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Abstract

For any given set-valued solution concept, it is possible to consider iterative elimination of actions outside
the solution set. This paper applies such a procedure to define the concept of iterated monotone poten-
tial maximizer (iterated MP-maximizer). It is shown that under some monotonicity conditions, an iterated
MP-maximizer is robust to incomplete information [A. Kajii, S. Morris, The robustness of equilibria to
incomplete information, Econometrica 65 (1997) 1283–1309] and absorbing and globally accessible under
perfect foresight dynamics for a small friction [A. Matsui, K. Matsuyama, An approach to equilibrium se-
lection, J. Econ. Theory 65 (1995) 415–434]. Several simple sufficient conditions under which a game has
an iterated MP-maximizer are also provided.
© 2009 Elsevier Inc. All rights reserved.

JEL classification: C72; C73; D82

Keywords: Equilibrium selection; Robustness; Incomplete information; Perfect foresight dynamics; Iteration; Monotone
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1. Introduction

Economic modeling, by its nature, is based on simplified assumptions that schematize a given
economic phenomenon. One way of assessing the role of the assumptions postulated is to com-
pare the model with its “perturbed variants” based on slightly weakened assumptions. It is now
well known in game theory that outcomes of a game may dramatically change when we allow
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for small departures from a given assumption (one may think of departure from the common
knowledge assumption as demonstrated, among others, by Rubinstein [30] or Carlsson and van
Damme [4]).1 Let us say that an equilibrium is robust with respect to a given assumption if it is
still an equilibrium when this assumption is slightly weakened.

The lack of robustness of some Nash equilibria has led game theorists to consider criteria
that guarantee robustness. In bold strokes, two types of methods have proved to be powerful
in identifying equilibria that are robust in various aspects: namely, the potential method (due
to Monderer and Shapley [20]; see also Blume [3], Hofbauer and Sorger [7,8], Ui [36]) and the
risk-dominance method (due to Harsanyi and Selten [6]; see also Kandori, Mailath, and Rob [10],
Young [37], Matsui and Matsuyama [15], Morris, Rob, and Shin [22], and Kajii and Morris [9]).
These criteria, however, are very demanding and such concepts fail to exist in many games. In
this paper, we introduce a notion of iterative construction that enables us to enlarge the class of
games where these approaches apply and hence to extend the existing sufficient conditions for
equilibria to be robust.

Specifically, we consider two robustness tests. The first one is the so-called “robustness to
incomplete information” test as originally defined by Kajii and Morris [9]. To motivate this ap-
proach, consider an analyst who plans to model some strategic situation by a particular complete
information game. This analyst should be aware that his prediction might be (in some games)
highly dependent on the assumption of complete information. Hence, if it is guaranteed that the
analyst’s prediction based on the complete information game is not qualitatively different from
some equilibrium of the real incomplete information game being played, then he is justified in
choosing the simplified assumption of complete information. To be more precise, robustness to
incomplete information is defined as follows. A (pure) Nash equilibrium a∗ of a complete in-
formation game g is robust to incomplete information if every “nearby” incomplete information
elaboration of g has a Bayesian Nash equilibrium that generates an (ex-ante) distribution over
actions assigning a weight close to one to a∗. “Nearby” incomplete information elaborations are
incomplete information games such that the sets of players and actions are the same as in the
complete information game g, and with high probability, each player knows that his payoffs are
the same as in g. Thus, payoffs of the incomplete information elaboration are allowed to be very
different of g with very low probability.

The second robustness test we consider is the one introduced by Matsui and Matsuyama [15],
namely, the perfect foresight dynamics approach. To motivate this approach, assume that an ana-
lyst considers a one-shot complete information game to predict the long-run outcome of a given
repeated interaction. Consider a Nash equilibrium of this game and embed the game in a dynamic
game with a large society of agents. If there is no link between time periods, then, regardless of
the initial action distribution of the society, the Nash equilibrium is the limit of some equilibrium
path in this dynamic game. But what if we slightly depart from such a simplified assumption
and assume that there exists a small amount of irreversibility or friction in action revisions? If
in this modified dynamic game, the Nash equilibrium is always the limit of an equilibrium path
regardless of the initial action distribution, then the analyst can ignore the subtle complications

1 Sensitivity to simplified assumptions has also been discussed in many economic applications. For instance, Morris
and Shin [23] and Goldstein and Pauzner [5] respectively consider how the predictions of standard models on currency
crises and on bank runs which rely on the existence of multiple self-fulfilling beliefs are modified when allowing for
slight departure from the complete information assumption. In a series of papers, Matsuyama [17–19] departs from the
perfect reversibility assumption on action revisions such as career choice decisions and underlines its consequences in
models of sectoral adjustment and economic development.
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induced by intertemporal effects through irreversibility. To be more precise, we consider a large
society with continua of agents (one for each player position of g), in which a one-shot game g is
played repeatedly in a random matching fashion. There is friction in action revisions: each agent
cannot change his action at every point in time. Action revision opportunities follow independent
Poisson processes. Agents, when given a revision opportunity, take actions that maximize their
expected discounted payoffs. The degree of friction is then measured by the discounted average
duration of a commitment. A perfect foresight path is a feasible path of action distribution along
which each revising agent takes a best response to the future course of play. A Nash equilibrium
a∗ is globally accessible if for any initial action distribution, there exists a perfect foresight path
that converges to a∗; a∗ is linearly absorbing if the feasible path converging linearly to a∗ is
the unique perfect foresight path from each initial action distribution in a neighborhood of a∗.
If a Nash equilibrium that is globally accessible is also absorbing, then it is the unique globally
accessible equilibrium.

It has been known that even a strict Nash equilibrium may fail to be robust in each sense
above. In 2 × 2 coordination games, for instance, while the risk-dominant equilibrium is robust
in the above senses, the risk-dominated equilibrium is not: the risk-dominated equilibrium is
never played in any Bayesian Nash equilibrium under some incomplete information structures
(Rubinstein [30], Morris, Rob, and Shin [22])2 and it is never played along any equilibrium
path for some initial action distributions (Matsui and Matsuyama [15]). That is, even strict Nash
equilibria which are often considered as being immune against most perturbations (see Kohlberg
and Mertens [13]) can be very sensitive to slight departure from some simplified assumptions.

In finding sufficient conditions for an equilibrium to be robust in each sense above, the
two concepts of potential maximizer and p-dominance (the latter is a generalization of risk-
dominance) have proved to be powerful. Kajii and Morris [9] show that if the complete informa-
tion game has a p-dominant equilibrium with low p, then it is robust to incomplete information,3

while Ui [36] shows that in potential games, the potential maximizer is robust to incomplete
information. For perfect foresight dynamics, Hofbauer and Sorger [7,8] show that a potential
maximizer is stable for any small degree of friction, while the p-dominance condition is studied
by Oyama [26] (in a single population setting).4 Furthermore, Morris and Ui [24] introduce a
generalization of potential and establishes the robustness of generalized potential maximizer to
incomplete information. Oyama, Takahashi, and Hofbauer [28, OTH henceforth] consider the
stability of monotone potential maximizer (a special case of generalized potential maximizer)
under the perfect foresight dynamics. The class of games with a monotone potential maxi-
mizer contains games with a p-dominant equilibrium with a low p, and therefore the results on
generalized/monotone potential maximizer unify the potential maximizer and the p-dominance
conditions.

This paper applies an iterative construction to potential and p-dominance methods to generate
new sufficient conditions that are obtained by iterating the existing conditions above. Consider-
ing monotone potential, which unifies the two methods, we introduce iterated monotone potential
maximizer (iterated MP-maximizer). Roughly speaking, our iterative procedure to build this con-

2 Kajii and Morris [9] also provide a three-player three-action game where a unique Nash equilibrium, which is strict,
is not robust to incomplete information.

3 Tercieux [35] proves a set-valued extension of this result.
4 Kojima [14] considers another generalization of risk-dominance and establishes the stability result in a multiple

population setting. Kim [12] reports a similar result for binary games with many identical players. Tercieux [34] considers
a set-valued extension of the p-dominance condition.
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cept can be described as follows. An action profile a∗ is said to be an iterated MP-maximizer if
there exists a sequence of subsets of action profiles S0 ⊃ S1 ⊃ · · · ⊃ Sm = {a∗} such that for all
k = 1, . . . ,m, Sk is an MP-maximizer set in the game restricted to Sk−1, where S0 is the set of all
action profiles. We show that under certain monotonicity conditions, an iterated MP-maximizer
is robust to incomplete information and globally accessible and linearly absorbing for a small
friction. This is proved by exploiting the similarity between the mathematical structures of in-
complete information elaborations and perfect foresight dynamics, which may be of independent
interest.5

Given our main results above, it remains to confirm their relevance in conceptual and practi-
cal aspects. While it is powerful enough to allow us, through iteration, to prove our results, the
original MP-maximizer itself is an abstract concept so that no simple characterization has been
known for a game to have an MP-maximizer (unless the game is a simple one such as a 2 × 2
game), and therefore it is in general a difficult task to find an MP-maximizer, and hence an iter-
ated MP-maximizer, in a given game. This fact also makes it difficult to examine the additional
bite iterated MP-maximizer has over MP-maximizer. We thus instead offer simpler concepts that
remain easier to manipulate in identifying a robust Nash equilibrium. For these simpler concepts,
we show by means of examples that the iterative construction considered in this paper indeed has
an additional bite for both the potential and the p-dominance methods. We also provide a simple
application to demonstrate the practical use of our iterative construction in an economic context.

First, we consider iteration of p-dominance by discussing the concept of iterated p-dominant
equilibrium defined by Tercieux [34]. We prove that if a game has an iterated p-dominant equi-
librium with low p, then this equilibrium is actually an iterated MP-maximizer and the relevant
monotonicity conditions for our robustness results to hold are satisfied. It is also shown that iter-
ated p-dominance is strictly more general than p-dominance. Second, as a specific form of MP-
maximizer, we consider local potential maximizer (LP-maximizer) as introduced by Morris and
Ui [24]. We define iterated LP-maximizer and verify that, in games with marginal diminishing
returns, an iterated LP-maximizer is an iterated MP-maximizer. In contrast with MP-maximizers,
Morris and Ui [24] are able to give a simple characterization for LP-maximizers, which enables
us to show that, for this specific form of MP-maximizers, our iterative construction leads to
a strictly more general concept: we provide an example of a simple game that has an iterated
LP-maximizer but no LP-maximizer. Restricting our attention to specific classes of games, we
further give several other tools which are much easier to manipulate in finding robust Nash equi-
libria. In particular, for two-player supermodular coordination games, we introduce the concept
of iterated risk-dominance which is based on (a generalization of) the pairwise risk-dominance
concept considered by Kandori and Rob [11] and thus relies only on local properties of the payoff
structure.

Finally, we discuss a simple application to demonstrate that our iterative procedures can be
applied to identify a robust prediction in an economic situation. Specifically, we consider a simple
game of technology adoption inspired by Kandori and Rob [11], which under certain assumptions
falls into the class of supermodular coordination games. We identify an iteratively risk-dominant
technology in this game, which in fact constitutes an iterated MP-maximizer and thus provides
us with a robust prediction.

5 Takahashi [33] reports a formal correspondence between perfect foresight dynamics and global games (with a certain
class of noise structures) for games with linear payoff functions.
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The paper is organized as follows. Section 2 introduces the concept of iterated MP-maximizer
as well as other related concepts. Section 3 considers the informational robustness of iterated MP-
maximizer, while Section 4 considers the stability of iterated MP-maximizer under the perfect
foresight dynamics. Section 5 concludes.

2. Iterated monotone potential maximizer

2.1. Underlying game

Throughout our analysis, we fix the set of players, I = {1,2, . . . ,N}, and the linearly ordered
set of actions, Ai = {0,1, . . . , ni}, for each player i ∈ I . We denote

∏
i∈I Ai by A and

∏
j �=i Aj

by A−i . A one-shot complete information game is specified by, and identified with, a profile
of payoff functions, g = (gi)i∈I , where gi :A → R is the payoff function for player i. For S =
S1 × · · · × SN where Si ⊂ Ai , gi |S denotes the restriction of gi to S. We identify g|S = (gi |S)i∈I

with the restricted game with the sets of actions Si .
For any nonempty, at most countable set S, we denote by Δ(S) the set of all probability

distributions on S. We sometimes identify each action in Ai with the element of Δ(Ai) that
assigns one to the corresponding coordinate.

For xi, yi ∈ Δ(Ai), we write xi � yi if
ni∑

k=h

xik �
ni∑

k=h

yik

for all h ∈ Ai . We write x � y for x, y ∈ ∏
i Δ(Ai) if xi � yi for all i ∈ I , and x−i � y−i for

x−i , y−i ∈ ∏
j �=i Δ(Aj ) if xj � yj for all j �= i. For πi,π

′
i ∈ Δ(A−i ), we write πi � π ′

i if∑
a−i∈S−i

πi(a−i ) �
∑

a−i∈S−i

π ′
i (a−i )

for any increasing subset S−i ⊂ A−i .6 The game g is said to be supermodular if whenever h < k,
the difference gi(k, a−i ) − gi(h, a−i ) is nondecreasing in a−i ∈ A−i , i.e., if a−i � b−i , then

gi(k, a−i ) − gi(h, a−i ) � gi(k, b−i ) − gi(h, b−i ).

It is well known that this property extends to Δ(A−i ): if h < k and πi � π ′
i , then

gi(k,πi) − gi(h,πi) � gi

(
k,π ′

i

) − gi

(
h,π ′

i

)
.

We endow
∏

i∈I Δ(Ai), Δ(A), and Δ(A−i ), i ∈ I , with the sup (or max) norm: |x| =
maxi∈I maxh∈Ai

xih for x ∈ ∏
i∈I Δ(Ai), |π | = maxa∈A π(a) for π ∈ Δ(A), and |πi | =

maxa−i∈A−i
πi(a−i ) for πi ∈ Δ(A−i ). For ε > 0, denote Bε(x) = {x′ ∈ ∏

i Δ(Ai) | |x′ − x| < ε}
for x ∈ ∏

i∈I Δ(Ai), Bε(π) = {π ′ ∈ Δ(A) | |π ′ − π | < ε} for π ∈ Δ(A), and Bε(πi) = {π ′
i ∈

Δ(A−i ) | |π ′
i − πi | < ε} for πi ∈ Δ(A−i ). Write Bε(F ) = ⋃

π∈F Bε(π) for F ⊂ Δ(A) and
Bε(F−i ) = ⋃

πi∈F−i
Bε(πi) for F−i ⊂ Δ(A−i ).

Let f be a function from A to R. With abuse of notion, f (ai, ·) are extended to
∏

j �=i Δ(Aj )

and Δ(A−i ), and f (·) to
∏

j∈I Δ(Aj ) and Δ(A) in the usual way. For Si ⊂ Ai , let

bri
f (x−i |Si) = arg max

{
f (h, x−i )

∣∣ h ∈ Si

}
6 S−i ⊂ A−i is said to be increasing if a−i ∈ S−i and a−i � b−i imply b−i ∈ S−i .
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for x−i ∈ ∏
j �=i Δ(Aj ), and

bri
f (πi |Si) = arg max

{
f (h,πi)

∣∣ h ∈ Si

}
for πi ∈ Δ(A−i ). We also denote bri

f (x−i ) = bri
f (x−i |Ai) and bri

f (πi) = bri
f (πi |Ai).

Let S∗
i be a nonempty subset of Ai for each i ∈ I , and S∗ = ∏

i∈I S∗
i . We say that S∗ is a best

response set of g if for all i ∈ I , bri
gi

(πi) ∩ S∗
i �= ∅ for all πi ∈ Δ(S−i ) and that S∗ is a strict best

response set of g if for all i ∈ I , bri
gi

(πi) ⊂ S∗
i for all πi ∈ Δ(S−i ). An action profile a∗ ∈ A is a

(strict) Nash equilibrium of g if {a∗} is a (strict) best response set of g.

2.2. Iterated MP-maximizer

In this subsection, we define our main concept of iterated monotone potential maximizer
(iterated MP-maximizer, in short). In the sequel, we denote [ai, āi] = {h ∈ Ai | ai � h � āi}, and
for a = (ai)i∈I and ā = (āi)i∈I , [a, ā] = ∏

i∈I [ai, āi] and [a−i , ā−i] = ∏
j �=i[aj , āj ]. We say

that S ⊂ A is an order interval, or simply an interval, if S = [a, ā] for some a, ā ∈ A such that
ai � āi for all i ∈ I , and denote Si = [ai, āi] and S−i = [a−i , ā−i].

We employ a refinement of the MP-maximizer concept due to Morris and Ui [24].7

Definition 2.1. An interval S∗ ⊂ A is a strict MP-maximizer set of g if there exists a function
v :A → R such that S∗ = arg maxa∈A v(a), and for all i ∈ I and all πi ∈ Δ(A−i ),

min bri
v

(
πi

∣∣[minAi,minS∗
i

])
� min bri

gi

(
πi

∣∣[minAi,maxS∗
i

])
, (2.1)

and

max bri
v

(
πi

∣∣[maxS∗
i ,maxAi

])
� max bri

gi

(
πi

∣∣[minS∗
i ,maxAi

])
. (2.2)

Such a function v is called a strict monotone potential function.

