

; s41,

where Mi and Ai are the consumption (in region i) of the CES composite of modern varieties and the consumption of the
traditional good, respectively, dkiðzÞ is the consumption (in region i) of a variety z that is produced in k, and nk is the mass of
varieties produced in k.

The modern good is produced in a monopolistically competitive sector. Production of a variety of the modern good
involves a fixed input of one entrepreneur and a marginal input of b units of labor, and thus the total cost of production of
mi units is given by ri þwLbmi, where ri and wL

i are the wages for an entrepreneur and a worker, respectively. This implies
that an entrepreneur and a manufacturing firm correspond one to one with each other, so that n0 ¼ 1� x and n1 ¼ x in the
market equilibrium. Firms in the traditional sector produce the traditional good under perfect competition and constant
returns to scale, involving a marginal input of one unit of labor. The traditional good is freely traded between the regions,
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so that the nominal labor wage is equalized in the two regions.5 Consequently, we have wL
i ¼ 1 in equilibrium due to our

choice of numeraire.
Trade in the modern good, on the contrary, is costly due to trade barriers which are modeled by iceberg costs: for one

unit of the modern good produced in j to reach i, tji41 units must be shipped.6 Letri ¼ t1�s
ji 2 ð0;1Þ, which we call the trade

openness of region i. It increases as trade cost tji decreases.
For a given x 2 ½0;1�, the key variables in the market equilibrium with free entry and exit are determined as follows; for

their derivation, see the references cited above. In the following, we denote

x0 ¼ 1� x; x1 ¼ x.

The domestic and the foreign prices of any variety produced in region i are, respectively,

pii ¼
sb

s� 1
; pij ¼

tijsb
s� 1

,

and thus the CES price index in i is

Pi ¼
sb

s� 1
ðxi þ rixjÞ

�1=ðs�1Þ.

The reward to an entrepreneur located in i is given by

ri ¼
ða=sÞL

1� ða=sÞ
rjxi þ cixj

D
,

where D ¼ ðx0 þ r0x1Þðx1 þ r1x0Þ � ða=sÞð1� r0r1Þx0x1 and

ci ¼
Li

L
1þ

L� Li

Li
r0r1 � ð1� r0r1Þ

a
s

� �
.

Since the indirect utility for an entrepreneur in i is

f iðxÞ ¼ a log a ri

Pi

� �
þ ð1� aÞ logðð1� aÞriÞ,

the utility difference function f is given by

f ðxÞ ¼ log
r0x1 þc1x0

r1x0 þc0x1

� �
þ

a
s� 1

log
x1 þ r1x0

x0 þ r0x1

� �
(2.1)

(compare to Eq. (13) in Ottaviano, 2001, p. 58). Observe that, considered as a function defined on an open interval
containing [0, 1], this function f is real analytic (and not identically zero), so that Assumption (2.1) is satisfied.

Finally, we obtain the potential function F as follows7:

FðxÞ ¼
X
i¼0;1

1

rj �ci

fðrj �ciÞxi þ cig logððrj � ciÞxi þ ciÞ þ
a

s� 1

1

1� ri

fð1� riÞxi þ rig logðð1� riÞxi þ riÞ

" #
. (2.2)

We note that this function coincides (up to constant) with the function F defined in Ottaviano (2001, p. 65) in the
degenerate case where the two regions are completely symmetric, i.e., r1 ¼ r2 ¼ r and L1 ¼ L2 ¼ L=2 (and thus
c1 ¼ c2 ¼ c). The graph of the potential function for this degenerate case is depicted for three ranges of trade openness in
Figs. 2(a), 3(a), and 4(a) in Ottaviano (2001, pp. 67–69).

One can show that if r0 and r1 are sufficiently close to one,8 then f is increasing so that F is convex, while if they are
sufficiently close to zero (with an assumption that aos� 1), then f is decreasing so that F is concave and single-peaked in
ð0;1Þ (the interior of [0, 1]). In the former (latter, resp.) case, location choice of firms exhibits strategic complementarity
(substitutability, resp.). Intuition behind this is well discussed in the literature: with high trade barriers, competition is
fierce since firms sell largely in their domestic market, which discourages spatial clustering of firms. With lowered trade
barriers, in contrast, this market competition effect is relaxed and the effect of scale economies becomes dominant,
fostering agglomeration.

In the former case, F is maximized at either x ¼ 0 or x ¼ 1. One can verify that FðiÞ4FðjÞ holds if riorj when Li ¼ Lj or if
Li4Lj when ri ¼ rj. That is, the potential maximizer is the CPstate with full agglomeration in the region that is relatively
protected or has a larger market size. Located in such a region, firms can have better access (in terms of trade costs) to the
markets than otherwise.

ARTICLE IN PRESS

5 Wage equalization holds as long as the freely tradable, traditional good is produced in both regions. The condition for this, which is called the ‘non-

full-specialization’ condition (Baldwin et al., 2003, Section 4.2.2), is maxfL0=L; L1=Lgoð1� aÞ½1� ða=sÞ� in our environment, and it is assumed to hold.
6 This is the element that distinguishes the two alternatives 0 and 1 in the reduced non-atomic game ðf 0 ; f 1Þ obtained below, in the sense that if

t01 ¼ t10 ¼ 1, then f 0ðxÞ ¼ f 1ðxÞ for all x 2 ½0;1�.
7 With only two locations, a potential function trivially exists. See Oyama (2006) for potentials in a new economic geography model with (finitely)

many locations.
8 A sufficient (but not necessary) condition is that ðr0r1Þ

1=24ðs� aÞ=ðsþ aÞ.
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3. Equilibrium dynamics

Given a pair of utility functions ðf 0; f 1Þ as described in the previous section, we consider in this section the dynamics
due to Krugman (1991b) and Fukao and Benabou (1993). Entrepreneurs can move between regions at any time instant with
moving costs, which depend on the size of the flow of moving entrepreneurs in the economy. Specifically, for a given path
x : ½0;1Þ ! ½0;1�, the moving cost is given by j_xðtÞj=g, where g40. The (common) rate of time preference is denoted by y40.

We need to impose a regularity condition on paths xð�Þ. We say that a path x : ½0;1Þ ! ½0;1� is feasible if it is continuous
and piecewise continuously differentiable. We choose _xð�Þ to be right-continuous: i.e., we define _xðtÞ for t at which xð�Þ is not
differentiable by _xðtÞ ¼ lims#t _xðsÞ.

