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Abstract

This paper considers the robustness of equilibria to a small amount of incomplete information, where
players are allowed to have heterogeneous priors. An equilibrium of a complete information game is robust
to incomplete information under non-common priors if for every incomplete information game where each
player’s prior assigns high probability on the event that the players know at arbitrarily high order that the
payoffs are given by the complete information game, there exists a Bayesian Nash equilibrium that generates
behavior close to the equilibrium in consideration. It is shown that for generic games, an equilibrium is
robust under non-common priors if and only if it is the unique rationalizable action profile. Set-valued
concepts are also introduced, and for generic games, a smallest robust set is shown to exist and coincide
with the set of a posteriori equilibria.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

One important research program in game theory has been to examine the robustness of Nash
equilibria of a given complete information game to incomplete information, i.e., whether the
predictions generated by Nash equilibria are still valid in “nearby” incomplete information
games obtained by perturbing the complete information game (see, e.g., Fudenberg, Kreps, and
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Levine [8] and Kajii and Morris [10]). There, most existing approaches (Kajii and Morris [10],
Ui [22], and Morris and Ui [17], among others) assume that players share a common prior belief
in perturbed incomplete information games, as do most work in other fields in game theory and
information economics. In this paper, we characterize equilibria that remain valid in perturbed
incomplete information games dropping the common prior assumption (CPA, henceforth), i.e.,
allowing players to have heterogeneous subjective prior beliefs. This enables us to assess the role
of the CPA in examining the robustness of equilibria to incomplete information.

The results in this paper are summarized as follows. First, we show that an equilibrium of
a generic complete information game is robust under non-common priors if and only if it is the
unique rationalizable action profile. Second, we consider set-valued robustness and show that, for
generic games, a smallest robust set exists and coincides with the set of a posteriori equilibria.!
These imply that the robustness test that allows non-common priors is substantially stronger
than the one with the CPA as considered by Kajii and Morris [10]. We also examine the effect
of imposing an upper bound on the degree of heterogeneity of the prior beliefs in incomplete
information perturbations, and relate our results to those by Weinstein and Yildiz [24], who
obtain an analogous characterization for robustness to perturbation of interim beliefs, but show
that their characterization remains unchanged even with the CPA. We demonstrate, in contrast,
that unbounded heterogeneity in priors is essential for our characterization of ex ante robustness.

To explain our framework, consider an analyst who plans to model some strategic situation
by a particular complete information game g. While he believes that the environment is well
described by this game, he is also aware that each player faces a small amount of payoff un-
certainty, so that players may play some incomplete information game in which their ex ante
subjective payoffs are close to their payoffs in g, where he does not assume that the players share
a common prior. We want to ask whether the analyst’s prediction based on the complete informa-
tion game is not different from the ex ante average equilibrium behavior of the real incomplete
information game.?

Our key assumption to formalize closeness between incomplete information games and the
complete information game g is that the analyst is restricted to incomplete information games
where with high ex ante (subjective) probability, players know that the game is g up to arbitrary
but finite orders of knowledge. The ideal situation with complete information assumes that it
is common knowledge among players that the game played is g. Intuitively speaking, this says
that everyone knows that the game is g (the game is mutual knowledge), everyone knows that
everyone knows that the game is g (the game is mutual knowledge at order two), and so on. In
our setting, in contrast, the analyst does not know the entire hierarchy of knowledge. Indeed, he
is confident in his model up to a certain extent so that he believes that with a high probability
players mutually know that the real game is g up to a finite level (possibly very large). To be
specific, an incomplete information game is an (&, N)-perturbation of g if the action sets are
same as those of g and each player’s prior assigns probability at least 1 — ¢ on the event that
the players know at order N that the payoffs are given by g. In (e, N)-perturbations of g with
small ¢, ex ante payoffs (computed according to each player’s prior) are close to payoffs in g.
An equilibrium of g is robust to incomplete information under non-common priors in g if there

N posteriori equilibrium is a refinement of subjective correlated equilibrium introduced and studied in Aumann [1]
and Brandenburger and Dekel [4].

2 This “ex ante” perspective is the one adopted in the purification literature (Harsanyi [9]). A standard interpretation of
correlated equilibrium also follows this perspective (see, e.g., Aumann [2]).
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exist & > 0 and N > 0 such that every (s, N)-perturbation of g has a Bayesian Nash equilibrium?

under which the ex ante probability that each player assigns to any action profile is approximately
given by the equilibrium of g. This guarantees that under this Bayesian Nash equilibrium, the ex
ante (subjective) payoff of each player is approximately given by the equilibrium payoff in g.*

Our first main result shows that for generic games, an action distribution is robust under non-
common priors in g if and only if the game is dominance solvable and the distribution assigns
probability one on the unique rationalizable action profile of g. Its sufficiency follows from the
assumption that in incomplete information perturbations close to g, the real game is mutually
known to be g up to high enough order (at least the number of the dominance iteration rounds
needed to reach the single action profile in g). To show the necessity, which is the main part of
this paper, we obtain a contagion result for a posteriori equilibria: for any a posteriori equilibrium
of a generic game and for any ¢ > 0 and N > 0, we construct a dominance solvable (g, N)-
perturbation whose unique rationalizable strategy profile generates an action distribution that
can be arbitrarily close to this a posteriori equilibrium.’ From the result by Brandenburger and
Dekel [4], we know that if more than one action profile is rationalizable, then there are several
a posteriori equilibria. Hence, if more than one actions survive iterative elimination of actions
that are never best responses, then our result shows that no action profile is robust.

Brandenburger and Dekel [4] show that for any a posteriori equilibrium of a given complete
information game, one can add payoft-irrelevant types to have an incomplete information game
with non-common priors whose Bayesian Nash equilibrium generates the distribution of the
a posteriori equilibrium. In contrast, our contagion result used for our necessity result shows that
(in generic games) when we allow for payoff-relevant (“crazy”) types that have vanishingly small
prior probability, the Bayesian Nash equilibrium that generates this distribution can indeed be the
unique rationalizable strategy profile of a dominance solvable incomplete information game. We
note that it is crucial for our result as well as for the result of Brandenburger and Dekel [4] to
drop the CPA.

Our second main result concerns set-valued robustness. Since many games have more than
one rationalizable outcomes and hence have no robust equilibrium under non-common priors,
it is natural to ask if a set of action distributions is robust. Indeed, Kohlberg and Mertens [11]
propose making set of equilibria the object of a theory of equilibrium refinements. Following
their program as well as Morris and Ui’s [17], we also investigate the robustness of set of equi-
libria. A set of equilibria of a complete information game is robust to incomplete information
under non-common priors if there exist ¢ > 0 and N > 0 such that any (&, N)-perturbation has
a Bayesian Nash equilibrium whose behavior can be approximated by some action distribution
in this set.® If a robust set is a singleton, then its element is a robust equilibrium in the previous
sense. A set of action distributions is called a smallest robust set if it is robust and is contained in
any robust set. We show that for generic games, a smallest robust set exists and coincides with the
set of a posteriori equilibria. When the smallest robust set is a singleton, the condition reduces to

3 Our results would remain unchanged when the solution concept considered is given by any non-empty refinement of
interim correlated rationalizability.

4 We choose a formulation of our robustness test in terms of (subjective) equilibrium action distributions rather than in
terms of equilibrium payoffs for comparison with the previous literature (in particular with Kajii and Morris [10]).

> The construction is more involved but analogous in essence to Rubinstein’s [20] email game.

6 Asnoted previously for the point-valued test, this robustness test can be written in terms of sets of equilibrium payoffs
rather than sets of equilibrium action distributions.
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the uniqueness of a posteriori equilibrium, so that the result on set-valued robustness covers our
result on point-valued robustness.

Kajii and Morris [10] introduce the notion of robustness of equilibria to incomplete infor-
mation under common prior. They consider incomplete information perturbations of a given
complete information where the players share a common prior. They show in particular that a
p-dominant equilibrium’ with p sufficiently small is robust to incomplete information under
common prior. Following Kajii and Morris [10], papers by Ui [22], Morris and Ui [17], and
Oyama and Tercieux [19] provide sufficient conditions for a Nash equilibrium to be robust to in-
complete information under common prior. Our result shows that when we relax the CPA, none
of the existing sufficient conditions implies robustness under non-common priors.