Now our concept of iterated strict MP-maximizer is obtained by iteration of strict MP-
maximizer.

Definition 2.2. An interval S∗ ⊂ A is an iterated strict MP-maximizer set of g if there exists a
sequence of intervals S0, S1, . . . , Sm with A = S0 ⊃ S1 ⊃ · · · ⊃ Sm = S∗ such that Sk is a strict
MP-maximizer set of g|Sk−1 for each k = 1, . . . ,m.

An action profile a∗ ∈ A is an iterated strict MP-maximizer of g if {a∗} is an iterated strict
MP-maximizer set of g.

For supermodular games, an iterated strict MP-maximizer is unique if it exists, due to Theo-
rems 4.1 and 4.7 given in Section 4.

We also introduce a weaker, but more complicated, version of iterated MP-maximizer, which
is sufficient to obtain the robustness to incomplete information and the stability under perfect
foresight dynamics.

7 This refinement has been introduced by OTH [28, Definition 4.2] for action profiles (singleton sets).
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Definition 2.3. Let S∗ and S be intervals such that S∗ ⊂ S ⊂ A. S∗ is an MP-maximizer set
of g relative to S if there exist a function v :A → R and a real number η > 0 such that S∗ =
arg maxa∈A v(a), and for all i ∈ I and all πi ∈ Bη(Δ(S−i )),

min bri
v

(
πi

∣∣[minSi,minS∗
i

])
� max bri

gi

(
πi

∣∣[minSi,maxS∗
i

])
, (2.3)

and

max bri
v

(
πi

∣∣[maxS∗
i ,maxSi

])
� min bri

gi

(
πi

∣∣[minS∗
i ,maxSi

])
. (2.4)

Such a function v is called a monotone potential function relative to Bη(Δ(S)).

Notice the ‘max’ and the ‘min’ in the right-hand sides of (2.3) and (2.4), respectively (cf. those
of (2.1) and (2.2)). Notice also that v is defined on the whole set A and that (2.3) and (2.4) must
be satisfied also for beliefs πi that assign small probability (less than η) to actions outside S−i ,
which is an indispensable requirement for the informational robustness and the stability; see
Example 2.1.

Definition 2.4. An interval S∗ ⊂ A is an iterated MP-maximizer set of g if there exists a sequence
of intervals S0, S1, . . . , Sm with A = S0 ⊃ S1 ⊃ · · · ⊃ Sm = S∗ such that Sk is an MP-maximizer
set relative to Sk−1 for each k = 1, . . . ,m.

An action profile a∗ ∈ A is an iterated MP-maximizer of g if {a∗} is an iterated MP-maximizer
set of g.

For an iterated (strict) MP-maximizer set S∗, the sequence S0, S1, . . . , Sm in the definition
will be called associated intervals of S∗.

Remark 2.1. In Definition 2.3, let Pi = {S∗
i } ∪ {{ai} | ai /∈ S∗

i } and P = {∏i∈I Xi | Xi ∈
Pi for i ∈ I }. If v is P-measurable, then “[minSi,minS∗

i ]” in the left-hand side of (2.1) and
(2.3) and “[maxS∗

i ,maxSi]” in the left-hand side of (2.2) and (2.4) can be replaced with
“[minSi,maxS∗

i ]” and “[minS∗
i ,maxSi],” respectively. If S∗ is an MP-maximizer set relative

to A with v being P-measurable, then it is an MP-maximizer (with respect to P) in the sense of
Morris and Ui [24, Definition 8].

Here we show that iterated strict MP-maximizer is actually a refinement of iterated MP-
maximizer.

Proposition 2.1. An iterated strict MP-maximizer set is an iterated MP-maximizer set.

It is sufficient to show the following.

Lemma 2.2. Let S∗ and S be intervals such that S∗ ⊂ S ⊂ A. If S∗ is a strict MP-maximizer set
of g|S with a strict monotone potential function v :S → R, then there exist a function ṽ :A → R

and a real number η > 0 such that S∗ = arg maxa∈A ṽ(a), and (2.1) and (2.2) with A = S hold
for all i ∈ I and all πi ∈ Bη(Δ(S−i )).

Moreover, if v|S is supermodular, then ṽ can be taken so that ṽ|A is supermodular.

We call such a function ṽ a strict monotone potential function relative to Bη(Δ(S)).
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Proof. See Appendix A. �
Finally, we report a useful fact for reference.

Lemma 2.3. Suppose that g has an iterated MP-maximizer S∗ with A = S0 ⊃ S1 ⊃ · · ·
⊃ Sm = S∗ and (vk)mk=1. Then, there exists η > 0 such that for all k = 1, . . . ,m and for all
i ∈ I and all πi ∈ Bη(Δ(Sk

−i )),

bri
gi

(πi) ∩ Sk
i �= ∅.

Proof. Note first that for all � = 1, . . . , k, S� = arg maxa∈S�−1 v�(a), and therefore we can take
ε� > 0 such that for all i ∈ I and all πi ∈ Bε�(Δ(S�−i )),

bri
v�

(
πi

∣∣[minS�−1
i ,minS�

i

]) = minS�
i ,

bri
v�

(
πi

∣∣[maxS�
i ,maxS�−1

i

]) = maxS�
i

due to the continuity of v�(h,πi) in πi . By definition, for all � = 1, . . . , k, there exists η� > 0
such that for all i ∈ I and all πi ∈ Bη�(Δ(S�−i )),

max bri
gi

(
πi

∣∣[minS�−1
i ,maxS�

i

])
� min bri

v�

(
πi

∣∣[minS�−1
i ,minS�

i

])
,

min bri
gi

(
πi

∣∣[minS�
i ,maxS�−1

i

])
� max bri

v�

(
πi

∣∣[maxS�
i ,maxS�−1

i

])
.

Setting η = min� ε� ∧ min� η�, we have that for all � = 1, . . . , k and for all i ∈ I and all πi ∈
Bη(Δ(Sk

−i )) (⊂ Bη(Δ(S�−i ))),

max bri
gi

(
πi

∣∣[minS�−1
i ,maxS�−1

i

])
� minS�

i ,

min bri
gi

(
πi

∣∣[minS�−1
i ,maxS�−1

i

])
� maxS�

i ,

and therefore,

bri
gi

(
πi

∣∣S�−1
i

) ∩ S�
i �= ∅.

An induction argument thus proves that

bri
gi

(πi) ∩ Sk
i �= ∅

for all i ∈ I and all πi ∈ Bη(Δ(Sk
−i )), as claimed. �

Example 2.1. Consider the following 2 × 3 supermodular game:

0 1 2

0 1,0 1,1 0,0

1 0,0 1,1 1,0

In this game, both (0,1) and (1,1) were iterated MP-maximizers if η in Definition 2.3 were
allowed to be set to zero. But one can verify that none of them is robust to incomplete information
or globally accessible under perfect foresight dynamics. Hence, this example shows that the
requirement (in the definition of iterated MP-maximizer) that the conditions be satisfied for all
πi ∈ Bη(Δ(Sk−1)) (where η > 0) is indispensable for robustness to incomplete information and
stability under perfect foresight dynamics.
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2.3. Iterated LP-maximizer

Generally, finding an MP-maximizer or iterated MP-maximizer is a difficult task, since no
full characterization (i.e., necessary and sufficient condition) has been known for a game to have
an MP-maximizer and hence an iterated MP-maximizer (unless the game is a simple game such
as a 2 × 2 game). In this subsection, we focus on a specific form of MP-maximizer, local po-
tential maximizer (LP-maximizer) introduced by Morris [21] and Morris and Ui [24], for which
several rather simple characterizations are available (e.g., Morris and Ui [24] and Okada and
Tercieux [25]), and introduce the iterative notion of LP-maximizer as a specific form of iterated
MP-maximizer. In Subsection 2.6, we will show, by means of an example, that the iterated LP-
maximizer is strictly more general than the simple LP-maximizer, thereby demonstrating that,
for such MP-maximizers, the iterative construction we offer in the present paper does have a
bite.

We review the definition of LP-maximizer by Morris and Ui [24] and then introduce its strict
version which will in turn be applied for its iteration.

Definition 2.5. An interval S∗ ⊂ A is an LP-maximizer set of g if there exists a function
v :A → R such that S∗ = arg maxa∈A v(a), and for all i ∈ I and all ai < minS∗

i ,

max
a′
i∈a+

i

∑
a−i∈A−i

πi(a−i )gi

(
a′
i , a−i

)
�

∑
a−i∈A−i

πi(a−i )gi(ai, a−i )

holds for all πi ∈ Δ(A−i ) such that∑
a−i∈A−i

πi(a−i )v(ai + 1, a−i ) �
∑

a−i∈A−i

πi(a−i )v(ai, a−i ),

where a+
i = {ai + 1} if ai + 1 < minS∗

i and a+
i = S∗

i if ai + 1 = minS∗
i ; and for all i ∈ I and all

ai > maxS∗
i ,

max
a′
i∈a−

i

∑
a−i∈A−i

πi(a−i )gi

(
a′
i , a−i

)
�

∑
a−i∈A−i

πi(a−i )gi(ai, a−i )

holds for all πi ∈ Δ(A−i ) such that∑
a−i∈A−i

πi(a−i )v(ai − 1, a−i ) �
∑

a−i∈A−i

πi(a−i )v(ai, a−i ),

where a−
i = {ai − 1} if ai − 1 > maxS∗

i and a−
i = S∗

i if ai − 1 = maxS∗
i . Such a function v is

called a local potential function.

The strict version of LP-maximizer is defined as follows, where the weak inequalities in the
previous definition are replaced with strict ones.8

Definition 2.6. An interval S∗ ⊂ A is a strict LP-maximizer set of g if there exists a function
v :A → R such that S∗ = arg maxa∈A v(a), and for all i ∈ I and all ai < minS∗

i ,

max
a′
i∈a+

i

∑
a−i∈A−i

πi(a−i )gi

(
a′
i , a−i

)
>

∑
a−i∈A−i

πi(a−i )gi(ai, a−i )

8 For action profiles (singleton sets), our definition is equivalent to that of OTH [28, Definition 4.4(ii)].
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holds for all πi ∈ Δ(A−i ) such that∑
a−i∈A−i

πi(a−i )v(ai + 1, a−i ) >
∑

a−i∈A−i

πi(a−i )v(ai, a−i ),

where a+
i = {ai + 1} if ai + 1 < minS∗

i and a+
i = S∗

i if ai + 1 = minS∗
i ; and for all i ∈ I and all

ai > maxS∗
i ,

max
a′
i∈a−

i

∑
a−i∈A−i

πi(a−i )gi

(
a′
i , a−i

)
>

∑
a−i∈A−i

πi(a−i )gi(ai, a−i )

holds for all πi ∈ Δ(A−i ) such that∑
a−i∈A−i

πi(a−i )v(ai − 1, a−i ) >
∑

a−i∈A−i

πi(a−i )v(ai, a−i ),

where a−
i = {ai − 1} if ai − 1 > maxS∗

i and a−
i = S∗

i if ai − 1 = maxS∗
i . Such a function v is

called a strict local potential function.

Now we define the notion of iterated strict LP-maximizer in a similar way as we defined
iterated strict MP-maximizer.

Definition 2.7. An interval S∗ ⊂ A is an iterated strict LP-maximizer set of g if there exists a
sequence of intervals S0, S1, . . . , Sm with A = S0 ⊃ S1 ⊃ · · · ⊃ Sm = S∗ such that Sk is a strict
LP-maximizer set of g|Sk−1 for each k = 1, . . . ,m.

An action profile a∗ ∈ A is an iterated strict LP-maximizer of g if {a∗} is an iterated strict
LP-maximizer set of g.

The game g is said to have diminishing marginal returns if for all i ∈ I , all h �=
minAi,maxAi , and all a−i ∈ A−i ,

gi(h, a−i ) − gi(h − 1, a−i ) � gi(h + 1, a−i ) − gi(h, a−i ).

As in Morris and Ui [24] or OTH [28, Lemma 4.2], one can show that if the game g or the local
potential function v has diminishing marginal returns, then a strict LP-maximizer is a strict MP-
maximizer. Therefore, in such games, an iterated strict LP-maximizer is always an iterated strict
MP-maximizer.

Proposition 2.4. If a∗ is an iterated strict LP-maximizer of g with associated intervals (Sk)mk=0
and local potential functions (vk)mk=1 and if for each k = 1, . . . ,m, g|Sk−1 or vk|Sk−1 has marginal
diminishing returns, then a∗ is an iterated strict MP-maximizer of g with monotone potential
functions (vk)mk=1.

2.4. Iterated p-dominance

This subsection provides simple ways to find iterated monotone potentials using iteration of
p-dominance as considered in Tercieux [34].

Let p = (pi)i∈I ∈ [0,1)N . Let us first review the definition of strict p-dominant equilibrium
due to Kajii and Morris [9].
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Definition 2.8. An action profile a∗ ∈ A is a strict p-dominant equilibrium of g if for all i ∈ I ,{
a∗
i

} = bri
gi

(πi)

holds for all πi ∈ Δ(A−i ) with πi(a
∗−i ) > pi .

Next we define strict p-best response set. This concept is a set-valued extension of the strict
p-dominance concept (see Tercieux [34,35]). The set S = ∏

i∈I Si (Si ⊂ Ai , i ∈ I ) is a strict p-
best response set if, whenever any player i believes with probability strictly greater than pi that
the other players will play actions in S−i , all of his best responses are contained in Si .

Definition 2.9. Let S∗
i be a nonempty subset of Ai for each i ∈ I , and S∗ = ∏

i∈I S∗
i . The set S∗

is a strict p-best response set of g if for all i ∈ I ,

bri
gi

(πi) ⊂ S∗
i

holds for all πi ∈ Δ(A−i ) with πi(S
∗−i ) > pi .

Now with the two steps procedure that we used to define an iterated MP-maximizer, we define
iterated (strict) p-dominant equilibrium. Formally, this can be stated as follows.

Definition 2.10. Let S∗
i be a nonempty subset of Ai for each i ∈ I , and S∗ = ∏

i∈I S∗
i . The set

S∗ is an iterated strict p-best response set of g if there exists a sequence S0, S1, . . . , Sm with
A = S0 ⊃ S1 ⊃ · · · ⊃ Sm = S∗ such that Sk is a strict p-best response set in g|Sk−1 for each
k = 1, . . . ,m.

An action profile a∗ ∈ A is an iterated strict p-dominant equilibrium of g if {a∗} is an iterated
strict p-best response set of g.

For an iterated strict p-best response set S∗, the sequence S0, S1, . . . , Sm in the definition will
be called associated subsets of S∗.

We now prove a link between iterated p-dominant equilibrium and iterated MP-maximizer.

Proposition 2.5. Let a∗ be an iterated strict p-dominant equilibrium of g with
∑

i∈I pi < 1, and
A = S0 ⊃ S1 ⊃ · · · ⊃ Sm = {a∗} associated subsets. Then, there exists an order < on A such that
Sk’s are intervals and a∗ is an iterated strict MP-maximizer with monotone potential functions
(vk)mk=1 that are supermodular and of the form:

vk(a) =
{

1 − ∑
i∈I pi if a ∈ Sk ,

−∑
i∈Ck(a) pi otherwise,

(2.5)

where Ck(a) = {i ∈ I | ai ∈ Sk
i }.

To have vk’s be supermodular, re-order the actions so that for all i ∈ I , for all k = 1, . . . ,m,
and for all ai ∈ Sk

i , a′
i ∈ Sk−1

i \ Sk
i , a′

i < ai . Note that this implies that a∗ = maxA = maxS1 =
· · · = maxSm. One can verify that for all k, vk is supermodular with respect to the new order.

Now Proposition 2.5 follows from the following lemma.

Lemma 2.6. Let (Sk)mk=0 be intervals such that A = S0 ⊃ S1 ⊃ · · · ⊃ Sm and maxSk = maxA

for all k = 1, . . . ,m. If for each k = 1, . . . ,m, Sk is a strict pk-best response set in g|Sk−1 with∑
i∈I pk

i < 1, then Sm is an iterated strict MP-maximizer set of g.
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Proof. For each k = 1, . . . ,m, let vk be given as in (2.5) with pi = pk
i . Consider any k =

1, . . . ,m and any i ∈ I . It is now sufficient to show that vk is a strict monotone potential func-
tions for Sk in g|Sk−1 . Denote a�

j = minS�
j for each j ∈ I and � = k − 1, k. We want to show that

for all πi ∈ Δ(Sk−1
−i ),

min bri
vk

(
πi

∣∣Sk−1
i

)
� min bri

gi

(
πi

∣∣Sk−1
i

)
(note that bri

vk (πi |Sk−1
i ) = bri

vk (πi |[ak−1
i , ak

i ]) by construction).