An interval ðt1; t2Þ � ½0;1Þ with t1ot2 is called an interior interval of xð�Þ if xðtÞ 2 ð0;1Þ for all t 2 ðt1; t2Þ.
9 An interval

½t1; t2� � ½0;1Þ with t1ot2 is called a boundary interval if xðtÞ 2 f0;1g (and hence _xðtÞ ¼ 0) for all t 2 ½t1; t2�. A time instant
t1 is called an entry time if an interior interval ends and a boundary interval starts at t1; and t2 is called an exit time if a
boundary interval ends at t2. If the trajectory is in the interior just before and just after t, then t is called a contact time.
Entry, exit, and contact times are called junction times.

We would now like to define equilibrium paths. To motivate our definition below, let a feasible path xð�Þ be given. For
each t 2 ½0;1Þ and for Dt40, a migration strategy on ½t; t þ Dt� of an agent who is currently located in region i 2 f0;1g is
characterized by a set of switching times ft1; t2; . . . ; tng � ½t; t þ Dt�, tpt1o � � �otnpt þDt: at each time tkðk ¼ 1; . . . ;nÞ, the
agent moves from ik�1 to ik, where ik ¼ �ik�1 with i0 ¼ i. The value of locating in region i, Vi, then satisfies

ViðtÞ ¼ sup
ft1 ;...;tng�½t;tþDt�

Z t1

t
e�yðs�tÞf iðxðsÞÞdsþ

Xn

k¼1

Z tkþ1

tk

e�yðs�tÞf ik
ðxðsÞÞds� e�yðtk�tÞ j_xðtkÞj

g

� �
þ e�yDtV in ðt þ DtÞ

( )
, (3.1)

where tnþ1 ¼ t þ Dt. Equilibrium behavior on interior intervals is characterized by a non-arbitrage condition. That is, along
an equilibrium path xð�Þ, at any time in interior intervals, if _xðtÞX0 (_xðtÞp0, resp.), then agents must be indifferent between
staying at region 0 (1, resp.) and moving to 1 (0, resp.) by incurring the moving cost j_xðtÞj=g.10 On boundary intervals for the
boundary x ¼ i ði ¼ 0;1Þ, on the other hand, agents must weakly prefer to stay at region i, so that f iðiÞXf�iðiÞ must hold
(note that, since _xðtÞ ¼ 0 on boundary intervals, agents can move between the regions with no cost, so that the current
location is irrelevant, and hence V0ðtÞ ¼ V1ðtÞ). Thus, if the system is in the interior or at the boundary x ¼ i, then staying at
region i is at least weakly optimal, until the system hits the other boundary x ¼ �i.

Definition 3.1. A feasible path x : ½0;1Þ ! ½0;1� is an equilibrium path from x0 2 ½0;1� if xð0Þ ¼ x0, and for each i ¼ 0;1 there
exists a function Vi : ½0;1Þ ! Rthat is right-continuous with left-hand limits and satisfies (3.1) and the following
conditions:

(a) for all t 2 ½0;1Þ,

_xðtÞp0) V0ðtÞ �
j_xðtÞj

g ¼ V1ðtÞ, (3.2)

_xðtÞX0) V1ðtÞ �
j_xðtÞj

g ¼ V0ðtÞ, (3.3)

(b-0) if ðt; TÞ is such that xðsÞo1 for all s 2 ðt; TÞ, then

V0ðtÞ ¼

Z T

t
e�yðs�tÞf 0ðxðsÞÞdsþ e�yðT�tÞV0ðT

�
Þ, (3.4)

and if ½t; T� is such that xðsÞ ¼ 1 for all s 2 ½t; T�, then

V0ðtÞ ¼
1

y
ð1� e�yðT�tÞÞ f 1ð1Þ þ e�yðT�tÞV0ðT

�
Þ, (3.5)

(b-1) if ðt; TÞ is such that xðsÞ40 for all s 2 ðt; TÞ, then

V1ðtÞ ¼

Z T

t
e�yðs�tÞf 1ðxðsÞÞdsþ e�yðT�tÞV1ðT

�
Þ, (3.6)

and if ½t; T� is such that xðsÞ ¼ 0 for all s 2 ½t; T�, then

V1ðtÞ ¼
1

y
ð1� e�yðT�tÞÞ f 0ð0Þ þ e�yðT�tÞV1ðT

�
Þ. (3.7)

The existence of equilibrium paths will be shown later (in Corollary 5.3).
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9 If ð0; t2Þ is an interior interval, we say that ½0; t2Þ is an interior interval even when xð0Þ 2 f0;1g.
10 To see this, consider for example the case where _xðtÞX0, so that agents at least weakly prefer to move to region 1. Since agents have the option to

move at any time instant, if the preference were strict, then all the agents would move simultaneously, which in turn makes the moving cost infinity.

Clearly, this cannot be supported by an equilibrium.
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While it follows from the definition that Vi is continuous at junction times for x ¼ i as well as on interior and boundary
intervals, it is not assumed to be continuous at junction times for x ¼ �i; yet, it turns out that it is in fact the case. The
following proposition characterizes equilibrium paths in terms of the ‘shadow price’ that represents the difference in value
between locating in region 1 rather than in region 0:

qðtÞ ¼ V1ðtÞ � V0ðtÞ.

It shows, in particular, that qð�Þ is continuous at any junction time. This is precisely the point made by Fukao and
Benabou (1993).

Proposition 3.1. A feasible path x : ½0;1Þ ! ½0;1� is an equilibrium path from x0 if and only if xð0Þ ¼ x0, and there exists a

function q : ½0;1Þ ! R that is continuous and piecewise differentiable and satisfies the following conditions:

(i) for any time t in an interior interval,

_xðtÞ ¼ gqðtÞ, (3.8a)

_qðtÞ ¼ yqðtÞ � f ðxðtÞÞ, (3.8b)

(ii) for any time t in a boundary interval and for any contact time t,

qðtÞ ¼ 0, (3.9)

and

xðtÞ ¼ 0) f ð0Þp0, (3.10a)

xðtÞ ¼ 1) f ð1ÞX0. (3.10b)

Furthermore, such a function qð�Þ is bounded.

Proof. See Appendix A.