Weinstein and Yildiz [24] consider a notion of inferim robusimess.® A Nash equilibrium a*
is interim robust in g if for some N > 0 and for any incomplete information game with (or
without) common prior where the action sets are same as those of g, there exists a Bayesian
Nash equilibrium, say o, such that in any state of the world at which it is mutually known up to
order N that g is the true game, a* is played under o. They show that for generic games, a Nash
equilibrium is interim robust in g if and only if it is the unique rationalizable action profile of g.
Contrary to that for our robustness concept, this characterization remains unchanged even if we
restrict our attention to incomplete information games with common prior. This result follows
from a result of Lipman [12,13], which says that given any partition model with non-common
priors (under certain conditions) and any state of the world in the model, for any finite N one
can construct a partition model with a common prior such that there is a state in that model at
which all the same facts about the world as well as all the same statements about beliefs and
knowledge of order less than N are true. Thus, in an interim context where the analyst has to
make a prediction given interim beliefs of the players, imposing the CPA does not alter the set of
robust predictions. On the other hand, we conclude that in an ex ante context in which the analyst
has no information about the players’ interim beliefs and is interested in the ex ante behavior so
that he may need to know the average behavior over the state space, the CPA has a real bite and
allowing for models with heterogeneous priors has important strategic consequences.

To prove their main result, Weinstein and Yildiz [24] show that for any complete information
type in the universal type space (see Mertens and Zamir [14] and Brandenburger and Dekel [5])°
and any rationalizable action profile a* of this game, there exist a dominance solvable incomplete
information game and a sequence of types drawn from this game such that (1) these types are
arbitrarily close to the complete information type (i.e., this sequence converges to it with respect
to the product topology in the universal type space) and (2) each type of the sequence plays a*.!°
Roughly speaking, the former condition requires that changes of interim beliefs be small. To
establish our results, on the contrary, we construct a dominance solvable incomplete information
game such that (1”) changes of ex ante beliefs are arbitrarily small and (2') the profile of ex ante
subjective payoffs of the unique rationalizable strategy profile is arbitrarily close to the profile of

7 See Morris, Rob, and Shin [16] and Kajii and Morris [10].

8 See also their working paper version, Weinstein and Yildiz [23].

A complete information type is a (degenerate) type in the universal type space where it is common knowledge that
payoffs are given by the complete information game. Note that Weinstein and Yildiz [24] do not necessarily restrict their
attention to complete information types.

10" One can construct such a dominant solvable incomplete information so that it satisfies the CPA. As shown in Oyama
and Tercieux [18], however, in this case it need not be an (g, N)-perturbation for ¢ small and N large.
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expected payoffs. Hence, we may say that the same type of statement as that by Weinstein and
Yildiz [24] is obtained by our ex ante approach, provided that the CPA is dropped.

The point behind our contagion argument used in the proofs is that, under non-common priors,
a small (ex ante) probability event can have a larger impact on higher order (interim) beliefs
than under common prior. The “critical path result” of Kajii and Morris [10, Proposition 4.2]
shows that, under common prior, small changes in prior beliefs impose some restrictions on
interim beliefs. This implies that the impact of a small probability event is not large enough in
the sense that, in some games and for some strict Nash equilibrium, a small amount of payoff
uncertainty cannot induce this equilibrium to be played everywhere on the state space (i.e., it is
not contagious). For instance, in 2 x 2 coordination games, the risk-dominated equilibrium cannot
be contagious, and indeed the risk-dominant one is robust under common prior. In a companion
paper (Oyama and Tercieux [18]), we demonstrate, in contrast, that with non-common priors, any
strict Nash equilibrium can be contagious. In that paper, for two-player incomplete information
games with non-common priors, we study the strategic impact of an event using the notion of
belief potential (Morris, Rob, and Shin [16]). We find a measure of discrepancy from the CPA
such that the belief potential of a small probability event has an upper bound that is an increasing
function of this measure. Indeed, in order for any strict Nash equilibrium to be contagious, this
measure of discrepancy has to be large. In the present paper, we extend this observation and show
that for any a posteriori equilibrium of any complete information game to be induced by a unique
rationalizable strategy of some nearby dominance solvable incomplete information perturbations,
this measure of discrepancy from the CPA in these perturbations need to be arbitrarily large, due
to the fact that a bound on the measure would impose restrictions on interim beliefs.!!

The remainder of the paper is organized as follows. Section 2 presents our notions of nearby
incomplete information games and robustness. Section 3 states and proves our characterization
of robust equilibria, while robust sets are studied in Section 4. Section 5 discusses alternative
notions of robustness, in particular as those studied by Kajii and Morris [10] and Weinstein and
Yildiz [24].

2. Framework

This section collects the notations and definitions that will be used in the subsequent analysis.
The reader at first reading may proceed directly to the simple example in Section 3.1 which
illustrates our main results and when necessary refer to the relevant notation/definition in this
section.

2.1. Complete information games

A complete information game consists of the set of players, Z = {1, 2, ..., I}, the finite set
of actions, A;, for each player i € Z, and the payoff function, g; : A — R, for each player i € 7.
Throughout our analysis, we fix a complete information game, simply denoted by g = (g;);e7-

For any at most countable set S, we denote by A(S) the set of all probability measures on S.
We call elements in A(A) action distributions. For a € A, we write [a] for the element in A(A)
that assigns weight one to a. For £ € A(A) and a; € A;, we denote &(a;) = Za_,-eA,- E(aj,a—_;),

I 1f we first fix a given a posteriori equilibrium of a complete information game, then we can find a finite upper bound
of the measure for the incomplete information perturbations to generate the a posteriori equilibrium. Note that the same
comment applies to the result of Brandenburger and Dekel [4].
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and if £(a;) > 0, we define &£(-|a;) € A(A_;) by &(a—ila;) = &(a;,a—;)/§(a;). We measure the
distance between any two elements &, & € A(A) by |§ —&'| = max,ea |E(a) — &' (a)]. For § > 0,
we denote Vs (§) = {§' € A(A) | [§' —&| <8} foré € A(A) and V(&) ={§' € A(A) | [§' -] <
S for some & € £} for & C A(A). With abuse of notation, we also write | — /| = max; 7 |4 —
wil for w= (uidiez, W' = U))ier € (A(A)! and |7 — 7]| = maxy_ea_, |7i(a—;) — 7/ (a—;)|
for m;, m/ € A(A)).

Given g, let br; : A(A_;) — A; be the best response correspondence in pure actions for player
iel:

bri(m;) = arg max g; (a;, ;)
a,-eAi

for m; € A(A_;), where g;(a;, -) is extended to A(A_;) in the usual way. We define correlated
rationalizability (e.g., Brandenburger and Dekel [4]). For each i € Z, set Sl.0 [g] = A;. Then, for

k=1,2,..., define Sl(‘ [g] recursively by
S;‘[g] = {ai € A; | a; € br;(m;) for some 7; € A(Sf;l [g])},

where we denote Sflfl [el=]] i Sf_l [g]. The set of all rationalizable actions for playeri € 7
is S[gl = M2 SFlgl. We denote S™[g] =[],z S7°lg] as well as S¥[g] = [,z SFlgl for
k > 1. We say that g is dominance solvable if $°°[g] is a singleton set. We also define the set of

actions that survive iterative elimination of actions that are never strict best response.!? For each
i €1, set Wl.o[g] = A;. Then, fork=1,2, ..., define Wl.k [g] recursively by

Wik [g] = {ai €A; | {a;} = br;(m;) for some m; € A(Wfi_1 [g])},

where we denote Wfl._l[g] =] i WJ].‘_I[g]. Finally, let Wl.oo[g] = ﬂ,fio Wl.k [g]. We denote
W>[gl =[];cz Wlgl as well as Wk(g] = [licr Wl.k [g] for k > 1. Note that S°°[g] is always
non-empty, while W [g] may be empty (consider, e.g., games where the payoff functions are
constant). But the set of normal form games g for which these sets coincide, S°°[g] = W°[g], is
generic in the set of finite games. Our main result will be proved for this generic class of games.

We also use the following notions due to Aumann [1] and Brandenburger and Dekel [4]. First,
let us review the definition of subjective correlated equilibrium.

Definition 2.1. A profile of action distributions (u;);c7 € (A(A)! is a subjective correlated
equilibrium of g if for alli € 7 and all q; € A;,

pi(ai) >0 = a; €bri(ui(-la)).

As in Brandenburger and Dekel [4], our analysis employs the refinement of subjective corre-
lated equilibrium called a posteriori equilibrium.

Definition 2.2. For non-negative integer N, a profile of action distributions (i;);e7 € (A(A))!
is an N-subjective correlated equilibrium of g if it is a subjective correlated equilibrium of g and
wi(SN[gl)=1foralli eZ.

A profile of action distributions (u;);e7 € (A(A))! is an a posteriori equilibrium of g if it is
a subjective correlated equilibrium of g and w; (S*°[g]) = 1 foralli € Z.