Fix any πi ∈ Δ(Sk−1
−i ). Observe that

vk(h,πi) =
∑

a−i∈Sk−1
−i

πi(a−i )v
k(h, a−i )

takes only two different values: one for h < ak
i and another for h � ak

i . Hence,

min bri
vk

(
πi

∣∣Sk−1
i

) ∈ {
ak−1

i , ak
i

}
.

It is sufficient to consider the case where min bri
vk (πi |Sk−1

i ) = ak
i . For such πi ∈ (Sk−1

−i ), we have

0 < vk
(
ak

i ,πi

) − vk
(
ak−1

i , πi

) =
∑

a−i∈Sk−i

πi(a−i )
(
1 − pk

i

) −
∑

a−i /∈Sk−i

πi(a−i )p
k
i

=
∑

a−i∈Sk−i

πi(a−i ) − pk
i ,

and thus πi(S
k
−i ) > pk

i . Since Sk is a strict pk-best response set in g|Sk−1 , bri
gi

(πi |Sk−1
i ) ⊂ Sk

i .

Therefore, we have min bri
gi

(πi |Sk−1
i ) � ak

i = min bri
vk (πi |Sk−1

i ), completing the proof. �
In the case where g is supermodular, we have a simple characterization of iterated p-dominant

equilibrium by means of the notion of iterated pairwise p-dominance.

Definition 2.11. An action profile a∗ ∈ A is an iterated pairwise strict p-dominant equilibrium
of g if there exists a sequence 0 = a0

i � a1
i � · · · � am

i = a∗
i = ām

i � · · · � ā1
i � ā0

i = ni for each
i ∈ I such that for all k = 1, . . . ,m, ak is a strict p-dominant equilibrium in g|[ak−1,ak] and āk is
a strict p-dominant equilibrium in g|[āk ,āk−1].

Proposition 2.7. Suppose that g is supermodular. If a∗ is an iterated pairwise strict p-dominant
equilibrium of g, then a∗ is an iterated strict p-dominant equilibrium of g.

Hence, by Proposition 2.5, if a∗ is an iterated pairwise strict p-dominant equilibrium of a
supermodular game g with

∑
i∈I pi < 1, then a∗ is an iterated strict MP-maximizer of g.

The proof utilizes the following fact.

Lemma 2.8. Suppose that g is supermodular. Let S be an interval such that maxS = maxA. If
minS is a strict p-dominant equilibrium in g|[0,minS], then S is a strict p-best response set of g.
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Proof. Given S as above, denote ai = minSi for each i ∈ I . Take any i ∈ I and any πi ∈ Δ(A−i )

such that πi(S−i ) > pi . We want to show that bri
gi

(πi) ⊂ Si . Define π ′
i ∈ Δ(A−i ) by

π ′
i (a−i ) =

{
πi(S−i ) if a−i = a−i ,

1 − πi(S−i ) if a−i = 0,

0 otherwise.

Since π ′
i (ai) > pi , we have bri

gi
(π ′

i |[0, ai]) = {ai} by the assumption that a is a strict

p-dominant equilibrium in g|[0,a], so that min bri
gi

(π ′
i ) � ai . On the other hand, since π ′

i � πi ,

we have min bri
gi

(π ′
i ) � min bri

gi
(πi) due to the supermodularity of g. It thus follows that

min bri
gi

(πi) � ai , which implies that bri
gi

(πi) ⊂ Si . �
Proof of Proposition 2.7. Suppose that a∗ is an iterated pairwise p-dominant equilibrium. It
is sufficient to show that (a) for each k = 1, . . . ,m, [ak, ā0] is a strict p-best response set in
g|[ak−1,ā0], and (b) for each k = 1, . . . ,m, [a∗, āk] is a strict p-best response set in g|[a∗,āk−1].
But, since ak is a strict p-dominant equilibrium in g|[ak−1,ak], (a) follows from Lemma 2.8 with

A = [ak−1, ā0] and S = [ak, ā0]. One can similarly prove (b) by Lemma 2.8 (by reversing the
order on actions). �
Remark 2.2. For supermodular games, it is simple to check whether ak is a strict p-dominant
equilibrium in g|[ak−1,ak] for some p with

∑
i∈I pi < 1. Indeed, it is necessary and sufficient

to check that for each i ∈ I , bri
gi

(πi |[ak−1
i , ak

i ]) = {ak
i } for πi ∈ Δ([ak−1

−i , ak
−i]) such that

πi(a
k−1
−i ) = 1 − pi and πi(a

k
−i ) = pi .

2.5. Iterated risk-dominance

In this subsection, we consider the class of two-player coordination games, where there are
two players with the same action set Ai = {0,1, . . . , n} for each i = 1,2, and all the action
profiles on the diagonal are strict Nash equilibria, i.e., (h, k) is a strict Nash equilibrium if and
only if h = k.

We provide a simpler way to find iterated strict MP-maximizers in two-player supermodular
coordination games. Let us first generalize the notion of pairwise risk-dominance by Kandori and
Rob [11] to asymmetric two-player games and then define our notion of iterated risk-dominance.

Definition 2.12. Let g be a two-player coordination game. We say that (h,h) pairwise risk dom-
inates (k, k) in g if(

g1(h,h) − g1(k,h)
) × (

g2(h,h) − g2(k,h)
)

>
(
g1(k, k) − g1(h, k)

) × (
g2(k, k) − g2(h, k)

)
, (2.6)

and write (h,h) PRD (k, k).

Definition 2.13. Let g be a two-player coordination game. (h∗, h∗) is an iterated risk-dominant
equilibrium of g if

1. (h,h) PRD (h − 1, h − 1) for each h = 1, . . . , h∗, and
2. (h,h) PRD (h + 1, h + 1) for each h = h∗, . . . , n − 1.
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Proposition 2.9. Suppose that g is a two-player supermodular coordination game. If (h∗, h∗) is
an iterated risk-dominant equilibrium of g, then it is an iterated strict MP-maximizer of g.

Proof. Suppose that (h∗, h∗) is an iterated risk-dominant equilibrium. In light of Lemma 2.6, it
is sufficient to show that (a) for each h = 1, . . . , h∗, [h,n] × [h,n] is a strict ph-best response
set in g|[h−1,n]×[h−1,n] for some ph such that ph

1 + ph
2 < 1, and (b) for each k = h∗, . . . , n − 1,

[h∗, k] × [h∗, k] is a strict pk-best response set in g|[h∗,k+1]×[h∗,k+1] for some pk such that pk
1 +

pk
2 < 1. We only show (a).

Consider any h = 1, . . . , h∗, and let

ph
i = gi(h − 1, h − 1) − gi(h,h − 1)

gi(h,h) − gi(h − 1, h) + gi(h − 1, h − 1) − gi(h,h − 1)
> 0

and ph = (ph
1 ,ph

2 ). Verify that ph
1 + ph

2 < 1 due to the condition (2.6) and that (h,h) is a strict
ph-dominant equilibrium in g|[h−1,h]×[h−1,h]. It therefore follows from Lemma 2.8 that [h,n] ×
[h,n] is a strict ph-best response set in g|[h−1,n]×[h−1,n]. �
Example 2.2. Consider the following asymmetric supermodular game:

0 1 2

0 3,1 0,0 −2,−2

1 0,0 2,2 0,0

2 −2,−2 0,0 1,3

In this game, (1,1) is an iterated risk-dominant equilibrium and hence an iterated strict MP-
maximizer. Note that this game has no iterated p-dominant equilibrium for p1 + p2 < 1.

If we consider symmetric games (i.e., g2(k,h) = g1(h, k) for all h ∈ A1 and k ∈ A2), the
proof of Proposition 2.9 in fact shows also the following link between iterated p-dominance and
iterated risk-dominance.

Proposition 2.10. Suppose that g is a symmetric two-player supermodular coordination game. If
(h∗, h∗) is an iterated risk-dominant equilibrium of g, then it is an iterated strict (p,p)-dominant
equilibrium of g for some p < 1/2.

Example 2.3. Consider the following symmetric supermodular game:

0 1 2

0 1,1 0,0 −3,−6

1 0,0 2,2 0,0

2 −6,−3 0,0 3,3
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In this game, (2,2) is an iterated risk-dominant equilibrium and indeed an iterated strict
(2/5,2/5)-dominant equilibrium. Observe that this game has no (p,p)-dominant equilibrium
for any p < 1/2.9

2.6. An example: potential versus iterated potential

In this subsection, while focusing on LP-maximizer, a specific form of MP-maximizer, we
provide a numerical example to demonstrate that our iterative construction leads to a strictly
more general concept. The following symmetric 3 × 3 game g will show that the iterated strict
LP-maximizer is strictly more general than the strict LP-maximizer:

0 1 2

0 −1,−1 −1,3 1,0

1 3,−1 1,1 0,0

2 0,1 0,0 2,2

In fact, we show that this game has no LP-maximizer while it does have an iterated strict LP-
maximizer with supermodular strict local potential functions.

It is easy to check that {1,2} × {1,2} is a strict (0,0)-best response set of g since action 0 is
strictly dominated by action 2. In addition, {2} × {2} is a strict (1/3,1/3)-best response set of
g|{1,2}×{1,2}. Tercieux [35] shows that a p-best response set with

∑
i∈I pi < 1 is an LP-maximizer

set with a supermodular local potential function. One can show that this relationship extends to
the strict versions of these notions. Hence, we have the following.

Claim 2.11. (2,2) is an iterated strict LP-maximizer with associated intervals S1 = {1,2} ×
{1,2} and S2 = {2} × {2} and with strict local potential functions v1 and v2|{1,2}×{1,2} that are
both supermodular.

Indeed, the strict local potential functions v1 and v2 can be taken respectively as follows:

0 1 2

0 0 0 0

1 0 1 1

2 0 1 1

1 2

1 1 0

2 0 2

This iterated strict LP-maximizer (2,2) is also an iterated strict MP-maximizer with the same
potential functions v1 and v2 and thus is robust to incomplete information as well as globally
accessible (for small frictions) and linearly absorbing according to our main results.

In what follows, we show that (2,2) is not an LP-maximizer.

Claim 2.12. (2,2) is not an LP-maximizer of g.

9 Note also that this game has no globally risk-dominant equilibrium as defined by Kandori and Rob [11].
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To show this, we use the following simple characterization of LP-maximizers provided by
Morris and Ui [24, Lemma 9].

Lemma 2.13. Action profile a∗ is an LP-maximizer of g if and only if there exists a func-
tion v :A → R such that {a∗} = arg maxa∈A v(a), and for all i ∈ I , there exists a function
μi :Ai → R+ such that if ai < a∗

i , then for all a−i ∈ A−i ,

μi(ai)
(
v(ai + 1, a−i ) − v(ai, a−i )

)
� gi(ai + 1, a−i ) − gi(ai, a−i ), (2.7)

and if ai > a∗
i , then for all a−i ∈ A−i ,

μi(ai)
(
v(ai − 1, a−i ) − v(ai, a−i )

)
� gi(ai − 1, a−i ) − gi(ai, a−i ). (2.8)

Proof of Claim 2.12. To prove by contradiction, assume that (2,2) is an LP-maximizer of g. Let
v be a local potential function for (2,2) with weight functions {μi(·)}i∈I as in Lemma 2.13. Note
first that because g1(2,1)−g1(1,1) = −1 < 0, the inequality (2.7) above implies that μ1(1) > 0.
In addition, g1(1,2) − g1(0,2) = −1 < 0, which here again implies μ1(0) > 0. Symmetrically,
we must have that μ2(0),μ2(1) > 0. Now again using the inequality (2.7), we must have

v(2,2) − v(1,2) � 1

μ1(1)

(
g1(2,2) − g1(1,2)

) = 2

μ1(1)
,

v(1,2) − v(0,2) � 1

μ1(0)

(
g1(1,2) − g1(0,2)

) = −1

μ1(0)
,

v(0,2) − v(0,1) � 1

μ2(1)

(
g2(0,2) − g2(0,1)

) = −3

μ2(1)
.

Summing up these inequalities, we have

0 < v(2,2) − v(0,1) � 2

μ1(1)
− 1

μ1(0)
− 3

μ2(1)
, (2.9)

where the first inequality follows from the fact that {(2,2)} = arg maxa∈A v(a). In a similar way,
we must have

v(2,2) − v(2,1) � 1

μ2(1)

(
g2(2,2) − g2(2,1)

) = 2

μ2(1)
,

v(2,1) − v(2,0) � 1

μ2(0)

(
g2(2,1) − g2(2,0)

) = −1

μ2(0)
,

v(2,0) − v(1,0) � 1

μ1(1)

(
g1(2,0) − g1(1,0)

) = −3

μ2(1)
.

Summing up these inequalities, we have

0 < v(2,2) − v(1,0) � 2

μ2(1)
− 1

μ2(0)
− 3

μ1(1)
. (2.10)

Now summing up (2.9) and (2.10), we have 0 < −(1/μ1(0) + 1/μ1(1) + 1/μ2(0) + 1/μ2(1)),
a contradiction since all these weights must be strictly positive numbers. �
Remark 2.3. In this paper, we use a linear order over action sets. Morris and Ui [24] define LP-
maximizers for more general orders. It is not difficult to show that even for such orders, (2,2) is
not an LP-maximizer of g.
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Remark 2.4. In the above game, there is no p-dominant equilibrium for p1 +p2 < 1 while there
is an iterated (p,p)-dominant equilibrium for some p < 1/2. Hence, this example also shows,
as does Example 2.3, that iterated p-dominance is strictly more general than p-dominance. The
same can be said also in the 3 × 3 example of Young [37]; see Tercieux [34, Example 1].

Remark 2.5. Morris and Ui [24] have also shown that a p-dominant equilibrium with∑
i∈I pi < 1 is an LP-maximizer. Hence, this example also demonstrates that an iterated

p-dominant equilibrium with
∑

i∈I pi < 1 is not necessarily an LP-maximizer.

Remark 2.6. One can nevertheless find, possibly by guesswork, a monotone potential function
to show that (2,2) is actually a strict MP-maximizer in this game. A monotone potential function
is given for example by

0 1 2

0 0 0 −3

1 0 1 0

2 −3 0 2

We emphasize, however, that no systematic way to directly find an MP-maximizer has been
known beyond 2 × 2 games.

2.7. An application: technology adoption

In this subsection, we discuss a simple application in which an iterated strict MP-maximizer
exists and hence helps to identify a robust prediction. Our purpose here is to demonstrate that our
iterative procedures, in particular iterated risk-dominance, can in fact be applied to an economic
situation to single out a unique equilibrium outcome as a robust prediction. We consider the
following technology choice game inspired by Kandori and Rob [11]. There are two players i =
1,2. Each player i chooses a technology to adopt from a set of available technologies, denoted
by {0,1, . . . , n} and ordered by quality (net of price). The payoff of a player choosing technology
h when the other player chooses technology k is given by

g(h, k) = q(h) − c(h, k),

where q(h) is the inherent quality of technology h and thus is increasing in h, and c(h, k) is
the cost due to incompatibility with technology k. We assume that c(h, k) > 0 if h �= k, while
c(h,h) = 0. One way to interpret c(h, k) > 0 is that a technology-h user has to buy an adapter
which enables him to work with a technology-k user. We assume that the cost of incompatibility
is of significance so that (h,h) is a strict Nash equilibrium for all h = 1, . . . , n. Let denote this
symmetric coordination game by g.

We impose several restrictions on the functions q and c. First, we assume decreasing differ-
ences in the inherent quality of technology h, i.e., the marginal gain from adopting technology h

over technology h − 1 is strictly decreasing in h. This is reminiscent of the standard assumption
of diminishing marginal returns.

Assumption 2.1. q(h) − q(h − 1) is strictly decreasing in h.
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Second, consider a situation where consumers 1 and 2 “miscoordinate” where consumer 1
adopts technology h while consumer 2 adopts technology h − 1. We assume that the difference
between the cost of the consumer with the higher technology and that of the other consumer is
increasing in h. In other words, the relative cost of being the leader (i.e., the consumer with the
higher technology) upon miscoordination is larger when the miscoordination occurs for higher
technological standards.

Assumption 2.2. c(h,h − 1) − c(h − 1, h) is nondecreasing in h.

This assumption is satisfied, in particular, when the cost function is symmetric so that
c(h, k) = c(k,h) for all h and k.

Third, we assume that the cost function c is submodular. That is, the marginal cost of adopting
higher technologies is smaller when the other consumer chooses higher technological standards.
Hence, the consumer will have a larger incentive to adopt higher standard when the other does
so. Thus, under this assumption, the game g will indeed be supermodular.

Assumption 2.3. For all h, c(h + 1, k) − c(h, k) is nonincreasing in k.

