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Abstract

In this supplementary appendix, we provide proofs of Lemma 3 and Theo-
rem 3 in the main paper (Sections B.2 and B.4), as well as examine alter-
native definitions of contagion (Section B.1), study multidimensional lattice
networks (Section B.3), provide some more examples of interest (Section
B.5), consider the case where Pareto dominance and risk dominance coin-
cide (Section B.6), and discuss the implications of our results in the context
of incomplete information games (Section B.7).

Online Appendix

B.1. Equivalent Definitions of Contagion in Supermodular Games

In this appendix, we discuss three other definitions of contagion, and
show that all of them are equivalent to the original one for any (generic)
symmetric supermodular game (S, u), where the smallest and the largest
actions are denoted by s and s, respectively. (None of the results here relies
on the particular payoff structure of the bilingual game.) We use the partial
order σ ≤ σ′ whenever σ(x) ≤ σ′(x) for any x ∈ X.

Recall that in the main text, we consider the sequential best response dy-
namics, where at most one player revises his action in each period (property
(i) in Definition 1). Instead, we can define the simultaneous (generalized,
resp.) best response dynamics, where all (some, resp.) players revise their
actions at a time.

Definition B.1. Given a local interaction game (X,P, S, u), a sequence
of action configurations (σt)∞t=0 is a simultaneous best response sequence if
σt(x) ∈ BR(σt−1|x) for all x ∈ X and t ≥ 1. A sequence (σt)∞t=0 is a
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generalized best response sequence if it satisfies the following properties: (ii)
if σt(x) 6= σt−1(x), then σt(x) ∈ BR(σt−1|x); and (iii) if limt→∞ σ

t(x) = s,
then for all T ≥ 0, s ∈ BR(σt|x) for some t ≥ T .

For clarity, we add adjective “sequential” to the original notion of best
response sequences. Generalized best response sequences subsume both se-
quential and simultaneous best response sequences as special cases.

Using simultaneous or generalized best response sequences, we obtain
two new definitions of contagion.1

Definition B.2. Given a pairwise game (S, u), action s∗ is contagious by
simultaneous (generalized, resp.) best responses in network (X,P ) if there
exists a finite subset Y of X such that every simultaneous (generalized,
resp.) best response sequence (σt)∞t=0 with σ0(x) = s∗ for all x ∈ Y satisfies
limt→∞ σ

t(x) = s∗ for each x ∈ X.

We refer to the notion of contagion in Definition 2 as “contagion by
sequential best responses”. By definition, contagion by generalized best
responses implies both contagion by sequential best responses and by simul-
taneous best responses. Here we show the converse.

In the next lemma, we show that if s∗ is contagious by sequential best
responses, then there exist two sequential best response sequences that con-
verge to s∗ monotonically (one increasingly and the other decreasingly), and
that any generalized best response sequence that starts between the two
sequences also converges to s∗. This lemma is used to prove both Proposi-
tion B.1 below and Theorem 3 in the main text.

Lemma B.1. Fix a network (X,P ) and a supermodular game (S, u). Sup-
pose that s∗ is contagious by sequential best responses in (X,P ). Then there
exist two sequential best response sequences (σt−)∞t=0 and (σt+)∞t=0 such that

(1) σt−(x) ≤ s∗ ≤ σt+(x) for all x ∈ X and t ≥ 0;

(2) σ0
−(x) = s and σ0

+(x) = s for all but finitely many x ∈ X;

(3) σt−(x) ∈ {σt−1
− (x),min BR(σt−1

− |x)} and σt+(x) ∈ {σt−1
+ (x),max BR(σt−1

+ |x)}
for all x ∈ X and t ≥ 1;

(4) limt→∞ σ
t
−(x) = limt→∞ σ

t
+(x) = s∗ for all x ∈ X; and

1The notion of contagion used in Morris [9] is similar to contagion by simultaneous
best responses, but requires only that for each x ∈ X, σt(x) = s∗ for some t ≥ 0.
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(5) min BR(σ0
−|x) ≥ σ0

−(x) and max BR(σ0
+|x) ≤ σ0

+(x) for all x ∈ X.

Moreover,

(6) for any generalized best response sequence (σ̃t)∞t=0 with σ0
− ≤ σ̃0 ≤ σ0

+,
we have limt→∞ σ̃

t(x) = s∗ for all x ∈ X.

Proof. Suppose that s∗ is contagious by sequential best responses in (X,P )
(and hence a strict Nash equilibrium of (S, u)). Let Y ⊂ X be a finite set
as in Definition 2, and let (φt−)∞t=0 be the sequential best response sequence
such that φ0

−(x) = s∗ for all x ∈ Y , φ0
−(x) = s for all x ∈ X \ Y , and

φt−(x) ∈ {φt−1
− (x),min BR(φt−1

− |x)} for all x ∈ X and t ≥ 1. By definition,
limt→∞ φ

t
−(x) = s∗ for all x ∈ X.

The sequence (φt−)∞t=0 satisfies properties (1)–(4), but not necessarily
property (5). From (φt−)∞t=0, we construct another sequence that satisfies
property (5) as well. Let ψ0

− = φ0
− and

ψt−(x) =

{
ψt−1
− (x) if φt−(x) ≤ ψt−1

− (x),

min BR(ψt−1
− |x) if φt−(x) > ψt−1

− (x).

Clearly, (ψt−)∞t=0 is a sequential best response sequence. By the construction
of (φt−)∞t=0 and (ψt−)∞t=0 along with the supermodularity of u and s∗ being
a Nash equilibrium of (S, u), one can show by induction on t that φt−(x) ≤
ψt−(x) ≤ s∗ for all x ∈ X and t ≥ 0. Thus for each x ∈ X, (ψt−(x))∞t=0 is
weakly increasing and converges to s∗.

