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a b s t r a c t

This note demonstrates that a symmetric 3 × 3 supermodular game may fail to have any equilibrium
robust to incomplete information. Since the global game solution in symmetric 3×3 supermodular games
is known to be independent of the noise structure, this result implies that a noise-independent selection in
global gamesmay not be a robust equilibrium. Our proof reveals that the assumption in global games that
the noise errors are independent of the state imposes a non-trivial restriction on incomplete information
perturbations.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Suppose that an analyst plans tomodel some strategic situation
with a complete information game g and has a Nash equilibrium a∗

of g in hand as his prediction of the situation. While he believes
that the complete information game g correctly describes the
situation with high probability, he is also aware that there is
some uncertainty about the payoffs, so that the players may play
some incomplete information game close to g. Is his prediction a∗

still valid even in the presence of a small amount of incomplete
information?Kajii andMorris (1997, KMhenceforth) formalize this
robustness question as follows: Nash equilibrium a∗ of complete
information game g is robust to incomplete information if every
incomplete information game in which the payoffs are given by
g with high probability has a Bayesian Nash equilibrium such
that a∗ is played with high probability. This notion allows for a
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very rich structure of correlated types in incomplete information
perturbations, making the robustness test very stringent. Indeed,
even strict Nash equilibria may fail to be robust1 and there
are games that have no robust equilibrium,2 whereas KM and
subsequent studies have obtained several sufficient conditions for
an equilibrium to be robust.3

In this note, we demonstrate that there is a non-empty open
set of symmetric 3 × 3 supermodular games that have no robust
equilibrium. For each game in this set, we construct a sequence
of dominance-solvable incomplete information perturbations in
which one action profile is played everywhere and another
sequence of dominance-solvable perturbations in which another
action profile is played everywhere.4 This has an important

1 See the earlier 2 × 2 example by Rubinstein (1989).
2 KM construct a 3 × 3 × 3 (non-supermodular) game whose unique (strict)

Nash equilibrium is not robust.Morris (1999) demonstrates non-existence of robust
equilibrium in a symmetric 4 × 4 supermodular game.
3 KM show that a p-dominant equilibrium with p sufficiently small is robust,

while Ui (2001) shows that in potential games, a potential maximizer is
robust. Morris and Ui (2005) introduce a generalized notion of potential that unifies
and generalizes the p-dominance and the potential maximization conditions and
show that a generalized potential maximizer is robust. See Oyama and Tercieux
(2009) and Uno (2011) for further developments.
4 The conditions that define this set of games have been found by Honda (2011)

to show that these games have no monotone potential maximizer.

0304-4068/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
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implication regarding the relationship between robust equilibrium
and noise-independent selection in global games.

Global games, first developed by Carlsson and van Damme
(1993) for 2 × 2 games and subsequently used in various eco-
nomic applications,5 offer a natural way of introducing incomplete
information perturbations that gives rise to equilibrium unique-
ness through a ‘‘contagion’’ effect, where correlation in beliefs is
generated by noisy signals of the true payoff state with noise er-
rors independent of the state. For general supermodular games,
Frankel et al. (2003, FMP henceforth) show, with a setting with
one-dimensional signals, that as the signal noise vanishes, the
global games always have a unique equilibrium that survives it-
erative dominance, while the surviving equilibrium may depend
on the noise distribution.6 While the global game approach only
considers a particular class of perturbations as opposed to KM’s ro-
bustness to all elaborations,7 in classes of games considered in the
literature so far the equilibrium that is played in global games in-
dependently of the noise structure has turned out to be also robust
to all elaborations.8 This might lead one to conjecture that noise-
independent selection would imply robustness in all supermodu-
lar games, or put differently, the global game perturbations would
constitute a critical class of perturbations that determineswhether
or not an equilibrium is robust to incomplete information. Here,we
say that a class of elaborations is critical if robustness to that class
of elaborations implies robustness to all elaborations.

