Contagion and uninvadability in local interaction games: The bilingual game and general supermodular games

Daisuke Oyama a, *, Satoru Takahashi b

a Faculty of Economics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
b Department of Economics, National University of Singapore, AS2 Level 6, 1 Arts Link, Singapore 117570, Singapore

Received 26 March 2013; final version received 28 October 2014; accepted 28 December 2014
Available online 8 January 2015

Abstract

In a setting where an infinite population of players interact locally and repeatedly, we study the impacts of payoff structures and network structures on contagion of a convention beyond 2 × 2 coordination games. First, we consider the “bilingual game”, where each player chooses one of two conventions or adopts both (i.e., chooses the “bilingual option”) at an additional cost. For this game, we completely characterize when a convention spreads contagiously from a finite subset of players to the entire population in some network, and conversely, when a convention is never invaded by the other convention in any network. We show that the Pareto-dominant (risk-dominant, resp.) convention is contagious if the cost of bilingual option is low (high, resp.). Furthermore, if the cost is in a medium range, both conventions are each contagious in respective networks, and in particular, the Pareto-dominant convention is contagious only in some non-linear networks. Second, we consider general supermodular games, and compare networks in terms of their power of inducing contagion. We show that if there is a weight-preserving node identification from one network to another, then the latter is more contagion-inducing than the former in all supermodular games.

© 2015 Elsevier Inc. All rights reserved.

JEL classification: C72; C73; D83

* Earlier versions of this paper were circulated under the title “Contagion and Uninvadability in Social Networks with Bilingual Option”. We would like to thank Ryota Iijima, Atsushi Kajii, Takashi Kunimoto, Dunia López-Pintado, Neng Qian, Alex Teytelboym, Takashi Ui, anonymous referees, and especially, Stephen Morris for helpful comments and discussions. D. Oyama acknowledges financial support by JSPS Grant-in-Aid for Scientific Research (S).

* Corresponding author.
E-mail addresses: oyama@e.u-tokyo.ac.jp (D. Oyama), ecsst@nus.edu.sg (S. Takahashi).

http://dx.doi.org/10.1016/j.jet.2014.12.012
0022-0531/© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Behavior initiated by a small group of individuals, such as adoption of languages or technology standards, can spread in the long run over a large population through local interactions. Such a phenomenon is called contagion (also known as diffusion or epidemics) and has attracted much attention (Blume [4,5], Ellison [8,9], Morris [33]). In particular, focusing on the class of 2×2 coordination games, Morris [33] analyzes how contagion is affected by the payoffs of the game played as well as the topology of the underlying network. This paper considers the “bilingual game” and general supermodular games, thereby enriching our understanding of the impacts of payoff structures and network structures on strategic behavior in local interaction games.

To be specific, consider an infinite population of players who are connected with each other through a network. Suppose that each player uses one of two computer programming languages, or two types of technologies in general, A and B. The payoffs from each interaction with his neighbors are given by the following 2×2 coordination game:

$$
\begin{array}{c|cc}
&A&B \\
\hline
A & a, a & b, c \\
B & c, b & d, d \\
\end{array}
$$

where $a > c$ and $d > b$, so that (A, A) and (B, B) are strict Nash equilibria. We assume that $a > d$, i.e., (A, A) Pareto-dominates (B, B), while $a-c < d-b$, i.e., (B, B) risk-dominates (A, A). We further assume that $d \geq c$, so that coordination on some action is always better than miscoordination. Morris [33] shows that in 2×2 coordination games, the risk-dominant action B is always both contagious (i.e., in some network, there is some finite set of players such that if B is initially played by this set of players, then it is eventually played by the entire population) and uninvadable (i.e., in all networks, if B is initially played by almost all players, then it continues to be played by almost all players). Observe that B is a best response if at least a proportion $q = (a-c)/(a-c+d-b)$ of neighbors play B. Morris [33] defines the contagion threshold of a given network to be the supremum of the payoff parameter q such that contagion occurs in that network. In particular, the linear network with nearest neighbor interactions, as depicted in Fig. 1, has a contagion threshold $1/2$, which is the largest among all networks.

Now suppose that players can adopt a combination of the two actions, a “bilingual option” AB, with an additional cost $e > 0$. A player who plays AB receives a (gross) payoff $a + (d, \text{resp.})$ from

$$
\begin{array}{cccccccc}
-3 & -2 & -1 & 0 & 1 & 2 & 3 \\
\hline
\end{array}
$$

Fig. 1. Nearest neighbor linear interaction.

1 See also Easley and Kleinberg [7], Goyal [14], Jackson [19], Vega-Redondo [44], Young [48], among others.

2 With only two actions, the model is a special case of the “threshold model” (Granovetter [16]). For related studies in computer science, see, e.g., Easley and Kleinberg [7] or Wortman [47].
an interaction with an A-player (B-player, resp.). When two AB-players interact, they adopt the superior action A and receive a. This situation is described by

\[
\begin{array}{ccc}
A & AB & B \\
A & a, a & a, a - e & b, c \\
AB & a - e, a & a - e, a - e & d - e, d \\
B & c, b & d, d - e & d, d \\
\end{array}
\]

where (A, A) and (B, B) are the only pure-strategy Nash equilibria. One may expect that when the value of the cost parameter e is large, the action AB is not much relevant so that the situation is close to the previous 2×2 case where the risk-dominant action B survives; as e becomes smaller, AB becomes closer to dominating B so that eventually B will be abandoned and only the Pareto-dominant action A will survive.

For this class of 3×3 games, we completely characterize when an action is contagious and when it is uninvadable. Conforming to the conjecture in the previous paragraph, we show that if e is large, then the risk-dominant B is contagious and uninvadable; if e is small, then the Pareto-dominant A is contagious and uninvadable. In the latter case, the region of A-players, together with the "bilingual region" of AB-players, invades that of B-players in the following process: first, players at the boundary of the B-region interacting with AB-players switch to action AB as a "stepping stone"; then, the AB-players interacting with A-players switch to action A. Combining the two cases, we show that generically at least one action is contagious. Moreover, in contrast to the 2×2 case, both actions are each contagious if e is in a medium range (which is nonempty and open under an additional condition on parameter values), i.e., A spreads contagiously in some network while B does in another. Indeed, for this range, our construction involves a "non-linear" network to induce the contagion of A.

The above construction motivates the question of how restrictions on the class of networks affect contagion. A class of networks is said to be critical for contagion if these networks induce all possible contagion, i.e., whenever an action can spread contagiously in some network, it does so within this class of networks. In the case of 2×2 coordination games, the network in Fig. 1 constitutes a (singleton) critical class. For the bilingual game, however, we show that even if we extend our attention to all linear networks (networks whose interaction weights are translation invariant), only one action spreads contagiously for any generic parameter value. Combined with our complete characterization of contagion, this implies that the class of linear networks is not critical for contagion in the bilingual game.

The analysis described above is to fix a game and find a network (linear or non-linear) in which a given action is contagious, thereby highlighting the impact of payoff structures on contagion. We next consider a converse exercise to study the impact of network topologies on contagion: fix

3 This game has been studied by Galesloot and Goyal [13], Goyal and Janssen [15], Immorlica et al. [18], and Easley and Kleinberg [7].

4 This process is reminiscent of, but different from, the selection of Pareto-efficient outcomes in evolutionary dynamics with pre-play communication (e.g., Matsui [27]). In the latter, it incurs no cost to adopt a strategy switching between the Pareto-dominant and the Pareto-dominated actions contingent on the pre-play communication and the Pareto efficiency can prevail under global interactions, while in ours, adopting the bilingual option incurs a strictly positive cost and the Pareto efficiency can prevail only under local interactions.
a network and find games in which a given action is contagious. Specifically, we ask the following question: for a pair of networks, which one has a larger set of games for which an action is contagious? We say that a network is more contagion-inducing in a class G of games than another network if for any game in G, any action that is contagious in the latter network is also contagious in the former network. This notion defines a preorder over networks for general G. The preorder is incomplete when G contains our bilingual game with e being in the medium range; it is complete and represented by the contagion threshold of Morris [33] when G is the class of 2×2 coordination games. We then introduce the concept of weight-preserving node identification between two networks, and prove that this concept provides a sufficient condition for a network to induce more contagion than another when G is the class of all supermodular games. For example, we can construct a weight-preserving node identification from a two-dimensional lattice network to the linear network in Fig. 1, which implies that the latter is more contagion-inducing than the former in all supermodular games. We also show that our exercise based on 3×3 games provides a strictly finer analysis of network topologies than that by Morris [33] based on 2×2 games; we find a pair of networks that are not differentiated in terms of contagion in 2×2 coordination games (i.e., have the same contagion threshold), but are strictly ordered in terms of their power of inducing contagion in the bilingual game.

In his series of papers, Morris [31–33] defines general notions of contagion and uninvadability, and develops a method using potential functions to provide a sufficient condition on payoffs, independent of the underlying network structure, for uninvadability (and hence a necessary condition for contagion). He also gives an example of a symmetric 4×4 game to demonstrate that different actions are contagious in linear networks with different interaction weights. We generalize his potential method to strict monotone potential functions and characterize contagion and uninvadability for the bilingual game. In particular, we show that action A can be contagious in some non-linear network even if only action B is contagious in the class of linear networks.

Besides these papers by Morris, our paper is most closely related to Goyal and Janssen [15], who analyze the local interaction game with the bilingual option in a circular network, and establish qualitatively the same results as ours: A is contagious if e is sufficiently small; B is contagious if e is sufficiently large. In contrast, we allow for all possible networks and identify the cutoff of e for contagion, which quantitatively differs from Goyal and Janssen’s cutoff, i.e., for some payoff parameter values, some non-circular/non-linear networks induce an action to be contagious when the circular/linear networks do not. Also, more fundamentally, we study how the network structure affects contagion, instead of focusing on a particular network. In particular, we compare various networks in terms of their power of inducing contagion.5

This paper also makes a contribution to the literature on learning in games (e.g., Fudenberg and Levine [11]). In general, long-run outcomes may depend on fine details of the underlying dynamics, such as simultaneity or sequentiality and order of action revisions. In our formulation, in contrast, contagion and uninvadability phenomena do not depend on such details. In particular, we prove (in Online Appendix B.1) that in supermodular games, an action is contagious under sequential best responses if and only if it is contagious under simultaneous best responses.