We here introduce functions that will be useful in utilizing iterated risk-dominance. For h =
1, . . . , n, let

rh = (
g(h,h) − g(h − 1, h)

) − (
g(h − 1, h − 1) − g(h,h − 1)

)
= 2 × [

q(h) − q(h − 1)
] − [

c(h,h − 1) − c(h − 1, h)
]

(2.11)

and

Rh =
h∑

�=1

r�, (2.12)

and R0 = 0. Observe that rh > 0 if and only if (h,h) PRD (h − 1, h − 1), while rh < 0 if and
only if (h − 1, h − 1) PRD (h,h) (recall that “PRD” stands for “pairwise risk-dominates”).
Accordingly, rh can be seen as a measure of risk-dominance, and thus, Rh as the cumulative
risk-dominance.

By the definition of rh, we have the following.

Lemma 2.14. Under Assumptions 2.1 and 2.2, rh is strictly decreasing in h.

Now we show that for a generic choice of payoffs satisfying Assumptions 2.1 and 2.2, an
iteratively risk-dominant technology exists and maximizes the cumulative risk-dominance Rh.
If in addition Assumption 2.3 is satisfied, this technology indeed constitutes an iterated strict
MP-maximizer.

Proposition 2.15. Assume that the game g satisfies rh �= 0 for all h. Under Assumptions 2.1 and
2.2, if h∗ maximizes Rh, then (h∗, h∗) is a (unique) iterated risk-dominant equilibrium of g.

If, in addition, Assumption 2.3 is satisfied, then (h∗, h∗) is a (unique) iterated strict MP-
maximizer of g.
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Proof. If rh < 0 for all h � 1, then h∗ = 0 maximizes Rh and (h∗, h∗) = (0,0) is the iterated
risk-dominant equilibrium. If instead rh � 0 for some h � 1, then under Assumptions 2.1 and 2.2
and by the generic choice of payoffs, it follows from Lemma 2.14 that there is a unique h∗ � 1
such that rh > 0 if and only if h � h∗. Clearly, such h∗ maximizes Rh and (h∗, h∗) is the iterated
risk-dominant equilibrium.

If Assumption 2.3 holds, then g becomes supermodular. From Proposition 2.9, it therefore
follows that under Assumptions 2.1–2.3 the equilibrium (h∗, h∗) obtained above is an iterated
strict MP-maximizer. �

Our main results together with the proposition above show that the iterated strict MP-
maximizer (h∗, h∗) is a unique equilibrium that is robust to incomplete information as well
as globally accessible and linearly absorbing under perfect foresight dynamics with small fric-
tions. Thus (h∗, h∗) can be seen as a unique, robust prediction, which allows comparative statics
analysis. For example, the technology h∗ is larger when, for each technological standard h, the
marginal productivity, q(h) − q(h − 1), is larger or the relative cost of miscoordination for the
leader, c(h,h − 1) − c(h − 1, h), is smaller.

3. Robustness to incomplete information

3.1. ε-Elaborations and robust equilibria

Given the game g, we consider the following class of incomplete information games. Each
player i ∈ I has a countable set of types, denoted by Ti . We write T = ∏

i∈I Ti and T−i =∏
j �=i Ti . The prior probability distribution on T is given by P . We assume that P satisfies that∑
t−i∈T−i

P (ti , t−i ) > 0 for all i ∈ I and ti ∈ Ti . Let Δ0(T ) be the set of such probability dis-
tributions on T . Under this assumption, the conditional probability of t−i given ti , P(t−i |ti ),
is well-defined by P(t−i |ti ) = P(ti , t−i )/

∑
t ′−i∈T−i

P (ti , t
′−i ). An event T ′ ⊂ T is said to be a

simple event if it is a product of sets of types of each player, i.e., T ′ = ∏
i∈I T ′

i where each
T ′

i ⊂ Ti . Given a simple event T ′, we write T ′−i = T ′
1 × · · · × T ′

i−1 × T ′
i+1 × · · · × T ′

N and
P(T ′−i |ti ) = ∑

t−i∈T ′−i
P (t−i |ti ). The payoff function for player i ∈ I is a bounded function

ui :A × T → R. Denote u = (ui)i∈I . Fixing type space T , we represent an incomplete infor-
mation game by (u,P ).

A (behavioral) strategy for player i is a function σi :Ti → Δ(Ai), where Δ(Ai) is the set of
probability distributions over Ai . Denote by Σi the set of strategies for player i, and let Σ =∏

i∈I Σi , σ = (σ1, . . . , σn) ∈ Σ , Σ−i = ∏
j �=i Σj , and σ−i = (σ1, . . . , σi−1, σi+1, . . . , σn) ∈

Σ−i . For a strategy σi , we denote by σi(ai |ti ) the probability that ai ∈ Ai is chosen at ti ∈ Ti .
We write σ(a|t) = ∏

i∈I σi(ai |ti ) and σ−i (a−i |t−i ) = ∏
j �=i σj (aj |tj ). We also write σP (a) =∑

t∈T P (t)σ (a|t). We endow Σ with the topology of uniform convergence on finite subsets
of T .10 The set Σ is convex, and compact with respect to this topology.

We define σi � σ ′
i for σi, σ

′
i ∈ Σi by σi(ti) � σ ′

i (ti ) for all ti ∈ Ti ; σ � σ ′ for σ,σ ′ ∈ Σ by
σi � σ ′

i for all i ∈ I ; and σ−i � σ ′−i for σ−i , σ
′−i ∈ Σ−i by σj � σ ′

j for all j �= i.

10 This topology is metrizable by the metric dμ defined by dμ(σ,σ ′) = supt∈T μ(t)|σ(t) − σ ′(t)| for μ ∈ Δ(T ) such
that supp(μ) = T .
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The expected payoff to player i with type ti ∈ Ti playing h ∈ Ai against strategy profile σ−i

is given by

Ui(h,σ−i )(ti) =
∑

t−i∈T−i

P (t−i |ti ) ui

((
h,σ−i (t−i )

)
, (ti , t−i )

)
,

where ui((h,σ−i (t−i )), t) = ∑
a−i∈A−i

σ−i (a−i |t−i )ui((h, a−i ), t). Let BRi :Σ−i × Ti → Ai be
defined for each i by

BRi (σ−i )(ti) = arg max
{
Ui(h,σ−i )(ti )

∣∣ h ∈ Ai

}
.

Note that for each i ∈ I , the correspondence BRi is upper semi-continuous since Ui is continuous.

Definition 3.1. A strategy profile σ ∈ Σ is a Bayesian Nash equilibrium of (u,P ) if for all i ∈ I ,
all h ∈ Ai , and all ti ∈ Ti ,

σi(h|ti ) > 0 ⇒ h ∈ BRi (σ−i )(ti).

Let βi :Σ−i → Σi be player i’s best response correspondence in (u,P ), defined by

βi(σ−i ) = {
ξi ∈ Σi

∣∣ ∀h ∈ Ai, ∀ti ∈ Ti :
[
ξi(h|ti ) > 0 ⇒ h ∈ BRi (σ−i )(ti)

]}
, (3.1)

and β :Σ → Σ be given by β(σ) = ∏
i∈I βi(σ−i ). A Bayesian Nash equilibrium of (u,P ),

σ ∈ Σ , is a fixed point of β , i.e., σ ∈ β(σ). Since β is nonempty-, convex-, and compact-valued
and upper semi-continuous, the existence of Bayesian Nash equilibria then follows from Kaku-
tani’s fixed point theorem.

Given g, let T
gi

i be the set of types ti such that payoffs of player i of type ti is given by gi and
he knows his payoffs:

T
gi

i = {
ti ∈ Ti

∣∣ ui

(
a, (ti , t−i )

) = gi(a) for all a ∈ A and all t−i ∈ T−i with P(ti , t−i ) > 0
}
.

Denote T g = ∏
i T

gi

i .

Definition 3.2. Let ε ∈ [0,1]. An incomplete information game (u,P ) is an ε-elaboration of g
if P(T g) = 1 − ε.

Following Kajii and Morris [9], we say that a∗ is robust if, for small ε > 0, every ε-elaboration
of g has a Bayesian Nash equilibrium σ with σP (a∗) close to 1.

Definition 3.3. Action profile a∗ ∈ A is robust to all elaborations in g if for every δ > 0, there
exists ε̄ > 0 such that for all ε � ε̄, any ε-elaboration (u,P ) of g has a Bayesian Nash equilibrium
σ such that σP (a∗) � 1 − δ.

Given P ∈ Δ0(T ), we write for any function f :A → R

BRi
f (σ−i |Si)(ti ) = arg max

h∈Si

∑
t−i∈T−i

P (t−i |ti )f
(
h,σ−i (t−i )

)
,

where Si ⊂ Ai , σ−i ∈ Σ−i , and ti ∈ Ti . Note that this can be written as

BRi
f (σ−i |Si)(ti ) = bri

f

(
π

ti
i (σ−i )

∣∣Si

)
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where π
ti
i (σ−i ) ∈ Δ(A−i ) is given by

π
ti
i (σ−i )(a−i ) =

∑
t−i∈T−i

P (t−i |ti )σ−i (a−i |t−i ).

Thus, if f |Si×A−i
is supermodular, then whenever σ−i � σ ′−i , we have

min BRi
f (σ−i |Si)(ti) � min BRi

f

(
σ ′−i

∣∣Si

)
(ti),

max BRi
f (σ−i |Si)(ti) � max BRi

f

(
σ ′−i

∣∣Si

)
(ti).

3.2. Informational robustness of iterated MP-maximizer

In this subsection, we state and prove our first main result, which shows that under certain
monotonicity conditions, an iterated MP-maximizer is robust to incomplete information.

Theorem 3.1. Suppose that g has an iterated MP-maximizer a∗ with associated intervals (Sk)mk=0
and monotone potential functions (vk)mk=1. If for each k = 1, . . . ,m, gi |Sk−1

i ×A−i
is supermodular

for all i ∈ I or vk|
Sk−1

i ×A−i
is supermodular for all i ∈ I , then a∗ is robust to all elaborations

in g.

Due to Lemma 2.2, we immediately have the following.

Corollary 3.2. Suppose that g has an iterated strict MP-maximizer a∗ with associated intervals
(Sk)mk=0 and strict monotone potential functions (vk)mk=1. If for each k = 1, . . . ,m, gi |Sk−1

i ×A−i
is

supermodular for all i ∈ I or vk|Sk−1 is supermodular, then a∗ is robust to all elaborations in g.

Suppose that a∗ is an iterated MP-maximizer of g with monotone potential functions (vk)mk=1
that are relative to B2η(S

k−1) respectively for k = 1, . . . ,m, where η > 0 is sufficiently small so
that for all i ∈ I and all k = 1, . . . ,m,

bri
gi

(πi) ∩ Sk
i �= ∅,

and therefore,

bri
gi

(
πi

∣∣Sk
i

) ⊂ bri
gi

(πi)

hold for πi ∈ B2η(S
k
−i ) (see Lemma 2.3). For each k = 0,1, . . . ,m and i ∈ I , write Sk

i = [ak
i , ā

k
i ],

where 0 = a0
i � a1

i � · · · � am
i = a∗

i = ām
i � · · · � ā1

i � ā0
i = ni . We assume without loss of

generality that for all k = 1, . . . ,m, Sk �= Sk−1, i.e., for some i ∈ I , ak
i �= ak−1

i or āk
i �= āk−1

i .
Now, given P ∈ Δ0(T ), define J k

P :Σ → R for each k = 1, . . . ,m to be

J k
P (σ ) =

∑
t∈T

P (t)vk
(
σ(t)

)
,

and for any ξ, ζ ∈ Σ such that ξ(t) ∈ ∏
i Δ([a0

i , a
k−1
i ]) and ζ(t) ∈ ∏

i Δ([āk−1
i , ā0

i ]) for all t ∈ T ,
and any simple event T ′ ⊂ T , let

Σ
k,−
ξ,T ′ = {

σ ∈ Σ
∣∣ ∀i ∈ I : σi(ti) = ξi(ti) ∀ti ∈ Ti \ T ′

i , σi(ti) ∈ Δ
([

ak−1
i , ak

i

]) ∀ti ∈ T ′
i

}
,

Σ
k,+
ζ,T ′ = {

σ ∈ Σ
∣∣ ∀i ∈ I : σi(ti) = ζi(ti) ∀ti ∈ Ti \ T ′

i , σi(ti) ∈ Δ
([

āk
i , ā

k−1
i

]) ∀ti ∈ T ′
i

}
.
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Consider the maximization problems:

maxJ k
P (σ ) s.t. σ ∈ Σ

k,−
ξ,T ′ , (3.2)

maxJ k
P (σ ) s.t. σ ∈ Σ

k,+
ζ,T ′ . (3.3)

Since J k
P is continuous, and Σ

k,−
ξ,T ′ and Σ

k,+
ζ,T ′ are compact, the above maximization problems

admit solutions.

Lemma 3.3. (1) For each k = 1, . . . ,m and for any P ∈ Δ0(T ), any simple event T ′ ⊂ T , and
any ξ, ζ ∈ Σ such that ξ(t) ∈ ∏

i Δ([a0
i , a

k
i ]) and ζ(t) ∈ ∏

i Δ([āk
i , ā

0
i ]) for all t ∈ T : there exists

a solution σk,− to the maximization problem (3.2) such that

σ
k,−
i (ti ) = min BRi

vk

(
σ

k,−
−i

∣∣[ak−1
i , ak

i

])
(ti) (3.4)

for all i ∈ I and all ti ∈ T ′
i ; and there exists a solution σk,+ to the maximization problem (3.3)

such that

σ
k,+
i (ti ) = max BRi

vk

(
σ

k,+
−i

∣∣[āk
i , ā

k−1
i

])
(ti) (3.5)

for all i ∈ I and all ti ∈ T ′
i .

(2) For each k = 1, . . . ,m, there exists κk > 0 such that for any P ∈ Δ0(T ), any simple event
T ′ ⊂ T , and any ξ, ζ ∈ Σ such that ξ(t) ∈ ∏

i Δ([a0
i , a

k
i ]) and ζ(t) ∈ ∏

i Δ([āk
i , ā

0
i ]) for all

t ∈ T : any solution σ to the maximization problem (3.2) satisfies

σP

(
ak

)
� 1 − κkP (T \ T ′);

and any solution σ to the maximization problem (3.3) satisfies

σP

(
āk

)
� 1 − κkP (T \ T ′).

Proof. (1) We only show the existence of a solution that satisfies (3.4) (the existence of a solution
that satisfies (3.5) is proved similarly). First note that for each i,∑

t−i∈T−i

P (ti , t−i )v
k
(
σ(ti , t−i )

) =
( ∑

t ′−i∈T−i

P
(
ti , t

′−i

)) ∑
h∈Ai

σi(h|ti )Uk
i (h,σ−i )(ti ) (3.6)

for all ti ∈ T ′
i , where

Uk
i (h,σ−i )(ti) =

∑
t−i∈T−i

P (t−i |ti )vk
((

h,σ−i (t−i )
)
, (ti , t−i )

)
.

Therefore, any solution to (3.2), σk , satisfies, for all i ∈ I ,

σk
i (h|ti ) > 0 ⇒ h ∈ BRi

vk

(
σk

−i

∣∣[ak−1
i , ak

i

])
(ti) (3.7)

for all ti ∈ T ′
i .

Since J k
P is continuous on Σ

k,−
ξ,T ′ , the set of maximizers is a nonempty, closed, and hence

compact, subset of Σ
k,−
ξ,T ′ . Hence, a minimal optimal solution (with respect to the order � on Σ )

exists by Zorn’s lemma (see Lemma A.2.2 in OTH [28]). Let σk,− be such a minimal solution.
Take any i ∈ I , and consider the strategy σi given by

σi(ti) =
{

ξi(ti) for all ti ∈ Ti \ T ′
i ,

min BRi
vk (σ

k,−
−i |[ak−1

i , ak
i ])(ti) for all ti ∈ T ′

i .
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By the definition of σi together with Eq. (3.7), we have σi � σ
k,−
i . On the other hand, by Eq. (3.6)

J k
P

(
σi, σ

k,−
−i

)
� J k

P

(
σk,−)

,

meaning that (σi, σ
k,−
−i ) ∈ Σ

k,−
ξ,T ′ is also optimal. Hence, the minimality of σk,− implies that

σi(ti) = σ
k,−
i (ti ) for all ti ∈ Ti . Thus, we have (3.4).

(2) Let vk
max = vk(ak) = vk(āk), v̄k = maxa∈A\[ak,āk] vk(a), and vk = mina∈A vk(a). Note

that vk
max > v̄k � vk . Set κk = (vk

max − vk)/(vk
max − v̄k). Then, the same argument in the proof of

Theorem 3 in Ui [36] will establish the conclusion. Let σ̃ ∈ Σ
k,−
ξ,T ′ be such that, σ̃ (ak|t) = 1 for

all t ∈ T ′. Let σ be any solution to the maximization problem (3.2). Hence we have

J k
P (σ ) � J k

P (σ̃ ) =
∑
t∈T ′

∑
a∈A

P (t)σ̃ (a|t)vk(a) +
∑

t∈T \T ′

∑
a∈A

P (t)σ̃ (a|t)vk(a)

= P(T ′)vk
max +

∑
t∈T \T ′

∑
a∈A

P (t)σ̃ (a|t)vk(a)

� P(T ′)vk
max + [

1 − P(T ′)
]
vk.