Our result in this note, combined with that by Basteck and
Daniëls (2010), falsifies this ‘‘critical class’’ conjecture on global
games. Basteck and Daniëls (2010) show in the setting of FMP
that generic symmetric 3 × 3 supermodular games have a noise-
independent selection in global games,9 while the present note
shows that some of these games have no robust equilibrium.
Hence, the set of incomplete information perturbations that KM’s
concept of robustness allows is significantly richer than the set that
global games generate. Moreover, the proof of our result reveals
that what makes the difference is the assumption in global games
that the noise errors are independent of the state. To be precise,
denote by ti = θ + νηi the signal that each player i observes,
where θ is the state of the world, ηi is the noise error which
is assumed to be independent of θ , and ν is a scale parameter.
This state-independence assumption implies that, conditional on
a player’s signal observation ti, the posterior distribution over the
difference between his signal and that of the opponent, t−i −

ti = ν(η−i − ηi), is (approximately) invariant in the own signal
ti when the noise parameter ν is sufficiently small. We show that
this invariance property imposes a non-trivial restriction on the
contagion argument. That is, in our symmetric 3×3 supermodular
games, the action that is played in global games independent of the
noise distribution is never played in some incomplete information
perturbationswhose posterior beliefs are not necessarily invariant.
These perturbations cannot be generated by one-dimensional
global games as FMP consider and may in effect be considered
as ‘‘two-dimensional’’ perturbations, where types with different
values in the first coordinate have very different posterior beliefs

5 See the survey by Morris and Shin (2003).
6 FMP provide a symmetric 4 × 4 example in which different equilibria survive

under different noise distributions.
7 In fact, Oury and Tercieux (2007) and Basteck et al. (2010) show that in

supermodular games, a robust equilibrium is a noise-independent selection in
global games.
8 For example, the sufficient condition for noise-independent selection provided

by FMP in terms of a generalized notion of potential is also sufficient for robustness
(Morris and Ui, 2005).
9 See also FMP Section 5 for a heuristic argument with symmetric noise

distributions.

over the opponent’s types.10 We will elaborate on this point in
Section 5.

2. Preliminaries

2.1. Complete information games

We focus on two-player games. The set of players is denoted
by I = {1, 2}, and for i ∈ I we write −i for player j ≠ i. Each
player i ∈ I has a linearly ordered, finite set of actions Ai =

{0, 1, . . . , ni}. These action sets are fixed throughout the analysis.
A complete information game is thus represented by a profile of
payoff functions g = (gi)i∈I, where gi: A =

∏
i∈I Ai → R, i ∈ I.

Let ∆(S) denote the set of probability distributions over a set S.
We denote by br i(πi) the set of player i’s pure best responses to
πi ∈ ∆(A−i):

br i(πi) = argmax
ai∈Ai

gi(ai, πi),

where gi(ai, πi) =
∑

a−i∈A−i
πi(a−i)gi(ai, a−i).

Complete information game g is supermodular if for each i ∈ I,

gi(a′

i, a−i) − gi(ai, a−i) ≤ gi(a′

i, a
′

−i) − gi(ai, a′

−i)

whenever ai < a′

i and a−i < a′

−i. It is well known that the best re-
sponse correspondence of a supermodular game is nondecreasing
in the stochastic dominance order. For πi, π

′

i ∈ ∆(A−i), we write
πi - π ′

i (and π ′

i % πi) if π ′

i stochastically dominates πi, i.e., if∑
a′
−i≥a−i

πi(a′

−i) ≤
∑

a′
−i≥a−i

π ′

i (a
′

−i) for all a−i ∈ A−i. If g is su-
permodular, then for each i ∈ I,

min br i(πi) ≤ min br i(π ′

i )

max br i(πi) ≤ max br i(π ′

i )

whenever πi - π ′

i .

2.2. ε-elaborations and robust equilibria

Given the game g, we consider the following class of incomplete
information games. Each player i ∈ I has a countable set of
types, denoted by Ti, and we write T =

∏
i∈I Ti. The (common)

prior probability distribution on T is given by P . We assume that P
satisfies that

∑
t−i∈T−i

P(ti, t−i) > 0 for all i ∈ I and ti ∈ Ti. Under
this assumption, the conditional probability of t−i given ti, P(t−i|ti),
is well defined by P(t−i|ti) = P(ti, t−i)/

∑
t ′
−i∈T−i

P(ti, t ′−i). The
payoff function for player i ∈ I is a bounded function ui: A × T →

R. Denote u = (ui)i∈I. The tuple (T , P,u) defines an incomplete
information game.

A (behavioral) strategy for player i is a function σi: Ti →

∆(Ai). Denote by Σi the set of strategies for player i, and write
Σ =

∏
i∈I Σi. For a strategy σi ∈ Σi, we denote by σi(ai|ti) the

probability that ai ∈ Ai is chosen at ti ∈ Ti. For σ ∈ Σ , we write
σP ∈ ∆(A) for the probability distribution over A generated by σ ,
i.e., σP(a) =

∑
t∈T P(t)

∏
i∈I σi(ai|ti) for a = (ai)i∈I ∈ A.