Condition (i) says that on interior intervals, the law of motion of ðxðtÞ; qðtÞÞ is governed by the system of differential
equations (3.8), while (ii) implies that if the equilibrium path hits the boundary of ½0;1� at x ¼ i, then qðtÞ ¼ 0 (by (3.9)), and
x ¼ i must be an equilibrium state (by (3.10)).11 Nonetheless, qð�Þ must be continuous, while satisfying

qðtÞ ¼

Z t

t
e�ysf ðxðsÞÞds

if ðt; tÞ is an interior interval with t being an entry time or t ¼ 1, and

qðtÞ ¼ 0

if t is in a boundary interval.
Clearly, the behavior of the dynamics depends on the values of the parameters y and g. We note that it is fully captured

by the ratio between y and
ffiffiffigp . This is easily verified by applying the change of variables: x0ðsÞ ¼ xðs=

ffiffiffigp Þ and
q0ðsÞ ¼

ffiffiffigp qðs=
ffiffiffigp Þ. Then, the system (3.8) is written as

_x0ðsÞ ¼ q0ðsÞ, (3.11a)

_q0ðsÞ ¼
yffiffiffigp q0ðsÞ � f ðx0ðsÞÞ. (3.11b)

We thus view d ¼ y=
ffiffiffigp 40 as the degree of friction. It is smaller when the future is more important (i.e., y is smaller) and/or

migration is less costly so that the adjustment is faster (i.e., g is larger).
It is immediate to see that the stationary states of our dynamics are precisely the equilibrium states of the static model.

Observation 3.2. The feasible path xð�Þ such that xðtÞ ¼ x� for all tX0 is an equilibrium path if and only if x� is an

equilibrium state.

In general, there may exist multiple equilibrium states, and this is indeed the case when agglomeration forces are strong
so that the utility difference f is increasing. Our main objective is to discriminate among the equilibrium states based on
their stability properties under the equilibrium dynamics. We employ the following stability concepts, which formalize the
argument of ‘history versus expectations’.

Definition 3.2. (a) x� 2 ½0;1� is absorbing if there exists e40 such that any equilibrium path from any x 2 Beðx�Þ converges to x�.

ARTICLE IN PRESS

11 In particular, due to (3.10), for i 2 f0;1g the constant path xð�Þ such that xðtÞ ¼ i for all tX0 cannot be an equilibrium path if i is not an equilibrium

state.
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(b) x� 2 ½0;1� is accessible from x 2 ½0;1� if there exists an equilibrium path from x that converges to x�. x� is globally

accessible if x� is accessible from any x.

To give the intuition behind these concepts, let us consider a CP configuration x� ¼ i 2 f0;1g, the state in which all the
agents are located in region i. If x� is absorbing, then the following is true: if history sets the initial state to be one in which a
sufficiently large amount of agents are already located in i, then any form of self-fulfilling expectations cannot alter the
outcome and the agents located in the other region will eventually migrate to i. If x�is globally accessible, then the following
is true: whatever the initial state is, the expectation that all agents will eventually be settled in i may become self-fulfilling.

It is clear that if the degree of friction d ¼ y=
ffiffiffigp is large (i.e., the future is unimportant and/or the adjustment is slow),

then the dynamics becomes similar to myopic dynamics, so that any strict equilibrium state, if any, is absorbing. We are
interested in a (unique, by definition) state that is both absorbing and globally accessible whenever the degree of friction is
sufficiently small. In the sequel, we show that, except for knife-edge cases, such a state exists and coincides with a unique
maximizer of the potential function F.

4. Main results

In this section, we state and illustrate the main theorems of this paper. Their proofs are given in Section 5.

Theorem 4.1. Assume that x� is the unique maximizer of F over ½0;1�. Then, there exists d̄40 such that x� is globally accessible

whenever dpd̄.

Theorem 4.2. Assume that x� is the unique maximizer of F over [0, 1]. Then, x� is absorbing (independently of d).

In particular, the potential maximizer x� is a unique absorbing (and globally accessible) state whenever the friction d is
sufficiently small.

To illustrate our results, we consider in the rest of this section the most interesting case where strong agglomeration
economies are present so that the indirect utility difference function f is upward-sloping. In this case, there are two strict
equilibrium states, the CP configurations x ¼ 0 and 1, and one mixed equilibrium state. Since the potential function F

becomes convex, it is maximized at a vertex of [0, 1] (i.e., x ¼ 0 or x ¼ 1). Let us assume that Fð1Þ4Fð0Þ, so that x ¼ 1 is the
unique potential maximizer.

If the friction d is large enough, the behavior of the dynamics is qualitatively the same as that under myopia, so that
there is no room for expectations to play a role. For intermediate frictions or smaller, expectations become relevant.
Fig. 1(a) shows the phase portrait of ðxð�Þ; qð�ÞÞ for intermediate frictions. In this case, if the initial state xð0Þ lies within the
range ½x; x�,which Krugman (1991b) refers to as the ‘overlap’, then there are multiple equilibrium paths, some leading to
x ¼ 1 and others to x ¼ 0. If the overlap ½x; x� is strictly contained in [0, 1] (i.e., 0o x and xo1) as in Fig. 1(a), then from a
neighborhood of each strict equilibrium state x ¼ i ði ¼ 0;1Þ, there is a unique equilibrium path, which leads to x ¼ i; that is,
both states x ¼ 0 and 1 are absorbing.

Intuitively, as the friction becomes smaller, expectations become more likely to be decisive, thus making the overlap
wider. What Theorem 4.1 tells us is that the overlap must reach x ¼ 0, the endpoint of [0, 1] opposite to the potential
maximizer x ¼ 1, for small frictions, while Theorem 4.2 says that, however small the friction is, the overlap never contains
the potential maximizer x ¼ 1 and thus never fills the entire space [0, 1].12 The phase portrait for this situation is depicted
in Fig. 1(b), where the overlap is the interval ½0; x�. For any initial condition, there is an equilibrium trajectory that leads to
ðx; qÞ ¼ ð1;0Þ, which is the uppermost trajectory in the figure, while if the initial condition is set inðx;1�, then the
equilibrium trajectory is unique, and the system necessarily leads to ðx; qÞ ¼ ð1;0Þ.