We also have

J k
P (σ ) =

∑
a∈A

[∑
t∈T

P (t)σ (a|t)
]
v(a)

=
∑
a∈A

σP (a)v(a)

= σP

(
ak

)
vk

max +
∑
a �=ak

σP (a)v(a)

� σP

(
ak

)
vk

max + (
1 − σP

(
ak

))
v̄k.

Combining the above inequalities, we have:

σP

(
ak

)
vk

max + (
1 − σP

(
ak

))
v̄k � P(T ′)vk

max + [
1 − P(T ′)

]
vk

and thus,

σP

(
ak

)
� 1 − vk

max − vk

vk
max − v̄k

P (T \ T ′),

as claimed. �
We will need the following lemma, the proof of which mimics that of Lemma B in Kajii and

Morris [9].

Lemma 3.4. Given any simple event S ⊂ T , let

T ′
i = Si ∩ {

ti ∈ Ti

∣∣ P(S−i |ti ) � 1 − η
}

for i ∈ I , and T ′ = ∏
i∈I T ′

i . Then,

1 − P(T ′) � γ
(
1 − P(S)

)
,

where γ = 1 + N(1 − η)/η > 0.
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Proof. Let Bi = {ti ∈ Ti |P(S−i |ti ) � 1 − η} and B = ∏
i∈I Bi . By Kajii and Morris [9,

Lemma A], we have

P
(
S ∩ (

Bc
i × T−i

))
� 1 − η

η
P

((
Bc

i × T−i

) \ S
)

for all i ∈ I . Note then that

P(S \ B) �
∑
i∈I

P
(
S ∩ (

Bc
i × T−i

))
� N

1 − η

η
P

((
Bc

i′ × T−i′
) \ S

)
for some i′ ∈ I . We therefore have

1 − P(T ′) = P(S \ B) + P(T \ S)

� N
1 − η

η
P

((
Bc

i′ × T−i′
) \ S

) + P(T \ S)

� N
1 − η

η
P (T \ S) + P(T \ S)

= γP (T \ S),

as claimed. �
In the following, we let σ 0,−, σ 0,+ ∈ Σ be such that σ 0,−(t) = a0 and σ 0,+(t) = ā0 for all

t ∈ T , respectively.

Lemma 3.5. There exist c1, . . . , cm > 0 such that for any P ∈ Δ0(T ) and any simple event
T 0 ⊂ T , there exist σ 1,−, . . . , σm,−, σ 1,+, . . . , σm,+ ∈ Σ and simple events T 1, . . . , T m−1 ⊂ T

with T 0 ⊃ T 1 ⊃ · · · ⊃ T m−1 such that for each k = 1, . . . ,m,

(∗−
k ) for all i ∈ I , σ

k,−
i (ti ) = σ

k−1,−
i (ti ) for all ti ∈ Ti \ T k−1

i ,

σ
k,−
i (ti ) = min BRi

vk

(
σ

k,−
−i

∣∣[ak−1
i , ak

i

])
(ti) for all ti ∈ T k−1

i (3.8)

and ∑
t−i∈T−i

P (t−i |ti )σ k,−
−i

([
ak−1

−i , a∗−i

]∣∣t−i

)
� 1 − η for all ti ∈ T k−1

i , (3.9)

and σ
k,−
P (ak) � 1 − ckP (T \ T 0),

and

(∗+
k ) for all i ∈ I , σ

k,+
i (t) = σ

k−1,+
i (t) for all ti ∈ Ti \ T k−1

i ,

σ
k,+
i (ti ) = max BRi

vk

(
σ

k,+
−i

∣∣[āk
i , ā

k−1
i

])
(ti) for all ti ∈ T k−1

i (3.10)

and ∑
t−i∈T−i

P (t−i |ti )σ k,+
−i

([
a∗−i , ā

k−1
−i

]∣∣t−i

)
� 1 − η for all ti ∈ T k−1

i , (3.11)

and σ
k,+
P (āk) � 1 − ckP (T \ T 0).
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Proof. Let κ1, . . . , κm > 0 be as in Lemma 3.3(2) and γ as in Lemma 3.4. Set ck =
(2γ )k−1κ1 · · ·κk for k = 1, . . . ,m. Fix any P ∈ Δ0(T ) and any simple event T 0 ⊂ T . First,
by Lemma 3.3 for (3.2) and (3.3) with k = 1, ξ = σ 0,−, ζ = σ 0,+, and T ′ = T 0, we have σ 1,−
and σ 1,+ that satisfy (∗−

1 ) and (∗+
1 ), respectively.

Next, for k � 2 assume that there exist T 1, . . . , T k−2, σ 1,−, . . . , σ k−1,−, and σ 1,+, . . . ,

σ k−1,+ that satisfy (∗−
1 ), . . . , (∗−

k−1) and (∗+
1 ), . . . , (∗+

k−1), respectively. We can assume that

there is no redundancy in T 1, . . . , T k−2 (if k � 3); i.e., for all � = 2, . . . , k − 1, if a�
i = a�−1

i and
ā�
i = ā�−1

i , then T �−1
i = T �−2

i . Let

Sk−1
i = T k−2

i ∩ {
ti ∈ Ti

∣∣ σ
k−1,−
i (ti ) = ak−1

i and σ
k−1,+
i (ti) = āk−1

i

}
for each i ∈ I , and Sk−1 = ∏

i∈I Sk−1
i . Let also

T k−1
i = Sk−1

i ∩ {
ti ∈ Ti

∣∣ P
(
Sk−1

−i

∣∣ti) � 1 − η
}

(3.12)

for each i ∈ I , and T k−1 = ∏
i∈I T k−1

i . Note that T k−1 ⊂ T k−2.
Now consider the maximization problems (3.2) and (3.3) with ξ = σk−1,−, ζ = σk−1,+,

and T ′ = T k−1. Then by Lemma 3.3, we have σk,− and σk,+ that satisfy (3.8) and (3.10),
and σ

k,−
P (ak) � 1 − κkP (T \ T k−1) and σ

k,+
P (āk) � 1 − κkP (T \ T k−1), respectively. Since

σ
k,−
−i ([ak−1

−i , a∗−i]|t−i ) = σ
k,+
−i ([a∗−i , ā

k−1
−i ]|t−i ) = 1 for all t−i ∈ Sk−1

−i (by the definition of Sk−1
−i

and the maximization problems), it follows that∑
t−i∈T−i

P (t−i |ti )σ k,−
−i

([
ak−1

−i , a∗−i

]∣∣t−i

)
�

∑
t−i∈Sk−1

−i

P (t−i |ti )σ k,−
−i

([
ak−1

−i , a∗−i

]∣∣t−i

)
= P

(
Sk−1

−i

∣∣ti) � 1 − η

for all i ∈ I and all ti ∈ T k−1
i , where the last inequality follows from the definition of T k−1

i ,
(3.12). This means that σk,− satisfies (3.9). Note that since σk−1,− and σk−1,+ are pure
strategies, σ

k−1,−
P (ak−1) = P({t ∈ T | σk−1,−(t) = ak−1}) and σ

k−1,+
P (āk−1) = P({t ∈ T |

σk−1,+(t) = āk−1}). Since, by the no-redundancy assumption, for all t ∈ T \ T k−2, there ex-
ists an i ∈ I such that σ

k−1,−
i (ti) < ak−1

i or σ
k−1,+
i (ti ) > āk−1

i , it follows that Sk−1 = {t ∈ T |
σk−1,−(t) = ak−1 and σk−1,+(t) = āk−1}. Hence,

P
(
T \ Sk−1) � P

(
T \ {

t ∈ T
∣∣ σk−1,−(t) = ak−1}) + P

(
T \ {

t ∈ T
∣∣ σk−1,+(t) = āk−1})

= (
1 − σ

k−1,−
P

(
ak−1)) + (

1 − σ
k−1,+
P

(
āk−1))

� 2ck−1P
(
T \ T 0). (3.13)

Thus, we have

σ
k,−
P

(
ak

)
� 1 − κkP

(
T \ T k−1) � 1 − κk × γP

(
T \ Sk−1)

� 1 − κkγ × 2ck−1P
(
T \ T 0) = 1 − ckP

(
T \ T 0),

where the first inequality follows from Lemma 3.3, the second inequality follows from
Lemma 3.4, and the third inequality follows from (3.13). The same argument applies to σk,+. �
Lemma 3.6. For every δ > 0, there exists ε̄ > 0 such that for any ε-elaboration (u,P ) with
ε � ε̄, there exist σ−, σ+ ∈ Σ and simple events T 1, . . . , T m−1 ⊂ T with T g = T 0 ⊃ T 1 ⊃ · · · ⊃
T m−1 ⊃ T m = ∅ such that
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(∗−) for all i ∈ I , σ−
i (ti ) = a0

i for all ti ∈ Ti \ T
gi

i ,

σ−
i (ti) = min BRi

vk

(
σ−

−i

∣∣[ak−1
i , ak

i

])
(ti) for all ti ∈ T k−1

i \ T k
i (3.14)

and ∑
t−i∈T−i

P (t−i |ti )σ−
−i

([
ak−1

−i , a∗−i

]∣∣t−i

)
� 1 − η for all ti ∈ T k−1

i (3.15)

for each k = 1, . . . ,m, and σ−
P (a∗) � 1 − δ,

and

(∗+) for all i ∈ I , σ+
i (ti ) = ā0

i for all ti ∈ Ti \ T
gi

i ,

σ+
i (ti) = max BRi

vk

(
σ+

−i

∣∣[āk
i , ā

k−1
i

])
(ti) for all ti ∈ T k−1

i \ T k
i (3.16)

and ∑
t−i∈T−i

P (t−i |ti )σ+
−i

([
a∗−i , ā

k−1
−i

]∣∣t−i

)
� 1 − η for all ti ∈ T k−1

i (3.17)

for each k = 1, . . . ,m, and σ+
P (a∗) � 1 − δ.

Proof. Take c1, . . . , cm > 0 as in Lemma 3.5. Given any δ > 0, let ε̄ = δ/cm. Fix any
ε-elaboration (u,P ) of g with ε � ε̄, and let T 0 = T g. Then take σ 0,−, . . . , σm,− and
σ 0,+, . . . , σm,+ that satisfy (∗−

k ) and (∗+
k ) for k = 1, . . . ,m, respectively, with

T 1, . . . , T m−1 ⊂ T . Set σ− = σm,− and σ+ = σm,+. We only verify that σ− satisfies (∗−).
By construction, we have (3.15) for each k = 1, . . . ,m. We also have σ−

P (a∗) � 1−δ by (∗−
m).

Consider any k = 1, . . . ,m − 1. Note from (3.12) that∑
t−i∈T−i

P (t−i |ti )σ k,−
−i

(
ak

−i

∣∣t−i

)
� 1 − η,

for all ti ∈ T k
i . It follows by the choice of η that for all i ∈ I ,

σ
k,−
i (ti ) = min BRi

vk

(
σ

k,−
−i

∣∣[ak−1
i , ak

i

])
(ti) = ak

i

for all ti ∈ T k
i (⊂ T k−1

i ), so that σk,−(t) = ak and hence σ−(t) ∈ [ak, a∗] for all t ∈ T k . Note
also that σ−(t) = σk,−(t) for all t ∈ T \ T k . Since vk(a) = vk(a′) for all a, a′ ∈ [ak, āk], it fol-
lows that for all i ∈ I and all ti ∈ T k−1

i , BRi
vk (σ

−
−i |[ak−1

i , ak
i ])(ti ) = BRi

vk (σ
k,−
−i |[ak−1

i , ak
i ])(ti).

Therefore, for all i ∈ I and all ti ∈ T k−1
i \ T k

i ,

σ−
−i (ti) = σ

k,−
−i (ti) = min BRi

vk

(
σ

k,−
−i

∣∣[ak−1
i , ak

i

])
(ti)

= min BRi
vk

(
σ−

−i

∣∣[ak−1
i , ak

i

])
(ti),

which means that σ− satisfies (3.14). �
Proof of Theorem 3.1. Suppose that vk’s are monotone potential functions for a∗ relative to
B2η([ak−1, āk−1]). Let δ > 0 be given Take ε̄ as in Lemma 3.6. Fix any ε-elaboration (u,P )

with ε � ε̄, and take σ−, σ+, and T 0, T 1, . . . , T m that satisfy (∗−) and (∗+), respectively. Let
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Σ̃ = {σ ∈ Σ | σ− � σ � σ+}. We will show that β̃(σ ) = β(σ) ∩ Σ̃ is nonempty for any σ ∈ Σ̃ ,
where β is the best response correspondence of (u,P ) defined in (3.1). Then, since Σ̃ is convex
and compact, it follows from Kakutani’s fixed point theorem that the nonempty-, convex-, and
compact-valued upper semi-continuous correspondence β has a fixed point σ ∗ ∈ β̃(σ ∗) ⊂ Σ̃ ,
which is a Bayesian Nash equilibrium of (u,P ) and satisfies σ− � σ ∗ � σ+. Since both σ− and
σ+ satisfy σ−

P (a∗) � 1 − δ and σ+
P (a∗) � 1 − δ, respectively, σ ∗ satisfies σ ∗

P (a∗) � 1 − 2δ.
Take any σ ∈ Σ̃ . For ti ∈ Ti \ T 0

i , BRi
gi

(σ )(ti) ⊂ [σ−
i (ti ), σ

+
i (ti )] holds. Consider any k =

1, . . . ,m. Note that∑
t−i∈T−i

P (t−i |ti )σ−i

([
ak−1

−i , āk−1
−i

]∣∣t−i

)
� 1 − 2η

for all i ∈ I and all ti ∈ T k−1
i .

Suppose first that gi |[ak−1
i ,āk−1

i ]×A−i
are supermodular for all i ∈ I . Then, for all i ∈ I ,

min BRi
vk

(
σ−

−i

∣∣[ak−1
i , ak

i

])
(ti) � max BRi

gi

(
σ−

−i

∣∣[ak−1
i , āk

i

])
(ti)

� max BRi
gi

(
σ−i

∣∣[ak−1
i , āk

i

])
(ti)

for all ti ∈ T k−1
i \ T k

i , where the second inequality follows from the assumption that vk is a
monotone potential function relative to B2η([ak−1, āk−1]), and the third inequality follows from
the supermodularity of gi |[ak−1

i ,āk−1
i ]×A−i

. Similarly, for all i ∈ I ,

max BRi
vk

(
σ+

−i

∣∣[āk
i , ā

k−1
i

])
(ti) � min BRi

gi

(
σ+

−i

∣∣[ak
i , ā

k−1
i

])
(ti)

� min BRi
gi

(
σ−i

∣∣[ak
i , ā

k−1
i

])
(ti)

for all ti ∈ T k−1
i \ T k

i .
Suppose next that vk|[ak−1

i ,āk−1
i ]×A−i

are supermodular for all i ∈ I . Then, for all i ∈ I ,

min BRi
vk

(
σ−∣∣[ak−1

i , ak
i

])
(ti) � min BRi

vk

(
σ
∣∣[ak−1

i , ak
i

])
(ti)

� max BRi
gi

(
σ
∣∣[ak−1

i , āk
i

])
(ti)

for all ti ∈ T k−1
i \ T k

i , where the second inequality follows from the supermodularity of
vk|[ak−1

i ,āk−1
i ]×A−i

, and the third inequality follows from the assumption that vk is a monotone

potential function relative to B2η([ak−1, āk−1]). Similarly, for all i ∈ I ,

max BRi
vk

(
σ+∣∣[āk

i , ā
k−1
i

])
(ti) � max BRi

vk

(
σ
∣∣[āk

i , ā
k−1
i

])
(ti)

� min BRi
gi

(
σ
∣∣[ak

i , ā
k−1
i

])
(ti)

for all ti ∈ T k−1
i \ T k

i .
Therefore, in each case, we have for all ti ∈ T k−1

i \ T k
i ,

max BRi
gi

(
σ
∣∣[ak−1

i , āk
i

])
(ti) � min BRi

vk

(
σ−∣∣[ak−1

i , ak
i

])
(ti),

min BRi
gi

(
σ
∣∣[ak

i , ā
k−1
i

])
(ti) � max BRi

vk

(
σ+∣∣[āk

i , ā
k−1
i

])
(ti).

Since ∑
t−i∈T−i

P (t−i |ti )σ−i

([
ak−1

−i , āk−1
−i

]∣∣t−i

)
� 1 − 2η
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for all i ∈ I and all ti ∈ T k−1
i and hence

BRi
gi

(σ )(ti) ∩ [
ak−1

i , āk−1
i

] �= ∅
by the choice of η, it follows that

BRi
gi

(σ )(ti) ∩ [
min BRi

vk

(
σ−∣∣[ak−1

i , ak
i

])
(ti),max BRi

vk

(
σ+∣∣[āk

i , ā
k−1
i

])
(ti)

] �= ∅.