The expected payoff to player i of type ti ∈ Ti playing ai ∈ Ai
against the opponent’s strategy σ−i ∈ Σ−i is given by

Ui(ai, σ−i|ti) =

−
t−i∈T−i

P(t−i|ti) ui((ai, σ−i(t−i)), (ti, t−i)),

where ui((ai, σ−i(t−i)), t) =
∑

a−i∈A−i
σ−i(a−i|t−i)ui((ai, a−i), t).

Let BRi(σ−i|ti) denote the set of pure best responses of player i of

10 Oury (2009) studies global games with a multi-dimensional state space while
maintaining the assumption that the noise errors are independent of the state.
Under this independence assumption, she shows that noise-independent selection
in one-dimensional global games extends to multi-dimensional global games.
Our notion of ‘‘multi-dimensionality’’ is different from Oury’s, and in particular,
our ‘‘two-dimensional’’ perturbations do not fall within her multi-dimensional
framework.
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type ti ∈ Ti against σ−i ∈ Σ−i:

BRi(σ−i|ti) = argmax
ai∈Ai

Ui(ai, σ−i|ti).

A strategy profile σ ∈ Σ is a Bayesian Nash equilibrium of (T , P,u)
if for all i ∈ I, all ai ∈ Ai, and all ti ∈ Ti,

σi(ai|ti) > 0 ⇒ ai ∈ BRi(σ−i|ti).
Given g, let T gi

i be the set of types ti such that payoffs of player
i of type ti are given by gi and he knows his payoffs:

T gi
i = {ti ∈ Ti | ui(a, (ti, t−i)) = gi(a)

for all a ∈ A and all t−i ∈ T−i with P(ti, t−i) > 0}.

Denote T g
=

∏
i∈I T gi

i .

Definition 1. Let ε ∈ [0, 1]. An incomplete information game
(T , P,u) is an ε-elaboration of g if P(T g) = 1 − ε.

Following KM, we say that an action distribution µ ∈ ∆(A) is
robust if, for small ε > 0, every ε-elaboration of g has a Bayesian
Nash equilibrium σ such that the action distribution it generates,
σP , is close to µ.

Definition 2. Action distribution µ ∈ ∆(A) is robust to incomplete
information in g if for every δ > 0, there exists ε̄ > 0 such that
for all ε ≤ ε̄, any ε-elaboration (T , P,u) of g has a Bayesian Nash
equilibrium σ such that maxa∈A |µ(a) − σP(a)| ≤ δ.

If µ ∈ ∆(A) is robust in g, then it must be a correlated
equilibrium of g (KM, Corollary 3.5). We say that an action profile
a ∈ A is robust in g if the degenerate action distribution on a
(i.e., µ ∈ ∆(A) such that µ(a) = 1) is robust in g.

Given σ−i ∈ Σ−i, let πi(σ−i|ti) ∈ ∆(A−i) be the belief of player
i of type ti over the opponent’s actions, i.e.,

πi(σ−i|ti)(a−i) =

−
t−i∈T−i

P(t−i|ti)σ−i(a−i|t−i)

for a−i ∈ A−i. Observe that

BRi(σ−i|ti) = br i(πi(σ−i|ti))

for all ti ∈ T gi
i .

Several sufficient conditions for robustness to incomplete
informationhave been obtained. In particular,Morris andUi (2005)
introduce generalized notions of potential and show, among
others, that a monotone potential maximizer (MP-maximizer), a
special form of their generalized potential maximizer concept,
is robust in supermodular games (and in games that admit a
monotone potential function that is supermodular). Their result
unifies and generalizes the previous results by KM in terms of
p-dominance and by Ui (2001) in terms of potential maximization.
On the other hand, Morris (1999) presents an example of
a symmetric 4 × 4 supermodular game that has no robust
equilibrium.

3. Result

We now restrict our attention to 3 × 3 games, so that A1 =

A2 = {0, 1, 2}, and assume that g is supermodular. The game g
is symmetric if g1(h, k) = g2(k, h) for all h, k ∈ {0, 1, 2}. We
associate a symmetric 3×3 gamewith an element in R9. We prove
the following.

Proposition 1. There is a non-empty open set of symmetric 3 ×

3 supermodular games that have no robust equilibrium.

Here, openness is relative to R9.11

11 In fact, the non-existence obtains in an open neighborhood of this set relative
to R18 , including some asymmetric 3 × 3 games.