We should mention the work by Ottaviano (2001), who studies the same dynamics in the case of completely symmetric

regions. In this case, since the utility difference function f is skew symmetric around x ¼ 1=2 (i.e., f ð1=2� zÞ ¼ �f ð1=2þ zÞ),
the potential function F is symmetric around x ¼ 1=2, so that we have Fð0Þ ¼ Fð1Þ, thereby violating our assumption that F

has a unique global maximizer. Ottaviano (2001) shows that for positive friction d, the overlap is strictly contained in the
space [0, 1], and hence, in our terminology, both stationary states x ¼ 0 and x ¼ 1 are absorbing; and that for d ¼ 0, the
overlap precisely coincides with the whole space [0, 1], so that both stationary states are globally accessible.13 Our
theorems, in contrast, show that, once the regions are asymmetric so that Fð0ÞaFð1Þ, there is only one state that becomes
absorbing as well as globally accessible for small d, demonstrating in fact that the results for the knife-edge case of
symmetric regions are not robust to exogenous asymmetries between the regions.14;15
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12 This is true also for d ¼ 0, in which case x is given by FðxÞ ¼ Fð0Þ.
13 For the case where f is linear in addition to being skew symmetric around x ¼ 1=2, Fukao and Benabou (1993) explicitly computes the width of the

overlap, which is strictly smaller than one for positive d and converges to one as d goes to zero.
14 This point seems not to have been recognized in the literature. For instance, Baldwin (2001, p. 46), who considers the CP model with symmetric

locations, states that ‘the region of overlapping saddle paths will never include a CP outcome’. This statement also appears in the textbook of Baldwin

et al. (2003, p. 60).
15 This has to be contrasted with stability under myopic dynamics, where local maximizers of a potential function are all locally stable, so that

introduction of small asymmetries does not alter the local stability.
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5. Proofs

We prove Theorems 4.1 and 4.2 in Sections 5.1 and 5.2, respectively. The proof strategy follows that of Hofbauer and
Sorger (1999).

5.1. Global accessibility

The proof exploits the relationship between equilibrium paths of the dynamics in consideration and optimal solutions
to an associated optimal control problem.

The optimal control problem is defined as follows:

maximize Jðxð�Þ;uð�ÞÞ ¼

Z 1
0

e�yt FðxðtÞÞ �
uðtÞ2

2g

 !
dt, (5.1a)

subject to _xðtÞ ¼ uðtÞ, (5.1b)

xðtÞX0;1� xðtÞX0, (5.1c)

xð0Þ ¼ x0. (5.1d)

An admissible pair is a pair ðxð�Þ;uð�ÞÞ of an absolutely continuous function x : ½0;1Þ ! ½0;1� and a measurable function
u : ½0;1Þ ! R that satisfy the constraints (5.1b)–(5.1d). An admissible pair is called an optimal pair if it attains the
maximum value of J over all admissible pairs.

We show in Proposition 5.2 that a solution to this maximization problem is an equilibrium path of our dynamics. This
may be seen as a dynamic analog to the fact in the static model that a maximizer of the potential function F is an
equilibrium state. We then show in Lemma 5.4 that an optimal path must visit neighborhoods of the potential maximizer
when the degree of friction d ¼ y=

ffiffiffigp 40 is sufficiently small. Together with the absorption proved in Section 5.2, these
prove the global accessibility of the potential maximizer.
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Fig. 1. Phase portraits: (a) intermediate frictions. (b) small frictions.
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We first obtain the existence of optimal solution.

Proposition 5.1. An optimal pair to problem (5.1) exists for each x0 2 ½0;1�.

Proof. Follows from Baum (1976, Theorem 7.1). &

The following proposition establishes the relationship between the maximization problem and the equilibrium
dynamics.

Proposition 5.2. If ðxð�Þ;uð�ÞÞ is an optimal pair to problem (5.1a), then xð�Þ is an equilibrium path from x0.

Proof. See Appendix A.

We have the following as an immediate consequence of the above propositions.

Corollary 5.3. There exists an equilibrium path for each initial condition x0 2 ½0;1�.

Note that the converse of Proposition 5.2 is not true in general.
We here give a heuristic proof of Proposition 5.2 based on ‘Informal Theorem’ 4.1 in Hartl et al. (1995), while the formal

proof is given in Appendix A. Due to the (pure state variable) inequality constraints in (5.1c), which will be binding in
particular when F is convex, we need to rely on a non-standard technique for necessary conditions.16 The current value
Hamiltonian H and the Lagrangian L are defined respectively by

Hðx;u; qÞ ¼ FðxÞ �
u2

2g
þ qu (5.2)

and

Lðx;u; q; n0; n1Þ ¼ Hðx;u; qÞ þ n0xþ n1ð1� xÞ. (5.3)

By Hartl et al. (1995, Informal Theorem 4.1), we have the following necessary conditions for optimality: If ðxð�Þ;uð�ÞÞ is an
optimal pair, then there exist a piecewise absolutely continuous function q : ½0;1Þ ! R and piecewise continuous
functions n0; n1 : ½0;1Þ ! R such that

HuðxðtÞ;uðtÞ; qðtÞÞ ¼ �
uðtÞ

g þ qðtÞ ¼ 0, (5.4)

_qðtÞ ¼ yqðtÞ � LxðxðtÞ;uðtÞ;qðtÞ; n0ðtÞ; n1ðtÞÞ

¼ yqðtÞ � f ðxðtÞÞ � n0ðtÞ þ n1ðtÞ, (5.5)

n0ðtÞX0; n0ðtÞxðtÞ ¼ 0, (5.6)

n1ðtÞX0; n1ðtÞð1� xðtÞÞ ¼ 0, (5.7)

and for any time t in a boundary interval and for any contact time t, qð�Þ may have a discontinuity given by the following
jump conditions:

qðt�Þ ¼ qðtþÞ þ Z0ðtÞ � Z1ðtÞ, (5.8)

Z0ðtÞX0; Z0ðtÞxðtÞ ¼ 0, (5.9)

Z1ðtÞX0; Z1ðtÞð1� xðtÞÞ ¼ 0 (5.10)

for some Z0ðtÞ;Z1ðtÞ for each t. Observe first that conditions (5.4)–(5.7) imply that, with the adjoint qð�Þ, the equilibrium
conditions in Proposition 3.1 are satisfied for interior intervals.

We then claim that qðt�Þ ¼ qðtþÞ ¼ 0 for any time t in a boundary interval and for any contact time t. Let us verify this
in the case where xðtÞ ¼ 1, so that n0ðtÞ ¼ Z0ðtÞ ¼ 0 by (5.6) and (5.9). First, it must be that _xðt�ÞX0 (otherwise, we would
have xðtÞo1), and hence qðt�ÞX0 by (5.1b) and (5.4). Second, it must be that _xðtþÞp0 (otherwise, we would have
xðtþ eÞ41), and hence qðtþÞp0 again by (5.1b) and (5.4). Last, by the jump condition (5.8), qðt�Þ ¼ qðtþÞ�
Z1ðtÞpqðtþÞsince Z1ðtÞX0 as in (5.10). These imply that qðt�Þ ¼ qðtþÞ ¼ 0.

Finally, we can verify from (5.5)–(5.7) that

n0ðtÞ ¼
�f ð0Þ if t is in a boundary interval for x ¼ 0;

0 otherwise;

(
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16 Here, we follow the ‘direct adjoining approach’. See also Seierstad and Sydsæter (1987, Chapter 5) and Sethi and Thompson (2000, Chapter 4),

where the ‘indirect adjoining approach’ is discussed.
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and

n1ðtÞ ¼
f ð1Þ if t is in a boundary interval for x ¼ 1;

0 otherwise:

(

Since n0ðtÞ; n1ðtÞX0, it follows that the conditions (3.10) in Proposition 3.1 are satisfied.