12' To the best of our knowledge, this notion has been first defined by Weinstein and Yildiz [23].
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Denote by £V[g] the set of N-subjective correlated equilibria of g and by £[g] the set of
a posteriori equilibria of g. Observe that £V[g] and £[g] are product sets (£ [g] = [licr SiN [g]
with each SI.N [g] C A(A)) and closed sets in (A(A))’.

We introduce further refinements of a posteriori equilibrium.

Definition 2.3. (a) For non-negative integer N, a profile of action distributions (u;);e7 €
(A(A)! is an undominated N -subjective correlated equilibrium of g if it is an N -subjective
correlated equilibrium such that u; (W™ [g]) =1 foralli € Z.

(b) (i)ieT € (A(A))! is an undominated a posteriori equilibrium of g if it is an a posteriori
equilibrium such that u; (W°[g]) =1 forall i € Z.

(¢) (i)ieT 1s a strict a posteriori equilibrium if it is an undominated a posteriori equilibrium
such that foralli € Z and all a; € A;,

piai) >0 = {a;}=bri(ni(la)).

We denote by £Y[g] the set of undominated a posteriori equilibrium of g, which is again a
product set. If W>[g] # @, then £"[g] # 0. For generic games where S*°[g] = W*°[g], we have
Elgl= &gl

2.2. Incomplete information perturbations

We would like to consider incomplete information games that are close to complete informa-
tion game g.

An incomplete information game U/ consists of the set of players, Z; their action sets,
Ay, ..., Ar; a countable state space, 2:13 a prior probability measure on the state space, P;,
for each player i € Z; a partition of the state space, Q;, for each i € Z; and a bounded
payoff function, u;:A x §£2 — R, for each i € Z. The incomplete information game U =
(2, (P)ieT, (Qi)ieT, (ui)ie) is said to be an incomplete information perturbation of g (re-
call that U/ shares the player set and the action sets with the complete information game
(Z, (A})ieT, g)- In order to incorporate an outsider analyst’s viewpoint, we also explicitly con-
sider his prior belief. A pair (U, Pp) of an incomplete information game as described above, U,
and a probability measure on the state space for the analyst, Py, is called an incomplete informa-
tion elaboration of g.

Subsets of §2 are called events. For each i € Z, we write F; for the sigma algebra generated
by Q;, i.e., the set of unions of events in Q; together with the empty set. We say that an event
E C 82 is simple if E = ();.7 E; where each E; € F;. We write Q;(w) for the element of Q;
containing . We assume that P; (Q;(w)) > O foralli € 7 and w € §2. Under this assumption, the
conditional probability of any @’ given Q; (), P;(@'| Qi (w)), is well defined by P; («'|Q; (w)) =
P; ()] P;(Q;(w)) whenever o’ € Q;(w).

We sometimes impose restrictions of possible priors as in Lipman [12,13].

Definition 2.4. { P;}; 7 is said to have common support if supp(P;) = supp(P;) forall i, j € Z.

13 Assuming countability allows us to avoid measurability issues, in particular regarding existence of Bayesian Nash
equilibria (cf. Simon [21]).
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Definition 2.5. For £ > 1, { P;}; <7 is said to satisfy L-tail consistency if
| o P;(w)

< <L
L = Pj(w)

forall i, j € Z and all w € §2 with P;(w) > 0.

By a slight abuse of language, we say that an incomplete information game I/ satisfies com-
mon support or L-tail consistency.

Definition 2.6. I{ is said to satisfy the CPA if P; = P; foralli, j € L.

We now define the solution concepts we use for incomplete information games. Given an
incomplete information game U/, a (behavioral) strategy for player i is a Q;-measurable func-
tion o; : 2 — A(A;). Denote by X; the set of player i’s strategies, and let ¥ = [[;.7 ~; and
Y_i=1]] i X ;. We write o0;(a;|w) for the probability that action a; € A; is chosen at w € £2
under o; € X}, and denote o_; (a_;|w) = ]_[#l- oj(ajlw)foro_; € ¥ _;anda_; € A_; as well as
o(alw) =[];cr0i(ailw) foro € ¥ anda € A. Foro € ¥ and P; € A(£2), we write op, € A(A)
for the induced action distribution with respect to P;, i.e., op (a) = P;(w)o (a|w) for
acA.

For player i € Z and action a; € A;, we write the expected payoff against a conjecture v; €
A2 x A_;) as

Ui(ai,vi)=Z Z vi(w,a_j)ui(a;,a—;,w).

weS2 a_jeA_;

weS2

The set of i’s (pure) best responses against v; € A(£2 x A_;) is denoted by
BR;(v;) = argmax U;(a;, v;).

aiEAi
ForieZ and o_; € ¥_;, we denote by O’_Qii € A(£2 x A_;) the induced conjecture at Q; € O;:
o % (w.a_i) = P(0] Q)0 (a_i|w).

Note that marg, O'_Ql-i = Pi(-]Qi).

Definition 2.7. A strategy profile o is a Bayesian Nash equilibrium of U if for alli € Z,
oi(ajlw) >0 = a; €BR; (G_Qii(w))

foralla; € A; and w € 2.

We also define interim correlated rationalizability. For each i € Z, let R?[Q,—] = A; for all
Q; € Q;. Then, foreachi € Z, and for Q; € Q; and fork =1,2, ..., define Rll‘[Q,‘] recursively
by
dv; € A(.Q X A_,'):

vi({(@,a-) |a—i € R M ol}) = 15
margg v; = P;(-|Q;);
a; € BR,‘(\),')

RNQil=1ai € A

where we denote R*7 ' [w] =[],; R’;—I[Qj(a))]. Let R®[Q:1= 2o RF Qi1
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Definition 2.8. A strategy o; € X; is a rationalizable strategy of player i in U if
oi(ailw)>0 = a; € R’[Qi(w)]

forall q; € A; and w € §2.

This definition states that player i’s strategy is rationalizable if it is in the convex hull of
Rl.oo[Qi] for all Q; € Q;. While this is weaker than the standard definitions (Battigalli and Sinis-
calchi [3], Dekel, Fudenberg, and Morris [7]), our results would remain valid under any stronger
notion.

Note that a Bayesian Nash equilibrium is a rationalizable strategy profile. We say that incom-
plete information game U is dominance solvable if R;’O[Qi] is a singleton set for all i € 7 and
Qi € Q.

We then restate the standard definition of knowledge operator which is used in defining our
main concept of robustness. Fix the information system part of an incomplete information game,
(82, (P)ieT, (Qi)ieT). The knowledge operator for player i, K; 282 5 2% g defined by

Ki(E)={we 2| Qi) C E}.

That is, K;(E) is the set of states where player i knows that event E is true. Let K (F) =
(Nicz Ki(E) be the set of states where it is mutual knowledge that event E is true, i.e.,
where every player knows that event E is true. At a state w, an event E is said to be mu-
tual knowledge at order N if w € ﬂrly:l[K*]”(E), where [K,]"(-) is defined recursively by
[K JHWE) = I(*([K*]”_1 (E)). Finally, at state w, an event E is said to be common knowledge if
w € (oo [KL]"(E).

2.3. Robustness

In this subsection, we introduce our concept of robustness of equilibria to incomplete infor-
mation under non-common priors. Given an incomplete information perturbation I/ of g, let .Qé
be the set of states where the payoffs of player i € Z are given by g; and he knows his payoft:

Qé ={we R |ui(,o)=g() forall o € Qj(w)}.
Denote g = [);c7 24

Definition 2.9. An incomplete information game U is an (e, N)-perturbation of g if
POV KA (829) = 1 — ¢ forall i € T,

Observe that since K,(E) C E for any event E, we have that (K.Y (§2¢) is decreasing in
N and thus ﬂil\[:l[K*]” (£2g) = [K*]N(.Qg) C $25. Note also that if ¢’ < e and N’ > N, then an
(¢/, N')-perturbation is an (¢, N)-perturbation.

We define our robustness concept for action distribution profiles, where each action distribu-
tion in a profile is generated by the corresponding player’s prior.

Definition 2.10. A profile of action distributions & = (1;)ie7 € (A(A))! is N-robust to incom-
plete information under non-common priors, or simply, N-robust, if for all § > 0, there exists
¢ > 0 such that any (&, N)-perturbation of g, {/, has a Bayesian Nash equilibrium o such that
lui —op | <dforallieX.

A profile of action distributions u € (A(A)! is robust to incomplete information under non-
common priors, or simply, robust, if there exists N > 0 such that @ is N-robust.
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Observe that if u is N-robust, then it is N’-robust for all N’ > N.