The proof proceeds as follows. In Lemma 1, we present a
condition under which there is a sequence of ε-elaborations with
a unique Bayesian Nash equilibrium where action 2 is played
everywhere. It implies that if the game satisfies this condition,
no action distribution other than (the degenerate distribution on)
(2, 2) is robust. In Lemma 2, we then present a condition under
which there is a sequence of ε-elaborationswith a unique Bayesian
Nash equilibrium where action 0 is played everywhere. Thus, if
the game satisfies this condition, no action distribution other than
(0, 0) is robust. Proposition 1 follows from the fact that there is a
non-empty open set of symmetric 3× 3 supermodular games that
satisfy the conditions in Lemmata 1 and 2 simultaneously.12

In fact, these conditions have been found (and shown to
be satisfied by some symmetric games) by Honda (2011) as a
sufficient condition for a 3 × 3 game to have no MP-maximizer.
He shows by direct computation that these conditions imply non-
existence of an MP-maximizer. Since, as shown by Morris and Ui
(2005), an MP-maximizer is robust, our non-existence result of
robust equilibrium gives an indirect, alternative proof of the non-
existence of MP-maximizer.

4. Proof

Let, for p ∈ (0, 1/2),

π a
=


1
2
, p,

1
2

− p


, π b
=


1
2

− p, p,
1
2


,

and for q, r ∈ (0, 1), r ≤ q,

π c
=


1 + q
2

, 0,
1 − q
2


, πd

=


1 − r
2

, 0,
1 + r
2


,

π e
=


0,

q + r
2q

,
q − r
2q


.

The conditions are stated in terms of best responses to these
beliefs.

Lemma 1. If there exists p ∈ (0, 1/2) such that

min br i(π a) ≥ 1, min br i(π b) = 2, (1)

then for all ε > 0, there exists an ε-elaboration where the strategy
profile σ ∗ such that σ ∗

i (2|ti) = 1 for all ti ∈ Ti is the unique Bayesian
Nash equilibrium.

Lemma 2. If there exist q, r ∈ (0, 1) with r ≤ q such that

max br i(π c) = 0, max br i(πd) ≤ 1, max br i(π e) = 0, (2)

then for all ε > 0, there exists an ε-elaboration where the strategy
profile σ ∗ such that σ ∗

i (0|ti) = 1 for all ti ∈ Ti is the unique Bayesian
Nash equilibrium.

Our constructions of the desirable elaborations exploit the
subtle structure of best responses to the above beliefs (π a and
π b in Lemma 1 and π c through π e in Lemma 2) and are more
involved than, for example, the construction of KM (Lemma 5.5),
in which they demonstrate contagion of a strict p-dominant
equilibrium with p = (pi)i∈I ∈ [0, 1)I such that

∑
i∈I pi ≤ 1.13

As in the definition of p-dominance, KM’s construction exploits

12 In these games, action profiles (0, 0) and (2, 2) are the only pure Nash
equilibria. Oyama and Takahashi (2009) show that symmetric 3 × 3 supermodular
coordination games, where the three symmetric action profiles are all Nash
equilibria, generically have an MP-maximizer and hence a robust equilibrium
by Morris and Ui (2005).
13 An action profile a∗ is a strictp-dominant equilibrium if for each i ∈ I, br i(πi) =

{a∗

i } holds for all πi ∈ (A−i) such that πi(a∗

−i) > pi .



Author's personal copy

686 D. Oyama, S. Takahashi / Journal of Mathematical Economics 47 (2011) 683–688

Table 1
Contagion of action 2.

t1 \ t2 0 1 2 3 4 5 · · ·

0 ( 1
2 − p)ε

1 pε ( 1
2 − p)ε(1 − ε)

2 ( 1
2 − p)ε pε pε(1 − ε) ( 1

2 − p)ε(1 − ε)2

3 ( 1
2 − p)ε(1 − ε) pε(1 − ε) pε(1 − ε)2 ( 1

2 − p)ε(1 − ε)3

.

.

.
. . .

. . .
. . .

. . .

the ‘‘coarse’’ property of the equilibrium action being the best
response to all the beliefs that assign at least probability pi to
the opponent’s equilibrium action, and thus along the contagion it
suffices to confirm that each type of the players assigns at least pi
to the opponent playing the equilibrium action. Consequently, the
contagion argument in KM effectively treats the game as a binary
game,where eachplayer plays either the equilibriumaction or ‘‘the
other actions’’, so that the p-dominance condition pins down the
behavior of the players in one step for each type. In contrast, our
contagion argument will proceed with two steps, where in each
step, the player’s belief over the opponent’s actions will turn out
to be larger (in the stochastic dominance order) than π a or π b in
Lemma 1, or smaller than π c , πd, or π e in Lemma 2, thereby the
condition (1) or (2) will narrow down the behavior of the players
to a single action. See the proofs below for details.