Local interaction games and incomplete information games have formal connections, and both belong to a more general class of “interaction games” (Morris [31,32], Morris and Shin [34]). Accordingly, in Online Appendix B.7, we interpret our results on local interaction games in

5 Immorlica et al. [18] analyze contagion in the bilingual game for the case where there is no conflict between risk dominance and Pareto dominance in the original 2×2 game. See Online Appendix B.6.
the context of incomplete information games, whereby we provide interesting implications on global games (Carlsson and van Damme [6], Frankel et al. [10]) and robustness to incomplete information (Kajii and Morris [20]). We also discuss the common prior assumption translated in our context of local interactions (Oyama and Tercieux [40,41]).

The remainder of the paper is organized as follows. Section 2 formulates local interaction games. Section 3 provides a complete characterization of contagion and uninvadability for the bilingual game in the class of all unbounded networks, whereas Section 4 focuses on linear networks and establishes their non-criticality for contagion. Section 5 compares networks in terms of their power of inducing contagion in general supermodular games. Section 6 concludes with a discussion on incorporating randomness into the model.

2. Local interaction games

In this paper, we consider an infinite population of players connected through a network, where each player plays a given game with his neighbors.

2.1. Networks

Let \(X \) be a countably infinite set of players, and \(P: X \times X \to \mathbb{R}_+ \) a weighting function that satisfies

1. irreflexivity: \(P(x, x) = 0 \) for all \(x \in X \),
2. symmetry: \(P(x, y) = P(y, x) \) for all \(x, y \in X \), and
3. bounded neighborhoods: \(0 < \sum_{y \in X} P(x, y) < \infty \) for all \(x \in X \).

A network \((X, P)\) defines an undirected graph with vertices \(X \) and edges weighted by \(P \). We will restrict our attention to unbounded networks, i.e., \(\sum_{(x, y) \in X \times X} P(x, y) = \infty \). Write \(\Gamma(x) = \{ y \in X \mid P(x, y) > 0 \} \) for the set of neighbors of player \(x \in X \). Denote

\[
P(y|x) = \frac{P(x, y)}{\sum_{y' \in \Gamma(x)} P(x, y')},
\]

which is well defined due to property 3 above.

2.2. Pairwise games

For each pairwise interaction between two neighbors, we consider a finite symmetric game \((S, u)\), where \(S \) is the set of actions equipped with a total order, and \(u: S \times S \to \mathbb{R} \) is the payoff function.\(^7\) Let \(\Delta(S) \) denote the set of probability distributions over \(S \). Given payoff function \(u \), we write \(br(\pi) \) for the set of pure best responses to \(\pi \in \Delta(S) \):

\[
br(\pi) = \{ h \in S \mid u(h, \pi) \geq u(h', \pi) \text{ for all } h' \in S \},
\] \hspace{1cm} (2.1)

where \(u(h, \pi) = \sum_{k \in S} \pi_k u(h, k) \).

\(^6\) A class of dynamic games with Poisson action revisions due to Matsui and Matsuyama [28] (perfect foresight dynamics) also belong to interaction games, where each revising player interacts with a set of past and future players and payoffs are given the discounted sum of flow payoffs from the interactions (Takahashi [43]).

\(^7\) For the sake of brevity, we will skip adjectives “finite” and “symmetric” when we refer to the pairwise game.
In Sections 3 and 4, we will focus on the bilingual game as described in the Introduction, where \(S = \{A, AB, B\} \) and the payoff function \(u : S \times S \rightarrow \mathbb{R} \) is given by

\[
\begin{array}{ccc}
A & AB & B \\
\hline
A & a & a & b \\
AB & a - e & a - e & d - e \\
B & c & d & d \\
\end{array}
\]

(2.2a)

where we assume

\[
b < c \leq d < a, \quad a - c < d - b, \quad \text{and} \quad e > 0.
\]

(2.2b)

Note that action profiles \((A, A)\) and \((B, B)\) are the only pure-strategy Nash equilibria. By the assumption that \(d < a\), \((A, A)\) Pareto-dominates \((B, B)\), while by \(a - c < d - b\), \((B, B)\) pairwise risk-dominates \((A, A)\). By the additional assumption that \(c \leq d\), this game is supermodular with respect to the order \(A < AB < B\).

More generally, we say that the function \(u : S \times S \rightarrow \mathbb{R}\) is supermodular if it satisfies

\[
u(h', k') - u(h, k) \leq u(h', k) - u(h, k') \quad \text{for all } h, h', k, k' \in S \text{ with } h < h' \text{ and } k < k';
\]

the game \((S, u)\) is supermodular if \(u\) is supermodular. We will exploit the property of supermodular games that the best response correspondence is nondecreasing in the stochastic dominance order. For \(\pi, \pi' \in \Delta(S)\), we write \(\pi \succeq \pi'\) (and \(\pi' \succeq \pi\)) if \(\pi'\) stochastically dominates \(\pi\), i.e., if \(\sum_{k \geq h} \pi_k \leq \sum_{k \geq h} \pi'_k\) for all \(h \in S\). If \(u\) is supermodular, then it holds that \(\max \, br(\pi) \leq \max \, br(\pi')\) and \(\min \, br(\pi) \leq \min \, br(\pi')\) whenever \(\pi \succeq \pi'\). In Section 5, we consider general supermodular games in comparing networks in terms of their power of inducing contagion.

2.3. Local interaction games

Given a network \((X, P)\) and a pairwise game \((S, u)\), we define the local interaction game \((X, P, S, u)\), where at each point in time, each player is associated with an action and interacts with his neighbors by playing this action across all the interactions. An action configuration is a function \(\sigma : X \rightarrow S\). For each action configuration \(\sigma\), we denote by \(\pi(\sigma | x) \in \Delta(S)\) the action distribution, weighted by \(P(\cdot | x)\), over the actions of player \(x\)’s neighbors: i.e.,

\[
\pi_k(\sigma | x) = \sum_{y \in \Gamma(x); \, \sigma(y) = k} P(y | x).
\]

The payoff for player \(x \in X\) playing action \(h \in S\) is given by the weighted sum (with respect to \(P(\cdot | x)\)) of payoffs from the interactions with his neighbors:

\[
U(h, \sigma | x) = \sum_{y \in \Gamma(x)} P(y | x)u(h, \sigma(y)),
\]

which equals \(u(h, \pi(\sigma | x))\). We write \(BR(\sigma | x)\) for the set of pure best responses for player \(x\) to action configuration \(\sigma\):

\[
BR(\sigma | x) = \left\{ h \in S \mid U(h, \sigma | x) \geq U(h', \sigma | x) \text{ for all } h' \in S \right\},
\]

(2.3)

which equals \(br(\pi(\sigma | x))\).
2.4. Contagion and uninvasability

For the adjustment process of players’ actions, we consider the sequential best response dynamics as follows.

Definition 1. Given a local interaction game \((X, P, S, u)\), a sequence of action configurations \((\sigma^t)_{t=0}^\infty\) is a **best response sequence** if it satisfies the following properties: (i) for all \(t \geq 1\), there is at most one \(x \in X\) such that \(\sigma^t(x) \neq \sigma^{t-1}(x)\); (ii) if \(\sigma^t(x) \neq \sigma^{t-1}(x)\), then \(\sigma^t(x) \in BR(\sigma^{t-1}\|x)\); and (iii) if \(\lim_{t \to \infty} \sigma^t(x) = s\), then for all \(T \geq 0\), \(s \in BR(\sigma^t\|x)\) for some \(t \geq T\).

Property (i) requires that in each period at most one player revise his action,\(^8\) while property (ii) requires that the revising player switch to a myopic best response to the current distribution of his neighbors’ actions. Property (iii) requires that an action that is not a best response be abandoned eventually. Properties (i)–(iii) are satisfied with probability one, for example, in dynamics where in each period at most one player is randomly chosen (according to an i.i.d. full support distribution on \(X\)) to revise his action and the revising player switches to a myopic best response to the current distribution of his neighbors’ actions. In particular, (ii) and (iii) imply that if there exists \(T\) such that \(s \notin BR(\sigma^t\|x)\) for all \(t \geq T\), then there exists \(T'\) such that \(\sigma^t(x) \neq s\) for all \(t \geq T'\). Note that for a given initial action configuration, there are in general multiple best response sequences, as properties (i) and (iii) do not specify which player revises actions in which period.

We ask the following questions: is it possible in some unbounded network that if some finite group of players initially play action \(s^*\), then the whole population will eventually play \(s^*\)? In this case, \(s^*\) is said to be contagious. Conversely, is it always the case in any unbounded network that if \(s^*\) is played by almost all players, it continues to be played by almost all players? If so, \(s^*\) is said to be uninvasive. Following Morris \([31,32]\), we define contagion and uninvasability as follows.

Definition 2. Given a pairwise game \((S, u)\), action \(s^*\) is **contagious in network** \((X, P)\) if there exists a finite subset \(Y\) of \(X\) such that every best response sequence \((\sigma^t)_{t=0}^\infty\) with \(\sigma^0(x) = s^*\) for all \(x \in Y\) satisfies \(\lim_{t \to \infty} \sigma^t(x) = s^*\) for each \(x \in X\); action \(s^*\) is **contagious** if it is contagious in some unbounded network.

Note that contagion of \(s^*\) in \((X, P)\) requires that once a finite set \(Y\) of players initially play \(s^*\), all players eventually play \(s^*\) along **any** best response sequence.\(^9\) Note also that \(s^*\) is defined to be contagious if we can find **some** such network \((X, P)\) and initial finite set \(Y\).\(^{10,11}\)

\(^8\) All the results in this paper hold even if we allow for simultaneous best responses, under an additional assumption that \(\Gamma^t(x)\) is finite for every player \(x\); see Online Appendices B.1 and B.2.

\(^9\) In (generic) supermodular games, this definition of contagion is equivalent to the one that requires only **some** best response sequence to converge and to the one that allows for **simultaneous** best responses; see Online Appendix B.1.

\(^10\) We will extensively discuss in Sections 4 and 5 how the choice of a network affects contagion. As for the choice of an initial set, generally speaking, our definition of contagion is weak in that the initial set may be very special. However, in the main construction for \(3 \times 3\) supermodular games given in the proof of Lemma 1(1) in Section 3, for example, contagion of action \(s^*\) occurs from any finite set of \(s^*\)-players as long as it contains six consecutive players as in the proof.