This concept is most relevant in the following situation. Imagine an analyst who considers an
equilibrium of a particular complete information game. He is interested in the profile of equilib-
rium payoffs of this game (e.g., because of some welfare criterion he cares about). This analyst
has a lack of confidence in his model. Hence, he would like to check whether the equilibrium
payoff profile he considers is not sensitive to the assumption of common knowledge of payoffs.
If the profile is robust in this sense, then ex ante (subjective) expected payoffs of each player
in nearby incomplete information games will not change significantly from the complete infor-
mation game situation. We do not define directly robustness for (subjective) ex ante expected
payoff profiles since the ex ante payoff of each player i is immediately obtained from the action
distribution p; by ), 4 ti(a)gi(a) (Whenever ¢ is vanishingly small).

We also propose another robustness concept, which incorporates the analyst’s possible priors.

Definition 2.11. A pair (4, Py) of an incomplete information game I/ and a prior distribution P
on £2 is an (&, N)-elaboration of g if U is an (¢, N)-perturbation of g and P()(ﬂ,];]:1 [K«]"($2g)) >
I —e.

Definition 2.12. An action distribution & € A(A) is N-robust to incomplete information under
non-common priors, or simply, N-robust, if for all § > 0, there exists ¢ > 0 such that for any
(e, N)-elaboration of g, (U, Py), U has a Bayesian Nash equilibrium o such that |§ — op,| < 6.

An action distribution & € A(A) is robust to incomplete information under non-common pri-
ors, or simply, robust, if there exists N > 0 such that & is N-robust.

This concept is relevant in a situation where the analyst is interested in ex ante expected
behavior of the players, but the expectation is taken with respect to his own prior distribution,
which is not necessarily equal to the priors the players may have.'4

We will show that in generic games, a profile of action distributions (u;);<7 (an action distri-
bution &, resp.) of g is robust to incomplete information under non-common priors if and only if
(ni)iez (&€, resp.) consists of the unique rationalizable action profile of g.15 We want to under-
line that our main result will stay unchanged if we modify these robustness notions in various
directions. In particular, since the non-trivial result is the “only if”” part, we want to show that we
can weaken this concept in many respects keeping our characterization.

Remark 2.1. In the definition of robustness, we use the notion of Bayesian Nash equilibrium to
be consistent with that by Kajii and Morris [10] except for dropping the CPA. One might find
it questionable to use Bayesian Nash equilibrium when players do not share a common prior
(Dekel, Fudenberg, and Levine [6]). However, our results would be unchanged if we changed the
solution concept to the weaker concept of interim correlated rationalizability.'® Indeed, all the
lemmata that are used to prove our main result are stated with rationalizable strategies.

14 Kajii and Morris [10] offer a motivating story of this type for their robustness concept under common prior, where
the analyst shares a common prior with the players.

15 The two robustness concepts a priori have no logical link and indeed are distinct if we consider their set-valued
extensions, as we will see in Section 4. In games that have a unique rationalizable action profile, both versions of robust
sets collapse to a singleton, and therefore the two point-valued concepts share the same characterization, showing their
equivalence.

16 Our results would be actually unchanged if we use any non-empty refinement of interim correlated rationalizability.
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Remark 2.2. In Definition 2.9, we could have defined an (e, N)-perturbation to be an incom-
plete information perturbation such that P; (ﬂflvzl [Bi_g 1"(£2g)) > 1 — ¢ for all i € Z, where the
mutual knowledge operator K, is replaced with the mutual (1 — ¢)-belief operator B,l_“: (see
Section 5.2 for its formal definition). The formulation of Kajii and Morris [10] would then be-
come equivalent to ours with common priors (due to Lemma B of Kajii and Morris [10]), while
this equivalence breaks down under non-common priors. Our results would remain unchanged
with this formulation.

If, in addition, we dropped the measurability of the set £2y with respect to the information
partitions and defined it by £ = {w € 2 | u; (-, w) = g;(-) for all i € 7}, then our characteriza-
tions of robustness, which apply to a generic class of games, could extend to the set of all finite
games (with the assumption that payoffs are uniformly bounded over all incomplete information
perturbations).

Remark 2.3. Another way to weaken our test would be to restrict our attention to specific (¢, N)-
elaborations of g. Natural restrictions would be to require that each (e, N)-elaboration U/ satisfies
common support and LY -tail consistency for some LY > 0. Here again, our results would stay
unchanged.

2.4. Preliminary results
We conclude this section with two preliminary observations.

Lemma 2.1. For any N > 1, any rationalizable strategy profile o of any incomplete information
perturbation of g satisfies

Z oi(ajlw)=1 foralli €7 and w € [K*]N_l(.Qg).
aiesN gl

Proof. We prove by induction that foralln =1,..., N,
R![Qi(w)] C S'[g] foralli € T andall € [K,]""1(£2y), (%)

where [K*]O(.Qg) = §24. First, since forall i € Z, u; (-, w) = g; (+) for all w € 2, (1) is true.

Assume (*,). Consider any i € 7 and any w € [K4]"(£2g), and take any conjecture of i, v; €
A(22 x A_y), such that v;({(0',a—;) | a—; € R" [@']}) =1 and margg v; = P;(-|Q;(w)). Note
that [K*]”_l([.?g) C £24 since £24 is a simple event. By the assumption of (x,), for all o’ €
(K. 1"~ (2g), R" ;['] C §",[g]. Since w € K; ([K.J"~' (2¢)), we have (marg,_ v:)(S”,[g]) =
1. Since Uij(a;, vi) = gi(ai, marg, . v;), it follows that BR;(v;) = bri(marg,  v;) C Sf“[g],
implying (xp41). O

This lemma has the following implication.

Lemma 2.2. Fix N > 0. Suppose that ek = 0as k — oo, that each U is an (Ek , N)-perturbation
of g, and that each (of)i)iez e (AA)! is a profile of equilibrium action distributions of U*.
Then, a subsequence of {((7;‘,[ )ieT }k converges to some (N + 1)-subjective correlated equilibrium
of g
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Proof. It is simple to show that a subsequence of {(af,i)iez}k converges to some subjective
correlated equilibrium of g (see, e.g., Kajii and Morris [10, Lemma 3.4 and Corollary 3.5]).
Lemma 2.1 completes the proof. O

3. Point-valued robustness

In this section, we present and prove our first main result. For a € A, we denote by ([a])’ the
profile of action distributions (11;);e7 € (A(A))! such that u; = [a] forall i € T.

Theorem 3.1. Suppose that S*°[g] = W°[g]. Then, g has a robust equilibrium if and only if g is
dominance solvable.

When g is dominance solvable and a™ is the unique rationalizable action profile (i.e., S°°[g] =
{a*}), (la*1)! ([a*], resp.) is the robust action distribution profile (robust action distribution,
resp.) in g.

Dominance solvability is obviously a very strong condition. For instance, the theorem does not
guarantee that a unique Nash equilibrium is robust. Indeed, as proved by Kajii and Morris [10],
there exists an open set of games with a unique Nash equilibrium that is not robust.!” On the other
hand, it is well known that in supermodular games, a unique Nash equilibrium is necessarily a
unique rationalizable action profile, and hence a robust equilibrium under non-common priors.

In the first subsection that follows, we discuss a simple two-player two-action example to
illustrate our results. We then prove the sufficiency and the necessity parts of Theorem 3.1 re-
spectively in Sections 3.2 and 3.3. While the former follows from Lemma 2.1 in a straightforward
way, in proving the latter we will utilize our key lemma on contagion of a posteriori equilibria
(Lemma 3.4). This lemma will also be crucial in proving the result on set-valued robustness
(Theorem 4.2).

3.1. Example

In this subsection, we illustrate the necessity result in Theorem 3.1 by using a simple example
of complete information matching pennies game. In particular, we sketch our key construction
of dominant solvable (e, N)-perturbation provided in the proof of Lemma 3.4.

The game g is given by

H I,—-1] -1, 1
| -1, 1 I,-1

where each player i € 7 = {1, 2} plays H; or T; so that A = {Hy, T1} x {H>, T;}. This game has
a unique Nash equilibrium which is the unique (objective) correlated equilibrium. By Kajii and
Morris [10], we know that this equilibrium is robust under the assumption that players share a
common prior in nearby incomplete information perturbations. However, this game is clearly not

17 While the robustness concept introduced by Kajii and Morris [10] is different from ours, one can easily show that
their example goes through if we use our formulation of robustness.
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dominance solvable, and hence, according to our Theorem 3.1 we claim that no equilibrium is
robust once the CPA is dropped. To see this, it will be sufficient to show that any strict a posteriori
equilibrium (recall Definition 2.3) can be played as a unique rationalizable strategy in some
nearby incomplete information perturbations.