Proof of Lemma 1. Let p ∈ (0, 1/2) be such that condition (1) is
satisfied. We construct a sequence of elaborations (T , Pε,u)ε>0,
where Pε(T g) → 1 as ε → 0, as follows. Let Ti = Z+ for each
i ∈ I. Define Pε

∈ ∆(T ) by

Pε(τ + 1, τ ) = Pε(τ , τ + 1)
= pε(1 − ε)τ−1, τ ≥ 1,

Pε(τ + 2, τ ) = Pε(τ , τ + 2)

=


1
2

− p


ε(1 − ε)τ , τ ≥ 0,

and Pε(t1, t2) = 0 otherwise; see Table 1. Define ui: A×T → R for
each i ∈ I by

ui(a, t) =

gi(a) if ti ≠ 0, 1,
1 if ti = 0, 1 and ai = 2,
0 if ti = 0, 1 and ai ≠ 2.

That is, types 0 and 1 are ‘‘crazy types’’ for which action 2 is
a dominant action, and T gi

i = Z+ \ {0, 1}. (The constructed
elaboration is an ε{1 + (1 − 2p)(1 − ε)}-elaboration.)

Observe that the posterior beliefs generated by Pε are invariant
in translation, i.e., Pε(t−i = τ ′

+1|ti = τ+1) = Pε(t−i = τ ′
|ti = τ)

for all τ ≥ 2 and τ ′
≥ 0. We will use the following relationships

between posterior probabilities and beliefs π a and π b:

(a) πi % π a
= (1/2, p, 1/2 − p) for all πi ∈ ∆(A−i) such that

πi(2) ≥ Pε(t−i = τ − 1|ti = τ + 1) =
1/2 − p
1 − ε/2

,

πi(1) + πi(2) ≥ Pε(t−i = τ − 1, τ |ti = τ + 1) =
1/2

1 − ε/2
;

(b) πi % π b
= (1/2 − p, p, 1/2) for all πi ∈ ∆(A−i) such that

πi(2) ≥ Pε(t−i = τ − 2, τ − 1|ti = τ) =
1/2

1 − ε/2
,

πi(1) + πi(2) ≥ Pε(t−i = τ − 2, τ − 1, τ + 1|ti = τ)

=
1/2 + p − pε

1 − ε/2
.

We want to show that (T , Pε,u) has a unique Bayesian Nash
equilibrium, which plays action 2 everywhere. Consider any

Bayesian Nash equilibrium σ ∗ of (T , Pε,u). We show by induction
that

σ ∗

i (2|τ − 2) = σ ∗

i (2|τ − 1) = 1 and σ ∗

i (0|τ) = 0,

i = 1, 2 (∗τ )

for all τ ≥ 2. We note that by the assumption (1) and the
supermodularity of gi, for any ti ∈ T gi

i ,

min BRi(σ
∗

−i|ti) ≥ 1 if πi(σ
∗

−i|ti) % π a, (3)

min BRi(σ
∗

−i|ti) = 2 if πi(σ
∗

−i|ti) % π b. (4)

We first show (∗2). Indeed, σ ∗

i (2|0) = σ ∗

i (2|1) = 1 by
construction, and therefore, type ti = 2 assigns at least probability
Pε(t−i = 0, 1|ti = 2) to the opponent playing action 2, so that
πi(σ

∗

−i|2) % π a. Thus, σ ∗

i (0|2) = 0 by (3).
Assume (∗τ ). Then, type ti = τ + 1 assigns at least probability

Pε(t−i = τ − 1|ti = τ + 1) to the opponent playing 2 and at least
probability Pε(t−i = τ − 1, τ |ti = τ + 1) to the opponent playing
1 or 2. Therefore, we have πi(σ

∗

−i|τ + 1) % π a (recall (a)), so that
σ ∗

i (0|τ +1) = 0 by (3). Given this, go back to type ti = τ . This type
now assigns at least probability Pε(t−i = τ −2, τ −1, τ +1|ti = τ)
to the opponent playing 1 or 2 (and at least probability Pε(t−i =