This implies the nonemptiness of β̃(σ ). �
By Proposition 2.5, we immediately have the following.

Corollary 3.7. If a∗ is an iterated strict p-dominant equilibrium of g with
∑

i∈I pi < 1, then a∗
is robust to all elaborations in g.

3.3. Uniqueness of robust equilibrium and iterated p-dominance

Our first theorem, together with our results provided in Section 2.4, shows that an iterated p-
dominant equilibrium with low p is actually robust to incomplete information. In this subsection,
we prove a stronger result: when an iterated strict p-dominant equilibrium with low p exists, it is
the unique robust equilibrium.

Proposition 3.8. An iterated strict p-dominant equilibrium of g with
∑

i∈I pi < 1 is the unique
robust equilibrium in g.

This proposition is a corollary to the following lemma.

Lemma 3.9. Suppose that a∗ is an iterated strict p-dominant equilibrium of g with
∑

i∈I pi � 1.
Then, for all ε > 0, there exists an ε-elaboration where the strategy profile σ ∗ such that σ ∗(t) =
a∗ for all t ∈ T is the unique Bayesian Nash equilibrium.

Proof. Let a∗ be an iterated strict p-dominant equilibrium with
∑

i∈I pi � 1 and (S0, . . . , Sm)

an associated sequence. Let qi = (pi/
∑

j∈I pj ) � pi for each i ∈ I (we can assume without loss
of generality that pi > 0 for all i). Note that

∑
i∈I qi = 1. Now let Ti = Z+ = {0,1,2, . . .} for

each i ∈ I . For each ε > 0, we construct an ε-elaboration (u,P ε) as follows. Define P ε ∈ Δ0(T )

by

P ε(t1, . . . , tN ) =
{

ε(1 − ε)τ qi if ti = τ + 1 and tj = τ for all j �= i,
0 otherwise,

and ui :A × T → R for each i ∈ I by

ui(a; t) =
⎧⎨⎩

gi(a) if ti �= 0,
1 if ti = 0 and ai = a∗

i ,
0 if ti = 0 and ai �= a∗

i .

Fix any ε > 0, and let us now study the set of Bayesian Nash equilibria of (u,P ε).
Consider the sequence of modified incomplete information games {(u|Sk ,P ε)}m−1

k=0 where
in (u|Sk ,P ε), the set of actions available to player i ∈ I is Sk

i and player i’s payoff function
ui |Sk

i
:Sk ×T → R is given by the restriction of ui to Sk ×T . We want to show that any Bayesian

Nash equilibrium of (u,P ε), σ ∗, satisfies σ ∗(t) = a∗ for all t ∈ T .
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First note that if σ ∗ is a Bayesian Nash equilibrium of (u,P ε) such that for k = 0, . . . ,m − 1,
supp(σ ∗(t)) ⊂ Sk for all t ∈ T , then σ ∗ is an equilibrium of (u|Sk ,P ε). It is therefore sufficient
to show that for each k = 0, . . . ,m − 1, any Bayesian Nash equilibrium σ ∗ of (u|Sk−1 ,P ε) is
such that supp(σ ∗(t)) ⊂ Sk for all t ∈ T . We proceed by induction.

Let σ ∗ be a Bayesian Nash equilibrium of (u|Sk−1 ,P ε). We show that for all i ∈ I ,∑
ai∈Sk

i
σ ∗

i (ai |τ) = 1 for all τ � 0. By construction, for all i ∈ I ,
∑

ai∈Sk
i
σ ∗

i (ai |0) = 1. Our

inductive hypothesis is that for all i ∈ I ,
∑

ai∈Sk
i
σ ∗

i (ai |τ) = 1. Take any i ∈ I and consider the
type ti = τ + 1. By construction of the type space, we have

P ε
(
(t1, . . . , ti−1, ti+1, . . . tN )

∣∣τ + 1
) = ε(1 − ε)τ qi

ε(1 − ε)τ qi + ∑
j �=i ε(1 − ε)τ+1qj

> qi � pi

if tj = τ for all j �= i. Thus by the inductive hypothesis, each agent i assigns a probability strictly
above pi to the other players playing actions in Sk

−i . But since Sk is a strict p-best response set
of g|Sk−1 and since τ + 1 ∈ T

ui

i , this implies that
∑

ai∈Sk
i
σ ∗

i (ai |τ + 1) = 1. Thus our inductive
hypothesis holds for τ + 1. �
Proof of Proposition 3.8. If a∗ is an iterated strict p-dominant equilibrium with

∑
i∈I pi < 1,

then it is an iterated MP-maximizer with supermodular monotone potential functions by Propo-
sition 2.5 and hence is robust to all elaborations by Theorem 3.1. But by Lemma 3.9, no action
profile other than a∗ is played in any robust equilibrium. �
4. Stability under perfect foresight dynamics

4.1. Perfect foresight paths and stability concepts

Given the game g, we consider the following dynamic societal game. Society consists of N

continua of agents, one for each role in g. In each population, agents are identical and anonymous.
At each point in time, one agent is selected randomly from each population and matched to form
an N -tuple and play g. Agents cannot switch actions at every point in time. Instead, every agent
must make a commitment to a particular action for a random time interval. Time instants at which
each agent can switch actions follow a Poisson process with the arrival rate λ > 0. The processes
are independent across agents. We choose without loss of generality the unit of time in such a
way that λ = 1.

The action distribution in population i ∈ I at time t ∈ R+ is denoted by φi(t) = (φih(t))h∈Ai
∈

Δ(Ai), where φih(t) is the fraction of agents who are committing to action h ∈ Ai at time t . Let
φ(t) = (φi(t))i∈I ∈ ∏

i∈I Δ(Ai) and φ−i (t) = (φj (t))j �=i ∈ ∏
j �=i Δ(Aj ). Due to the assumption

that the switching times follow independent Poisson processes with arrival rate λ = 1, φih(·) is
Lipschitz continuous with Lipschitz constant 1, which implies in particular that it is differentiable
at almost all t � 0.

Definition 4.1. A path φ : R+ → ∏
i∈I Δ(Ai) is said to be feasible if it is Lipschitz continuous,

and for all i ∈ I and almost all t � 0, there exists αi(t) ∈ Δ(Ai) such that

φ̇i (t) = αi(t) − φi(t). (4.1)
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Denote by Φi the set of feasible paths for population i, and let Φ = ∏
i∈I Φi and Φ−i =∏

j �=i Φ
j . For x ∈ ∏

i∈I Δ(Ai), the set of feasible paths starting from x is denoted by Φx =∏
i Φ

i
x . We endow Φx with the topology of uniform convergence on compact intervals.11 The set

Φx is convex, and compact with respect to this topology.
We define φi � ψi for φi,ψi ∈ Φi by φi(t) � ψi(t) for all t � 0; φ � ψ for φ,ψ ∈ Φ by

φi � ψi for all i ∈ I ; and φ−i � ψ−i for φ−i ,ψ−i ∈ Φ−i by φj � ψj for all j �= i. Note that if
φ(0) � ψ(0) and φ̇(t) + φ(t) � ψ̇(t) + ψ(t) for almost all t � 0, then φ � ψ .

A revising agent in population i anticipates the future evolution of the action distribution, and
commits to an action that maximizes his expected discounted payoff. The expected discounted
payoff of committing to action h ∈ Ai at time t with a given anticipated path φ−i ∈ Φ−i is given
by

Vih(φ−i )(t) = (1 + θ)

∞∫
0

t+s∫
t

e−θ(z−t)gi

(
h,φ−i (z)

)
dz e−s ds

= (1 + θ)

∞∫
t

e−(1+θ)(s−t)gi

(
h,φ−i (s)

)
ds,

where θ > 0 is a common discount rate. Following Matsui and Matsuyama [15], we view θ/λ = θ

as the degree of friction.
Let BRi

gi
:Φ−i × R+ → Ai be defined for each i by

BRi
gi

(φ−i )(t) = arg max
{
Vih(φ−i )(t)

∣∣ h ∈ Ai

}
.

Note that for each i ∈ I , the correspondence BRi
gi

is upper semi-continuous since Vi is continu-
ous.

Definition 4.2. A feasible path φ is said to be a perfect foresight path in g if for all i ∈ I , all
h ∈ Ai , and almost all t � 0,

φ̇ih(t) > −φih(t) ⇒ h ∈ BRi
gi

(φ−i )(t).

Let βi
x :Φ−i

x → Φi
x be defined by

βi
x(φ−i ) = {

ψi ∈ Φi
x

∣∣ ψ̇ih(t) > −ψih(t) ⇒ h ∈ BRi
gi

(φ−i )(t) a.e.
}
, (4.2)

and βx :Φx → Φx be given by βx(φ) = ∏
i β

i
x(φ−i ). A perfect foresight path φ with φ(0) = x

is a fixed point of βx :Φx → Φx , i.e., φ ∈ βx(φ). Verify that βx is nonempty-, convex-, and
compact-valued and upper semi-continuous (see, e.g., OTH [28, Remark 2.1]). The existence of
perfect foresight paths then follows from Kakutani’s fixed point theorem.

Following Matsui and Matsuyama [15] and OTH [28], we employ the following stability
concepts.

Definition 4.3. (a) a∗ ∈ A is globally accessible in g if for any x ∈ ∏
i Δ(Ai), there exists a

perfect foresight path from x that converges to a∗.

11 This topology is metrizable by the metric dr defined by dr (φ,φ′) = supt�0 e−rt |φ(t) − φ′(t)| for r > 0.
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(b) a∗ ∈ A is absorbing in g if there exists ε > 0 such that any perfect foresight path from any
x ∈ Bε(a

∗) converges to a∗.
(c) a∗ ∈ A is linearly absorbing in g if there exists ε > 0 such that for any x ∈ Bε(a

∗), the
linear path to a∗ is a unique perfect foresight path from x.

Given θ > 0, we write for any function f :A → R

BRi
f (φ−i |Si)(t) = (1 + θ)

∞∫
t

e−(1+θ)(s−t)f
(
h,φ−i (s)

)
ds,

where Si ⊂ Ai , φ−i ∈ Φ−i , and t � 0. Note that this can be written as

BRi
f (φ−i |Si)(t) = bri

f

(
π

ti
i (φ−i )

∣∣Si

)
where π

ti
i (φ−i ) ∈ Δ(A−i ) is given by

π
ti
i (φ−i )(a−i ) = (1 + θ)

∞∫
t

e−(1+θ)(s−t)

(∏
j �=i

φjaj
(s)

)
ds.

Thus, if f |Si×A−i
is supermodular, then whenever φ−i � φ′−i , we have

min BRi
f (φ−i |Si)(t) � min BRi

f

(
φ′−i

∣∣Si

)
(t),

max BRi
f (φ−i |Si)(t) � max BRi

f

(
φ′−i

∣∣Si

)
(t).

4.2. Global accessibility of iterated MP-maximizer

In this subsection, we move to our second main result. We show that under the same mono-
tonicity conditions as in the incomplete information case, an iterated MP-maximizer is selected
by the perfect foresight dynamics approach.

In addition, as will become clear, by exploiting the similarity between the mathematical struc-
tures of incomplete information elaborations and perfect foresight dynamics, we provide a proof
of this result that is strongly related to the proof of our first main result.

Theorem 4.1. Suppose that g has an iterated MP-maximizer a∗ with associated intervals (Sk)mk=0
and monotone potential functions (vk)mk=1. If for each k = 1, . . . ,m, gi |Sk−1

i ×A−i
is supermodular

for all i ∈ I or vk|
Sk−1

i ×A−i
is supermodular for all i ∈ I , then there exists θ̄ > 0 such that a∗ is

globally accessible in g for all θ ∈ (0, θ̄ ).

Due to Lemma 2.2, we immediately have the following.

Corollary 4.2. Suppose that g has an iterated strict MP-maximizer a∗ with associated intervals
(Sk)mk=0 and strict monotone potential functions (vk)mk=1. If for each k = 1, . . . ,m, gi |Sk−1

i ×A−i

is supermodular for all i ∈ I or vk|Sk−1 is supermodular, then there exists θ̄ > 0 such that a∗ is
globally accessible in g for all θ ∈ (0, θ̄ ).
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Suppose that a∗ is an iterated MP-maximizer of g with monotone potential functions (vk)mk=1
that are relative to Bη(S

k−1) respectively for k = 1, . . . ,m, where η > 0 is sufficiently small so
that for all i ∈ I and all k = 1, . . . ,m,

bri
gi

(πi) ∩ Sk
i �= ∅,

and therefore,

bri
gi

(
πi

∣∣Sk
i

) ⊂ bri
gi

(πi)

hold for πi ∈ Bη(S
k
−i ) (see Lemma 2.3). For each k = 0,1, . . . ,m and i ∈ I , write Sk

i = [ak
i , ā

k
i ],

where 0 = a0
i � a1

i � · · · � am
i = a∗

i = ām
i � · · · � ā1

i � ā0
i = ni .

For each k = 1, . . . ,m, define J k
θ :Φ → R to be

J k
θ (φ) =

∞∫
0

θe−θt vk
(
φ(t)

)
dt,

and for any x ∈ ∏
i Δ([a0

i , a
k−1
i ]) and y ∈ ∏

i Δ([āk−1
i , ā0

i ]), let

Φk,−
x = {

φ ∈ Φ
∣∣ φ(0) = x, φ̇i(t) + φi(t) ∈ Δ

([
ak−1

i , ak
i

]) ∀i ∈ I, a.a. t � 0
}
,

Φk,+
y = {

φ ∈ Φ
∣∣ φ(0) = y, φ̇i(t) + φi(t) ∈ Δ

([
āk
i , ā

k−1
i

]) ∀i ∈ I, a.a. t � 0
}
.

Consider the maximization problems:

maxJ k
θ (φ) s.t. φ ∈ Φk,−

x , (4.3)

maxJ k
θ (φ) s.t. φ ∈ Φk,+

y . (4.4)

Since J k
θ is continuous, and Φ

k,−
x and Φ

k,+
y are compact, the above maximization problems

admit solutions.

Lemma 4.3. (1) For each k = 1, . . . ,m, and for any θ > 0 and any x ∈ ∏
i Δ([a0

i , a
k
i ]) and

y ∈ ∏
i Δ([āk

i , ā0
i ]): there exists a solution to the maximization problem (4.3), φk,−, such that

φ̇
k,−
i (t) = min BRi

vk

(
φ

k,−
−i

∣∣[ak−1
i , ak

i

])
(t) − φ

k,−
i (t) (4.5)

for all i ∈ I and almost all t � 0; there exists a solution to the maximization problem (4.4), φk,+,
such that

φ̇
k,+
i (t) = min BRi

vk

(
φ

k,+
−i

∣∣[ak−1
i , ak

i

])
(t) − φ

k,+
i (t) (4.6)

for all i ∈ I and almost all t � 0.
(2) For each k = 1, . . . ,m, there exists θ̄ k > 0 such that for any θ ∈ (0, θ̄ k) and any

x ∈ ∏
i Δ([a0

i , a
k
i ]) (y ∈ ∏

i Δ([āk
i , ā0

i ]), resp.), any solution to the maximization problem (4.3)
((4.4), resp.) converges to ak (āk , resp.).

Proof. (1) We only show the existence of a solution that satisfies (4.5) (the existence of a solution
that satisfies (4.6) is proved similarly). First note that for each i ∈ I ,
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(1 + θ)e−θt vk
(
φ(t)

) =
∑
h∈Ai

etφih(t)
d

dt

(−e−(1+θ)tV k
ih(φ−i )(t)

)

= d

dt

(
−e−θt

∑
h∈Ai

φih(t)V
k
ih(φ−i )(t)

)

+ e−θt
∑
h∈Ai

(
φ̇ih(t) + φih(t)

)
V k

ih(φ−i )(t)

for almost all t � 0, where

V k
ih(φ−i )(t) = (1 + θ)

∞∫
t

e−(1+θ)(s−t)vk
(
h,φ−i (s)

)
ds.

Therefore, any solution to (4.3), φk , satisfies

φ̇k
ih(t) > −φk

ih ⇒ h ∈ BRi
vk

(
φk

−i

∣∣[ak−1
i , ak

i

])
(t) (4.7)

for all i ∈ I and almost all t � 0. It then follows from Lemma A.1.3 in OTH [28] that there exists
a feasible path φ

k,−
i that satisfies (4.5).

(2) We show that there exists θ̄ k > 0 such that for any θ ∈ (0, θ̄ k), any solution to (4.3) ((4.4),
resp.) approaches arbitrarily close to ak (āk , resp.). Here, θ̄ k can be taken independently of x

and y. Then, by following the proofs of Lemmas 3 and 4 in HS [7] (see also Theorem 4.1 in
HS [8]) for the potential game v|[a0,ak], one can show that once any feasible path that satisfies

(4.7) gets close enough to the potential maximizer ak , it must converge to ak . A dual argument
applies to solutions to (4.4).