Since s∗ is a strict Nash equilibrium of (S, u), we can take a finite but
sufficiently large subset Z of

⋃
x∈Y Γ(x) such that for any x ∈ Y , the best

response of player x is s∗ if all players in Z play s∗ (recall that Γ(x) is the set
of the neighbors of player x). Let T be sufficiently large so that ψT−(x) = s∗

for all x ∈ Z.
We claim that min BR(ψT−|x) ≥ ψT−(x) for all x ∈ X. For x ∈ Y , since

all players in Z play s∗ in period T , we have min BR(ψT−|x) = s∗ ≥ ψT−(x).
For x ∈ X \ Y , we first have min BR(ψ0

−|x) ≥ s = ψ0
−(x). Next, as-

sume that min BR(ψt−1
− |x) ≥ ψt−1

− (x). By the construction of (ψt−(x))∞t=0,
ψt−(x) is equal to either ψt−1

− (x) or min BR(ψt−1
− |x). In both cases, we

have min BR(ψt−1
− |x) ≥ ψt−(x). Since (ψt−)∞t=0 is weakly increasing, we

have min BR(ψt−|x) ≥ min BR(ψt−1
− |x) by the supermodularity of u. Hence,

min BR(ψt−|x) ≥ ψt−(x).

Now let σt− = ψt+T− for t ≥ 0. Then (σt−)∞t=0 satisfies properties (1)–(5).
In particular, along the sequential best response sequence (ψt−)∞t=0, at most
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T players change actions by period T , so that σ0
−(x) = ψT−(x) = s except

for finitely many x. The construction of (σt+)∞t=0 is analogous.
For property (6), pick any generalized best response sequence (σ̃t)∞t=0

with σ0
− ≤ σ̃0 ≤ σ0

+. For each x ∈ X, let σ̃t(x) = infτ≥t σ̃
τ (x), and σ̃−(x) =

lim inft→∞ σ̃
t(x) (= limt→∞ σ̃

t(x)).

Claim 1. lim inft→∞min BR(σ̃t|x) ≥ min BR(σ̃−|x) for all x ∈ X.

Proof. Fix any x ∈ X. By the supermodularity of u, we have min BR(σ̃t|x) ≥
min BR(σ̃t|x) for all t ≥ 0. Therefore, we have

lim inf
t→∞

min BR(σ̃t|x) ≥ lim inf
t→∞

min BR(σ̃t|x)

≥ min BR
(

lim
t→∞

σ̃t
∣∣ x) = min BR(σ̃−|x),

where the second inequality follows from the lower semicontinuity of min BR(·|x)
in the product topology on SX .

Claim 2. σ̃−(x) ≥ min BR(σ̃−|x) for all x ∈ X.

Proof. Fix any x ∈ X. By Claim 1, there exists T1 ≥ 0 such that min BR(σ̃t|x) ≥
min BR(σ̃−|x) for all t ≥ T1. By (ii) and (iii) in Definition B.1, there exists
T2 ≥ T1 such that σ̃T2(x) ≥ min BR(σ̃−). By (ii) in Definition B.1, we also
have σ̃t(x) ≥ σ̃T2(x) ∧ minT2≤τ<t min BR(σ̃τ |x) for all t ≥ T2. Therefore,
by Claim 1 it follows that σ̃t(x) ≥ min BR(σ̃−) for all t ≥ T2, and hence
σ̃−(x) ≥ min BR(σ̃−|x), as desired.

Claim 3. σt− ≤ σ̃− for all t ≥ 0.

Proof. We proceed by induction. First, we want to show σ0
− ≤ σ̃−. By

assumption, σ0
− ≤ σ̃0. Assume that σ0

− ≤ σ̃t−1, and consider any x ∈ X such
that σ̃t(x) 6= σ̃t−1(x). Then by the property (5) and the supermodularity of
u, σ0

−(x) ≤ min BR(σ0
−|x) ≤ min BR(σ̃t−1|x) ≤ σ̃t(x). Therefore, we have

σ0
− ≤ σ̃t for all t ≥ 0, and hence σ0

− ≤ σ̃−.
Next, assume that σt−1

− ≤ σ̃−, and let x ∈ X be such that σt−(x) 6=
σt−1
− (x). Then by the property (3), the induction hypothesis, the supermod-

ularity of u, and Claim 2, we have σt−(x) = min BR(σt−1
− |x) ≤ min BR(σ̃−|x) ≤

σ̃−(x). Thus we have σt− ≤ σ̃−.

Symmetrically, defining σ̃+(x) = lim supt→∞ σ̃
t(x), we can show that

σ̃+ ≤ σt+ for all t ≥ 0. For each x ∈ X, since limt→∞ σ
t
−(x) = limt→∞ σ

t
+(x) =

s∗, we have σ̃−(x) = σ̃+(x) = s∗, and hence limt→∞ σ̃
t(x) = s∗.

This completes the proof of Lemma B.1.
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Proposition B.1. Fix a network (X,P ) and a supermodular game (S, u).
Then s∗ is contagious by sequential best responses in (X,P ) if and only if it
is contagious by generalized best responses in (X,P ).

Proof. The “if” part holds by definition. To show the “only if” part, suppose
that s∗ is contagious by sequential best responses in (X,P ). Let (σt−)∞t=0

and (σt+)∞t=0 be sequential best response sequences as in Lemma B.1. Let
Y be a finite subset of X such that σ0

−(x) = s and σ0
+(x) = s for all

x ∈ X \ Y . Then for any generalized best response sequence (σ̃t)∞t=0 with
σ̃0(x) = s∗ for all x ∈ Y , we have σ0

− ≤ σ̃0 ≤ σ0
+, and hence by Lemma B.1,

limt→∞ σ̃
t(x) = s∗ for all x ∈ X. Thus s∗ is contagious by generalized best

responses in (X,P ).

Similarly, we can prove the equivalence between contagion by simulta-
neous best responses and contagion by generalized best responses. Here we
assume that the set of neighbors Γ(x) is finite for each player x ∈ X, which
is satisfied in all of our examples.

Proposition B.2. Fix a network (X,P ) such that Γ(x) is finite for each x ∈
X and a supermodular game (S, u). Then s∗ is contagious by simultaneous
best responses in (X,P ) if and only if it is contagious by generalized best
responses in (X,P ).