Remark 5.1. As noted in Proposition 3.1, the adjoint function qð�Þ is bounded. Thus, the transversality condition,
limt!1 e�ytqðtÞ ¼ 0, holds.

We next have the following lemma, which corresponds to the ‘visit lemma’ in turnpike theory.

Lemma 5.4. Assume that x� is the unique maximizer of F over [0, 1]. For any e40, there exists d̄ðeÞ40 such that for all dpd̄ðeÞ
and for all x0 2 ½0;1�, if ðxð�Þ;uð�ÞÞ is an optimal pair to the problem (5.1a), then there exists tX0 such that jxðtÞ � x�joe.

Proof. See Appendix A.

To understand the intuition behind this claim, consider the equivalent maximization problem:

maximize ~Jðyð�Þ; vð�ÞÞ ¼

Z 1
0

de�ds FðyðsÞÞ �
vðsÞ2

2

 !
ds,

subject to _yðsÞ ¼ vðsÞ, 0pyðsÞp1, and yð0Þ ¼ x0, where d ¼ y=
ffiffiffigp , which is obtained by applying to J the change of variables,

yðsÞ ¼ xðs=
ffiffiffigp Þ and vðsÞ ¼ uðs=

ffiffiffigp Þ= ffiffiffigp , with a positive multiplicative y. If d is small, large weights are put on the values of
the integrand for far future times s. Therefore, for any small neighborhood of the maximizer of F, if yð�Þ does not visit this
neighborhood, then ðyð�Þ; vð�ÞÞ does not maximize ~J, provided that d is sufficiently small.

The above claims as well as the absorption imply the global accessibility of x�.

Proof of Theorem 4.1. Due to Theorem 4.2, x� is absorbing for any value of d ¼ y=
ffiffiffigp 40, that is, there exists e40 such that

any equilibrium path starting from any initial state in Beðx�Þ converges to x�. From the proof of Theorem 4.2, we can take e
independently of d. Fix this value of e and assume that dpd̄ ¼ d̄ðeÞ with d̄ðeÞ as in Lemma 5.4. Consider any initial state
x0 2 ½0;1�. From Proposition 5.1, there exists an optimal solution xð�Þ starting from x0, and from Proposition 5.2, it is an
equilibrium path from x0. By Lemma 5.4, there exists TX0 such that xðTÞ 2 Beðx�Þ. Since the truncated path yðtÞ ¼ xðt þ TÞ is
also an equilibrium path, it follows from the choice of e and Theorem 4.2 that limt!1 xðtÞ ¼ x�. Since x0 has been chosen
arbitrarily, this proves that x� is globally accessible when dpd̄. &

5.2. Absorption

Define the function H� : R�R! R by

H�ðx; qÞ ¼ FðxÞ þ
g
2

q2, (5.11)

which is the maximized Hamiltonian, i.e., H�ðx; qÞ ¼ maxu Hðx;u; qÞ, where H is defined in (5.2). We first show in Lemma 5.5
that H� works as a Lyapunov function for the system (3.8)–(3.10) which describes the behavior of equilibrium paths. We
then show in Lemma 5.6 that if ðxð�Þ; qð�ÞÞ is a solution to (3.8)–(3.10), then we must have limt!1 qðtÞ ¼ 0, and thus any
accumulation point x̂ of xð�Þ must be an equilibrium state and satisfy Hðxð0Þ; qð0ÞÞpH�ðx̂;0Þ, which implies Fðxð0ÞÞpFðx̂Þ.
Hence, if we take a neighborhood of the potential maximizer x� such that for all x in the neighborhood, FðxÞ4Fðx̂Þ

for all equilibrium states x̂ax�, then any equilibrium path from this neighborhood converges to x�, which means the
absorption of x�.

Lemma 5.5. Letðxð�Þ; qð�ÞÞ be a solution to (3.8)–(3.10). Then, for almost all tX0,

d

dt
H�ðxðtÞ; qðtÞÞX0,

with equality holding if and only if qðtÞ ¼ 0.

Proof. From (3.8)–(3.10) we have

d

dt
H�ðxðtÞ; qðtÞÞ ¼ f ðxðtÞÞ_xðtÞ þ gqðtÞ _qðtÞ

¼ gqðtÞðf ðxðtÞÞ þ _qðtÞÞ

¼
gyqðtÞ2X0 if t is in an interior interval

0 otherwise;

(

since, by Proposition 3.1, _qðtÞ þ f ðxðtÞÞ ¼ yqðtÞ if t is in an interior interval, while qðtÞ ¼ 0 if t is in a boundary interval or is a
contact time. &
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Lemma 5.6. Let xð�Þ be an equilibrium path from x0. If x̂ is an accumulation point of xð�Þ, then

(1) Fðx̂ÞXFðx0Þ, and

(2) x̂ is an equilibrium state.

Under Assumption 2.1, (2) implies that any equilibrium path converges to an equilibrium state.

The proof follows that of Lemma 4 in Hofbauer and Sorger (1999).

Proof. Let qð�Þ be associated with the equilibrium path xð�Þ. Let ftkg be a sequence such that limk!1 tk ¼ 1 and
limk!1 xðtkÞ ¼ x̂. Let, without loss of generality, q̂ ¼ limk!1 qðtkÞ. Define ðx�ð�Þ; q�ð�ÞÞ by t 7!limk!1 ðxðt þ tkÞ; qðt þ tkÞÞ, which
satisfies (3.8)–(3.10) with ðx�ð0Þ; q�ð0ÞÞ ¼ ðx̂; q̂Þ.

We show that H�ðx�ðtÞ; q�ðtÞÞ is constant. Assume that for some t; s 2 ½0;1Þ,

H�ðx�ðtÞ; q�ðtÞÞoH�ðx�ðsÞ;q�ðsÞÞ.

By Lemma 5.5, we must have tos. Since limk!1tk ¼ 1, we may assume without loss of generality that tkþ14tk þ ðs� tÞ.