Let us fix any strict a posteriori equilibrium (w1, o) € A(A) x A(A) with full support. Verify
that, being strict and having full support, it must satisfy

O<wmi(H1,Th) <ui(Hy, Hy) <1, O<pi(Th, Hy) <1 (T, Ty) <1,
0 < pa(Hy, Hy) < po(Ty, Hp) <1, 0 < po(T1,T2) < p2(Hy, T2) < 1, (3.1

and thus @1 # wo. Pick any € > 0 and N > 0. We construct a dominance solvable (g, N)-
perturbation such that the strict a posteriori equilibrium (1, i2) becomes “contagious”: that
is, under the unique rationalizable strategy profile, say o, the ex ante probability that each player
i € 7 assigns to any action profile a € A is given by u;(a), i.e., Pi({w | o (a|w) = 1}) = ;i (a).

The construction is as follows.!® The state space 2 is given by 2 =7 x Z, x A ={1,2} x
{0,1,2,...} x {Hy, T1} x {H>, T»}. Denote € = 1 — (1 — &) /N+D _For each player i € Z, define
the prior probability distribution P; € A(§2) by

Pi(i,k,a) =&(1 — &) ui(a)

and
Pi(—i,k,a)=0

where a € {Hy, T1} x {H>, T>}.'” Let each information partition Q; consist of the events
Ey ={(=i,0, H;, H_;), (—i,0, H;, T_)},
EloTl = {(_l) 07 E7 H—l)’ (_l7 O) E) T—l)}7

and all the events of the form
Efy ={G. k=1, H;, H.;), G,k — 1, H;, T_;), (=i, k, Hy, H_), (=i, k, H;, T_)},
Elle = {(l’ k - 1’ Ea H—i)’ (l’ k - 1’ ’Z}a T—i)’ (_l’ k’ ’1}9 H—i)’ (_i’k’ 7"1.’ T—i)}’

for each k > 1. Finally, at any state w € E (we EY iT;» Tesp.), player i’s (ex post) payoffs are
given by a game where playing H; (7; resp. ) is a strlctly dominant action, while at any other
state, (ex post) payoffs are given by the complete information game g, and thus 2 = {(i, k, a) €
Q2 |k>1,ieZ, aec A). One can check that (', [K.]"(2g) = {(i,k,a) € 2 |k >N + 1,
i€l, ae A} and P,-(ﬂ,ivzl[l(*]” (£2¢)) =(1— §)N+1 =1 — ¢ foreach i € Z, so that this incom-
plete information game is an (&, N)-perturbation of g (recall Definition 2.9).

Now let o be any rationalizable strategy profile of this incomplete information game. We
want to show that for all i € Z and each action a;, 0;(a;|w) =1 for all w € E; k and all k > 0.
Note that this implies that for all a € A, o(a|(i,k,a)) =1 for all i € Z and all k > 0. Hence,

P(lw|o(alw)=1})=P; (UJEI Ureol(G. k. a)}) =D 32 Pi(i, k, a) = pi(a) as claimed.

18 Contagion of strict (a fortiori, pure strategy) Nash equilibria can be obtained with a simpler construction. See the
companion paper Oyama and Tercieux [18] for such a construction in an example of 2 x 2 coordination games.

19 For simplicity, we here assume extreme heterogeneity in the prior distributions P and P»: to each state, one player
assigns strictly positive probability, while the other assigns probability 0. This is not necessary for the result to hold, and
one may in fact perturb the priors so that they have common support. See the proof of Lemma 3.4.
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First, by construction, o;(a;|w) =1 forall w € E?ai and all i € Z. Let us then check the claim
for k = 1. Consider any w € Eila,-- By construction of the state space and by definition of P;, we

have

Pi((i,0,a;,a-;))
P;i((i,0,a;, H-;)) + Pi((i,0,a;, T—;))
_ € X wi(ai, a—;)
& x piai, Hoy) + & x pilai, T—;)
= ui(a—ila;).

Pi((i,0,ai,a-)|Qi(w)) =

Thus, at state w € E ila," for any rationalizable strategy, player i assigns probability w; (H_;|a;) to
his opponent playing H_; and w;(7—;|a;) to his opponent playing 7_;. Therefore, by definition
of strict a posteriori equilibrium, we must have o;(a;|w) = 1. In this way, one can indeed show
by induction that for all k > 1, P;((i. k. i, a—)| Qi (@)) = pi(a—;|a;) for w € EfF.

Hence, in the (¢, N)-perturbation above, the unique rationalizable strategy profile o is such
that P;({w | o(alw) = 1}) = pi(a) for all i € Z and all a € A.2° Since ¢ and N have been
fixed arbitrarily, this shows that any action distribution profile other than (u1, ;2) is not a ro-
bust equilibrium. Clearly, this game has multiple strict a posteriori equilibria (in fact, there are
a continuum of distributions satisfying (3.1)), so that the above construction can be done for
(i}, m5) # (i1, 2), which shows in particular that (141, u2) too is not robust. Hence, we con-
clude that this game g has no robust equilibrium.

For general games, we know by Brandenburger and Dekel [4] that whenever a game has
several rationalizable outcomes, there are several a posteriori equilibria. In the generic class of
games g such that S°[g] = W°[g], one can show that multiplicity of rationalizable outcomes
implies multiplicity of strict a posteriori equilibria. Lemma 3.4 performs a similar construction
as the one above to show that a generic game with multiple a posteriori equilibria has no robust
equilibrium, which concludes the proof of the necessity part in Theorem 3.1.

3.2. Sufficiency

In this subsection, we show the sufficiency part of Theorem 3.1: that if an equilibrium is
a unique rationalizable action profile, then it is robust to incomplete information under non-
common priors. By the finiteness of A, there exists N* > 0 such that §"[g] = SV " [g] for all
n > N*. Recall that if action distribution profile u (or action distribution &) is (N — 1)-robust,
then it is N’-robust for all N’ > N — 1. Hence, it suffices to show the following.

Proposition 3.2. Let N* > 1 be such that §"[g] = SV [g] for all n > N*. If SV [g] = {a*}, then
([a*D! ([a*], resp.) is (N* — 1)-robust in g.

Thus, in order for a unique rationalizable outcome a™ to be robust, mutual knowledge of order
N* about the event “the payoffs are given by g” is needed, where N* is the number of necessary
elimination iteration rounds to reach the singleton {a*}.

20 This may be seen as “iterative dominance purification” of the a posteriori equilibrium (i1, i). See Corollary 3.5.
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Proof of Proposition 3.2. Suppose that SV ’ [g] = {a™}. Fix any 6 € (0, 1). Now take ¢ > 0 such
that ¢ < 4. Consider any (¢, N* — 1)-perturbation ¢/ and any Bayesian Nash equilibrium of U/, o
Then, we have foralli € Z,

op,(a®) = P ([K Y ~1(829))
N*—1
=Pl~< [K*]"(9g>) >l—e>1-35,

n=1

where the first inequality follows from Lemma 2.1 and the second last inequality from the
definition of (¢, N* — 1)-perturbation. A similar reasoning holds when considering (¢, N* — 1)-
elaboration. O

3.3. Necessity

In this subsection, we show the necessity part of Theorem 3.1: the dominance solvability is
a necessary condition for a complete information game to have a robust equilibrium under non-
common priors.

This shows that replacing common knowledge by mutual knowledge at an arbitrary high (but
finite) level has far reaching consequences in particular when we drop the CPA. Indeed, under
the CPA, several wider classes of games have been known in which a robust equilibrium exists
(see the references cited in the Introduction). The result below shows that all these results heavily
depend on the CPA.

Proposition 3.3. Suppose that W®[g] # 0. If u* € (A(A)! (% € A(A), resp.) is robust in g,
then w* = ([a*1)! (€* = [a*], resp.) for some a* € A such that W*°[g] = {a*)}.

The following lemma is sufficient to prove the proposition. The proof of the lemma relies on a
contagion argument for rationalizable action profiles or, to be more specific, for a set having the
(strict) best response property (rather than for a single strict Nash equilibrium as often performed
in the literature). Using this technique, in Corollary 3.5 we prove a result on what we call iterative
dominance purification of (undominated) a posteriori equilibria, which allows us to prove the
necessity part. It will also play a central role in the proofs for the set-valued robustness results in
Section 4.

Recall from Definition 2.3 that a profile of action distributions (u;);c7 € (A(A))! is a strict
a posteriori equilibrium if for all i € Z, u; (W*[g]) =1, and all @; € A;,

piai) >0 = {aj}=bri(niCla)).

Lemma 3.4. Let (1;);c1 € (A(A))! be a strict a posteriori equilibrium such that supp(u;) =
supp(uj) foralli, j € L. Then, for any ¢ > 0 and N > 0 there exists an (¢, N)-perturbation of g
such that there is a unique rationalizable strategy profile o and it satisfies op, = ju; foralli € 1.