Proof. The “if” part holds by definition. The proof of the “only if” part
is to mimic the proofs of Lemma B.1 and the “only if” part of Proposi-
tion B.1. Indeed, as in the proof of Lemma B.1, we take a simultaneous best
response sequence (φt−)∞t=0, modify it to obtain a generalized (not necessarily
simultaneous) best response sequence (ψt−)∞t=0, and then define (σt−)∞t=0 by

σt− = ψt+T− for sufficiently large T . The only difference lies here, where it
is not the case in general that “at most T players change actions by period
T”. Instead, we assume without loss of generality that action s (as well
as action s) is a Nash equilibrium of (S, u), and resort to the finiteness of
Γ(x) to show that in each step of (ψt−)Tt=0, only finitely many players have
minimum best responses other than action s.

Another definition is to only require some sequential best response se-
quence to converge.

Definition B.3. Given a pairwise game (S, u), action s∗ is weakly contagious
in network (X,P ) if there exists a finite subset Y of X such that for any
initial action configuration σ0 such that σ0(x) = s∗ for any x ∈ Y , there
exists a sequential best response sequence (σt) such that limt→∞ σ

t(x) = s∗

for any x ∈ X.
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By definition, contagion implies weak contagion. The converse does not
always hold. A counterexample is given by the trivial payoff function u ≡ 0,
where all actions are weakly contagious but none of them is contagious.
Nevertheless, we can show that weak contagion is equivalent to contagion
for generic supermodular games.

We say that a game (S, u) is generic for (X,P ) if no player has multiple
best responses to any action configuration on (X,P ). If each player has
finitely many neighbors, then genericity excludes at most countably many
hyperplanes in the payoff parameter space.

Proposition B.3. Fix a network (X,P ) and a generic supermodular game
(S, u) for (X,P ). Then s∗ is weakly contagious in (X,P ) if and only if it is
contagious by generalized best responses in (X,P ).

Proof. Once again, the proof is almost the same as the proofs of Lemma B.1
and Proposition B.1. We only need to make the following two changes.

First, in the first paragraph of the proof of Lemma B.1, given a finite
set Y ⊂ X as in Definition B.3, let (φt−)∞t=0 be a sequential best response
sequence such that φ0

−(x) = s∗ for all x ∈ Y , φ0
−(x) = s for all x ∈ X \ Y ,

and limt→∞ φ
t
−(x) = s∗ for all x ∈ X. Here it follows from the genericity

of (S, u) that we have φt−(x) ∈ {φt−1
− (x),BR(φt−1

− |x)} for any x ∈ X and
t ≥ 1, where with an abuse of notation, BR(φt−1

− |x) denotes the unique best
response.

Second, a weakly contagious action is always a Nash equilibrium of (S, u),
but may not be a strict Nash equilibrium. Here again, the genericity as-
sumption guarantees that the weakly contagious action s∗ is a strict Nash
equilibrium.

B.2. Proof of Lemma 3

Given a payoff function f : S × S → R, we write BRf for the best corre-
spondence for the local interaction game (X,P, S, f):

BRf (σ|x) =
{
h ∈ S

∣∣∑
y∈Γ(x) P (y|x)f(h, σ(y))

≥∑y∈Γ(x) P (y|x)f(h′, σ(y)) for all h′ ∈ S
}
.

(Thus the best response correspondence for the local interaction game (X,P, S, u)
as defined in (2.3) is now denoted BRu.) Recall that BRf (σ|x) = brf (π(σ|x)).
We show a result stronger than Lemma 3, that a strict MP-maximizer is un-
invadable by sequences that satisfy properties (i) and (ii) in Definition 1.
Such sequences do not necessarily satisfy property (iii) in Definition 1, so
that some players may have no opportunity to revise their suboptimal ac-
tions. We call those sequences partial best response sequences.
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Definition B.4. Given a network (X,P ) and for a payoff function f : S ×
S → R, a sequence of action configurations (σt)∞t=0 is a partial best response
sequence in local interaction game (X,P, S, f) if it satisfies the following
properties: (i) for all t ≥ 1, there is at most one x ∈ X such that σt(x) 6=
σt−1(x); and (ii) if σt(x) 6= σt−1(x), then σt(x) ∈ BRf (σt−1|x).

The following result is due to Morris [8, Proposition 6.1].

Lemma B.2. Suppose that s∗ is a potential maximizer of (S, u) with a
potential function v. For any unbounded network (X,P ) and any partial
best response sequence (σt)∞t=0 in local interaction game (X,P, S, u) with
σ0
P (S \ {s∗}) <∞, there exists M <∞ such that σtP (S \ {s∗}) ≤M for all
t ≥ 0.

Lemma 3 is a direct corollary of the following.

Lemma B.3. Suppose that s∗ ∈ {s, s} is a strict MP-maximizer of (S, u)
with a strict MP-function v. If u or v is supermodular, then for any un-
bounded network (X,P ) and any partial best response sequence (σt)∞t=0 in lo-
cal interaction game (X,P, S, u) with σ0

P (S\{s∗}) <∞, there exists M <∞
such that σtP (S \ {s∗}) ≤M for all t ≥ 0.

Proof. Let s∗ ∈ {s, s} be a strict MP-maximizer of (S, u) with a strict MP-
function v. We only consider the case where s∗ = s. Fix any network (X,P ).
Let (σt)∞t=0 be any partial best response sequence in (X,P, S, u). such that
σ0
P (S \ {s}) <∞.

Let (σ̂t)∞t=0 be defined by σ̂0 = σ0 and for t ≥ 1,

σ̂t(x) =

{
max BRv(σ̂

t−1|x) if σt(x) 6= σt−1(x),

σ̂t−1(x) otherwise.

Clearly, (σ̂t)∞t=0 is a partial best response sequence in (X,P, S, v). Therefore,
by Lemma B.2, there exists M such that σ̂tP (S \ {s}) ≤M for all t.

We show that if u or v is supermodular, then

σt ≤ σ̂t (?t)

for all t ≥ 0. Then, σtP (S\{s}) ≤ σ̂tP (S\{s}) for all t, and since σ̂tP (S\{s}) ≤
M for all t, it follows that σtP (S \ {s}) ≤M for all t.