Using Lemma 5.5 again, we obtain

H�ðx�ðtÞ; q�ðtÞÞ ¼ lim
k!1

H�ðxðtk þ tÞ;qðtk þ tÞÞ

¼ lim
k!1

H�ðxðtkþ1 þ tÞ; qðtkþ1 þ tÞÞ

X lim
k!1

H�ðxðtk þ sÞ; qðtk þ sÞÞ

¼ H�ðx�ðsÞ; q�ðsÞÞ,

which is a contradiction. Thus we have ðd=dtÞH�ðx�ðtÞ; q�ðtÞÞ ¼ 0 for all tX0. Hence, q�ðtÞ ¼ 0 for all tX0 by Lemma 5.5. Since

ðx�ð�Þ; q�ð�ÞÞ satisfies (3.8)–(3.10) and x�ð0Þ ¼ x̂, it follows that x�ðtÞ ¼ x̂ for all tX0, and therefore x̂ is an equilibrium state by

Observation 3.2, which proves (2). Also, we have

Fðx0ÞpH�ðxð0Þ; qð0ÞÞpH�ðxðtÞ; qðtÞÞpH�ðx�ðtÞ; q�ðtÞÞ ¼ Fðx̂Þ,

which proves (1). &

We are now ready to prove the absorption property of the potential maximizer x�: that if an equilibrium path starts in a
neighborhood of x�, then it must converge to x�.

Proof of Theorem 4.2. Since the potential maximizer x� is isolated from other equilibrium states by Assumption 2.1, we
can take e40 such that FðxÞ4Fðx̂Þ for all x 2 Beðx�Þ and all equilibrium states x̂ax�. Lemma 5.6 thus implies that any
equilibrium path xð�Þ from any x0 2 Beðx�Þ satisfies limt!1 xðtÞ ¼ x�. &

Remark 5.2. Ottaviano (2001) makes use of the function H� for the case of symmetric regions, and observes that if y ¼ 0,
then along a trajectory ðxð�Þ;qð�ÞÞ satisfying the system (3.8)–(3.10), ðd=dtÞH�ðxðtÞ; qðtÞÞ ¼ 0 for all tX0 and, in particular,
when x ¼ 0 and x ¼ 1 are equilibrium states, there are trajectories that connect ðx;qÞ ¼ ð0;0Þ and ðx;qÞ ¼ ð1;0Þ. By
considering perturbation of the system, he concludes that in this case, both x ¼ 0 and x ¼ 1 are, in our terminology,
absorbing for positive small y. As our result shows for the generic case of asymmetric regions, however, this is a knife-edge
result which is not robust to exogenous asymmetries.

6. Concluding remarks

In this paper, we have addressed the issue of ‘history versus expectations’ in a two-location new economic geography
model, which typically has multiple equilibria, by embedding the model in the class of equilibrium dynamics due to
Krugman (1991b) and Fukao and Benabou (1993) (KFB dynamics). Agents are assumed to incur moving costs upon
migration which depend on the rate of aggregate migration flow. This, along with agents’ impatience (i.e., positive time
discounting), constitutes the friction of our dynamic environment. We obtained an equilibrium selection result based on
the stability properties under the dynamics: that, except for knife-edge cases, there exists a (unique, by definition) spatial
configuration that is absorbing and globally accessible whenever the degree of friction is sufficiently small, and such a
configuration is characterized as the unique maximizer of the potential function of the static model. While we proceeded in
the specific context of economic geography, we emphasize that our analysis is general enough to capture many situations of
social interactions with binary choice.

The fact that forward-looking behavior combined with frictions can lead to equilibrium selection is also observed in the
class of equilibrium dynamics as considered by Matsuyama (1991) and Matsui and Matsuyama (1995) (MM dynamics). In
fact, the proof strategy for our main theorems follows that of Hofbauer and Sorger (1999) who prove the same stability
properties under the MM dynamics in potential games with (finitely) many actions. Here we briefly discuss the differences
in the mathematical properties of the KFB and the MM dynamics.
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In the MM dynamics, the opportunities for agents to revise their choice arrive only occasionally, according to
independent Poisson processes. Therefore, the speed of adjustment at the aggregate level is bounded exogenously, since,
during a short interval, only a given fraction of the population is assumed to receive a revision opportunity. An equilibrium
path of this dynamics is simply defined to be a feasible path along which each agent, when given a revision opportunity,
takes a best alternative that maximizes the expected discounted payoff, which is independent of his current choice.

Agents in the KFB dynamics are allowed to revise their choice at any time instance with adjustment costs which
depend on the rate of change in the population state. Equilibrium behavior in the interior of the state space is characterized
by the non-arbitrage condition, i.e., the equality between the adjustment cost and the option value of adjustment,
while once the economy reaches the boundary, individual agents are able to instantaneously move between the locations
with no cost. Accordingly, the formal definition of equilibrium paths in the KFB dynamics must carefully incorporate
transition between these phases. This is in fact the source of the error in Krugman (1991b) pointed out by Fukao and
Benabou (1993).

Furthermore, while it is conjectured to be thecase, it is left as an open question whether, as in the MM dynamics, the
stability of a potential maximizer in the KFB dynamics extends to the case of more than two alternatives. On the other
hand, using the MM dynamics the companion paper (Oyama, 2006) is able to study forward-looking migration behavior in
a new economic geography model with many locations that admits a potential.

It should be noted, however, that when we consider policy issues, the two models may yield different implications. In
the KFB dynamics, the speed of aggregate adjustment is directly determined by the no-arbitrage condition and thus can be
controlled by governmental instruments such as tax and subsidy, whereas in the MM dynamics, it is bounded by the
Poisson parameter and independent of agents’ utilities. This point is discussed in the context of infant industry protection
in a sectoral choice model by Kaneda (2003), who demonstrates that a subsidy scheme with a shorter duration and a higher
rate is not isomorphic to that with a longer duration and a lower rate under the Poisson formulation where the speed of
growth in the industry is independent of the subsidy rate, while noting that these schemes are substitutable for each other
under the adjustment cost formulation. Conclusive policy implications on such issues should be obtained by developing a
more general model that unifies these formulations. We leave this task for future research.
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Appendix A

Proof of Proposition 3.1. Let xð�Þ be an equilibrium path and V0ð�Þ;V1ð�Þ the corresponding value functions. Define
q : ½0;1Þ ! R by qðtÞ ¼ V1ðtÞ � V0ðtÞ, which by definition is continuous on any interior or boundary interval and right-
continuous at junction times. We want to show that this function q satisfies the desired conditions in each of cases (i) and (ii).

(i) First, if _xðtÞp0, then V0ðtÞ þ _xðtÞ=g ¼ V1ðtÞ, while if _xðtÞX0, then V1ðtÞ � _xðtÞ=g ¼ V0ðtÞ, so that in each case, we have

_xðtÞ ¼ gðV1ðtÞ � V0ðtÞÞ ¼ gqðtÞ.