τ − 2, τ − 1|ti = τ) to the opponent playing 2). Therefore, we
have πi(σ

∗

−i|τ) % π b (recall (b)), so that σ ∗

i (2|τ) = 1 by (4). Thus,
(∗τ+1) holds. �

Proof of Lemma 2. Let q, r ∈ (0, 1), r ≤ q, be such that con-
dition (2) is satisfied. We construct a sequence of elaborations
(T , Pε,u)ε>0, where Pε(T g) → 1 as ε → 0, as follows. Let Ti =

{α, β} × Z+ for each i ∈ I. Define Pε
∈ ∆(T ) by

Pε((α, τ + 1), (α, τ )) = Pε((α, τ ), (α, τ + 1))

=
1 − q

2(1 + q)
ε(1 − ε)τ ,

Pε((α, τ ), (β, τ )) = Pε((β, τ ), (α, τ ))

=
q + r

2(1 + q)
ε(1 − ε)τ ,

Pε((α, τ + 1), (β, τ )) = Pε((β, τ ), (α, τ + 1))

=
q − r

2(1 + q)
ε(1 − ε)τ ,

and Pε(t1, t2) = 0 otherwise; see Table 2. Define ui: A×T → R for
each i ∈ I by

ui(a, t) =

gi(a) if ti ≠ (α, 0),
1 if ti = (α, 0) and ai = 0,
0 if ti = (α, 0) and ai ≠ 0.

That is, type (α, 0) is a ‘‘crazy type’’ for which action 0 is a domi-
nant action, and T gi

i = ({α, β} × Z+) \ {(α, 0)}. (The constructed
elaboration is an ε(1 + r)/(1 + q)-elaboration.)

Observe that the posterior beliefs generated by Pε are invariant
in translation in the second coordinate, i.e., Pε(t−i = (·, τ ′

+1)|ti =

(α, τ + 1)) = Pε(t−i = (·, τ ′)|ti = (α, τ )) for all τ ≥ 1 and τ ′
≥ 0

and Pε(t−i = (·, τ ′
+ 1)|ti = (β, τ + 1)) = Pε(t−i = (·, τ ′)|ti =

(β, τ )) for all τ , τ ′
≥ 0. We will use the following relationships
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Table 2
Contagion of action 0, where Q =

1−q
2(1+q) , R0 =

q+r
2(1+q) , R1 =

q−r
2(1+q) .

t1 \ t2 (α, 0) (α, 1) (α, 2) (α, 3) (α, 4) · · · (β, 0) (β, 1) (β, 2) (β, 3) · · ·

(α, 0) Qε R0ε

(α, 1) Qε Qε(1 − ε) R1ε R0ε(1 − ε)

(α, 2) Qε(1 − ε) Qε(1 − ε)2 R1ε(1 − ε) R0ε(1 − ε)2

(α, 3) Qε(1 − ε)2 Qε(1 − ε)3 R1ε(1 − ε)2 R0ε(1 − ε)3

.

.

.
. . .

. . .
. . .

. . .

(β, 0) R0ε R1ε

(β, 1) R0ε(1 − ε) R1ε(1 − ε)

(β, 2) R0ε(1 − ε)2 R1ε(1 − ε)2

(β, 3) R0ε(1 − ε)3 R1ε(1 − ε)3

.

.

.
. . .

. . .

between posterior probabilities and beliefs π c , πd, and π e:

(c) πi - π c
= ((1+q)/2, 0, (1−q)/2) for allπi ∈ ∆(A−i) such that

πi(0) ≥ Pε(t−i = (α, τ ), (β, τ ), (β, τ + 1)|ti = (α, τ + 1))

=
1 + q − (q + r)ε
2 − (1 + r)ε

;

(d) πi - πd
= ((1−r)/2, 0, (1+r)/2) for allπi ∈ ∆(A−i) such that

πi(0) ≥ Pε(t−i = (α, τ ), (β, τ )|ti = (α, τ + 1))

=
1 − r

2 − (1 + r)ε
;

(e) πi - π e
= (0, (q + r)/(2q), (q − r)/(2q)) for all πi ∈ ∆(A−i)

such that

πi(0) + πi(1) ≥ Pε(t−i = (α, τ + 1)|ti = (β, τ + 1))

=
q + r
2q

.