We show by induction that (?t) holds for all t ≥ 0. First, (?0) trivially
holds by the definition of σ̂0. Next, assume (?t−1). It implies that for all
x ∈ X, π(σt−1|x) - π(σ̂t−1|x). Let x ∈ X be such that σt(x) 6= σt−1(x), and
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hence σ̂t(xt) = max brv(π(σ̂t−1|xt)) by construction. If u is supermodular,
then

σt(xt) ≤ max bru(π(σt−1|xt))
≤ max bru(π(σ̂t−1|xt))
≤ max brv(π(σ̂t−1|xt)) = σ̂t(xt),

where the second inequality follows from the supermodularity of u, and the
third inequality follows from (3.5). If v is supermodular, then

σt(xt) ≤ max bru(π(σt−1|xt))
≤ max brv(π(σt−1|xt))
≤ max brv(π(σ̂t−1|xt)) = σ̂t(xt),

where the second inequality follows from (3.5), and the third inequality
follows from the supermodularity of v. Therefore, in each case, (?t) holds.

We show in passing that Lemma 3 extends to generalized best response
sequences (Definition B.1) in any network where each player has finitely
many neighbors.

Definition B.5. Given a pairwise game (S, u), action s∗ is uninvadable
by generalized best response sequences in network (X,P ) if there exists no
generalized best response sequence (σt)∞t=0 such that σ0

P (S \ {s∗}) <∞ and
limt→∞ σ

t
P (S \ {s∗}) =∞.

Proposition B.4. Let (S, u) be any game with totally ordered action set S.
If s∗ ∈ {s, s} is a strict MP-maximizer of (S, u) with a strict MP-function
v and if u or v is supermodular, then s∗ is uninvadable by generalized best
responses in (X,P ) such that Γ(x) is finite for all x ∈ X.

Proof. Let s∗ ∈ {s, s} be a strict MP-maximizer of u with a strict MP-
function v. We only consider the case where s∗ = s. Fix any network
(X,P ) such that Γ(x) is finite for all x ∈ X. Let (σt)∞t=0 be any generalized
best response sequence in (X,P, S, u) such that σ0

P (S \ {s}) < ∞. We
will construct a nondecreasing partial best response sequence (σ̂τ )∞τ=0 in
(X,P, S, v) such that

σt ≤ σ̄ (??t)

for all t ≥ 0, where σ̄ is defined by σ̄(x) = limτ→∞ σ̂
τ (x) for all x ∈ X.

Then, we have, for all t ≥ 0,

σtP (S \ {s}) ≤ σ̄P (S \ {s}) = lim
τ→∞

σ̂τP (S \ {s}) <∞
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as desired, where the last inequality (the finiteness of limτ→∞ σ̂
τ
P (S \ {s}))

follows from Lemma B.2.
We construct such a sequence (σ̂τ )∞τ=0 as follows. Pick a sequence (xτ )∞τ=1

in X such that {τ ≥ 1 | xτ = x} is infinite for each x ∈ X.2 Then, let σ̂0 =
σ0, and for each τ ≥ 1, let σ̂τ (xτ ) = max{max BRv(σ̂

τ−1|xτ ), σ̂τ−1(xτ )}
and σ̂τ (x) = σ̂τ−1(x) for x 6= xτ . By construction, (σ̂τ )∞τ=0 is a partial
best response sequence in (X,P, S, v), and for each x ∈ X, (σ̂τ (x))∞t=0 is
nondecreasing. Denote σ̄(x) = limτ→∞ σ̂

τ (x). Note that σ̄ ≥ σ̂τ for all
τ ≥ 0.

Claim 1. max BRv(σ̄|x) ≤ σ̄(x) for all x ∈ X.

Proof. Fix any x ∈ X. By the finiteness of Γ(x), there exists T such that
σ̂τ (y) = σ̄(y) for all y ∈ Γ(x) and all τ ≥ T . By the construction of
(σ̂τ )∞τ=0, there exists τ ′ > T such that xτ

′
= x, and with such a τ ′ we have

max BRv(σ̄|x) = max BRv(σ̂
τ ′−1|x) ≤ σ̂τ ′(x) ≤ σ̄(x).

Now we show by induction that (??t) holds for all t ≥ 0. First, (??0)
holds by the construction of (σ̂τ )∞τ=0. Next, assume (??t−1). It implies
that for all x ∈ X, π(σt−1|x) - π(σ̄|x). Let x ∈ X be such that σt(x) 6=
σt−1(x), and hence σt(x) ∈ bru(π(σt−1|x)). If u is supermodular, then
σt(x) ≤ max bru(π(σt−1|x)) ≤ max bru(π(σ̄|x)) ≤ max brv(π(σ̄|x)) ≤ σ̄(x),
where the second inequality follows from the supermodularity of u, the
third from (3.5), and the fourth from Claim 1. If v is supermodular, then
σt(x) ≤ max bru(π(σt−1|x)) ≤ max brv(π(σt−1|x)) ≤ max brv(π(σ̄|x)) ≤
σ̄(x), where the second inequality follows from (3.5), the third from the su-
permodularity of v, and the fourth from Claim 1. Therefore, in each case,
(??t) holds.

B.3. Multidimensional Lattice Networks

We fix the dimension m. A sequence (Pn)∞n=0 of interaction weights on
the m-dimensional lattice Zm is well-behaved if the following conditions are
satisfied.

• For each n, Pn is invariant up to translation, i.e., Pn(x, y) = Pn(x+z, y+z)
for x, y, z ∈ Zm.

2For example, enumerate X = {x1, x2, x3, . . .}, and for each τ ≥ 1, let `(τ) be the
largest integer ` such that `(` + 1)/2 < τ , and let k(τ) = τ − `(τ)(`(τ) + 1)/2 and
xτ = xk(τ).
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• There exist a pair of nonnegative integrable functions g, ḡ : Rm → R+ such
that for almost every ν = (ν1, . . . , νm) ∈ Rm, we have nmPn([nν]|0) →
g(ν) as n → ∞ (pointwise convergence), and nmPn([nν]|0) ≤ ḡ(ν) for
every n.3

• The support of g is connected.