Proof. Let (1;);iez € (A(A))! be as above. Denote S = supp(u;) (C W°[g]) and S; = {a; |
wi(a;) > 0}.

Givene € (0, 1) and N >0,leté =1 — (1 —¢&)/WV+D Foreachi € T and g; € S;, there exists
ni(a;) > 0 such that for all r; € A(A_;), if |m; — wi(-la;)| < n;i(a;), then {a;} = br; (;r;), which is
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well defined by the continuity of g;. Let n = min;c7 ming, s, n; (a;). Then, take any r > 1 large
enoughsothatr/{r+ (I —1)(1—8)} > 1 —n.

We now construct an (g, N)-perturbation /> as follows. Let 2 =7 x Z, x S and define
P; € A(£2) for eachi € Z by

Piliok.a) = == B(1 =8 i)
and
P k@) = ——#(1 - (@)
r+1-1
for j 75 i. Let each Q; consist of (i) the events

Ep, ={(.,0,ai,a) | j#i, (ai,a) €S},

and (ii) all the events of the form

={G.k—1,a;,a),(j. k,ai,a_;) | j #i, (ai,a_;) € S}
for each k > 1. Finally, define each u; : A x £2 — R by

gi(ai,a—;) ifo¢l, E?a{,
ui((ai,a—), )= 1 ifwe Eloa ,

0 ifwe E?a‘ for a) # a;.

Verify that 2 = {(i,k,a) | k > 1,i € Zanda € S} and ﬂfqv:l[K*]”(.Qg) = {(,k,a) |
k>N+1,ieZanda e S}, sothat P;(N)_,[K.] (.Qg)) =1 —-8)N*tl=1—¢foralli eT.

We first show that 2/ constructed above has a unique rationalizable strategy (recall Defini-
tion 2.8). For this, we prove by induction that forall k =1, 2, ...,

RY[ES " ={a;} forallieZandallg; € S;. (ki)

First, (x1) holds true by construction.

Assume (xi). Fix any i € Z and a; € §;, and take any conjecture of i, v; € A(§2 x A_;),
such that v;({(/,a_;) | a_; € R’ii[a)/]}) = 1 and marg, v; = Pi(-|E{‘ai), where R’ii[a)/] =
]_[j#i R?[Qj(a)’)]. We show that [marg,  v; — w;(-la;)| <.

Consider the states in Eki of the form (i, k — 1, a;, (a;) j=i). By construction, such a state
belongs to E ~! forall Jj #1i.Since Rk[Ek l] = {a,} by the induction hypothesis, the conjecture
V; must satlsfy vi(,k—1,a;,a_;), a_l) = 0 forall a’ ; # a—;. Hence, we have

(marg, , vi)(a—) =vi((.k—1,ai,a),a)+ Y > vi((j.k.ai,a’;),az),  (32)
a . j#i

—1

and

Vi((i, k — 1’ ai’a—i)a a—i) = (marg_Q Ui)(i’ k — 17 aiaa—i)
= Pi((i, k—1,a;,a-)|E},,). (3.3)

Now, by the construction of the state space,
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Pi(G.k—1,a;,a-)|E,)
S Pk =T aia )+ X0 > 10 PG koai al )
_ rui(ai,a—;)
{r-F(I-—-l)(l——5)}§:agiu4(ai,ali)
and hence v;((i,k — 1,a;,a—;),a—;) = cui(a—ila;) by (3.3), where we denote ¢ = r/{r +
(I = D —#&)}. Since Y _» vi((i,k—1,a;,a’;),a’;) =c, it therefore follows from (3.2) that,
forall a_;,

= cui(a—ila;), (3.4)

(margy . vi)(a—i) < cuila—ilai) + (1 —o¢),
so that

|[(marg,  vi)(a—;) — pia—ila)| < (1 —c)(1 — wila—ilap))
<l—c<n,

where the last inequality follows from the choice of r. We thus have [marg, . v; — i (-|ai)| < 7.
Thus by the definition of w; and the choice of n, we have BR; (v;) = br; (marg A v;) ={a;}.

Since v; has been taken arbitrarily, it follows that RIHI [ Elka,-] = {a;}, hence (xxt1).

Finally, if o is the unique rationalizable strategy of UEN | we have op (a) = w;(a) for all
a € A by construction. [

Note that the (g, N)-perturbation constructed above satisfies common support and £-tail con-
sistency for some £ > 1 (where £ depends on ¢ and N).

As a corollary of Lemma 3.4, we obtain the iterative dominance purification result, that we
can purify any undominated a posteriori equilibrium by a unique rationalizable strategy profile
of a dominance solvable (g, N)-perturbation.

Corollary 3.5. Let (;);cT be any undominated a posteriori equilibrium. For any § > 0, ¢ > 0,
and N > 0, there exists an (&, N)-perturbation of g such that there is a unique rationalizable
strategy profile o and it satisfies |op, — ;| <8 foralli € L.

Proof. Let (4;);c7 be an undominated a posteriori equilibrium. Fix § > 0. By the continuity of
gi’s, we can take a strict a posteriori equilibrium (,u;),-ez with supp(,u;.) = W>|[g] foralli e 7
such that |u; — p;| < 8. Hence by Lemma 3.4, for any ¢ > 0, and N > 0 there exists an (e, N)-
perturbation of g such that a unique rationalizable strategy profile o satisfies op, = 1} and hence
lop, — il <6 forall i € Z, which completes the proof. O

Note that this corollary in fact proves that in the generic class of games where W°[g] =
S*°[g], any a posteriori equilibrium can be purified in the previous sense.
We now prove the necessity part for our robustness result.

Proof of Proposition 3.3. Suppose that W[g] # ) and that (u});c7 (§*, resp.) is robust. Ob-
serve that the set of strict a posteriori equilibria (i ); <7 such that supp(u;) = W°[g] foralli € Z
is non-empty. Take any such strict a posteriori equilibrium (u;);c7 of g. Then, by Lemma 3.4,
for any ¢ > 0 and N > O there exists an (e, N)-perturbation where the unique rationalizable
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strategy profile o satisfies op, = p; for all i € Z. Hence, it must be true that u; = u? for all
i €7 (u; =&"foralli €Z, resp.). This implies that (u});c7 ((E*)!, resp.) is the unique strict
a posteriori equilibrium, so that W°[g] is a singleton set, say, {a*}, and thus wu; = [a™] for all
i€ (E*=[a*],resp.). O

Let us relate our results to previous studies. Weinstein and Yildiz [24] show that for any com-
plete information type in the universal type space?! and any rationalizable action profile a* of
this game, there exist a dominance-solvable incomplete information game and a sequence of
types drawn from this game such that (1) this sequence converges to the complete information
type (with respect to the product topology in the universal type space) and (2) each type of the
sequence plays a*, while they are not concerned with priors but working directly with interim be-
liefs. Our construction in Lemma 3.4 shows that, by attaching heterogeneous priors appropriately,
such a dominance solvable incomplete information game can be made an (e, N)-perturbation
(where ¢ can be arbitrarily small and N arbitrarily large).>? In addition, Corollary 3.5 shows that
the unique equilibrium of this (¢, N)-perturbation can be fully characterized by using the notion
of a posteriori equilibrium. Whenever a* is a strict Nash equilibrium, the unique equilibrium of
this dominance-solvable game will play a* everywhere. However, when a* is not a strict Nash
equilibrium, this is not possible: a* cannot be played everywhere (as the proof of Lemma 3.4
demonstrates, action profiles different from a* have also to be contagious). In proving our com-
plete characterization result, the use of our iterative dominance purification argument that relies
on a posteriori equilibrium becomes crucial.

If, as in Kajii and Morris [10], one considers (e, N)-perturbations of g that satisfy the CPA,
then any equilibrium action distribution of such an (g, N)-perturbation must be close to some
objective correlated equilibrium of g when ¢ is small (Corollary 3.5 in Kajii and Morris [10]).
In contrast, with non-common priors, equilibrium action distributions are close to subjective
correlated equilibria (Lemma 2.2 in Section 2.4). The former fact allows Kajii and Morris [10]
to establish that if g has a unique objective correlated equilibrium, then it is a robust equilibrium
under common priors, while, as our result shows, it is not robust under non-common priors unless
g itself is dominance solvable (or equivalently, g has a unique a posteriori equilibrium).