Second, for any sufficiently small Dt40,

ViðtÞ ¼

Z tþDt

t
e�yðs�tÞf iðxðsÞÞdsþ e�yDtV iðt þ DtÞ

for each i ¼ 0;1, so that

qðtÞ ¼

Z tþDt

t
e�yðs�tÞf ðxðsÞÞdsþ e�yDtqðt þDtÞ.

Thus, we have

qðt þ DtÞ � qðtÞ

Dt
¼

1� e�yDt

Dt
qðt þ DtÞ þ

1

Dt

Z tþDt

t
e�yðs�tÞf ðxðsÞÞds.

As Dt! 0, the right-hand side converges to yqðtÞ � f ðxðtÞÞ. The same argument applies to the limit of ðqðtÞ � qðt �DtÞÞ=Dt.

(ii) If t is in a boundary interval for the boundary x ¼ 0 (x ¼ 1, resp.), then by definition, f ð0Þp0 (f ð1ÞX0, resp.), xðtÞ ¼ 0

(xðtÞ ¼ 1, resp.), and qðtÞ ¼ 0.

We need to show that qð�Þ is continuous at junction times. The following three lemmata correspond respectively to
Lemmata 1–3 in Fukao and Benabou (1993).

ARTICLE IN PRESS

D. Oyama / Journal of Economic Dynamics & Control 33 (2009) 394–408 405



Author's personal copy

Lemma A.1. If t is an entry time, then qðt�Þ ¼ 0.

Proof. We only consider the case where t is an entry time for the boundary x ¼ 1. First, qðt�ÞX0 (otherwise, we would
have xðtÞo1). Next, for sufficiently small e40, we have

V0ðt� eÞX
Z tþe

t�e
e�yðs�tþeÞf 0ðxðsÞÞdsþ e�2yeV1ðtþ eÞ,

where the right-hand side is the payoff that the agent would obtain if he waited until tþ e to move from 0 to 1. As e! 0,
we have V0ðt�ÞXV1ðtÞ by the continuity of V1 at t, so that qðt�Þ ¼ V1ðtÞ � V0ðt�Þp0. &

Lemma A.2. If t is an exit time, then qðtþÞ ¼ 0.

Proof. We only consider the case where t is an exit time for the boundary x ¼ 1. First, qðtþÞp0 (otherwise, we would have
xðtþ eÞ41). Next, for sufficiently small e40, we have

V1ðt� eÞX
Z tþe

t�e
e�yðs�tþeÞf 0ðxðsÞÞdsþ e�2yeV0ðtþ eÞ,

where the right-hand side is the payoff that the agent would obtain if he moved from 1 to 0 at t� e. As e! 0, we have
V1ðtÞXV0ðtþÞ by the continuity of V1 at t, so that qðtþÞ ¼ V1ðtÞ � V0ðtþÞX0. &

Lemma A.3. If t is a contact time, then qðt�Þ ¼ qðtþÞ ¼ 0.

Proof. We only consider the case where t is a contact time for the boundary x ¼ 1. First, qðt�ÞX0 and qðtþÞp0 as
previously. Next, for sufficiently small e40, we have

V0ðt� eÞX
Z tþe

t�e
e�yðs�tþeÞf 0ðxðsÞÞdsþ e�2yeV0ðtþ eÞ,

where the right-hand side is the payoff that the agent would obtain if he remained in 0. As e! 0, we have V0ðt�ÞXV0ðtþÞ,
so that qðt�Þ ¼ V1ðtÞ � V0ðt�ÞpV1ðtÞ � V0ðtþÞ ¼ qðtþÞ. &

Finally, we show that jqð�Þj is bounded by M=y, where M40 is the maximum value of jf ðxÞj over x 2 ½0;1�. Suppose that
this is not true, say, that qðTÞ4M=y for some T . Then, we would have _qðtÞ40 for all tXT by (3.8b), and therefore, _xðtÞXgM=y
for all tXT by (3.8a). This implies that xðT 0Þ ¼ 1 for some finite T 0XT , while qðT 0Þ4M=y, which contradicts (3.9).

To show the converse, let xð�Þ and qð�Þ be as in the statement. Then, define Við�Þ by

ViðtÞ ¼

Z 1
t

e�yðs�tÞ ~f iðxðsÞÞds,

where ~f i : ½0;1� ! R is defined by

~f iðxÞ ¼
f iðxÞ if 0oxo1;

f i� ði
�
Þ if x ¼ i�:

(

One can verify that V1ðtÞ � V0ðtÞ ¼ qðtÞ for all t and thus the equilibrium conditions in Definition 3.1 are satisfied. &

Proof of Proposition 5.2. Let ðx�ð�Þ;u�ð�ÞÞ be an optimal pair for the problem (5.1). We want to show the existence of a
function qð�Þ that satisfies the conditions in Proposition 3.1.

Consider the finite horizon optimal control problem parameterized by T40:

maximize JT ðxð�Þ;uð�ÞÞ ¼

Z T

0
e�yt FðxðtÞÞ �

uðtÞ2

2g

 !
dt, (A.1a)

subject to _xðtÞ ¼ uðtÞ, (A.1b)

hðxðtÞÞX0, (A.1c)

xð0Þ ¼ x�ð0Þ, (A.1d)

xðTÞ ¼ x�ðTÞ, (A.1e)

where hðxÞ ¼ ðh0ðxÞ;h1ðxÞÞ ¼ ðx;1� xÞ.

Let

~Hðx;u; l0; l; tÞ ¼ l0 e�yt FðxÞ �
u2

2g

� �
þ lu.

Since the restriction of ðx�ð�Þ;u�ð�ÞÞ to ½0; T� is optimal for the problem (A.1), it must satisfy the following necessary

conditions due to Theorem 4.2 in Hartl et al. (1995): there exist a constant l0 2 f0;1g, a right-continuous function

l : ½0; T� ! R, and functions ~ni : ½0; T� ! R ði ¼ 0;1Þ that are of bounded variation, nonincreasing, constant on intervals
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where hiðxðtÞÞ40, and right-continuous with left-hand limits everywhere such that

ðl0; lðtÞ; ~n0ðTÞ � ~n0ð0Þ; ~n1ðTÞ � ~n1ð0ÞÞa0 (A.2)

for all t 2 ½0; T�,

~Huðx
�ðtÞ;u�ðtÞ; l0; lðtÞ; tÞ ¼ �l0 e�yt u�ðtÞ

g þ lðtÞ ¼ 0 (A.3)

for almost all t 2 ½0; T�, and

lðtþ1 Þ � lðtþ0 Þ ¼ � l0

Z t1

t0

~Hxðx
�ðtÞ;u�ðtÞ; l0;lðtÞ; tÞdt þ

Z
ðt0 ;t1 �

hxðx
�ðtÞÞ � d~n

¼ � l0

Z t1

t0

e�ytf ðx�ðtÞÞdt þ ð~n0ðt
þ
1 Þ � ~n0ðt

þ
0 ÞÞ � ð~n1ðt

þ
1 Þ � ~n1ðt

þ
0 ÞÞ

(A.4)

for t0ot1.