For example, consider n-max distance interactions Pn, where Pn(x, y) =
1 if 1 ≤ maxi |xi−yi| ≤ n and Pn(x, y) = 0 otherwise. Then (Pn)∞n=0 is well-
behaved since nmPn([nν]|0) converges to 2−m times the indicator function
of {ν ∈ Rm | maxi |νi| ≤ 1}.

The next theorem characterizes contagion and uninvadability in the limit
of any well-behaved sequence of multidimensional lattice networks. The core
of the proof is similar to that of Lemma 1, but we take n → ∞ in order to
mitigate the “lumpiness” of interaction weights.

Theorem B.1. Let (S, u) be the bilingual game given by (2.2). Fix the
dimension m and a well-behaved sequence (Pn)∞n=0 of interaction weights
on Zm. (i) If e < e∗, then there exists n̄ such that for any n ≥ n̄, A is
contagious and uninvadable in (Zm, Pn). (ii) If e > e∗, then there exists n̄
such that for any n ≥ n̄, B is contagious and uninvadable in (Zm, Pn).

Proof. We will show (i) only. The proof for (ii) is analogous.
By Lemma 2(i-1) and the upper semi-continuity of br , there exist p ∈

(0, 1/2) and ε ∈ (0, 1/2−p) such that max br(π̂a) = A and max br(π̂b) ≤ AB ,
where

π̂a =
(

1
2 − ε, p, 1

2 − p+ ε
)
, π̂b =

(
1
2 − p− ε, p, 1

2 + ε
)
.

Let g(ν) be the pointwise limit of nmPn([nν]|0) as n → ∞. Since Pn is
symmetric and translation invariant, g is symmetric, i.e., g(ν) = g(−ν) for
almost all ν. We also have

∫
Rm g(ν)dν = 1.

Since g is symmetric and has a connected support, for each λ ∈ Rm
whose Euclidean norm ‖λ‖ is 1, there exists a unique δ = δ(λ) > 0 that
satisfies ∫

0≤λ·x≤δ
g(x)dx = p

and δ(λ) is continuous in λ, since the left hand side is continuous in λ and
δ and strictly increasing in δ (whenever the left hand side is less than 1/2).

3For η = (η1, . . . , ηm) ∈ Rm, [η] = ([η1], . . . , [ηm]) denotes the profiles of the largest
integers that do not exceed ηi.
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For each r > 0, let Dr be a disk {ν ∈ Rm | ‖ν‖ ≤ r} and Rr be a
ring-shaped object {ν ∈ Rm | r < ‖ν‖ ≤ r + δ(ν/‖ν‖)}. Note that for large
r and any boundary point ν of Dr, we have λ · ξ ≈ r for any boundary
point ξ of Dr near ν. By the continuity of δ(·), the same is true for the
boundary of Rr; i.e., for large r and any boundary point ν of Dr, we have
λ · ξ ≈ r + δ(ν/‖ν‖) for any boundary point ξ of Rr near ν. Thus, there
exists r1 such that for any r ≥ r1,

ν ∈ Dr =⇒
∫
Dr

g(ξ − ν)dξ ≥ 1

2
− ε

3
,

∫
Dr∪Rr

g(ξ − ν)dξ ≥ 1

2
+ p− ε

3
,

ν ∈ Rr =⇒
∫
Dr

g(ξ − ν)dξ ≥ 1

2
− p− ε

3
,

∫
Dr∪Rr

g(ξ − ν)dξ ≥ 1

2
− ε

3
.

For each k ∈ N, let D̂k = {x ∈ Zm | ‖x‖ ≤ k} and R̂k,n = {x ∈ Zm |
k < ‖x‖ ≤ k + nδ(x/‖x‖)}. Since (Pn)∞n=0 is well-behaved, one can apply
the dominated convergence theorem to show that there exists n1 such that
for any n ≥ n1, any x ∈ Zm, and any k ∈ N,∣∣∣∣∣∣

∑
y∈D̂k

Pn(y − x|0)−
∫
Dk/n

g(ξ − x/n)dξ

∣∣∣∣∣∣ ≤ ε

3
,

∣∣∣∣∣∣
∑

y∈D̂k∪R̂k,n

Pn(y − x|0)−
∫
Dk/n∪Rk/n

g(ξ − x/n)dξ

∣∣∣∣∣∣ ≤ ε

3
.

Therefore, there exists n2 ≥ n1 such that for any n ≥ n2 and any k ≥ r1n,

x ∈ D̂k+1 =⇒
∑
y∈D̂k

Pn(y|x) ≥ 1

2
− ε,

∑
y∈D̂k∪R̂k,n

Pn(y|x) ≥ 1

2
+ p− ε,

x ∈ R̂k+1,n =⇒
∑
y∈D̂k

Pn(y|x) ≥ 1

2
− p− ε,

∑
y∈D̂k∪R̂k,n

Pn(y|x) ≥ 1

2
− ε.

Now let n ≥ n2. We show that A is contagious in (Zm, Pn). The proof
is similar to that of Lemma 1(1). Pick a natural number K ≥ r1n, and
consider any best response sequence (σt)∞t=0 such that σ0(x) = A for all
x ∈ D̂K ∪ R̂K,n. Then one can show by induction on k that for any k ≥ K,

there exists Tk such that for any T ≥ Tk, we have σt(x) = A for all x ∈ D̂k

and σ0(x) ≤ AB for all x ∈ R̂k,n.
This argument also shows that A is uninvadable in (Zm, Pn) because for

any initial configuration that satisfies σ0
Pn

({AB , B}) < ∞, there exists a

translation Y of D̂K ∪ R̂K,n such that σ0(x) = A for all x ∈ Y .
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B.4. Proof of Theorem 3

We denote by s and s the smallest and the largest actions, respectively.
We use the partial order σ ≤ σ′ whenever σ(x) ≤ σ′(x) for any x ∈ X.