\(^11\) Our weak notion of contagion is the “mirror image” of our strong notion of robustness of a prediction as captured by uninvasability to be introduced later.
A game may have multiple contagious actions, and we will show in Section 3.1 that this is indeed the case for some (nonempty and open) set of payoff parameter values in our bilingual game, where we construct two different networks in which different actions respectively spread contagiously.\footnote{In principle, two different actions may spread contagiously from different initial groups in the same network, but we are not aware of any such case.}

For uninvadability, the notion of “almost all” is formalized by “except for a set of players whose weight with respect to P is finite”. For an action configuration \(\sigma\) and a subset of actions \(S' \subset S\), we write
\[
\sigma_P(S') = \frac{1}{2} \sum_{(x,y) \in X'} \sigma((x) \in \sigma(x) \in S' \text{ or } \sigma(y) \in S'} P(x, y).
\]

In particular, for an action \(s^* \in S\), \(\sigma_P(S \setminus \{s^*\})\) is the total weight of pairs of players in which at least one of the pair members is not playing \(s^*\).

Definition 3. Given a pairwise game \((S, u)\), action \(s^*\) is uninvadable in network \((X, P)\) if there exists no best response sequence \((\sigma^t)_{t=0}^\infty\) such that \(\sigma^0(P(S \setminus \{s^*\}) < \infty \text{ and } \lim_{t \to \infty} \sigma^t(P(S \setminus \{s^*\}) = \infty; \text{ action } s^* \text{ is uninvadable if it is uninvadable in all unbounded networks.}

In particular, if \(s^*\) is uninvadable in \((X, P)\), then there exists no best response sequence \((\sigma^t)_{t=0}^\infty\) such that \(\sigma^0(x) = s^*\) for all but finitely many \(x \in X\) and \(\lim_{t \to \infty} \sigma^t(x) \neq s^*\) for all \(x \in X\). Therefore, if \(s^*\) is uninvadable in \((X, P)\), then actions other than \(s^*\) are not contagious in \((X, P)\); if \(s^*\) is contagious in \((X, P)\), then actions other than \(s^*\) are not uninvadable in \((X, P)\).

Note that we call an action uninvadable if it is uninvadable in all unbounded networks. This strong notion of uninvadability is relevant when the analyst has no information about the underlying network structure but nonetheless wishes to predict the long-run behavior of the action distribution in the society. If an action \(s^*\) is uninvadable, then, once \(s^*\) is played by almost all players, the analyst should be confident that \(s^*\) will continue to be played by almost all players, whatever the actual network structure is and wherever the players who play actions other than \(s^*\) are located. Recall that we define a contagious action as an action that is contagious in some unbounded network (Definition 2). Thus, the notions of contagion and uninvadability are exclusive not only for a given network but also in the class of all unbounded networks. That is, if \(s^*\) is contagious, then actions other than \(s^*\) are not uninvadable; if \(s^*\) is uninvadable, then actions other than \(s^*\) are not contagious.

Our Theorem 1 will characterize contagion and uninvadability for the bilingual game. To study how the underlying network structure affects contagion and uninvadability, in Section 4, we will examine whether an action that is contagious (invadable, resp.) in some unbounded network remains contagious (becomes uninvadable, resp.) in the class of linear networks.

3. Contagion and uninvadability for the bilingual game

In this section, we give a complete characterization of contagion and uninvadability for the bilingual game. In particular, we show that the Pareto-dominant action \(A\) prevails if the bilingual cost \(e\) is small, while the pairwise risk-dominant action \(B\) survives if \(e\) is large. The thresholds will be constructed based on two parameters:
\[
e^* = \frac{(a - d)(d - b)}{2(c - b)},
\]
\[
e^{**} = \frac{(a - d)(d - b)(a - c)}{(c - b)(d - b) + (a - c)(a - d)}.
\]

It can be verified that \(e^* \preceq e^{**}\) if \(c - b \preceq a - c\) under the assumption (2.2b). The following result characterizes contagious and uninvadable actions in the bilingual game, quantifying our argument in the Introduction.

Theorem 1. Let \((S, u)\) be the bilingual game given by (2.2). (i) A is contagious if \(e < \max\{e^*, e^{**}\}\) and uninvadable if \(e < e^*\). (ii) B is contagious if \(e > e^*\) and uninvadable if \(e > \max\{e^*, e^{**}\}\).

Fig. 2 summarizes Theorem 1. Note that for any value of \(e\) (except for \(e = e^*\) when \(c - b \geq a - c\)), at least one action is contagious, and therefore uninvadability implies contagion.\(^{13}\) Moreover, if \(e^* < e < e^{**}\) (which is possible if \(c - b < a - c\)), then the two actions A and B are each contagious in respective networks, and therefore neither action is uninvadable.

Note also that contagion and uninvadability are complementary: except for knife-edge cases, A (B, resp.) is not contagious if and only if B (A, resp.) is uninvadable. The only if part is not immediate from the definitions of contagion and uninvadability per se. Indeed, it implies that if \(e > \max\{e^*, e^{**}\}\) (\(e < e^*\), resp.), then starting from finitely many A-players (B-players, resp.), A (B, resp.) cannot spread not only to the whole population, but also to any sub-population with infinite sum of interaction weights.\(^{14}\)

In Sections 3.1 and 3.2, we prove the contagion and the uninvadability parts of Theorem 1, respectively.

\(^{13}\) More generally, one can show, by appropriately translating the contagion argument of Frankel et al. [10] into our local interactions context, that any generic supermodular game has at least one contagious action. See Online Appendix B.7.2.

\(^{14}\) Therefore, even if we followed some of the recent papers (e.g., Acemoglu et al. [1], Young [50], and Kreindler and Young [21]) to define contagion by requiring an action to spread to a substantial fraction of players, we would obtain the same characterization as in Theorem 1.
Table 1
Contagion of action A.

<table>
<thead>
<tr>
<th>t</th>
<th>...</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>t = 0</td>
<td>...</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>...</td>
</tr>
<tr>
<td>t = 1</td>
<td>...</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>AB</td>
<td>B</td>
<td>B</td>
<td>...</td>
</tr>
<tr>
<td>t = 2</td>
<td>...</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>AB</td>
<td>AB</td>
<td>B</td>
<td>...</td>
</tr>
<tr>
<td>t = 3</td>
<td>...</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>AB</td>
<td>AB</td>
<td>B</td>
<td>...</td>
</tr>
</tbody>
</table>

3.1. Contagion

We decompose the proof of the contagion part of Theorem 1 into two lemmas: Lemma 1 provides sufficient conditions for contagion in general 3×3 supermodular games; Lemma 2 then checks by direct computation when those conditions are satisfied in the bilingual game.

To better understand how contagion occurs for the bilingual game, recall the network in Fig. 1, with a population of players indexed by integers $x \in X = \mathbb{Z}$, where player x interacts with players $x \pm 1$ with equal weights. Suppose that at time $t = 0$, all players play B except for players -1, 0, and 1 who play A, and assume that the bilingual cost e is small so that $e < (a - d)/2$ (where $(a - d)/2 \leq e^*$). We demonstrate that A spreads contagiously. (For concreteness, we here consider a particular best response sequence, while one can verify that contagion occurs for all best response sequences as the definition requires.) Note that since A is pairwise risk-dominated by B, no player is willing to switch from B to A. Suppose that player 2 adjusts his action at $t = 1$. With his two neighbors playing A and B, respectively, he abandons B and switches to AB since $e < (a - d)/2 \leq (a - c)/2$. Suppose next that player 3 revises his action at $t = 2$. Since he has one AB-neighbor and one B-neighbor, by $e < (a - d)/2$ he abandons B and switches to AB. Now let player 2 revise back again at $t = 3$. This time his neighbors are playing A and AB (instead of B), and hence he now switches to A. In this way, the region of A-players spreads, together with the “bilingual” region of AB-players between the A- and the B-regions; see Table 1.

The above construction is extended to obtain contagion of A for $e < e^*$ (and symmetrically that of B for $e > e^*$) in Lemma 1(1), where we construct a “linear” network with four neighbors with appropriately chosen weights (Fig. 3). To obtain contagion of A for $e^* \leq e < e^{**}$, however, we need to construct a “non-linear” network in Lemma 1(2), where different players may have different types of interacting neighborhoods (Fig. 4).

Consider a general 3×3 supermodular game with $S = \{0, 1, 2\}$. For $p \in (0, 1/2)$ and $q, r \in (0, 1)$ with $r \leq q$, let

15 In Section 4, we prove the necessity of “non-linear” networks.

16 Oyama and Takahashi [38] employ an analogous construction of an incomplete information perturbation in the context of informational robustness. See Online Appendix B.7.1.
\[\pi^a = \left(\frac{1}{2}, p, \frac{1}{2} - p \right), \quad \pi^b = \left(\frac{1}{2} - p, p, \frac{1}{2} \right), \]
\[\pi^c = \left(\frac{1+q}{2}, 0, \frac{1-q}{2} \right), \quad \pi^d = \left(\frac{1-r}{2}, 0, \frac{1+r}{2} \right), \quad \pi^e = \left(0, \frac{q+r}{2q}, \frac{q-r}{2q} \right), \]
\[\rho^c = \left(\frac{1-q}{2}, 0, \frac{1+q}{2} \right), \quad \rho^d = \left(\frac{1+r}{2}, 0, \frac{1-r}{2} \right), \quad \rho^e = \left(\frac{q-r}{2q}, \frac{q+r}{2q}, 0 \right). \]

The conditions for contagion of actions 0 and 2 are stated in terms of best responses to the above mixed actions.

Lemma 1. Let \((S, u)\) be any \(3 \times 3\) supermodular game with \(S = \{0, 1, 2\}.

(1) (i) If for some \(p \in (0, 1/2),\)
\[\max \text{br}(\pi^a) = 0 \quad \text{and} \quad \max \text{br}(\pi^b) \leq 1, \]
then 0 is contagious. (ii) If for some \(p \in (0, 1/2),\)
\[\min \text{br}(\pi^a) \geq 1 \quad \text{and} \quad \min \text{br}(\pi^b) = 2, \]
then 2 is contagious.