We want to show that (T , Pε,u) has a unique Bayesian Nash
equilibrium, which plays action 0 everywhere. Consider any
Bayesian Nash equilibrium σ ∗ of (T , Pε,u). We show by induction
that

σ ∗

i (0|(α, τ )) = σ ∗

i (0|(β, τ )) = 1, i = 1, 2 (⋆τ )

for all τ ≥ 0. We note that by the assumption (2) and the super-
modularity of gi, for any ti ∈ T gi

i ,

max BRi(σ
∗

−i|ti) = 0 if πi(σ
∗

−i|ti) - π c, (5)

max BRi(σ
∗

−i|ti) ≤ 1 if πi(σ
∗

−i|ti) - πd, (6)

max BRi(σ
∗

−i|ti) = 0 if πi(σ
∗

−i|ti) - π e. (7)

We first show (⋆0). Indeed, σ ∗

i (0|(α, 0)) = 1 by construc-
tion, and therefore, type ti = (β, 0) assigns at least probability
Pε(t−i = (α, 0)|ti = (β, 0)) to the opponent playing action 0, so
that πi(σ

∗

−i|(β, 0)) - π e. Thus, σ ∗

i (0|(β, 0)) = 1 by (7).
Assume (⋆τ ). Then, type ti = (α, τ +1) assigns at least probabil-

ity Pε(t−i = (α, τ ), (β, τ )|ti = (α, τ +1)) to the opponent playing
0, and therefore, we have πi(σ

∗

−i|(α, τ + 1)) - πd (recall (d)), so
that σ ∗

i (2|(α, τ +1)) = 0 by (6). Then, type ti = (β, τ +1) assigns
at least probability Pε(t−i = (α, τ+1)|ti = (β, τ+1)) to the oppo-
nent playing 0 or 1, and therefore, we haveπi(σ

∗

−i|(β, τ +1)) - π e

(recall (e)), so that σ ∗

i (0|(β, τ + 1)) = 1 by (7). Therefore, going
back to type ti = (α, τ + 1), since this type now assigns at least
probability Pε(t−i = (α, τ ), (β, τ ), (β, τ + 1)|ti = (α, τ + 1)) to
the opponent playing 0, we have πi(σ

∗

−i|(α, τ + 1)) - π c (recall
(c)), so that σ ∗

i (0|(α, τ + 1)) = 1 by (5). Thus, (⋆τ+1) holds. �

We close the proof of Proposition 1 by presenting two examples
that satisfy the hypotheses of Lemmata 1 and 2 simultaneously.
Example 1 is taken fromHonda (2011). Example 2 presents a game
involving some economic context, the so-called ‘‘Bilingual Game’’
studied by Galesloot and Goyal (1997), Goyal and Janssen (1997),
and Oyama and Takahashi (2010), among others. Clearly, the
conditions will continue to be satisfied with small perturbations
of the payoffs.

Example 1 (Honda, 2011). Let the game g be given by

0 1 2

0 13, 13 3, 5 0, 0

1 5, 3 0, 0 13, 2

2 0, 0 2, 13 16, 16

where (0, 0) and (2, 2) are the only pure Nash equilibria. One can
verify that conditions (1) and (2) in Lemmata 1 and 2 are satisfied
(with equalities) for p ∈ (1/7, 5/32) and for q and r such that
q > 5/21, r < 1/4, and (15/17)q < r ≤ q, respectively (Honda,
2011, Example 1). This game thus has no robust equilibrium.

Example 2 (Bilingual Game). Two players are to choose between
two computer programming languages, or two types of technolo-
gies in general, A and B. Assume that A is more efficient while B is
less risky: if both players choose A, then they each receive a pay-
off of 11, while if both choose B, then they both receive 10; if they
choose different options, then the A-player receives 0, while the
B-player receives 3. Thus, (A, A) Pareto-dominates (B, B), while
(B, B) pairwise risk-dominates (A, A). In this 2 × 2 coordina-
tion game, the risk-dominant, and Pareto-dominated, equilibrium
(B, B) is robust to incomplete information.

Now suppose that a ‘‘bilingual option’’, or compatible technol-
ogy, AB is available with some cost e > 0. An AB-player adopts
A against an A-player to receive a (gross) payoff 11 and adopts B
against a B-player to receive 10. If both players choose AB, then
they use the efficient option A and receive 11. This situation is de-
scribed by

0 1 2

0 11, 11 11, 11 − e 0, 3

1 11 − e, 11 11−e, 11−e 10 − e, 10

2 3, 0 10, 10 − e 10, 10
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where the actions A, AB, and B are denoted 0, 1, and 2, respectively,
and with the order 0 < 1 < 2 the game is supermodular. The
profiles (A, A) and (B, B) are the only pure Nash equilibria of this
game (against AB, A is the best response).