Let ϕ be a weight-preserving node identification from (X,P ) to (X̂, P̂ )
with a finite set E of exceptional nodes. Fix a supermodular game (S, u),
and assume that s∗ is contagious in (X,P ). We show that s∗ is contagious
in (X̂, P̂ ).

Since s∗ is a strict Nash equilibrium of (S, u), there exists a finite subset
F ⊂ X such that F ⊃ E and s∗ is the unique best response for any x̂ ∈ ϕ(E)
if all players in ϕ(F ) play s∗.

Let (σt−)∞t=0 and (σt+)∞t=0 be sequential best response sequences in (X,P )
that satisfy properties (1)–(5) in Lemma B.1. Pick a T ≥ 0 such that
σT−(x) = σT+(x) = s∗ for all x ∈ F , and let Y = {x ∈ X | σT−(x) 6=
s or σT+(x) 6= s}. Note that Y ⊃ F and Y is finite.

Define action configurations σ̂− and σ̂+ in (X̂, P̂ ) by

σ̂−(x̂) = max
x∈ϕ−1(x̂)

σT−(x) and σ̂+(x̂) = min
x∈ϕ−1(x̂)

σT+(x)

for all x̂ ∈ X̂. Note that σ̂−(x̂) = σ̂+(x̂) = s∗ for all x̂ ∈ ϕ(F ), and

σ̂−(x̂) = s and σ̂+(x̂) = s for all x̂ ∈ X̂ \ ϕ(Y ). Denote by B̂R the set of
best responses defined in (X̂, P̂ ).

Claim 1. min B̂R(σ̂−|x̂) ≥ σ̂−(x̂) and σ̂+(x̂) ≤ max B̂R(σ̂+|x̂) for all x̂ ∈
X̂.

Proof. We only show the first inequality; the proof of the second is anal-
ogous. For any x̂ ∈ ϕ(E), since σ̂−(ŷ) = s∗ for all ŷ ∈ ϕ(F ), we have

B̂R(σ̂−|x̂) = {s∗} by the construction of F . For any x̂ ∈ X \ϕ(E), let σ̄T− =

σ̂− ◦ ϕ, and let x̄ ∈ arg maxx∈ϕ−1(x̂) σ
T
−(x). Then we have min B̂R(σ̂−|x̂) =

min BR(σ̄T−|x̄) ≥ BR(σT−|x̄) ≥ σT−(x̄) = σ̂−(x̂), where the first equality fol-
lows from the weight-preserving property of ϕ, the first inequality from
the supermodularity of u, and the second inequality from property (5) in
Lemma B.1.

Let Ŷ = ϕ(Y ), which is finite. Pick any sequential best response se-
quence (σ̂t) in (X̂, P̂ ) such that σ̂0(x̂) = s∗ for all x̂ ∈ Ŷ . We want to show
that limt→∞ σ̂

t(x̂) = s∗ for all x̂ ∈ X̂.

Claim 2. σ̂− ≤ σ̂t ≤ σ̂+ for all t ≥ 0.

12
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Figure B.1: Replicated linear network

Proof. We only show the first inequality; the proof of the second is analo-
gous. First, we have σ̂0 ≥ σ̂− by construction. Next, assume σ̂t−1 ≥ σ̂−. If
σ̂t(x̂) 6= σ̂t−1(x̂), then we have σ̂t(x̂) ≥ min B̂R(σ̂t−1|x̂) ≥ min B̂R(σ̂−|x̂) ≥
σ̂−(x̂), where the first inequality follows from the definition of sequential
best response sequence, the second follows from the supermodularity of u,
and the third from Claim 1.

Claim 2 implies in particular that σ̂t(x̂) = s∗ for all x̂ ∈ ϕ(F ) and all
t ≥ 0.

Given the sequence (σ̂t)∞t=0 in (X̂, P̂ ), let (σ̃t)∞t=0 be the correspond-
ing sequence in (X,P ) defined by σ̃t = σ̂t ◦ ϕ for all t ≥ 0. First, by
Claim 2, we have σ0

− ≤ σT− ≤ σ̂− ◦ ϕ ≤ σ̃0 ≤ σ̂+ ◦ ϕ ≤ σT+ ≤ σ0
+. Second,

(σ̃t)∞t=0 is a generalized best response sequence in (X,P ) as defined in Def-
inition B.1. (Notice that players in ϕ−1(x̂) change actions simultaneously.)

Indeed, for x ∈ X \ E, we have BR(σ̃t|x) = B̂R(σ̂t|ϕ(x)) for all t ≥ 0 by
the weight-preserving property of ϕ, while for x ∈ E, we have σ̃t(x) = s∗

and BR(σ̃t|x) = {s∗} for all t ≥ 0 by construction. Thus, by Lemma B.1(6),
(σt(x))∞t=0 converges to s∗ for all x ∈ X, and hence (σ̂t(x̂))∞t=0 also converges
to s∗ for all x̂ ∈ X̂.

B.5. Examples

Example B.1 (Line versus replicated lines). Let ({1, . . . ,m} × Z, P ) be a
replicated linear network, where for x = (x1, x2), y = (y1, y2), z = (z1, z2) ∈
{1, . . . ,m}×Z, we have P (x, y) = P (x+z, y+z) (sums in the first coordinate
are defined modulo m) and P (x, y) = 0 whenever x2 = y2.4 An example of
replicated linear network with m = 3 is depicted in Figure B.1. The mapping
ϕ : {1, . . . ,m} × Z → Z defined by ϕ(k, i) = i is a weight-preserving node

4The “thick line graph” in Immorlica et al. [5, Figure 2] is a special case of replicated
linear network.
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identification (with no exceptional node) from this network to the linear
network (Z, P̂ ) with P̂ (i, j) =

∑m
k=1 P ((1, i), (k, j)). In fact, one can show

that the two networks are equally contagion-inducing in the class of all
supermodular games. In particular, Theorem 2 extends to replicated linear
networks.