(2) (i) If for some \(q, r \in (0, 1)\) with \(r \leq q,\)
\[\max \text{br}(\pi^c) = 0, \quad \max \text{br}(\pi^d) \leq 1, \quad \text{and} \quad \max \text{br}(\pi^e) = 0, \]
then 0 is contagious. (ii) If for some \(q, r \in (0, 1)\) with \(r \leq q,\)
\[\min \text{br}(\rho^c) = 2, \quad \min \text{br}(\rho^d) \geq 1, \quad \text{and} \quad \min \text{br}(\rho^e) = 2, \]
then 2 is contagious.

Proof. Here we only show how to construct a network and an initial group of players that trigger contagion in each case, while completing the proofs is relegated to Section A.1.

(1) Since cases (i) and (ii) are symmetric, we only consider case (i). Let \(p \in (0, 1/2)\) satisfy (3.1). An unbounded network \((X, P)\) and a finite set of players \(Y \subset X\) for which action 0 spreads contagiously are constructed as follows.
Let \(X = \mathbb{Z} \), and \(P \) be defined by
\[
P(x, y) = \begin{cases}
p & \text{if } |x - y| = 1 \\p - \frac{1}{2} & \text{if } |x - y| = 2 \\0 & \text{otherwise.}
\end{cases}
\]
The network \((X, P)\) is depicted in Fig. 3.\(^{17}\)

Let \(Y = \{-3, \ldots, 2\} \). Then for any best response sequence \((\sigma^t)_{t=0}^{\infty}\) such that \(\sigma^0(x) = 0\) for all \(x \in Y\), we have \(\lim_{t \to \infty} \sigma^t(x) = 0\) for all \(x \in X\), as shown in Section A.1.

(2) Since cases (i) and (ii) are symmetric, we only consider case (i). Let \(q, r \in (0, 1), r \leq q\), satisfy (3.3). An unbounded network \((X, P)\) and a finite set of players \(Y \subset X\) for which action 0 spreads contagiously are constructed as follows.

Let \(X = \{\alpha, \beta\} \times \mathbb{Z} \), and \(P \) be defined by
\[
P((\alpha, i), (\alpha, j)) = \begin{cases}
1 - q & \text{if } |i - j| = 1 \\
0 & \text{otherwise},
\end{cases}
P((\alpha, i), (\beta, j)) = \begin{cases}
q + r & \text{if } i = j \\
q - r & \text{if } i = j + 1 \text{ and } j \geq 0 \\
q - r & \text{if } i = j - 1 \text{ and } j \leq 0 \\
0 & \text{otherwise},
\end{cases}
P((\beta, i), (\beta, j)) = 0 \quad \text{for all } i, j.
\]
The network \((X, P)\) is depicted in Fig. 4.

Let \(Y = \{\langle \alpha, i \rangle \mid i = -1, 0, 1\} \cup \{\langle \beta, i \rangle \mid i = -1, 0, 1\} \). Then for any best response sequence \((\sigma^t)_{t=0}^{\infty}\) such that \(\sigma^0(x) = 0\) for all \(x \in Y\), we have \(\lim_{t \to \infty} \sigma^t(\alpha, i) = \lim_{t \to \infty} \sigma^t(\beta, i) = 0\) for all \(i \in \mathbb{Z}\), as shown in Section A.1. \(\square\)

The following result characterizes when the hypotheses in Lemma 1 are satisfied in the bilingual game with \(0 = A, 1 = AB\), and \(2 = B\). Denote
\[
e^* = \left(\frac{(d - b)(2(a - c) - (d - b))}{2(a - c)}\right).
\]
Verify that \(e^{**} \leq e^* \) if \(c - b \geq a - c\).

Lemma 2. Let \((S, u)\) be the bilingual game given by (2.2).

1. (i) Condition (3.1) holds for some \(p \in (0, 1/2)\) if \(e < e^*\). (ii) Condition (3.2) holds for some \(p \in (0, 1/2)\) if \(e > e^*\).

2. Condition (3.3) holds for some \(0 < r \leq q < 1\) if \(e < \min\{e^{**}, e^d\}\).

Proof. See Section A.2. \(\square\)

Proof of the contagion part of Theorem 1. (i) Suppose that \(e < \max\{e^*, e^{**}\}\). If \(\max\{e^*, e^{**}\} = e^*\), then condition (3.1) holds for some \(p \in (0, 1/2)\) by Lemma 2(1-i), and hence \(A\) is contagious by Lemma 1(1-i). If \(\max\{e^*, e^{**}\} = e^{**}\), in which case \(c - b \leq a - c\) and thus \(\min\{e^{**}, e^d\} = e^{**}\), then condition (3.3) holds for some \(0 < r \leq q < 1\) by Lemma 2(2), and hence \(A\) is contagious by Lemma 1(2-i). In both cases, \(A\) is contagious.

\(^{17}\) One can instead employ a constant-weight linear network with sufficiently many neighbors, i.e., a network \((X, P)\) such that \(X = \mathbb{Z}\) and \(P(x, y) = 1\) if \(1 \leq |x - y| \leq n\), where \(n\) is sufficiently large, and \(P(x, y) = 0\) otherwise.
(ii) Suppose that $e > e^*$. Then condition (3.2) holds for some $p \in (0, 1/2)$ by Lemma 2(1-ii), and hence B is contagious by Lemma 1(1-ii). □

3.2. Uninvadability

We first provide a sufficient condition for uninvadability by using the concept of strict monotone potential maximizer (strict MP-maximizer) due to Morris and Ui [35] and Oyama et al. [39]. We then apply this concept to the bilingual game and characterize which action in the bilingual game is a strict MP-maximizer.

To avoid notational burden, we define strict MP-maximizer only for the smallest and the largest actions. Consider a general finite action set S equipped with a total order. We denote $\underline{s} = \min S$ and $\bar{s} = \max S$. For a function $f: S \times S \to \mathbb{R}$ and a probability distribution $\pi \in \Delta(S)$, write

$$br_f(\pi) = \{ h \in S \mid f(h, \pi) \geq f(h', \pi) \text{ for all } h' \in S \}.$$

(Thus the best response correspondence br for the game (S, u) as defined in (2.1) is now denoted br_u. A function f is symmetric if $f(h, k) = f(k, h)$ for all $h, k \in S$. A game (S, u) is a potential game if there exists a symmetric function v such that $u(h, k) - u(h', k) = v(h, k) - v(h', k)$ for all $h, h', k \in S$; v is called a potential function, and s^* is called a potential maximizer of (S, u) if (s^*, s^*) uniquely maximizes v (Monderer and Shapley [29]). Clearly, if (S, u) has a potential function v, then we have the equality $br_u(\pi) = br_v(\pi)$ for all $\pi \in \Delta(S)$. The following definition replaces this equality by an inequality.

Definition 4. (i) The smallest action \underline{s} is a strict MP-maximizer of game (S, u) if there exists a symmetric function $v: S \times S \to \mathbb{R}$ such that

$$\max br_u(\pi) \leq \max br_v(\pi) \quad (3.5)$$

for all $\pi \in \Delta(S)$, and $v(\underline{s}, \underline{s}) > v(h, k)$ for all $(h, k) \neq (\underline{s}, \underline{s})$. Such a function v is called a strict MP-function for \underline{s}.

(ii) The largest action \bar{s} is a strict MP-maximizer of game (S, u) if there exists a symmetric function $v: S \times S \to \mathbb{R}$ such that

$$\min br_u(\pi) \geq \min br_v(\pi) \quad (3.6)$$

for all $\pi \in \Delta(S)$, and $v(\bar{s}, \bar{s}) > v(h, k)$ for all $(h, k) \neq (\bar{s}, \bar{s})$. Such a function v is called a strict MP-function for \bar{s}.

If (S, u) has a potential function v, then the following function increases along any best response sequence $(\sigma^t)_{t=0}^\infty$ in any local interaction game (X, P, S, u):

$$V(t) = \frac{1}{2} \sum_{(x,y) \in X \times X} P(x, y) \left(v(\sigma^t(x), \sigma^t(y)) - v(s^*, s^*) \right).$$

Thus, if the potential maximizer s^* is initially played by almost all players (according to the interaction weights P) in the unbounded network (X, P) so that $V(0) > -\infty$, then it remains that $V(t) \geq V(0) > -\infty$, implying that s^* continues to be played by almost all players; that is, it is uninvadable (see Morris [32, Proposition 6.1]). The following lemma shows a counterpart of this result for strict MP-maximizer; the proof is available in Online Appendix B.2.
Lemma 3. Let \((S, u)\) be any game with totally ordered action set \(S\). If \(s^* \in \{s, \bar{s}\}\) is a strict MP-maximizer of \((S, u)\) with a strict MP-function \(v\) and if \(u \lor v\) is supermodular, then \(s^*\) is uninvadable.

The next lemma establishes the existence of a strict MP-maximizer in the bilingual game, which, together with Lemma 3, implies the uninvadability part of Theorem 1.

Lemma 4. Let \((S, u)\) be the bilingual game given by (2.2). (i) \(A\) is a strict MP-maximizer if \(e < e^*\). (ii) \(B\) is a strict MP-maximizer if \(e > \max\{e^*, e^{**}\}\).

Proof. See Section A.3. \(\square\)

In any \(2 \times 2\) coordination game, the risk-dominant equilibrium is a potential maximizer. Beyond \(2 \times 2\) coordination games, except for some special cases, no general method to find a strict MP-maximizer has been found. Morris [32], Frankel et al. [10], and Oyama and Takahashi [37] show that a strict MP-maximizer exists generically in the class of symmetric \(3 \times 3\) supermodular games with all three symmetric action profiles being Nash equilibria, but their proofs are by ad hoc construction of strict MP-functions.\(^{18}\) Similarly, our proof of Lemma 4 is by ad hoc construction of strict MP-functions involving tedious computations that rely on the special payoff structure of our bilingual game. We do not know how to extend this result to other classes of games. For example, in the class of all symmetric \(3 \times 3\) supermodular games with \(S = \{0, 1, 2\}\) where only \((0, 0)\) and \((2, 2)\) are pure Nash equilibria, we do not know whether a strict MP-function exists generically for action 2 when Conditions (3.1) and (3.3) in Lemma 1 fail to hold.