Lipman [12,13] shows that given any partition model with non-common priors (and tail con-
sistency) and any state w in the model, for any finite N one can construct a partition model with
a common prior such that there is a state in that model that has the same higher order beliefs
up to order N as those at w. Lipman’s [13] construction can be applied as well to our (g, N)-
perturbation in the proof of Lemma 3.4 to have a further incomplete information perturbation
with a common prior. One might then ask whether we could use the further perturbation with a
common prior so obtained for the purpose of Lemma 3.4. It is, however, not true; for, when the
given a posteriori equilibrium is not a robust equilibrium under common prior (as in the example
in Section 3.1), it is not possible, for vanishingly small ¢, to have an (¢, N)-perturbation such that
(1) it has a common prior, (2) it is dominance solvable, and (3) the unique rationalizable strat-

21 Recall that a complete information type is a (degenerate) type in the universal type space where it is common knowl-
edge that payoffs are given by the complete information game.

22 While Weinstein and Yildiz [24] use a different setting and language, their construction as well as ours are in essence
analogous to the information structure of Rubinstein’s [20] email game. We could have worked with type spaces as in
Weinstein and Yildiz [24], but chose the current setup (with an infinitely countable state space) for comparison with Kajii
and Morris [10].
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egy profile generates an action distribution arbitrarily close to that a posteriori equilibrium. The
additional constraints that the CPA imposes on perturbations are discussed further in Section 5.

4. Set-valued robustness

Given that many games possess no robust equilibrium, it is natural to consider a set-valued
robustness concept. Such an idea can be found for instance in Morris and Ui [17] where the
common prior is assumed. In the following, we define robustness for sets of action distribution
profiles as well as those of action distributions. We give a separate treatment to these two notions
since, contrary to their point-valued versions, they lead to distinct characterizations. We then
show our second main result, that for any generic game g in which S*°[g] = W*°[g], a smallest
robust set of action distribution profiles (action distributions, resp.) exists and coincides with the
set of a posteriori equilibria of g (the convex hull of S*°[g], resp.).

4.1. Robust sets of action distribution profiles
Let us first define the robustness of sets of action distribution profiles.

Definition 4.1. A product set of action distribution profiles M = [[;. M; C (A(A)! is N-
robust to incomplete information under non-common priors, or simply, N -robust, if it is closed,
and for all § > 0, there exists € > 0 such that any (&, N)-perturbation of g has a Bayesian Nash
equilibrium o such that for all i € 7, there exists u; € M; with |u; —op | <46.

M is robust to incomplete information under non-common priors, or simply, robust, if there
exists N > 0 such that M is N-robust.

Observe that if M is (N-)robust, then any M’ D M is (N-)robust. In particular, (A(A))! is
N-robust for all N > 0 and thus robust. We say that M is a minimal (/N-)robust set if it is an
(N-)robust set and no proper subset of it is an (N-)robust set; and that M is a smallest (N -)robust
set if it is an (/V-)robust set and is contained in any (/N -)robust set.

The following proposition establishes that minimal robust set is well defined for all finite
games, while we will show that a smallest robust set actually exists for generic games.

Proposition 4.1. Any game has a minimal N -robust set for each N > 0 and a minimal robust set.

Proof. We show the existence of a minimal N-robust set; the existence of a minimal robust set
can be proved analogously.

Let (M, C) be the (non-empty) collection of N-robust sets partially ordered by set inclusion.
We show that (M, C) has a minimal element. Take any totally ordered subset of M and denote
itby M’. Let M* =)y M. Since each M € M’ is non-empty and closed in a compact set
(A(A))!, so is M*. We want to show that M* is N-robust and therefore is a lower bound of M’
in M. Then, it follows from Zorn’s lemma that M has a minimal element.

Fix any § > 0. By the compactness of (A(A))!, we can take an M’ € M’ such that M’ C
Vs/2(M*). By definition, there exists & > 0 such that any (¢, N)-elaboration has a Bayesian Nash
equilibrium o such that for some (u);cz € M’, |} — op,| < 8/2 for all i € Z. But we can take
(i);jeT € M* such that |u; — MH <d/2foralli € Z, and hence |u; —op,| < S foralli € Z. This
implies that M* is N-robust, completing the proof. O
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In characterizing robust sets of action distribution profiles, the concept of a posteriori equi-
librium is the key notion. Recall that a profile of action distributions (u;);c7 € (A(A))! is an
a posteriori equilibrium (/N -subjective correlated equilibrium, resp.) of g if it is a subjective cor-
related equilibrium of g and 1; (S*[g]) = 1 (u; (SV[g]) = 1, resp.) for all i € Z, and that £[g]
(ENg], resp.) denotes the set of a posteriori equilibria (/V-subjective correlated equilibria, resp.)
of g. We show that for generic games, a smallest robust set of action distribution profiles exists
and coincides with £[g].

Theorem 4.2. Suppose that S°[g] = W°[g]. Then, £]g] is the smallest robust set of g.

The proof proceeds in two steps. We first show that £V [g] is (N — 1)-robust, which implies
that £[g] is robust. Then we show that any robust set contains the set of undominated a posteriori
equilibria, £Y[g].

From Lemma 2.2 in Section 2.4, we immediately have the following.??

Proposition 4.3. £V [g] is (N — 1)-robust.

Since £"[g] coincides with £[g] whenever S*°[g] = W™°[g], the next proposition is sufficient
to complete the proof of Theorem 4.2.

Proposition 4.4. If M is robust in g, then £*[g] C M.

Proof. Let M = [];.7 M; be robust in g. Take any (u;);ez € £"[g]. By Corollary 3.5, for each
i €Z, Vs(u;) N M; # ¢ for any § > 0. By the closedness of M, it follows that u; € M; for each
ieZ. O

4.2. Robust sets of action distributions
As for the point-valued robustness concept, we consider the following alternative concept.

Definition 4.2. A set of action distributions = C A(A) is N-robust to incomplete information
under non-common priors, or simply, N -robust, if it is closed, and for all § > 0, there exists ¢ > 0
such that for any (&, N)-elaboration of g, (U, Py), U has a Bayesian Nash equilibrium o such
that there exists § € & with |§ —op)| < 4.

A set of action distributions = C A(A) is robust to incomplete information under non-
common priors, or simply, robust, if there exists N > 0 such that & is N-robust.

Observe that if & is (N-)robust, then any &’ O Z is (N-)robust. In particular, (A(A)) is
N-robust for all N > 0 and thus robust. We say that & is a minimal (N-)robust set if it is an
(N -)robust set and no proper subset of it is an (/N -)robust set; and that = is a smallest (N -)robust
set if it is an (N -)robust set and is contained in any (N-)robust set. The existence of minimal
robust set can be verified in the same way as in Proposition 4.1.

23 Lemma 2.2 in fact implies a stronger result that for all § > 0, there exists & > 0 such that for any Bayesian Nash
equilibrium o of any (e, N)-elaboration, there exists (1;);ec7 € € N [g] such that |; —op,| <& forall i € 7 (recall that
our robustness test only requires that there exist such a Bayesian Nash equilibrium).
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We show that for generic games, a smallest robust set of action distributions exists and coin-
cides with the convex hull of the set of rationalizable action profiles of g.

Theorem 4.5. Suppose that S*°[g] = W°[g]. Then, A(S°°[g]) is the smallest robust set of g.

Note that the elements of the convex hull A(S°°[g]) represent the modeler’s predictions over
A generated via his own subjective prior Py in (¢, N)-elaborations, and thus some elements may
not be part of any a posteriori equilibrium, since Py may be unrelated to the players’ priors
(provided that it assigns probability at least 1 — ¢ to the event that £2g is mutually known up to
order N).

The proof proceeds in two propositions. The first proposition implies that A(S*°[g]) is
(N* — 1)-robust, where N* is such that A(S®°[g]) = A(SN : [g]), which is well defined by the
finiteness of A. The second proves that any robust set contains A(W*°[g]).

Proposition 4.6. For any N > 1, A(SV[g]) is (N — 1)-robust.

Proof. Fix any N > 1 and any § > 0. Now take € > 0 such that ¢ < §. Consider any (¢, N — 1)-
elaboration (4, Py) and any rationalizable strategy profile of ¢/, o. Then, we have

ory (SN 1gl) = Po(IK: 1V~ (529))

N—-1
= Po< ﬂ[K*]"(fzg)) >l—e>1-5,

n=1

where the first inequality follows from Lemma 2.1 and the second last inequality from the defini-
tion of (¢, N — 1)-elaboration. Hence, we have that |op, — &| < § for some § € A(S N (g)), which
shows that A(SV[g]) is N-robust. O

Proposition 4.7. If £ is robust in g, then A(W°[g]) C &.

Proof. Suppose that Z is a robust set, which is closed by definition, and let N > 0 be such
that = is N'-robust for all N' > N. Assume that W°[g] # @ and take any & € A(W*°[g]) with
supp(§) = W™[g]. We show that for all ¢ > 0, there exists an (&, N)-elaboration UEN | Py)
such that any rationalizable strategy profile o of U/ satisfies op, = &. Then, this implies that
Vs(§) N E # @ forall § > 0, so that £ € & due to the closedness of Z.