Example B.2 (Line versus max distance). Consider the m-dimensional
lattice with n-max distance interactions, i.e., the network (Zm, P ) where
P (x, y) = 1 if 1 ≤ maxi |xi − yi| ≤ n and P (x, y) = 0 otherwise. Define the
mapping ϕ : Zm → Z by

ϕ(x1, . . . , xm) = x1 + (n+ 1)x2 + · · ·+ (n+ 1)m−1xm

for any (x1, . . . , xm) ∈ Zm. Then ϕ is a weight-preserving node identification
(with no exceptional node) from this network to the linear network (Z, P̂ )
with P̂ (x, y) = #(ϕ−1(y−x)∩ [−n, n]m) for any x, y ∈ Z with x 6= y.5 Thus,
by Theorem 3, the n-max distance interaction network is less contagion-
inducing than some linear network. Combined with Theorem 2, this implies
that for the bilingual game, action A is not contagious in the n-max distance
interaction network if e > e∗.

Example B.3 (Regions versus lattice). Consider the network depicted in
Figure B.2, where the players are divided into infinitely many “regions”,
and each region consists of three players: X = {1, 2, 3} × Z, and with equal
weights, player (k, i) interacts with players (`, j) such that ` 6= k and j = i,
or ` = k and j = i± 1. Then the mapping ϕ : Z2 → {1, 2, 3} × Z defined by
ϕ(x1, x2) = (k, x2) such that k ≡ x1 (mod 3) is a weight-preserving node
identification from the two-dimensional lattice to the regions network (with
no exceptional node). Thus, by Theorem 3 and in a similar manner as in
Example 2, one can show that the regions network is strictly more contagion-
inducing than the two-dimensional lattice in the class of all supermodular
games. This is in contrast to the class of 2 × 2 coordination games, where
the two networks have the same contagion threshold 1/4 (Examples 2 and
4 in Morris [9]).

Example B.4 (Line versus Figure 4). Theorems 2 and 3 imply that there
exists no weight-preserving node identification from the network in Figure 4
to any linear network.

5#X denotes the cardinality of X.
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Figure B.2: Regions

Example B.5 (Line versus regions). Consider the regions network as de-
picted in Figure B.2. In 2× 2 coordination games, the regions network has
contagion threshold 1/4, whereas the linear network in Figure 1 has conta-
gion threshold 1/2. Also, in a similar manner as in Example 2, one can show
that there is a set of parameter values of the bilingual game such that B is
contagious in the regions network, but not in the linear network. Therefore,
the regions network is incomparable to the linear network in the class of all
supermodular games.

B.6. The Case Where Pareto Dominance and Risk Dominance Coincide

For completeness, we report the contagion and uninvadability result also
for the case where action A is both Pareto-dominant and pairwise risk-
dominant. The bilingual game (S, u) now satisfies

c ≤ d < a, d− b < a− c, and e > 0. (B.1)

Theorem B.2. Let (S, u) be the bilingual game given by (2.2a) and (B.1).
A is always contagious and uninvadable.

Proof. In light of Lemma 1(1-i) and Lemma 3, it suffices to show that con-
dition (3.1) holds for some p and that A is a strict MP-maximizer. If
e ≤ (d − b)/2, we have (c − b)e < (a − d)(d − b)/2. Therefore, these follow
from the argument in case (α) in the proof of Lemma 2(1) and Claims 1–3
in the proof of Lemma A.2. If e > (d− b)/2, they follow from the symmetric
arguments for A in place of B as in case (β) in the proof of Lemma 2(1) and
Lemma A.4.

Goyal and Janssen [4, Theorem 3] show the contagion part of this theo-
rem in their circular network.
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Immorlica et al. [5] consider the current case with a payoff parameter
restriction a = 1− q, b = c = 0, and d = q, so the game is given by


A AB B

A 1− q 1− q 0
AB 1− q − e 1− q − e q − e
B 0 q q

, 0 < q <
1

2
.

This game is a potential game with action A being the potential maximizer
(more generally, the bilingual game is a potential game whenever b = c).
Immorlica et al. [5] focus on the class N∆ of ∆-regular networks; for each
∆ ∈ N, a ∆-regular network is a network where each player has ∆ neighbors
with constant weights. They consider the “epidemic region” Ω(X,P ) ⊂
(0, 1/2)×R++, the set of parameter values (q, e) for which action A spreads
contagiously in network (X,P ), and show that for any fixed ∆, there exists
a point (q, e) /∈ Ω∆ :=

⋃
(X,P )∈N∆

Ω(X,P ), and in particular, Ω∆ is not
convex. On the other hand, since contagion in Lemma 1(1-i) can be induced
by a ∆-regular network with some ∆ (see Footnote 17 in the main text),
our Theorem B.2 implies that

⋃
∆∈N Ω∆ = (0, 1/2)×R++, which is convex.

B.7. Interpretations in Incomplete Information Games

Local interaction games and incomplete information games, though cap-
turing different economic or social situations, share the same formal struc-
tures and thus belong to a more general class of “interaction games” (Morris
[7, 8], Morris and Shin [11]): in local interaction games, each node interacts
with a set of neighbors and payoffs are given by the weighted sum of those
from the interactions; in incomplete information games, each type interacts
with a subset of types and payoffs are given by the expectation of those from
the interactions.6 Indeed, Morris [7, 8] demonstrates, in spite of some tech-
nical differences, that several tools and results in the context of incomplete
information games can be utilized also in the context of local interaction
games, and vice versa.7 In this section, we interpret our results in the lan-
guage of incomplete information games, thereby shedding new light on two
existing lines of literature, robustness to incomplete information and global

6For example, with the incomplete information interpretation, the linear network
in Figure 1 is essentially equivalent to the information structure of the email game of
Rubinstein [17].

7For example, the contagion threshold of a network due to Morris [9] is essentially
equivalent to the belief potential of an information system due to Morris et al. [10].
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games. We also discuss our symmetry assumption of interaction weights in
relation to the common prior assumption in incomplete information games.