For this game, it is conceivable that if the cost e is large so that
AB is too costly, then the game is strategically similar to the original
2×2 game, and thus the pairwise risk-dominant equilibrium (B, B)
will be robust, while if e is small enough, then B will tend to be
abandoned in the presence of the even less risky option AB, and
thus the efficient option A will be robust. In fact, by Oyama and
Takahashi (2010), it turns out that if e > 40/19, then (B, B) is an
MP-maximizer and hence a robust equilibrium, while if e < 5/3,
then (A, A) is an MP-maximizer and hence a robust equilibrium;
in the middle case when 5/3 < e < 40/19, the conditions in
Lemmata 1 and 2 are simultaneously satisfied and therefore the
game has no robust equilibrium.

5. Discussion

Let us discuss the relation to global-game noise-independent
selection. Global games, first introduced by Carlsson and van
Damme (1993) for binary games, represent an important class of
incomplete information games in which equilibrium uniqueness
arises through contagion effects along higher order beliefs. General
supermodular games (with many players and many actions) are
studied by FMP in the following setting. A state of the world θ
is drawn from the real line and determines the payoffs of the
players, and each player observes a noisy signal θ + νηi, where
ηi is a noise error that is independent of the state θ , and ν > 0
is a scale parameter. It is assumed that the payoff differences are
monotone in opponents’ actions (supermodularity) and in the state
θ (state monotonicity), and each player has a dominant action
when θ is sufficiently small or large (dominance regions). In this
setting, FMP show that as the signal noise vanishes, the game has
a unique equilibrium that survives iterative dominance, while the
selected equilibrium may depend on the noise distribution. FMP
provide a symmetric 4 × 4 example in which different equilibria
survive depending on the noise distribution. They also provide
sufficient conditions for the selection to be noise-independent. In
particular, they give a heuristic argument that generic symmetric
3 × 3 supermodular games have a noise-independent selection,
which is formally proved by Basteck and Daniëls (2010).

The crucial difference between the robustness and the global
game approaches (besides the technical difference whether the
type space is discrete or continuous) is that the latter considers a
certain subclass of payoff perturbations, while the former allows
for all perturbations. In fact, as proved by Oury and Tercieux (2007)
and Basteck et al. (2010), robustness implies global-game noise-
independent selection in supermodular games: i.e., if an action
profile is robust in the game given by the payoffs at θ , then it
must be played at θ in the global game independently of the noise
distribution.14

Our Proposition 1 shows that the converse of this result does
not hold: we demonstrated non-existence of robust equilibrium
in symmetric 3 × 3 supermodular games, a class of games that
admit noise independence in global games, thus implying that
a global-game noise-independent selection may not be a robust
equilibrium. That is, the global game perturbation is in general
not the only possible perturbation that yields a unique equilibrium
outcome.

Corollary 2. A global-game noise-independent selection may not be
a robust equilibrium.

More specifically, the result by Basteck and Daniëls (2010) in
fact shows that if the game g satisfies the condition (1) in Lemma 1,

14 See Morris and Shin (2003, Section 4.5) for a heuristic argument for this claim.

then (2, 2) is the global game selection of g. The incomplete
information elaboration we constructed in the proof of Lemma 1
can thus be seen as a type space representation of a global game
with some noise structure with a one-dimensional state space as
in FMP. On the other hand, their noise-independence result implies
that the elaboration we constructed in the proof of Lemma 2
for contagion of (0, 0) cannot be generated by a global game
perturbation. In global games, due to the assumption that the noise
term is independent of the state θ , a player’s belief, given a signal
observation, over the difference between his signal and that of the
opponent is (approximately) invariant in the signal value when
the noise is sufficiently small. The ‘‘one-dimensional’’ elaboration
in the proof of Lemma 1 has the corresponding property that
each player’s beliefs (except for the boundary types 0 and 1) over
the opponent’s are invariant up to translation. This property is
shared, to the best of our knowledge, by all the existing contagion
constructions in the robustness literature (e.g., KM, Lemma 5.5
and Morris, 1999, Section 7). By contrast, the ‘‘two-dimensional’’
elaboration in the proof of Lemma 2 does not satisfy this property,
where the posterior beliefs are invariant only in translation τ →

τ + 1 in the second coordinate and the beliefs of types (α, τ ) and
those of types (β, τ ) are entirely different. Such an elaboration
allowed us to obtain the contagion that would not occur in the
perturbations generated by global games with state-independent
noise errors. To conclude, it is the state-independence assumption
on the noise errors that delineates the boundary of the class of
global game perturbations.
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