We first claim that l0a0. Indeed, if l0 ¼ 0, then (A.3) and (A.4) would contradict (A.2). Therefore, (A.1b) and (A.3) implies

lðtÞ ¼ e�yt
_x�ðtÞ

g . (A.5)

If ðt0; t1Þ is an interior interval, then by (A.4), for all t 2 ðt0; t1Þ we have ~n0ðtÞ � ~n0ðt
þ
0 Þ ¼

~n1ðtÞ � ~n1ðt
þ
0 Þ ¼ 0 and

lðtÞ ¼ lðtþ0 Þ �
Z t

t0

e�ysf ðx�ðsÞÞds.

This implies that lðtÞ is differentiable and _lðtÞ ¼ �e�ytf ðx�ðtÞÞ on interior intervals.

We then show that lðt�Þ ¼ lðtþÞ ¼ 0 for any time t in a boundary interval and any contact time t. Let us show this in the

case where xðtÞ ¼ 1. First, it must be that _xðt�ÞX0 (otherwise, we would have xðtÞo1), and hence lðt�ÞX0 by (A.5). Second,

it must be that _xðtþÞp0 (otherwise, we would have xðt þ eÞ41), and hence lðtþÞp0 again by (A.5). Last, let t0ot be such

that xðsÞ40 for all s 2 ½t0; t�, so that ~n0ðt
þÞ � ~n0ðt

þ
0 Þ ¼ 0. By (A.4), we have

lðtþÞ ¼ lðtþ0 Þ �
Z t

t0

e�ysf ð1Þds� ð~n1ðt
þÞ � ~n1ðt

þ
0 ÞÞ, (A.6)

and therefore

lðtþÞ ¼ lðt�Þ � ð~n1ðt
þÞ � ~n1ðt

�ÞÞ

in the limit as t0 " t. Since ~n1 is nonincreasing so that ~n1ðt
þÞ � ~n1ðt

�Þp0, we have lðtþÞXlðt�Þ. These imply that

lðt�Þ ¼ lðtþÞ ¼ 0.

Furthermore, since (A.6) reduces to

~n1ðtÞ � ~n1ðt
þ
0 Þ ¼ �

Z t

t0

e�ysf ð1Þds

and ~n1 is nonincreasing, we have f ð1ÞX0. The same argument applies to boundary intervals for x ¼ 0.

Now, let 0oT1oT2o � � � be such that limk!1 Tk
¼ 1. Let lk

ð�Þ be the adjoint for the problem (A.1) with T ¼ Tk. Note that

if kok0, lk
ðtÞ ¼ lk0

ðtÞ for all t 2 ½0; Tk
�. Let l�ð�Þ be the extension of lk

ð�Þ’s to ½0;1Þ: i.e., l�ðtÞ ¼ lk
ðtÞ where k is such that

t 2 ½Tk�1; Tk
Þ (with T0

¼ 0). Finally, let qðtÞ ¼ eytl�ðtÞ. Then, verifying that the obtained qð�Þ satisfies the conditions of

Proposition 3.1 completes the proof. &

Proof of Lemma 5.4. Assume the contrary: i.e., that there exists e40 such that for all d̄40, there exists an optimal pair
ðxð�Þ;uð�ÞÞ for some y and g with d ¼ y=

ffiffiffigp 2 ð0; d̄� and some x0 2 ½0;1�with xð0Þ ¼ x0 such that jxðtÞ � x�jXe for all tX0. Given
such an e40, let c ¼ cðeÞ40 be defined by

c ¼ Fðx�Þ � max
x2½0;1�

fFðxÞkx� x�jXeg

and d̄ ¼ d̄ðeÞ40 be such that

ð1� e�d̄Þ 2M þ
1

2

� �
oe�d̄c,

where M40 is a constant such that jFðxÞjpM for all x 2 ½0;1�. Given such a d̄40, let ðxð�Þ;uð�ÞÞ be an optimal pair
with y=

ffiffiffigp 2 ð0; d̄� and x0 2 ½0;1� such that jxðtÞ � x�jXe for all tX0, as assumed. We assume without loss of generality
that x0px�.
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Define yð�Þ and vð�Þ by yðsÞ ¼ xðs=
ffiffiffigp Þ and vðsÞ ¼ uðs=

ffiffiffigp Þ= ffiffiffigp . Note that jyðsÞ � x�jXe and therefore FðyðsÞÞ � Fðx�Þp� c for

all sX0. Observe that ðyð�Þ; vð�ÞÞ is an optimal pair to the maximization problem for

~Jðyð�Þ; vð�ÞÞ ¼

Z 1
0

d e�ds FðyðsÞÞ �
vðsÞ2

2

 !
ds

subject to _yðsÞ ¼ vðsÞ, 0pyðsÞp1, and yð0Þ ¼ x0, where d ¼ y=
ffiffiffigp ðpd̄Þ.

Now define an admissible pair ðy0ð�Þ; v0ð�ÞÞ by

v0ðsÞ ¼
1 if soT

0 if sXT;

(
y0ðsÞ ¼

x0 þ s if soT

x� if sXT ;

(

where T ¼ x� � x0ðp1Þ. Then,

~Jðyð�Þ; vð�ÞÞ � ~Jðy0ð�Þ; v0ð�ÞÞ ¼

Z T

0
de�ds FðyðsÞÞ �

vðsÞ2

2

 !
� Fðy0ðsÞÞ �

12

2

 !( )
ds

þ

Z 1
T

d e�ds FðyðsÞÞ �
vðsÞ2

2

 !
� Fðx�Þ

( )
ds

p
Z T

0
de�ds FðyðsÞÞ � Fðy0ðsÞÞ þ

1

2

� �
ds

þ

Z 1
T

d e�dsðFðyðsÞÞ � Fðx�ÞÞds

p
Z T

0
de�ds 2M þ

1

2

� �
ds�

Z 1
T

d e�dsc ds

¼ ð1� e�dT Þ 2M þ
1

2

� �
� e�dT c

pð1� e�d̄Þ 2M þ
1

2

� �
� e�d̄co0,

which contradicts the optimality of ðyð�Þ; vð�ÞÞ. &
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