B.7.1. Robustness to Incomplete Information

A Nash equilibrium (s∗1, s
∗
2) of a two-player game (S, u) is said to be

robust to incomplete information if any ε-incomplete information perturba-
tion of (S, u) with ε sufficiently small has a Bayesian Nash equilibrium that
plays (s∗1, s

∗
2) with high probability, where an ε-incomplete information per-

turbation of (S, u) refers to an incomplete information game in which the
set T u of type profiles whose payoffs are given by u has ex ante probability
1 − ε while types outside T u (“crazy types”) may have very different pay-
off functions (Kajii and Morris [6]).8 Robustness to incomplete information
corresponds to uninvadability in networks in that both notions require that
a small amount of “crazy types” should not affect the aggregate behavior.

Indeed, they have the same characterizations in many classes of games.
For example, in parallel with Lemma 3, an MP-maximizer of a game (S, u)
with MP-function v is robust to incomplete information if u or v is super-
modular (Morris and Ui [12]). Combining this result with Lemma 4, we
obtain a sufficient condition for robustness in the bilingual game.

Conversely, a necessary condition for robustness is obtained by construct-
ing ε-incomplete information perturbations in which a given action profile
is contagious, where an action s∗ is said to be contagious in an ε-incomplete
information perturbation if s∗ is a dominant action for types outside T u

and playing s∗ everywhere is a unique rationalizable strategy. Specifically,
in any symmetric 3 × 3 supermodular game (S, u), adjusting the proof of
Lemma 1, for any ε > 0 one can construct ε-incomplete information per-
turbations in which 0 (2, resp.) is contagious if (3.1) ((3.2), resp.) holds for
some p ∈ (0, 1/2), or (3.3) holds for some q, r ∈ (0, 1) with r ≤ q (Oyama
and Takahashi [14]). The necessary condition thus follows by applying this
result to the bilingual game combined with Lemma 2.

These arguments characterize, exactly as in Theorem 1, when an equi-
librium in the bilingual game is robust to incomplete information.

Proposition B.5. Let (S, u) be the bilingual game given by (2.2). (i) (A,A)
is a unique robust equilibrium if e < e∗. (ii) (B,B) is a unique robust
equilibrium if e > max{e∗, e∗∗}. (iii) No equilibrium is robust if e∗ < e <
max{e∗, e∗∗}.

8Kajii and Morris [6] consider games with any finite number of players.
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B.7.2. Global Games

Global games constitute a subclass of incomplete information games,
where the underlying state θ is drawn from the real line, and each player i
receives a noisy signal xi = θ + νεi with εi being a noise error independent
across players and from θ. Under supermodularity and state-monotonicity
in payoffs, it has been shown by a contagion argument that an essentially
unique equilibrium survives iterative deletion of dominated strategies as
ν → 0, while the limit equilibrium may depend on the distribution of noise
terms εi (Frankel et al. [3]).

Global game perturbations in the class of all incomplete information
perturbations can be viewed as linear networks in the class of all networks.
In global games, the distribution of the opponent’s signal xj conditional on
xi is (approximately) invariant up to translation (for small ν > 0) due to the
assumption of state-independent noise errors, which parallels the translation
invariance in linear networks. In fact, in the context of local interactions,
by adopting the argument of Frankel et al. [3], one can show that a generic
supermodular game has at least one contagious action, and hence if an action
is uninvadable, then it is also contagious and no other action is uninvadable.9

Basteck and Daniëls [1] prove that in any global game, independently of
the noise distribution, action profile (0, 0) ((2, 2), resp.) is played at θ as ν →
0 if the game at that state θ is a symmetric 3× 3 supermodular game that
satisfies (3.1) ((3.2), resp.) for some p ∈ (0, 1/2). Together with Lemma 2(1),
this leads to the following characterization of global-game noise-independent
selection in the bilingual game, the same characterization as in Theorem 2.

Proposition B.6. Let (S, u) be the bilingual game given by (2.2). (i) (A,A)
is a noise-independent global game selection if e < e∗. (ii) (B,B) is a noise-
independent global game selection if e > e∗.

Since this characterization is different from that in Proposition B.5,
global games are not a critical class of incomplete information games that
determines whether or not an action profile is robust to incomplete infor-
mation. See Oyama and Takahashi [14] for further discussions.

Global games have been extended to multidimensional states and sig-
nals while maintaining the assumption of state-independent noise errors.
(Indeed, multidimensional states and signals are already accommodated in
Carlsson and van Damme [2].) Recently, Oury [13] shows that if an ac-
tion is played in some one-dimensional global game of supermodular games

9For the bilingual game, these results also follow from our Theorem 1.
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independently of the noise distribution, then it is also played in any mul-
tidimensional global game. This result, combined with that of Oyama and
Takahashi [14], implies that Proposition B.6 extends to multidimensional
global games.

B.7.3. Non-Common Priors and Asymmetric Interaction Weights

All results reported in Sections B.7.1 and B.7.2 rely on the implicit as-
sumption that in incomplete information perturbations the players share a
common prior probability distribution, from which each player derives his
conditional beliefs based on the information he has. This common prior as-
sumption corresponds in our local interaction context to the assumption that
the weight function P on interactions is symmetric, i.e., P (x, y) = P (y, x)
for all x, y ∈ X. The symmetry of the weight function naturally arises when
the value P (x, y) represents the duration (within a period) or intimacy of
the interaction between x and y. Alternatively, if asymmetric weights are
allowed, the situation corresponds to one of non-common priors.

Oyama and Tercieux [15, 16] study contagion and robustness under non-
common priors, where players may have heterogeneous priors in ε-incomplete
information perturbations and the probability of crazy types is no larger
than ε with respect to all the players’ priors. They show that under non-
common priors, any strict Nash equilibrium of a complete information game
is contagious in some ε-perturbations, and that generically, a game has a
robust equilibrium if and only if it is dominance solvable, in which case the
unique surviving action profile is robust.

Their results have a direct translation in our local interactions context:
under asymmetric weights, any strict Nash equilibrium of a pairwise game
is contagious, and generically, a game has an uninvadable action if and only
if it is dominance solvable, in which case the unique surviving action is
uninvadable.
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