4. Linear networks and their non-criticality

In the previous section, we considered all possible unbounded networks. In particular, in Lemma 1, we allowed ourselves to choose any unbounded network to induce contagion; in Lemma 3, a strict MP-maximizer was shown to be uninvadable in all unbounded networks. In this section, we restrict our attention to the class of linear networks and derive conditions for contagion and uninvadability in this subclass.\(^{19}\)

In particular, we are interested in whether the class of linear networks is critical for contagion or uninvadability. For a given game \((S, u)\), action \(s^*\) is contagious (uninvadable, resp.) in a class \(C\) of networks if it is contagious in some network in \(C\) (uninvadable in all networks in \(C\), resp.). We say that a class \(C\) of networks is critical for contagion if any action \(s^*\) that is contagious in some unbounded network is also contagious in \(C\). In that case, one can restrict attention to \(C\) to characterize contagion. Conversely, if \(C\) is not critical for contagion, then some action is contagious only in an unbounded network outside \(C\). For example, for any \(2 \times 2\) coordination game, the risk-dominant equilibrium is contagious in the network in Fig. 1, and hence this network forms a (singleton) critical class for contagion. On the other hand, if \(u\) is the bilingual game, it follows from our analysis in the previous section that the network in Fig. 1 is not critical for some parameter values, while the union of two classes of networks given by Figs. 3 and 4 is critical.

\(^{18}\) See also Honda [17, Footnote 9].

\(^{19}\) See Online Appendix B.3 for the analysis of the larger class of multidimensional lattice networks.
We say that a network \((X, P)\) is linear if \(X = \mathbb{Z}\) and interaction weights \(P\) are invariant up to translation: \(P(x, y) = P(x + z, y + z)\) for any \(x, y, z \in \mathbb{Z}\). (Note that any linear network is unbounded.) Clearly, both networks in Figs. 1 and 3 are linear, whereas the network in Fig. 4 is not.\(^{20}\) Therefore, it follows from the proof of Lemma 1 that action \(A\) (or resp.) is contagious in the class of linear networks if \(e < e^*\) (or \(e > e^*\), resp.). The following theorem shows that these conditions are also sufficient for uninvadability in linear networks.

Theorem 2. Let \((S, u)\) be the bilingual game given by (2.2). (i) \(A\) is contagious and uninvadable in the class of linear networks if \(e < e^*\). (ii) \(B\) is contagious and uninvadable in the class of linear networks if \(e > e^*\).

Proof. See Section A.4. \(\Box\)

Theorem 2 extends to “well-behaved” multidimensional lattice networks.\(^{21}\) See Online Appendix B.3 for a formal statement and its proof. Goyal and Janssen [15, Theorem 2] obtain the same characterization for contagion in a circular network with translation invariant interactions in a setting with a continuum of players.

The characterization given in Theorem 2 differs from the one for the universal domain given in Theorem 1 when \(c - b < a - c\), implying that, for the range of parameter values \((e^*, e^{**})\), the class of linear networks is not critical for contagion.

The non-criticality of linear networks is a novel phenomenon beyond \(2 \times 2\) coordination games, and worth scrutinizing. Note that for the bilingual game, contagion in all linear networks occurs in more or less the same way: a contagious action spreads from middle to both sides as in Table 1. Differences in interaction weights may affect the size of the “bilingual” region of \(AB\)-players, but do not affect which action to be contagious.\(^{22}\) In contrast, in the proof of Lemma 1(2), the non-linear network depicted in Fig. 4 allows players \((\alpha, i)\) and \((\beta, i)\) to face different distributions of neighbors’ actions, and induces a fundamentally different form of contagion. It happens that for a \(2 \times 2\) coordination game, the risk-dominant action is a potential maximizer, and hence it is not only contagious in linear networks, but also uninvadable in all unbounded networks. This is a peculiarity of \(2 \times 2\) games. For a more general game, the fact that an action is contagious in linear networks does not guarantee that the action is an MP-maximizer, as the bilingual game with \(e^* < e < e^{**}\) provides a concrete counterexample.

5. **Comparison of networks**

The analysis in the previous two sections was to fix a game and find a network (linear or non-linear) in which a given action is contagious, thereby differentiating, whenever possible, among strict Nash equilibria. In this section, we consider a converse exercise: fix a network and identify the class of games in which a given action is contagious. More precisely, we ask the following question: For a pair of networks, which one has a larger set (with respect to set

\(^{20}\) Even if we map \(X = \{\alpha, \beta\} \times \mathbb{Z}\) to \(\mathbb{Z}\) by relabeling \((\alpha, i)\) with \(2i\) and \((\beta, i)\) with \(2i + 1\), interaction weights do not satisfy translation invariance.

\(^{21}\) In the context of incomplete information games, Oury [36] analogously extends the noise-independent global game selection from one-dimensional to multidimensional signals. See Online Appendix B.7.2.

\(^{22}\) In the context of global games, Frankel et al. [10] and Basteck and Daniëls [2] prove analogous results for symmetric \(3 \times 3\) supermodular games. See Online Appendix B.7.2.
inclusion) of payoff parameter values for which a given action is contagious? Such comparison is formalized by the following preorder over the set of networks.

Definition 5. A network \((\hat{X}, \hat{P})\) is more contagion-inducing than another network \((X, P)\) in a class \(G\) of games if for any game \((S, u) \in G\), an action \(s^*\) is contagious in \((\hat{X}, \hat{P})\) whenever \(s^*\) is contagious in \((X, P)\).\(^{23}\)

Morris’ [33] approach is in fact in the spirit of this converse exercise for the class of all \(2 \times 2\) coordination games. He defines the contagion threshold of a network \((X, P)\) to be the supremum of \(q \in (0, 1)\) for which action 1 of the two-action game

\[
\begin{pmatrix}
0 & 1 \\
0 & 1 - q \\
q & 0
\end{pmatrix}
\]

is contagious in \((X, P)\). The contagion threshold naturally represents the preorder in **Definition 5** with \(G\) being the class of \(2 \times 2\) coordination games. That is, a network is more contagion-inducing than another network in the class of \(2 \times 2\) coordination games if and only if the contagion threshold of the former is larger than that of the latter. In particular, the preorder in this case is complete.

We study this preorder with \(G\) being the class of all supermodular games. Note that our analysis so far implies that this preorder is incomplete.

Example 1 (Fig. 3 versus Fig. 4). Consider the bilingual game with \(e^* < e < e^{**}\). Recall the two networks in the proof of Lemma 1, where we choose \(p, q, r\) that satisfy (3.2) and (3.3). Then action \(B\) is contagious in the network of Fig. 3, whereas action \(A\) is contagious in the network of Fig. 4. Thus neither network is more contagion-inducing than the other in the bilingual game.

In principle, comparison of networks based on games with more actions can provide at least a weakly finer analysis of network topologies. The next example shows that the bilingual game provides a strictly finer analysis than \(2 \times 2\) coordination games.

Example 2 (Tree versus ladder). Consider the “tree” depicted in Fig. 5, where each player is indexed by a finite sequence of 0 and 1, \(X = \bigcup_{n \geq 0} \{0, 1\}^n\). Player \(x \in X\) interacts with \(x0, x1,\) and \(x^-\) with equal weights, where \(x^-\) is the immediate predecessor of \(x\), i.e., the truncation of \(x\) that removes the last digit of \(x\). Also consider the “ladder” depicted in Fig. 6, where each player is indexed by a pair of \(\alpha\) or \(\beta\) and an integer, \(X = \{\alpha, \beta\} \times \mathbb{Z}\). With equal weights, player \((\alpha, i)\) interacts with \((\alpha, i \pm 1)\) and \((\beta, i)\), and player \((\beta, i)\) interacts with \((\alpha, i)\) and \((\beta, i \pm 1)\).

For these networks, we have the following:

- In \(2 \times 2\) coordination games, the two networks are equally contagion-inducing. The contagion threshold of each network is \(1/3\) (Examples 4 and 5 in Morris [33] with \(m = 2\)).
- In the bilingual game, the ladder is more contagion-inducing than the tree. This will be proved in **Example 3** by invoking **Theorem 3** below.

\(^{23}\) Recall that \(s^*\) is contagious in a network if there exists some finite set of players in that network from which \(s^*\) spreads contagiously. Thus, our preorder does not compare the “richness” of the sets of initial players who can trigger contagion in \((\hat{X}, \hat{P})\) and those in \((X, P)\).
Moreover, in the bilingual game, the ladder is strictly more contagion-inducing than the tree.

To establish the third point, consider a set of parameter values of the bilingual game such that \(br(2/3, 1/3, 0) = \{A\} \), \(br(2/3, 0, 1/3) = \{AB\} \), and \(br(1/3, 1/3, 1/3) = \{B\} \), that is, \(2a - c < 2d - b \) and \((2a - c - d)/3 < e < \min((d - b)/3, 2(a - c)/3) \), which are satisfied, for example, by \((a, b, c, d) = (11, 0, 3, 10) \) and \(3 < e < 10/3 \). For such parameter values, we claim that action \(B \) is contagious in the ladder, but not in the tree. First, in the ladder, suppose that initially players \((\alpha, -1), (\alpha, 0), (\beta, -1), \) and \((\beta, 0) \) play \(B \), while all the others play \(A \). Then players \((\alpha, 1) \) and \((\beta, 1) \) will switch from \(A \) to \(AB \), and to \(B \). In this way, all players subsequently switch from \(A \) to \(AB \), and to \(B \); thus \(B \) is contagious in the ladder. Second, in the tree, for any finite set \(Y \) of initial \(B \)-players, pick a maximal (longest) element \(x \) of \(Y \) and assume that all successors of \(x \) play \(A \). Then players \(x0 \) and \(x1 \) switch from \(A \) to \(AB \), but all the other successors of \(x \) continue to play \(A \) for any best response sequence; thus \(B \) is not contagious in the tree.

In Example 2, note that the ladder is obtained by “bundling” (or “identifying”) nodes of the tree in the following way: map \(\emptyset \) in the tree to \((\alpha, 0) \) in the ladder, \(0 \) to \((\alpha, 1) \), \(1 \) to \((\beta, 0) \), \(00 \) to \((\alpha, 2) \), \(11 \) to \((\beta, -1) \), and “bundle” \(01 \) and \(10 \) and map them to \((\beta, 1) \), and so on. The existence of such a mapping is the key to proving the second point in Example 2. In fact, it implies that any best response sequence in the ladder can be replicated by a best response sequence in the tree, and thus if an action spreads along the latter sequence, so does it along the former. This in turn implies that whenever an action is contagious in the tree, so is it in the ladder.

The following notion generalizes the idea of “bundling” described above.