Let vk
max = vk(ak) = vk(āk), v̄k = maxa∈A\[ak,āk] vk(a), and vk = mina∈A vk(a). Note that

vk
max > v̄k � vk . Let φ be any solution to (4.3), and ψ the linear path from x to ak : i.e., for all

i ∈ I and t � 0, ψih(t) = 1 − (1 − xih)e
−t if h = ak

i and ψih(t) = xihe
−t otherwise. Denote

φ(a|t) = ∏
i∈I φiai

(t) and ψ(a|t) = ∏
i∈I ψiai

(t). We first have

J k
θ (φ) � J k

θ (ψ)

=
∞∫

0

θe−θtψ
(
ak

∣∣t)dt vk
max +

∑
a �=ak

∞∫
0

θe−θtψ(a|t) dt vk(a)

�
∞∫

0

θe−θtψ
(
ak

∣∣t)dt vk
max +

[
1 −

∞∫
0

θe−θtψ
(
ak

∣∣t)dt

]
vk

= vk
max −

[
1 −

∞∫
0

θe−θt
∏
i∈I

{
1 − (

1 − xiak
i

)
e−t

}
dt

](
vk

max − vk
)

� vk
max −

[
1 −

∞∫
0

θe−θt
(
1 − e−t

)N
dt

](
vk

max − vk
)
.
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We also have

J k
θ (φ) =

∞∫
0

θe−θtφ
(
ak

∣∣t)dt vk
max +

∑
a �=ak

∞∫
0

θe−θtφ(a|t) dt vk(a)

�
∞∫

0

θe−θtφ
(
ak

∣∣t)dt vk
max +

[
1 −

∞∫
0

θe−θtφ
(
ak

∣∣t)dt

]
v̄k.

Combining these inequalities, we have
∞∫

0

θe−θtφ
(
ak

∣∣t)dt � 1 − vk
max − vk

vk
max − v̄k

[
1 −

∞∫
0

θe−θt
(
1 − e−t

)N
dt

]
.

The integral in the right-hand side converges to one as θ goes to zero. Therefore, given δ > 0 we
have θ̄ k > 0 such that for all θ ∈ (0, θ̄ k),

∞∫
0

θe−θtφ
(
ak

∣∣t)dt � 1 − δ,

which implies that there exists t � 0 such that φ(ak|t) � 1 − δ, and hence, φiak
i
(t) � 1 − δ for all

i ∈ I . �
In the following, we set T 0 = 0, and φ0,− and φ0,+ to be such that φ0,−(t) = a0 and

φ0,+(t) = ā0 for all t � 0, respectively.

Lemma 4.4. There exists θ̄ > 0 such that for any θ ∈ (0, θ̄ ), there exist T 1, . . . , T m−1 with
T 1 � · · · � T m−1 < ∞ and feasible paths φ1,−, . . . , φm,− and φ1,+, . . . , φm,+ such that for
each k = 1, . . . ,m,

(∗−
k ) φk,−(t) = φk−1,−(t) for all t ∈ [0, T k−1], φk,−(T k−1) ∈ Bη(a

k−1),

φ̇
k,−
i (t) = min BRi

vk

(
φ

k,−
−i

∣∣[ak−1
i , ak

i

])
(t) − φ

k,−
i (t)

for all i ∈ I and almost all t ∈ [T k−1,∞), and limt→∞ φk,−(t) = ak ,

and

(∗+
k ) φk,+(t) = φk−1,+(t) for all t ∈ [0, T k−1], φk,+(T k−1) ∈ Bη(ā

k−1),

φ̇
k,+
i (t) = max BRi

vk

(
φ

k,+
−i

∣∣[āk
i , ā

k−1
i

])
(t) − φ

k,+
i (t)

for all i ∈ I and almost all t ∈ [T k−1,∞), and limt→∞ φk,+(t) = āk .

Proof. Take θ̄1, . . . , θ̄m as in Lemma 4.3, and set θ̄ = min{θ̄1, . . . , θ̄m}. Fix any θ ∈ (0, θ̄ ). First,
by Lemma 4.3 for (4.3) and (4.4) with k = 1, x = a0, and y = ā0, we have feasible paths φ1,−
and φ1,+ that satisfy (∗−

1 ) and (∗+
1 ), respectively.

Next, for k � 2 assume that there exist T 0, . . . , T k−2, φ1,−, . . . , φk−1,−, and φ1,+, . . . , φk−1,+
that satisfy (∗−

1 ), . . . , (∗−
k−1) and (∗+

1 ), . . . , (∗+
k−1). Let T k−1 � T k−2 be such that φk−1,−(t) ∈
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Bη(a
k−1) and φk−1,+(t) ∈ Bη(ā

k−1) for all t � T k−1. Then, consider the maximization prob-
lems:

maxJ k
θ (φ) s.t. φ ∈ Φ

k,−
T k−1 , (4.8)

maxJ k
θ (φ) s.t. φ ∈ Φ

k,+
T k−1 , (4.9)

where

Φ
k,−
T k−1 = {

φ ∈ Φ
∣∣ φ(t) = φk−1,−(t) ∀t ∈ [

0, T k−1],
φ̇i(t) + φi(t) ∈ Δ

([
ak−1

i , ak
i

]) ∀i ∈ I, a.a. t ∈ [
T k−1,∞)}

,

Φ
k,+
T k−1 = {

φ ∈ Φ
∣∣ φ(t) = φk−1,+(t) ∀t ∈ [

0, T k−1],
φ̇i(t) + φi(t) ∈ Δ

([
āk
i , ā

k−1
i

]) ∀i ∈ I, a.a. t ∈ [
T k−1,∞)}

.

Observe that (4.8) and (4.9) are equivalent to (4.3) with x = φk−1,−(T k−1) and (4.4) with y =
φk−1,+(T k−1), respectively. Therefore, by Lemma 4.3 we have feasible paths φk,− and φk,+ that
satisfy (∗−

k ) and (∗+
k ), respectively. �

Let T m = ∞.

Lemma 4.5. There exists θ̄ > 0 such that for any θ ∈ (0, θ̄ ), there exist T 1, . . . , T m−1 with
T 1 � · · · < T m−1 � ∞ and feasible paths φ− and φ+ such that

(∗−) φ−(0) = a0, limt→∞ φ−(t) = a∗, and for each k = 1, . . . ,m, φ−(t) ∈ Bη([ak−1, a∗]) for
all t ∈ [T k−1,∞) and

φ̇−
i (t) = min BRi

vk

(
φ−

−i

∣∣[ak−1
i , ak

i

])
(t) − φ−

i (t)

for all i ∈ I and almost all t ∈ [T k−1, T k),

and

(∗+) φ+(0) = ā0, limt→∞ φ+(t) = a∗, and for each k = 1, . . . ,m, φ+(t) ∈ Bη([a∗, āk−1]) for
all t ∈ [T k−1,∞) and

φ̇+
i (t) = max BRi

vk

(
φ+

−i

∣∣[āk
i , ā

k−1
i

])
(t) − φ+

i (t)

for all i ∈ I and almost all t ∈ [T k−1, T k).

Proof. Take θ̄ as in Lemma 4.4. Fix any θ ∈ (0, θ̄ ), and let φ1,−, . . . , φm,−, and φ1,+, . . . , φm,+
satisfy (∗−

k ) and (∗+
k ) for k = 1, . . . ,m, respectively. Set φ− = φm,− and φ+ = φm,+. We only

verify that φ− satisfies (∗−).
For each k = 1, . . . ,m, we have φ−

i (t) ∈ Bη([ak−1
i , a∗

i ]) for all i ∈ I and all t � T k−1. We
also have limt→∞ φ−(t) = a∗. Observe that T k’s can be taken sufficiently large so that for each
k = 1, . . . ,m − 1 and i ∈ I , φ−

ih(t) = φ
k,−
ih (t) = e−(t−T k)φ

k,−
ih (T k) for all h /∈ [ak

i , a
∗
i ] and all

t � T k . Note that by construction, φ−(t) = φk,−(t) for all t � T k . Since vk(a) = vk(a′) for all
a, a′ ∈ [ak, āk], it follows that for each k = 1, . . . ,m − 1 and i ∈ I , BRi

vk (φ
−
−i |[ak−1

i , ak
i ])(t) =

BRi
vk (φ

k,−
−i |[ak−1

i , ak
i ])(t) for all t � T k . �
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Proof of Theorem 4.1. Suppose that vk’s are monotone potential functions for a∗ relative to
Bη([ak−1, āk−1]). Take θ̄ as in Lemma 4.5. Fix any θ ∈ (0, θ̄ ) and let φ− and φ+ satisfy (∗−)

and (∗+), respectively.
Fix any x ∈ ∏

i Δ(Ai). Let βx be the best response correspondence defined in (4.2). Let Φ̃x =
{φ ∈ Φx | φ− � φ � φ+}. We will show that β̃x(φ) = βx(φ) ∩ Φ̃x is nonempty for any φ ∈ Φ̃x .
Then, since Φ̃x is convex and compact, it follows from Kakutani’s fixed point theorem that
there exists a fixed point φ∗ ∈ β̃x(φ

∗) ⊂ Φ̃x , which is a perfect foresight path in g and satisfies
φ− � φ∗ � φ+. Since both φ− and φ+ converge to a∗, φ∗ also converges to a∗.

Take any φ ∈ Φ̃x . Consider any k = 1, . . . ,m. Note that φ(t) ∈ Bη([ak−1, āk−1]) for all t �
T k−1.

Suppose first that gi |[ak−1
i ,āk−1

i ]×A−i
are supermodular for all i ∈ I . Then, for all i ∈ I ,

min BRi
vk

(
φ−

−i

∣∣[ak−1
i , ak

i

])
(t) � max BRi

gi

(
φ−

−i

∣∣[ak−1
i , āk

i

])
(t)

� max BRi
gi

(
φ−i

∣∣[ak−1
i , āk

i

])
(t)

for all t ∈ [T k−1, T k), where the second inequality follows from the assumption that vk is a
monotone potential function relative to Bη([ak−1, āk−1]), and the third inequality follows from
the supermodularity of gi |[ak−1

i ,āk−1
i ]×A−i

. Similarly, for all i ∈ I ,

max BRi
vk

(
φ+

−i

∣∣[āk
i , ā

k−1
i

])
(t) � min BRi

gi

(
φ+

−i

∣∣[ak
i , ā

k−1
i

])
(t)

� min BRi
gi

(
φ−i

∣∣[ak
i , ā

k−1
i

])
(t)

for all t ∈ [T k−1, T k).
Suppose next that vk|[ak−1

i ,āk−1
i ]×A−i

are supermodular for all i ∈ I . Then, for all i ∈ I ,

min BRi
vk

(
φ−

−i

∣∣[ak−1
i , ak

i

])
(t) � min BRi

vk

(
φ−i

∣∣[ak−1
i , ak

i

])
(t)

� max BRi
gi

(
φ−i

∣∣[ak−1
i , āk

i

])
(t)

for all t ∈ [T k−1, T k), where the second inequality follows from the supermodularity of
vk|[ak−1

i ,āk−1
i ]×A−i

, and the third inequality follows from the assumption that vk is a monotone

potential function relative to Bη([ak−1, āk−1]). Similarly, for all i ∈ I ,

max BRi
vk

(
φ+

−i

∣∣[āk
i , ā

k−1
i

])
(t) � max BRi

vk

(
φ−i

∣∣[āk
i , ā

k−1
i

])
(t)

� min BRi
gi

(
φ−i

∣∣[ak
i , ā

k−1
i

])
(t)

for all t ∈ [T k−1, T k).
Therefore, in each case, we have for all t ∈ [T k−1, T k),

max BRi
gi

(
φ−i

∣∣[ak−1
i , āk

i

])
(t) � min BRi

vk

(
φ−

−i

∣∣[ak−1
i , ak

i

])
(t),

min BRi
gi

(
φ−i

∣∣[ak
i , ā

k−1
i

])
(t) � max BRi

vk

(
φ+

−i

∣∣[āk
i , ā

k−1
i

])
(t).

Since φ(t) ∈ Bη(Δ([ak−1, āk−1])) for all t � T k−1 and hence

BRi
gi

(φ−i )(t) ∩ [
ak−1

i , āk−1
i

] �= ∅
by the choice of η, it follows that

BRi
gi

(φ−i )(t) ∩ [
min BRi

vk

(
φ−

−i

∣∣[ak−1
i , ak

i

])
(t),max BRi

vk

(
φ+

−i

∣∣[āk
i , ā

k−1
i

])
(t)

] �= ∅.
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Let F̃i(φ−i )(t) be the convex hull of the above set. Then the differential inclusion

ψ̇(t) ∈ F̃ (φ)(t) − ψ(t), ψ(0) = x

has a solution ψ (see OTH [28, Remark 2.1]). Since F̃i(φ−i )(t) ⊂ Fi(φ−i )(t) = {αi ∈ Δ(Ai) |
αih > 0 ⇒ h ∈ BRi

gi
(φ−i )(t)}, we have ψ ∈ βx(φ). By the construction of φ−, φ+, and ψ ,

we have φ− � ψ � φ+. Thus, we have ψ ∈ β̃x(φ) = βx(φ) ∩ Φ̃x , implying the nonemptiness
of β̃x(φ). �

By Proposition 2.5, we immediately have the following.

Corollary 4.6. If a∗ is an iterated strict p-dominant equilibrium of g with
∑

i∈I pi < 1, then
there exists θ̄ > 0 such that a∗ is globally accessible in g for all θ ∈ (0, θ̄ ).

4.3. Linear absorption of iterated strict MP-maximizer

In this subsection, we prove that under the same monotonicity condition as in the informa-
tional robustness and the global accessibility results, an iterated strict MP-maximizer is linearly
absorbing (regardless of the degree of friction), and therefore, it is the unique equilibrium that is
globally accessible and linearly absorbing for any small degree of friction.12

Theorem 4.7. Suppose that g has an iterated strict MP-maximizer a∗ with associated intervals
(Sk)mk=0 and strict monotone potential functions (vk)mk=1. If for each k = 1, . . . ,m, gi |Sk−1

i ×A−i

is supermodular for all i ∈ I or vk|Sk−1 is supermodular, then a∗ is linearly absorbing in g for
all θ > 0.

We will use the following result due to Hofbauer and Sorger [8] and OTH [28].

Lemma 4.8. Suppose that v|S is a potential game with a unique potential maximizer a∗ ∈ S.
Then, a∗ is absorbing in v|S for all θ > 0. If in addition, v|S is supermodular, then a∗ is linearly
absorbing in v|S for all θ > 0.

Suppose that a∗ is an iterated strict MP-maximizer of g with associated intervals (Sk)mk=0 and
strict monotone potential functions (vk)mk=1. Due to Lemma 2.2, we can have (ṽk)mk=1 and η > 0
such that for each k = 1, . . . ,m, ṽk :A → R is a strict monotone potential function relative to
Bη(Δ(Sk−1)). For each k = 0,1, . . . ,m and i ∈ I , write Sk

i = [ak
i , ā

k
i ], where 0 = a0

i � a1
i �

· · · � am
i = a∗

i = ām
i � · · · � ā1

i � ā0
i = ni . In defining such (ṽk)mk=1 and η > 0, we extend vk

(k = 1, . . . ,m) to A so that [ak−1, ak] and [āk, āk−1] are strict best response sets in the games
ṽk|[a0,ak] and ṽk|[āk ,ā0], respectively, and take η > 0 to be sufficiently small so that for all k =
1, . . . ,m and all i ∈ I ,

bri
ṽk

(
πi

∣∣[a0
i , a

k
i

]) ⊂ [
ak−1

i , ak
i

]
for all πi ∈ Bη(Δ([ak−1

−i , ak
−i])) and

bri
ṽk

(
πi

∣∣[āk
i , ā

0
i

]) ⊂ [
āk
i , ā

k−1
i ]

12 Because of the supermodularity conditions, it can be shown that the same stability properties in fact hold under
rationalizable foresight (Matsui and Oyama [16]); see OTH [28, Subsection 3.3].
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for all πi ∈ Bη(Δ([āk
−i , ā

k−1
−i ])). In the case where vk|[ak−1,āk−1] is supermodular, vk is extended

so that ṽk|[a0,ak] and ṽk|[āk ,ā0] are supermodular. We assume without loss of generality that in

each potential game ṽk|[a0,ak] (ṽk|[āk ,ā0], resp.), any perfect foresight path from Bη(a
k) (Bη(ā

k),

resp.) converges (linearly, in the case where the game is also supermodular) to ak (āk , resp.).
For an interval S ⊂ A, we say that a feasible path φ is an S-perfect foresight path if for all

i ∈ I , all h ∈ Ai , and almost all t � 0,

φ̇ih(t) > −φih(t) ⇒ h ∈ BRi
gi

(φ−i |Si)(t). (4.10)

Note that if φ is an S-perfect foresight path with φ(0) = x, then for all i ∈ Ai and all h /∈ Si ,
φih(t) = xihe

−t for all t � 0.