Definition 6. For two networks \((X, P) \) and \((\hat{X}, \hat{P}) \), a mapping \(\varphi: X \to \hat{X} \) is a *weight-preserving node identification* from \((X, P) \) to \((\hat{X}, \hat{P}) \) if \(\varphi \) is onto and there exists a finite subset \(E \) of \(X \) such that for any \(x \in X \setminus E \) and any \(\hat{y} \in \hat{X} \),...
\[
\hat{P}(\varphi(x), \hat{y}) = \sum_{y \in \varphi^{-1}(\hat{y})} P(x, y).
\]

A node in \(E\) is called an exceptiona node.\(^{24}\)

The next theorem shows that the existence of a weight-preserving node identification between two networks is sufficient for one network to be more contagion-inducing than the other in the class of supermodular games, including, but not limited to, all \(2 \times 2\) coordination games and the bilingual game.

Theorem 3. If there exists a weight-preserving node identification from \((X, P)\) to \((\hat{X}, \hat{P})\), then \((\hat{X}, \hat{P})\) is more contagion-inducing than \((X, P)\) in the class of all supermodular games.

The proof proceeds roughly as follows. Suppose that \(s^*\) is contagious in \((X, P)\), and \(\varphi\) is a weight-preserving node identification from \((X, P)\) to \((\hat{X}, \hat{P})\). Take any best response sequence \((\hat{\sigma}^t)\) on \((\hat{X}, \hat{P})\). We construct a sequence \((\sigma^t)\) on \((X, P)\) by \(\sigma^t = \hat{\sigma}^t \circ \varphi\) for any \(t \geq 0\), which, by the definition of weight-preserving node identification, is almost (but not quite, as we explain below) a best response sequence. Since \(s^*\) is contagious in \((X, P)\), \((\sigma^t(x))\) converges to \(s^*\) for any \(x \in X\), and hence \((\hat{\sigma}^t(\hat{x}))\) also converges to \(s^*\) for any \(\hat{x} \in \hat{X}\). This argument, however, has two issues: first, along the sequence \((\sigma^t)\), players in each \(\varphi^{-1}(\hat{x})\) change actions simultaneously, which violates property (i) in **Definition 1**; second, players at exceptional nodes may not play best responses. We resolve these issues in Online Appendix B.4.

Note that node identification is different from adding or subtracting edges. Even if we construct \((\hat{X}, \hat{P})\) by adding edges to \((X, P)\), \((\hat{X}, \hat{P})\) may be more contagion-inducing than, less contagion-inducing than, or incomparable to \((X, P)\).\(^{25}\)

In the next two examples, we will construct weight-preserving node identifications and illustrate the implications of **Theorem 3**.

Example 3 (Tree versus ladder, continued). There exists a weight-preserving node identification from the tree to the ladder. In fact, one can construct such a mapping recursively as follows: given that each node \(x \in \bigcup_{k=0}^{n} [0, 1]^k\) of the tree with depth at most \(n\) is assigned with a node \(\varphi(x)\) of the ladder, for each \(x \in [0, 1]^n\), we assign \(x0\) and \(x1\) with two of the neighbors of \(\varphi(x)\) in the ladder other than \(\varphi(x^-)\). We can always do so since each node on the ladder has three neighbors. For example, let

\[
\varphi(\emptyset) = (\alpha, 0), \\
\varphi(0) = (\alpha, 1), \quad \varphi(1) = (\beta, 0), \\
\varphi(00) = (\alpha, 2), \quad \varphi(01) = \varphi(10) = (\beta, 1), \quad \varphi(11) = (\beta, -1), \ldots
\]

\(^{24}\) Allowing for exceptional nodes is essential for constructing a weight-preserving node identification from the tree to the ladder (see **Example 3**), but the reader may want to assume \(E = \emptyset\) upon the first reading.

\(^{25}\) In contrast, Galeotti et al. \([12]\), for example, obtain the monotonicity of equilibrium actions with respect to adding or subtracting edges in their framework where the action space is a subset of the real line and the payoffs depend on the summation or maximum of neighbors’ actions. See also Wolitzky \([46]\), who shows that the level of cooperation in a repeated game with a monitoring network is monotonic with respect to his notion of network centrality, where a network is more central than another network if the former is obtained by adding edges to the latter.
Fig. 7. Two-dimensional lattice.

Then \(\varphi \) preserves interaction weights except at the root \(\emptyset \) (\(\varphi \) does not preserve interaction weights at the root \(\emptyset \) because player \(\emptyset \) has two neighbors in the tree while player \(\varphi(\emptyset) \) has three neighbors in the ladder). Thus, by Theorem 3, the ladder is more contagion-inducing than the tree in the class of all supermodular games.

Example 4 (Line versus lattice). Consider the line depicted in Fig. 1, and the two-dimensional lattice depicted in Fig. 7 where each player \(x = (x_1, x_2) \in \mathbb{Z}^2 \) interacts with \((x_1 \pm 1, x_2)\) and \((x_1, x_2 \pm 1)\) with equal weights. Then the mapping \(\varphi(x_1, x_2) = x_1 + x_2 \) is a weight-preserving node identification from the two-dimensional lattice to the line with no exceptional node. Thus, by Theorem 3, the line is more contagion-inducing (in fact, strictly more contagion-inducing) than the two-dimensional lattice in the class of all supermodular games.

Morris [33] shows that the line is more contagion-inducing than the two-dimensional lattice in the class of \(2 \times 2 \) coordination games by computing their contagion thresholds explicitly. Our Theorem 3 gives an alternative proof to this result, which generalizes to other pairs of networks and to all supermodular games.

The next example shows that the converse of Theorem 3 does not hold. That is, the existence of a weight-preserving node identification is not necessary for two networks to be comparable.

Example 5 (Line versus line). Consider two linear networks, one depicted in Fig. 1 and the other in Fig. 3 with any fixed \(p \in (0, 1/2) \). Then one can verify that Fig. 3 is (strictly) more contagion-inducing than Fig. 1 in the class of all supermodular games. However, no node identification from Fig. 1 to Fig. 3 preserves interaction weights because any weight-preserving node identification is allowed to increase the number of neighbors only for exceptional nodes.

For other relevant examples, see Online Appendix B.5.

6. Conclusion

We have considered contagion and uninvasibility beyond \(2 \times 2 \) coordination games, especially for the bilingual game. By incorporating a third action, our study refines Morris’ [33] approach that analyzes strategic behavior for two-action games. In principle, an analysis with more actions will reveal, at least weakly, finer structures of underlying networks than that with
two actions, whereas conceivably the analysis would become intractable with too many actions. We have demonstrated that our three-action bilingual game is simple enough to obtain a complete characterization of contagion and uninvadability (Theorem 1), and yet rich enough to offer a strictly finer analysis than that based on two-action coordination games (Example 2). We have also developed the concept of weight-preserving node identification to provide a sufficient condition for comparing two networks in terms of their power of inducing contagion (Theorem 3). This concept may be of independent interest, and other contexts to which it applies are yet to be explored in future research.

We close with brief discussions on the robustness of our results to various forms of randomness (see also Morris [33, Section 7]). First, introducing randomness in action revision opportunities will not change our results as we have already allowed for all best response sequences (Definition 1; see also Footnote 9 and Online Appendix B.1).

Second, randomness in the initial action configuration may foster more contagion. In fact, Lee and Valentinyi [22] show that for 2×2 coordination games, the contagion threshold of the two-dimensional lattice is $1/2$ if actions in the initial configuration are given i.i.d. across agents, whereas the contagion threshold in Morris’ [33] sense is $1/4$. An extension to games with more than two actions, including the bilingual game, is left open.

Third, persistent randomness in best responses has been considered by Blume [4], Ellison [8], Montanari and Saberi [30], Young [50], and Kreindler and Young [21], among others. For the bilingual game, stochastic stability in linear networks is characterized by $e \leq e^*$, which is distinct from the characterization of stochastic stability under global interactions obtained by Galesloot and Goyal [13]. It remains open to characterize stochastic stability in non-linear networks.

Fourth, it would be interesting to incorporate heterogeneity in players’ preferences. As in Young [49] and Acemoglu et al. [1] for two-action games, one may allow for player-specific bilingual cost e_x for each player x in the bilingual game. Theorem 1 obviously extends if the corresponding conditions are satisfied uniformly for all players; e.g., A is contagious if $\sup_{x \in X} e_x < \max\{e^*, e^{**}\}$. When e_x distributes below and above the cutoffs, coexistence of conventions may arise depending on the correlation between preferences and locations of the players. Following Manski [26], one may also address the identification problem of local interactions and preference correlation in our model.

Fifth, as concrete examples we have considered various networks with some “recurrent” structures, but have been silent about more complex and less structured networks. As a tractable first step, it would be worthwhile to consider random networks, which generate such networks with high probability (see, e.g., Pastor-Satorras and Vespignani [42], Watts [45], López-Pintado [24,25], Berninghaus and Haller [3], Lelarge [23]).

Appendix A

A.1. Proof of Lemma 1

(1) Let (X, P) be as given in the main text. By (3.1) and the supermodularity of u, we have the following properties.

(a) If $\sigma(x - 2) = \sigma(x - 1) = 0$ and $\sigma(x + 1) \leq 1$ (or symmetrically if $\sigma(x - 1) \leq 1$ and $\sigma(x + 1) = \sigma(x + 2) = 0$), then $\max BR(\sigma|x) = 0$.

(b) If $\sigma(x - 2) = 0$ and $\sigma(x - 1) \leq 1$ (or symmetrically if $\sigma(x + 1) \leq 1$ and $\sigma(x + 2) = 0$), then $\max BR(\sigma|x) \leq 1$.
Let $Y = \{-3, \ldots, 2\} \subset X$, and consider any best response sequence $(\sigma^t)^t_{t=0}$ such that $\sigma^0(x) = 0$ for all $x \in Y$. We want to show that
\[
\lim_{t \to \infty} \sigma^t(x) = 0 \quad (\Diamond_x)
\]
holds for all $x \in X$. We only consider players $x \geq 0$; the analogous argument applies to $x < 0$.

We show (\Diamond_0) and (\Diamond_1), or more strongly, that
\[
\begin{align*}
\sigma^t(x) &= 0 \quad \text{for } x = -2, \ldots, 1 \\
\sigma^t(x) &\leq 1 \quad \text{for } x = -3, 2
\end{align*}
\]
for all $t \geq 0$. Indeed, this holds for $t = 0$ by construction, and if it holds for $t - 1$, then we have $\sigma^t(x) = 0$ for $x = -2, \ldots, 1$ and $\sigma^t(x) \leq 1$ for $x = -3, 2$ by properties (a) and (b), respectively.

Assume (\Diamond_{x-2}) and (\Diamond_{x-1}). Then, there exists T_0 such that $\sigma^t(x - 2) = \sigma^t(x - 1) = 0$ for all $t \geq T_0$. By property (b), this implies that there exists T_1 such that $\sigma^t(x) \leq 1$ for all $t \geq T_1$. By property (b) applied for $x + 1$ in place of x, this implies that there exists T_2 such that $\sigma^t(x + 1) \leq 1$ for all $t \geq T_2$. By property (a), this implies that there exists T_3 such that $\sigma^t(x) = 0$ for all $t \geq T_3$, meaning that (\Diamond_x) holds.

(2) Let (X, P) be as given in the main text. By (3.3) and the supermodularity of u, we have the following properties.

(c) For $i \geq 1$, if $\sigma(\alpha, i - 1) = \sigma(\beta, i - 1) = \sigma(\beta, i) = 0$ (or symmetrically for $i \leq -1$, if $\sigma(\alpha, i + 1) = \sigma(\beta, i + 1) = \sigma(\beta, i) = 0$), then $\max BR(\sigma|\alpha, i)) = 0$.

(d) For $i \geq 1$, if $\sigma(\alpha, i - 1) = \sigma(\beta, i - 1) = 0$ (or symmetrically for $i \leq -1$, if $\sigma(\alpha, i + 1) = \sigma(\beta, i + 1) = 0$), then $\max BR(\sigma|\alpha, i)) \leq 1$.

(e) If $\sigma(\alpha, i) \leq 1$, then $\max BR(\sigma|\beta, i)) = 0$.

Let $Y = \{(\alpha, i) | i = -1, 0, 1\} \cup \{(\beta, i) | i = -1, 0, 1\} \subset X$, and consider any best response sequence $(\sigma^t)^t_{t=0}$ such that $\sigma^0(x) = 0$ for all $x \in Y$. We want to show that
\[
\lim_{t \to \infty} \sigma^t(\alpha, i) = \lim_{t \to \infty} \sigma^t(\beta, i) = 0 \quad (\Diamond_i)
\]
holds for all $i \in \mathbb{Z}$. We only consider $i \geq 0$; the analogous argument applies to $i < 0$.

We show (\Diamond_1), or more strongly, that
\[
\sigma^t(\alpha, i) = \sigma^t(\beta, i) = 0 \quad \text{for } i = -1, 0, 1
\]
for all $t \geq 0$. Indeed, this holds for $t = 0$ by construction, and if it holds for $t - 1$, then we have $\sigma^t(\alpha, i) = \sigma^t(\beta, i) = 0$, $i = -1, 0, 1$, by properties (c) and (e), respectively.

Assume (\Diamond_{i-1}). Then, there exists T_0 such that $\sigma^t(\alpha, i - 1) = \sigma^t(\beta, i - 1) = 0$ for all $t \geq T_0$. By property (d), this implies that there exists T_1 such that $\sigma^t(\alpha, i) \leq 1$ for all $t \geq T_1$. By property (e), this implies that there exists T_2 such that $\sigma^t(\beta, i) = 0$ for all $t \geq T_2$. By property (c), this implies that there exists T_3 such that $\sigma^t(\alpha, i) = 0$ for all $t \geq T_3$. We thus obtain (\Diamond_i).

A.2. Proof of Lemma 2

(1) Note that for all $p \in (0, 1/2)$, we have $u(B, \pi^b) > u(A, \pi^b)$ and hence $A \notin br(\pi^b)$.

(a) If $e > (a - c)/2$, then condition (3.2) holds for some $p \in (0, 1/2)$ close to 0.

(b) If $e \leq (a - c)/2$, then for all $p \in (0, 1/2)$, $u(AB, \pi^a) > u(B, \pi^a)$ and hence $B \notin br(\pi^a)$. Therefore, $\max br(\pi^a) = A \leftrightarrow u(A, \pi^a) > u(AB, \pi^a)$ and $\max br(\pi^b) \leq AB \leftrightarrow u(AB, \pi^b) > \max br(\pi^b)$.
$u(B, \pi^b)$, while $\min br(\pi^a) \geq AB \Leftrightarrow u(AB, \pi^a) > u(A, \pi^a)$ and $\min br(\pi^b) = B \Leftrightarrow u(B, \pi^b) > u(AB, \pi^b)$.

Verify that $e^* < (a - c)/2$ with the equality holding if and only if $c = d$. If $e^* < (a - c)/2$ ($\Leftrightarrow c < d$), then, since

$$u(A, \pi^a) - u(AB, \pi^a) = (d - b) \left\{ p - \frac{(d - b) - 2e}{2(d - b)} \right\},$$

$$u(AB, \pi^b) - u(B, \pi^b) = (d - c) \left\{ \frac{(a - c) - 2e}{2(d - c)} - p \right\},$$

it follows that condition (3.1) holds for some $p \in (0, 1/2)$ if and only if

$$\frac{(d - b) - 2e}{2(d - b)} < \frac{(a - c) - 2e}{2(d - c)} \iff e < e^*,$$

while condition (3.2) holds for some $p \in (0, 1/2)$ if and only if

$$\frac{(a - c) - 2e}{2(d - c)} < \frac{(d - b) - 2e}{2(d - b)} \iff e > e^*.$$

If $e^* = (a - c)/2$ ($\Leftrightarrow c = d$), then $u(A, \pi^a) > u(AB, \pi^a)$ and $u(AB, \pi^b) > u(B, \pi^b)$ for some $p \in (0, 1/2)$ close to $1/2$ whenever $e < e^*$. (Note that we never have $e > e^*$ in the current case of $e^* = (a - c)/2$ (i.e. e^*).

(2) Note that $u(B, \pi^d) > u(A, \pi^d)$ and hence $A \notin br(\pi^d)$ for all $r \in (0, 1)$. Therefore,

$$\max br(\pi^d) \leq AB \iff u(AB, \pi^d) > u(B, \pi^d) \iff r < \frac{(a - c) - 2e}{a - c}. \quad (A.1)$$

For the last inequality to hold, it is necessary that $e < (a - c)/2$.

Under the condition that $e < (a - c)/2$, note that $u(AB, \pi^e) > u(B, \pi^e)$ and hence $B \notin br(\pi^e)$ for all $q \in (0, 1)$. Therefore,

$$\max br(\pi^e) = A \iff u(A, \pi^e) > u(AB, \pi^e) \iff q > \frac{(d - b) - 2e}{d - b}. \quad (A.2)$$

Finally,

$$\max br(\pi^e) = A \iff u(A, \pi^e) > \max \{u(AB, \pi^e), u(B, \pi^e)\} \iff r > \max \left\{ \frac{(d - b) - 2e}{d - b}, \frac{(d - b) - (a - d)}{a - b} q \right\}. \quad (A.3)$$

From (A.1)–(A.3), it follows that condition (3.3) holds for some $0 < r \leq q < 1$ if and only if

$$\frac{(a - c) - 2e}{a - c} > \frac{(d - b) - 2e}{d - b} \max \left\{ \frac{(d - b) - 2e}{d - b}, \frac{(d - b) - (a - d)}{a - b} q \right\},$$

which reduces to $e < \min \{e^*, e^{**}\}$.
A.3. Proof of Lemma 4

For \(f : S \times S \to \mathbb{R} \) and \(h \in S \), let

\[
\Pi_h(f) = \{ \pi \in \Delta(S) \mid h \in br_f(\pi) \}.
\]

Note that \(A \) is a strict MP-maximizer of \((S, u)\) with MP-function \(v \) if and only if \(\{(A, A)\} = \arg \max_{(h,k) \in S \times S} v(h, k), \Pi_B(u) \subset \Pi_B(v), \) and \(\Pi_{AB}(u) \subset \Pi_{AB}(v) \cup \Pi_B(v) \), while \(B \) is a strict MP-maximizer of \((S, u)\) with MP-function \(v \) if and only if \(\{(B, B)\} = \arg \max_{(h,k) \in S \times S} v(h, k), \Pi_A(u) \subset \Pi_A(v), \) and \(\Pi_{AB}(u) \subset \Pi_{AB}(v) \cup \Pi_A(v) \).

Denote

\[
e^b = \frac{(a - d)(d - b)}{a - b}.
\]

Verify that \(e^b \leq e^* \leq e^{**} \) if \(c - b \leq a - c \).

Lemma 4 is proved by Lemmas A.1–A.4 which follow. Lemma A.1 considers the case in which \(c = d \) and \(e < e^* = (a - c)/2 \); Lemma A.2 considers the cases of \(e < e^* \) and \(e^* < e \leq e^b \) under the assumption that \(c \neq d \); and Lemmas A.3 and A.4 cover the cases of \(\max\{e^{**}, e^b\} < e \leq (a - c)/2 \) and \(e > (a - c)/2 \), respectively.

Lemma A.1. Suppose that \(c = d \). If \(e < e^* = (a - c)/2 = (a - d)/2 \), then \(A \) is a strict MP-maximizer.

Proof. Since \(e < e^* = (a - c)/2 = (a - d)/2 < (d - b)/2 \), we have

\[
u(A, k) - u(AB, k) < u(AB, k) - u(B, k) \tag{A.4}\]

for all \(k = A, AB, B \). Let \(v \) be defined by

\[
A \begin{pmatrix} A & AB & B \\ AB & e & 0 & -\lambda e - (d - b) + e \\ B & 0 & -e & -\lambda e \\ \end{pmatrix}.
\]

where

\[
\lambda = \frac{(d - b) - e}{(a - d) - 2e} > 0.
\]

The function \(v \) is maximized at \((A, A)\). Verify that

\[
v(A, k) - v(AB, k) = u(A, k) - u(AB, k), \tag{A.5}\]

\[
v(AB, k) - v(B, k) \leq \lambda(u(AB, k) - u(B, k)) \tag{A.6}\]

for all \(k = A, AB, B \). Then, we have \(\Pi_{AB}(u) \subset \Pi_{AB}(v) \cup \Pi_B(v) \) by (A.5), and \(\Pi_B(u) \subset \Pi_B(v) \) by (A.4), (A.5), and (A.6). \(\square \)

Lemma A.2. Suppose that \(c \neq d \). (i) If \(e < e^* \), then \(A \) is a strict MP-maximizer. (ii) If \(e^* < e \leq e^b \), then \(B \) is a strict MP-maximizer.
Proof. Let \(v \) be defined by

\[
\begin{pmatrix}
A & AB & B \\
\lambda e & \lambda e - (a - c) + e & -(a - d) + e \\
\lambda e & 0 & -(a - d) + 2e \\
\end{pmatrix},
\]

where

\[
\lambda = \frac{d - c}{d - b} > 0.
\]

We show that the function \(v \) works as a strict MP-function if \(e \leq \max\{e^*, e^\dagger\} \) and \(e \neq e^* \).