Lemma 4.9. For each k = 1, . . . ,m, if gi |[ak−1
i ,āk−1

i ]×A−i
is supermodular for all i ∈ I or ṽk|[a0,ak]

and ṽk|[āk ,ā0] are supermodular, then (1) for any [ak−1, āk−1]-perfect foresight path φ∗ with
φ∗(0) ∈ Bη(Δ([ak, āk])),

lim
t→∞

∑
h∈[ak

i ,ā
k
i ]

φ∗
ih(t) = 1 (4.11)

for all i ∈ I , and (2) there exists ηk ∈ (0, η] such that for any [ak−1, āk−1]-perfect foresight path
φ∗ with φ∗(0) ∈ Bηk (Δ([ak, āk])),

BRi
gi

(
φ∗−i

∣∣[ak−1
i , āk−1

i

])
(t) ⊂ [

ak
i , ā

k
i

]
(4.12)

for all i ∈ I and t � 0.

Proof. (1) Take any x ∈ Bη(Δ([ak, āk])) and any [ak−1, āk−1]-perfect foresight path φ∗ with
φ∗(0) = x. Note that φ∗(t) ∈ Bη(Δ([ak−1, āk−1])) for all t � 0. Let

x
k,−
i = ηa0

i + (1 − η)ak
i , x

k,+
i = ηā0

i + (1 − η)āk
i ,

and denote xk,− = (x
k,−
i )i∈I and xk,+ = (x

k,+
i )i∈I . We will find perfect foresight paths φk,− and

φk,+ for ṽk|[a0,ak] and ṽk|[āk ,ā0], respectively, such that φk,−(0) = xk,−, φk,+(0) = xk,+, and

φk,−(t) � φ∗(t) � φk,+(t) for all t � 0. Then, since the potential maximizer ak (āk , resp.) is
absorbing in ṽk|[a0,ak] (ṽk|[āk ,ā0], resp.), and hence φk,− (φk,+, resp.) converges to ak (āk , resp.),
φ∗ must satisfy (4.11).

The argument below follows that in OTH [28, Appendix A.3]. We show the existence of φk,−;
the existence of φk,+ can be shown similarly. Let Φ̃xk,− be the set of feasible paths φ ∈ Φxk,−
such that for all i ∈ I and all t � 0, φi(t) ∈ Δ([a0

i , a
k
i ]), φi(t) � φ∗

i (t), and φih(t) = x
k,−
ih e−t

for all h < ak−1
i . Consider the best response correspondence β−

ṽk for the stage game ṽk|[a0,ak].
We will show that β̃−

ṽk (φ) = β−
ṽk (φ) ∩ Φ̃xk,− is nonempty for any φ ∈ Φ̃x−

ε
. Then, since Φ̃xk,−

is convex and compact, it follows from Kakutani’s fixed point theorem that there exists a fixed
point φk,− ∈ β̃−

ṽk (φ
k,−) ⊂ Φ̃xk,− , as desired.

Take any φ ∈ Φ̃xk,− . Note that φ(t) ∈ Bη(Δ([ak−1, ak])) for all t � 0, and therefore
BRi

ṽk (φ−i |[a0
i , a

k
i ])(t) = BRi

ṽk (φ−i |[ak−1
i , ak

i ])(t) by the choice of η. In the case where
gi |[ak−1

i ,āk−1
i ]×A−i

is supermodular for all i ∈ I , we have, for all i ∈ I and all t � 0,
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min BRi
ṽk

(
φ−i

∣∣[ak−1
i , ak

i

])
(t) � min BRi

gi

(
φ−i

∣∣[ak−1
i , āk

i

])
(t)

� min BRi
gi

(
φ∗−i

∣∣[ak−1
i , āk

i

])
(t),

where the first inequality follows from the assumption that ṽk is a strict monotone potential
relative to Bη(Δ([ak−1, āk−1])) and the second inequality follows from the supermodularity of
gi |[ak−1

i ,āk−1
i ]×A−i

. In the case where vk is supermodular, we have, for all i ∈ I and all t � 0,

min BRi
ṽk

(
φ−i

∣∣[ak−1
i , ak

i

])
(t) � min BRi

ṽk

(
φ−i

∣∣[ak−1
i , ak

i

])
(t)

� min BRi
gi

(
φ∗−i

∣∣[ak−1
i , āk

i

])
(t),

where the first inequality follows from the supermodularity of ṽk|[a0,ak] and the second

inequality follows from the assumption that ṽk is a strict monotone potential relative to
Bη(Δ([ak−1, āk−1])). Therefore, in each case, we have, for all i ∈ I and all t � 0,

min BRi
ṽk

(
φ−i

∣∣[a0
i , a

k
i

])
(t) � min BRi

gi

(
φ∗−i

∣∣[ak−1
i , āk

i

])
(t).

It follows that the solution ψ to

ψ̇i(t) = min BRi
ṽk

(
φ−i

∣∣[a0
i , a

k
i

])
(t) − ψi(t), ψ(0) = x

k,−
i ,

which is a best response to φ in the game ṽk|[a0,ak], satisfies ψ ∈ Φ̃xk,− . This implies the

nonemptiness of β̃−
ṽk (φ).

(2) If gi |[ak−1
i ,āk−1

i ]×A−i
is supermodular for all i ∈ I , then arguments analogous to those in

OTH [28, Appendix A.1] show that (1) implies (2). If ṽk|[a0,ak] and ṽk|[āk ,ā0] are supermodular,

then ak (āk , resp.) is linearly absorbing in ṽk|[a0,ak] (ṽk|[āk ,ā0], resp.) and hence φk,− (φk,+, resp.)

converges linearly to ak (āk , resp.). Therefore, for all i and all h /∈ [ak
i , ā

k
i ], φ∗(t) = xihe

−t for all
t � 0. Since [ak, āk] is a strict best response set in g, it follows that φ∗ must satisfy (4.12). �
Proof of Theorem 4.7. Suppose that ṽk’s are strict monotone potential functions relative to
Bη(Δ([ak−1, āk−1])) and that for each k = 1, . . . ,m, gi |[ak−1

i ,āk−1
i ]×A−i

is supermodular for all

i ∈ I or ṽk|[a0,ak] and ṽk|[āk ,ā0] are supermodular. Take η1, . . . , ηm as in Lemma 4.9, and let

ε = min{η1, . . . , ηm}.
Fix any x ∈ Bε(a

∗) and any perfect foresight path φ∗ in g with φ∗(0) = x. It is sufficient to
prove that for all k = 1, . . . ,m,

BRi
gi

(
φ∗−i

∣∣[ak−1
i , āk−1

i

])
(t) ⊂ [

ak
i , ā

k
i

]
(∗k)

holds for all i ∈ I and all t � 0, which can be done by applying Lemma 4.9 iteratively. Indeed,
since φ∗ is an [a0, ā0]-perfect foresight path, (∗1) is true by Lemma 4.9. If (∗1)–(∗k−1) are true,
then φ∗ is an [ak−1, āk−1]-perfect foresight path, so that (∗k) is also true by Lemma 4.9. �

By Proposition 2.5, we immediately have the following.

Corollary 4.10. If a∗ is an iterated strict p-dominant equilibrium of g with
∑

i∈I pi < 1, then a∗
is linearly absorbing in g for all θ > 0.
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5. Conclusion

For any given set-valued solution concept, in principle, it is possible to consider iterative elim-
ination of actions outside the solution set. In this paper, we applied such an iterative construction
to two refinements of Nash equilibrium: p-dominant equilibrium (Morris, Rob, and Shin [22] and
Kajii and Morris [9]) or p-best response set (Tercieux [34]); and potential maximizer (Monderer
and Shapley [20]) or MP-maximizer (Morris and Ui [24]). We showed that the iterative con-
struction preserves their robustness to incomplete information (Kajii and Morris [9]) as well as
stability under perfect foresight dynamics (Matsui and Matsuyama [15]): iterated p-dominant
equilibria as well as iterated MP-maximizers (under some monotonicity conditions) are both ro-
bust to incomplete information and globally accessible (for a small degree of friction) and linearly
absorbing under perfect foresight dynamics. We also proposed simple procedures, for some spe-
cial classes of games, to find an iterated p-dominant equilibrium or an iterated MP-maximizer. In
particular, we introduced iterated pairwise p-dominance and iterated risk-dominance for general
supermodular games and two-player supermodular coordination games, respectively. An iter-
ated MP-maximizer is shown to exist and to be easy to find in an economically relevant class
of games. However, generally, finding an MP-maximizer or iterated MP-maximizer is a difficult
task. We see these simpler procedures as natural first steps to check whether our main theorems
apply.

We provided numerical examples to assess the relevance of the iterative construction for both
the p-dominance and the potential maximization approaches. In particular, the example in Sec-
tion 2.6 shows, first, that for the p-dominance approach, our iterative construction leads to a
strictly more general concept. In this example, the game has no (p1,p2)-dominant equilibrium
such that p1 + p2 < 1, but has an iterated strict (p,p)-dominant equilibrium for some p < 1/2
and hence our results show that it is robust to incomplete information and stable under per-
fect foresight dynamics. The same example also shows that, for LP-maximizers, iteration has a
bite in the potential approach as well. For this specific form of MP-maximizers, we could ex-
ploit an existing characterization that is rather easy to manipulate in verifying that the game
has no LP-maximizer while having an iterated LP-maximizer. Note, by contrast, that no such
characterization has been known for MP-maximizers. This fact makes it difficult to examine the
additional bite of iterated MP-maximizer over MP-maximizer. Identifying a full characterization,
in particular a (tight) necessary condition, for a game to have an MP-maximizer or an iterated
MP-maximizer is left an open problem for future research.

Finally, we considered a simple application of our concepts in a context of technology adop-
tion, to demonstrate that our iterative procedure can be used in identifying a robust prediction in
an economic situation. Given that potential maximization methods are found in various fields in
economics, such as industrial organization (Slade [32], Monderer and Shapley [20]), mechanism
design and implementation (Sandholm [31], Bergemann and Morris [2]) and economic geogra-
phy (Oyama [27]), as well as in transportation science (Beckmann et al. [1], Rosenthal [29]), it
is hoped that the theory developed in this paper will be of use also in other applications than the
simple one discussed here.
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Appendix A

A.1. Proof of Lemma 2.2

Let S∗, S ⊂ A, and v :S → R be as in the statement. For i ∈ I and ai ∈ Ai , let

Π−
iai

(gi) = {
πi ∈ Δ(A−i )

∣∣ min bri
gi

(
πi

∣∣[minSi,maxS∗
i

])
� ai

}
,

Π+
iai

(gi) = {
πi ∈ Δ(A−i )

∣∣ max bri
gi

(
πi

∣∣[minS∗
i ,maxSi

])
� ai

};
and for f ∈ R

A,

Π̂−
iai

(f ) = {
πi ∈ Δ(A−i )

∣∣ min bri
f

(
πi

∣∣[minSi,minS∗
i

])
� ai

}
,

Π̂+
iai

(f ) = {
πi ∈ Δ(A−i )

∣∣ max bri
f

(
πi

∣∣[maxS∗
i ,maxSi

])
� ai

}
.

Observe that Π−
iai

(gi) and Π̂−
iai

(f ) (Π+
iai

(gi) and Π̂+
iai

(f ), resp.) are closed (in Δ(A−i )) due to

the lower (upper, resp.) semi-continuity of min bri
gi

and min bri
f (max bri

gi
and max bri

f , resp.).
Note that these sets may be empty. Here we give a characterization of strict MP-maximizer in
terms of these sets.

Lemma A.1.1. S∗ is a strict MP-maximizer set of g|S with a strict monotone potential function
v if and only if S∗ = arg maxa∈S v(a), and for all i ∈ I ,

Π−
iai

(gi) ∩ Δ(S−i ) ⊂ Π̂−
iai

(v) ∩ Δ(S−i )

for all ai ∈ [minSi,minS∗
i ] and

Π+
iai

(gi) ∩ Δ(S−i ) ⊂ Π̂+
iai

(v) ∩ Δ(S−i )

for all ai ∈ [maxS∗
i ,maxSi].

Now, extend v arbitrarily to A (i.e., consider a function defined on A that coincides with v

on S, and denote it again by v) satisfying S∗ = arg maxa∈S v(a). In the case where v is super-
modular, extend v so that v|A is supermodular.

For γ > 0, define cγ :A → R by

cγ (a) = γ
∑
i∈I

∣∣ai − S∗
i

∣∣,
where

∣∣ai − S∗
i

∣∣ =
⎧⎨⎩

0 if ai ∈ S∗
i ,

minS∗
i − ai if ai < minS∗

i ,

ai − maxS∗
i if ai > maxS∗

i .
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Observe that if h < k � minS∗
i or h > k � maxS∗

i , then for all a−i ∈ A−i ,

cγ (k, a−i ) − cγ (h, a−i ) = −|k − h|γ � −γ.

Fix any γ > 0 such that γ < (maxa∈A v(a)−maxa /∈S∗ v(a))/
∑

i∈I ni . Then define ṽ :A → R

by

ṽ(a) = v(a) + cγ (a). (A.1)

By the choice of γ , S∗ = arg maxa∈A ṽ(a). Verify also that if v|S is supermodular, then so is ṽ.
The following lemma shows that the transformation above expands Π̂−

iai
(v) and Π̂+

iai
(v).

Lemma A.1.2. Given v :A → R, let ṽ :A → R be defined by (A.1). For each i ∈ I and ai ∈
[minSi,minS∗

i ], there exists an open set U−
iai

⊂ Δ(A−i ) such that

Π̂−
iai

(v) ⊂ U−
iai

⊂ Π̂−
iai

(ṽ).

Similarly, for each i ∈ I and ai ∈ [maxS∗
i ,maxSi], there exists an open set U+

iai
⊂ Δ(A−i ) such

that

Π̂+
iai

(v) ⊂ U+
iai

⊂ Π̂+
iai

(ṽ).

Proof. Fix i ∈ I and ai ∈ [minSi,minS∗
i ]. Take any πi ∈ Π̂−

iai
(v): i.e., min bri

v(πi |[minSi,

minS∗
i ]) � ai . Take ε(πi) > 0 such that if π ′

i ∈ Bε(πi)(πi), then

max
h,k∈Ai

∣∣(ṽ(
k,π ′

i

) − ṽ
(
h,π ′

i

)) − (
ṽ(k,πi) − ṽ(h,πi)

)∣∣ < γ.

Let us show that Bε(πi)(πi) ⊂ Π̂−
iai

(ṽ). Take any π ′
i ∈ Bε(πi)(πi), and let ai =

min bri
ṽ
(π ′

i |[minSi,minS∗
i ]). We want to show that ai � ai . It is sufficient to show that

ai � min bri
v(πi |[minSi,minS∗

i ]). If h < ai , then

v(ai,πi) − v(h,πi) = (
ṽ(ai, πi) − cγ (ai,πi)

) − (
ṽ(h,πi) − cγ (h,πi)

)
= ṽ(ai, πi) − ṽ(h,πi) + (ai − h)γ

� ṽ(ai, πi) − ṽ(h,πi) + γ

> ṽ
(
ai,π

′
i

) − ṽ
(
h,π ′

i

)
> 0.

This means that ai � min bri
v(πi |[minSi,minS∗

i ]), which implies that π ′
i ∈ Π̂−

iai
(ṽ).

Then set U−
iai

= ⋃
πi∈Π̂−

iai
(v) Bε(πi)(πi). �

Proof of Lemma 2.2. Given v :A → R, let ṽ :A → R be defined by (A.1). Then, S∗ =
arg maxa∈A ṽ(a); and if v|S is supermodular, then so is ṽ. For each i ∈ I and ai ∈ [minSi,minS∗

i ]
such that Π−

iai
(gi) �= ∅, take an open set U−

iai
as in Lemma A.1.2. Note that Π−

iai
(gi) ∩ Δ(S−i ) ⊂

U−
iai

. Since Π−
iai

(gi) and Δ(S−i ) are closed in a compact set Δ(A−i ), there exists η−(i, ai) > 0
such that

Π−
iai

(gi) ∩ Bη−(i,ai )

(
Δ(S−i )

) ⊂ U−
iai

.

Apply the same argument to each i ∈ I and a′
i ∈ [maxS∗

i ,maxSi] such that Π+
ia′

i

(gi) �= ∅ to

obtain η+(i, a′
i ) > 0 such that
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Π+
ia′

i

(gi) ∩ Bη+(i,a′
i )

(
Δ(S−i )

) ⊂ U+
ia′

i

,

where U+
ia′

i

is as in Lemma A.1.2.

Finally, set η = mini,ai
η−(i, ai) ∧ mini,a′

i
η+(i, a′

i ). �
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