We have the following.

Claim 1. (i) \(\{(A, A)\} = \arg \max_{(h, k) \in S \times S} v(h, k) \) if \(e < e^* \). (ii) \(\{(B, B)\} = \arg \max_{(h, k) \in S \times S} v(h, k) \) if \(e > e^* \).

Verify that

\[
v(A, k) - v(AB, k) = \lambda(u(A, k) - u(AB, k)), \tag{A.7}
\]

\[
v(AB, k) - v(B, k) = u(AB, k) - u(B, k) \tag{A.8}
\]

for all \(k = A, AB, B \). These immediately imply the following.

Claim 2. \(\Pi_{AB}(u) = \Pi_{AB}(v) \).

For \(\pi = (\pi_A, \pi_{AB}, \pi_B) \in \Delta(S) \), we have

\[
u(A, \pi) - u(AB, \pi) = (d - b) \left(\frac{e}{d - b} - \pi_B \right), \tag{A.9}
\]

\[
\frac{e}{d - b} - \pi_B \right) \right) + (a - d) \left(\frac{e}{d - b} - \pi_B \right), \tag{A.10}
\]

\[
v(B, \pi) - u(A, \pi) = u(B, \pi) - u(A, \pi) + (c - b) \left(\frac{e}{d - b} - \pi_B \right) \tag{A.11}
\]

These imply the following.

Claim 3. \(\Pi_B(u) \subset \Pi_B(v) \).

Proof. Assume that \(\pi = (\pi_A, \pi_{AB}, \pi_B) \in \Pi_B(u) \) (\(\Leftrightarrow u(B, \pi) \geq u(A, \pi) \) and \(u(B, \pi) \geq u(AB, \pi) \)). First, by (A.8), \(u(B, \pi) \geq u(AB, \pi) \) implies \(v(B, \pi) \geq v(AB, \pi) \). Second, if \(\pi_B \geq e/(d - b) \), then by (A.7) and (A.9), we have \(v(AB, \pi) \geq v(A, \pi) \) and therefore \(v(B, \pi) \geq v(A, \pi) \), while if \(\pi_B < e/(d - b) \), then by (A.11), \(u(B, \pi) \geq u(A, \pi) \) implies \(v(B, \pi) > v(A, \pi) \). We thus have \(\pi \in \Pi_B(v) \). □

Claim 4. If \(e \leq e^\dagger \), then \(br_u = br_v \).
Proof. In light of Claim 2, we want to show that $\Pi_A(u) = \Pi_A(v)$ and $\Pi_B(u) = \Pi_B(v)$.

Note in (A.10) that $e \leq e^b$ implies $((a - b)e - (a - d)(d - b))/(d - b)(d - c) \leq 0$. By (A.9) and (A.10), we therefore have $u(A, \pi) \geq u(B, \pi) \Rightarrow u(AB, \pi) \geq u(B, \pi)$ and $u(B, \pi) \geq u(AB, \pi) \Rightarrow u(AB, \pi) \geq u(A, \pi)$. By (A.7) and (A.8), it thus follows that $u(A, \pi) \geq u(B, \pi) \Rightarrow u(AB, \pi)$ and $u(B, \pi) \geq u(A, \pi) \Rightarrow u(AB, \pi)$.

We now complete the proof of Lemma A.2. (i) If $e < e^*$, Claims 1, 2, and 3 imply that A is a strict MP-maximizer. (ii) If $e^* < e \leq e^b$, Claims 1 and 4 imply that B is a strict MP-maximizer.

Lemma A.3. If $\max\{e^*, e^b\} < e \leq (a - c)/2$, then B is a strict MP-maximizer.

Proof. Let v be defined by

$$
\begin{bmatrix}
A & AB & B \\
A & 0 & -\lambda e & -\lambda e \\
AB & -\lambda e & -2\lambda e & \lambda\{(d - b) - 2e\} \\
B & -\lambda e & \lambda\{(d - b) - 2e\} & \lambda\{(d - c) - e\}
\end{bmatrix}
$$

where

$$
\lambda = \frac{(a - c)(d - b) - (a - b)e}{(a - b)(d - b) - e} > 0.
$$

The function v is maximized at (B, B). Verify that

$$
v(A, k) - v(AB, k) = \lambda\{u(A, k) - u(AB, k)\}, \quad (A.12)
$$

$$
v(A, k) - v(B, k) \geq \frac{a - c}{a - b}\{u(A, k) - u(B, k)\}, \quad (A.13)
$$

$$
v(AB, k) - v(B, k) \geq u(AB, k) - u(B, k), \quad (A.14)
$$

for all $k = A, AB, B$. Then, we have $\Pi_A(u) \subset \Pi_A(v)$ by (A.12) and (A.13), and $\Pi_{AB}(u) \subset \Pi_A(v) \cup \Pi_{AB}(v)$ by (A.14).

Lemma A.4. If $e > (a - c)/2$, then B is a strict MP-maximizer.

Proof. (B, B) is a strictly p-dominant equilibrium with

$$
p = \max\left\{\frac{a - c - e}{a - c}, \frac{a - c}{(a - c) + (d - b)}\right\} < \frac{1}{2}.
$$

Thus, there exists a strict MP-function for B (see Morris and Ui [35] and Oyama et al. [39, Lemma 4.1]).

2
A.4. Proof of Theorem 2

Since the network used in the proof of Lemma 1(1) is linear, combined with Lemma 2(1) it follows that if \(e < e^* \) (\(e > e^* \), resp.), then action A (B, resp.) is contagious in linear networks. Also, by Theorem 1(i), if \(e < e^* \), then A is uninvadable, hence uninvadable in linear networks. Thus, what remains to be shown is that B is uninvadable in linear networks if \(e > e^* \).

By Lemma 2(1-ii) and the upper semi-continuity of \(br \), there exist \(p \in (0, 1/2) \) and \(\varepsilon \in (0, 1/2 - p) \) such that \(\min br(\tilde{\pi}^a) \geq AB \) and \(\min br(\tilde{\pi}^b) = B \), where

\[
\tilde{\pi}^a = \left(\frac{1}{2} + \varepsilon, p, \frac{1}{2} - p - \varepsilon \right), \quad \tilde{\pi}^b = \left(\frac{1}{2} - p + \varepsilon, p, \frac{1}{2} - \varepsilon \right).
\]

Fix any linear network \((\mathbb{Z}, P)\). Since \(P(0|0) = 0 \) and \(P(y|0) = P(-y|0) \) for all \(y > 0 \), we have \(\sum_{y=1}^{\infty} P(y|0) = 1/2 \). Let \(n_1 \) be the smallest natural number such that \(\sum_{y=1}^{n_1} P(y|0) \geq p \), and \(n_2 \) be a sufficiently large natural number such that \(\sum_{y=n_2}^{\infty} P(y|0) \leq \varepsilon \).

Consider any best response sequence \((\sigma^t)_{t=0}^{\infty}\) such that \(\sigma^0_p([A, AB]) < \infty \). Let \(K \) be the set of all \(k \in \mathbb{Z} \) such that \(\sigma^0(x) = B \) if \(|x - k| \leq n_1 + n_2 \). Then \(K \) is co-finite (i.e., \(\mathbb{Z} \setminus K \) is finite), and so is \(L = \bigcup_{k \in K} \{ x \in \mathbb{Z} \mid |x - k| \leq n_2 \} \). (Otherwise, \(\sigma^0(x) \neq B \) for infinitely many \(x \), which contradicts the finiteness of \(\sigma^0_p([A, AB]) \).)

For each \(k \in K \), we want to show that

\[
\sigma^t(x) = B \quad \text{if} \quad |x - k| \leq n_2,
\]

\[
\sigma^t(x) \geq AB \quad \text{if} \quad n_2 + 1 \leq |x - k| \leq n_1 + n_2
\]

for all \(t \geq 0 \). Indeed, this holds for \(t = 0 \) by construction, and if it holds for \(t - 1 \), then for any player \(x \) such that \(|x - k| \leq n_2 \), we have

\[
\pi(\sigma^{t-1}|x)(B) \geq \sum_{y=1}^{n_2} P(y|0) \geq \frac{1}{2} - \varepsilon,
\]

\[
\pi(\sigma^{t-1}|x)(AB) + \pi(\sigma^{t-1}|x)(B) \geq \sum_{y=1}^{n_1} P(y|0) + \sum_{y=1}^{n_2} P(y|0) \geq \frac{1}{2} + p - \varepsilon,
\]

which imply that \(\pi(\sigma^{t-1}|x) \gtrsim \tilde{\pi}^b \) and hence \(\sigma^t(x) = B \); for any player \(x \) such that \(n_2 + 1 \leq |x - k| \leq n_1 + n_2 \), we have

\[
\pi(\sigma^{t-1}|x)(B) \geq \sum_{y=1}^{n_2} P(y|0) - \sum_{y=1}^{n_1} P(y|0) > \frac{1}{2} - p - \varepsilon,
\]

\[
\pi(\sigma^{t-1}|x)(AB) + \pi(\sigma^{t-1}|x)(B) \geq \sum_{y=1}^{n_1} P(y|0) \geq \frac{1}{2} - \varepsilon,
\]

which imply that \(\pi(\sigma^{t-1}|x) \gtrsim \tilde{\pi}^a \) and hence \(\sigma^t(x) \geq AB \). Therefore, \(\{ x \in \mathbb{Z} \mid \sigma^t(x) = B \} \supset L \), and hence \(\sigma^t_p([A, AB]) \) is bounded from above.

Appendix B. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.jet.2014.12.012.
References