Take any & > 0, and any strict a posteriori equilibrium (u;);c7 such that supp(u;) = W>[g]
for all i € Z. Then, let 4" be the (¢, N)-perturbation as in the proof of Lemma 3.4, and let Py
be defined by

r ~ ~\k
Po(1,k,a) = - 1ze(l £)&(a)

and

1
Po(jsks @) = ————8(1 = &)

for j # 1. By Lemma 3.4, we know that the unique rationalizable strategy profile o of U*N
satisfies o (a|(j, k,a)) =1 for all (j, k,a) € §£2. By construction, Po(ﬂflv:l[l(*]”(fzg)) >1—c¢
andop, =§.
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Now we have that the set of distributions with support equal to W°[g] is contained in Z.

But the closure of this set is actually A(W°[g]). Hence, since & is closed, we must have
AW™[ghCcE. O

5. Discussion

In this section, we examine the critical assumptions for our results to hold. We also discuss
the relationship with other robustness notions as defined in Weinstein and Yildiz [23,24].

5.1. N-robustness

In Section 3.2, we showed that if a* is a unique rationalizable action profile in g and if
an incomplete information game U is an (¢, N* — 1)-elaboration of g, where N* is such that
SN [g] = {a™}, then in any Bayesian Nash equilibrium of U/, a* is played with high probabil-
ity with respect to any player’s prior (whenever ¢ is small with respect to these priors). In this
subsection, we show that mutual knowledge of 2 at high order is also necessary for such an
action profile a* to be played in Bayesian Nash equilibria. To see this, we examine the concept
of N-robustness.

Proposition 5.1. Suppose that SV [g] = WV [g]. Then, EN[g] is the smallest (N — 1)-robust set
of g.

In the sequel, we say that a profile of action distributions (u;);c7 € (A(A)! is a strict N-
subjective correlated equilibrium if it is an undominated N-subjective correlated equilibrium
and forall i € Z and all a; € A;,

pi(@) >0 = {a;}=bri(ni(la)).

Lemma 5.2. Fix any N > 1. Let (/,LZN)I'E_’[ € (A(A))! be a strict N-subjective correlated equilib-
rium. Then, for any § > 0 and ¢ > 0, there exists an (¢, N — 1)-perturbation of g such that any
rationalizable strategy profile o satisfies |op, — ;| <8 foralli € 1.

Proof. See Appendix A.1. O
As in Section 3.3, we can derive the following corollary, which is analogous to Corollary 3.5.

Corollary 5.3. Fix any N > 1. Let (i;);ez be an undominated N -subjective correlated equi-
librium. For any 6 > 0 and ¢ > 0, there exists an (¢, N — 1)-perturbation of g such that any
rationalizable strategy profile o satisfies |op, — ;| < 8 foralli € L.

Using the same argument as in Section 4, we can complete the proof of Proposition 5.1.

Remark that if we consider O-robustness as an extension to heterogeneous priors of the robust-
ness test defined in Kajii and Morris [10], we obtain that for a generic class of games, a profile
of action distribution (u;);c7 1s robust a la Kajii and Morris [10] without a common prior if and
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only if u; = [a*] for all i € Z where a is a strictly dominant action for each playeri € 7 24 This
result generalizes Proposition 12 in Weinstein and Yildiz [23]. Indeed, as Weinstein and Yildiz
[24, Section 8] point out, without common prior, the restriction only on the prior probabilities of
§2¢ has no implication for conditional beliefs beyond second order.

5.2. Uniform bound on posteriors

In Section 3.3, we showed that if g has more than one rationalizable action profiles, then for
each such profile, we can construct an (e, N)-perturbation whose Bayesian Nash equilibrium
plays this profile with probability zero. The crucial point for this result is that relevant posterior
probabilities can be arbitrarily close to one simultaneously for the players (see (3.4) in the proof
of Lemma 3.4) by choosing heterogeneous priors sufficiently different from each other.

In this subsection, we examine how the results change if we require that the elaborations uni-
formly satisfy £-tail consistency (uniformly over elaborations of a complete information game).
Indeed, when such an assumption is made, given L there are generic games with multiple ratio-
nalizable action profiles that have a robust equilibrium. To extract the effect of this restriction,
we consider e-perturbation (i.e., (&, 0)-perturbation), whereas the result below would hold if we
considered (&, N)-perturbations. Given an ¢-perturbation, let

p((Piez) = max sup +2
i#j we2 Pj(w)

with a convention that ¢/0 = oo for g > 0, and 0/0 = 1. Note that p((P;);ez) < 0o only if
(P;); ez has common support.

Definition 5.1. An action distribution (1;);c7 € (A(A))! is r-robust if for all § > 0, there exists
¢ > 0 such that any e-perturbation of g such that p((P;);c7) < r has a Bayesian Nash equilibrium
o such that |u; —op,| < S foralli € 7.

We use p-belief operators as defined in Monderer and Samet [15]. For any number p € (0, 1],
the p-belief operator for player i, Blp 2% — 2% s defined by

B/ (E)={we 2| P(E|Qi() > p}.

That is, Bip (E) is the set of states where player i believes E with probability at least p (with
respect to his own prior P;). Let B (E) = Nier Bip (E) be the set of states where E is mutually
p-believed, i.e., where every player believes E with probability at least p. Finally, an event E is
common p-belief at state w if w € CP(E) = (oo, [BL1"(E).

Observe that for any event E, we have by definition of knowledge operators that K, (E) C E.
On the other hand, this inclusion is not necessarily true when replacing knowledge operators by
p-belief operators. The following lemma shows that this inclusion remains true for simple events.

Lemma 5.4. For any simple event E and any p € (0, 1], BY(E) C E.

24 A same result would hold if we considered robustness of action distributions instead of profiles of action distributions.
In the case of sets of action distributions, the proposition analogous to Proposition 5.1 would state that for generic games,
the smallest (N — 1)-robust set coincides with A(S N gD
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Proof. Let E be a simple event, and E = (), .7 E; where E; € F; for each i € Z. Observe that
BZP(Ei) = E; for any p > 0. By the monotonicity of Blp(-), we have Bip(E) C Bf(Ei) =F. It
follows that ();c7 BY (E) C ;1 Ei, as claimed. O

The following result, which corresponds to the critical path result of Kajii and Morris [10,
Proposition 4.2] in our context with non-common priors, shows that with a uniform bound on
posteriors, the ex ante probability (with respect to any player’s prior) of the event C?(E) is
bounded from below uniformly in all information systems.

Proposition 5.5. For any r > 0, if p < 1/{1 +r(I — 1)}, then in any information system IS =
[$2, (P)iez, (Qi)iez] with p((Pi)iez) <1, any simple event E satisfies
I—p
P, (CP(E))>1-— max(l — P;(E 5.1
i (CP(E)) (1—{l+r(I—=D}p) ieI( (E)) D

forall j €1.
Proof. See Appendix A.2. O

Conversely, if p > 1/{1 + r(I — 1)}, then one can find an information system with
p((P;)ier) < r and a simple event E such that (5.1) does not hold. Indeed, one can show that the
information system given in the proof of Lemma 3.4 is such an example.

To give a sufficient condition for r-robustness, we use the notion of p-dominant equilibrium
as introduced by Morris, Rob, and Shin [16] and Kajii and Morris [10].

Definition 5.2. Let p € [0, 1]. Action profile a* € A is a p-dominant equilibrium in g if for all
iel,

a;k Ebri(ﬂ'i)

holds for all r; € A(A_;) with 7r; (a*;) > p.

We also use the following lemma, a straightforward corollary of Kajii and Morris [10,
Lemma 5.2], which relates the notion of common p-belief to that of p-dominance.

Lemma 5.6. Suppose that action profile a* is a p-dominant equilibrium of g. Consider any
incomplete information perturbation U of g. Then, U has a Bayesian Nash equilibrium where
oi(a’|lw)=1foralli € T and w € CP(82g).

Proposition 5.7. Suppose that action profile a* is a p-dominant equilibrium of g where p <
1/(1 +r(I — 1)). Then, [a*] is r-robust.

Proof. Let a* be a p-dominant equilibrium with p < 1/(1+r(I —1)). Fix any § > 0. By Propo-
sition 5.5, we can choose ¢ > 0 such that for any information system and any simple event E,
P;(E) > 1 — ¢ implies P;(CP(E)) > 1 —§. Thus, by the choice of ¢, for any e-perturbation ¢ of
g with p((P;);ez) < r, we have P;(CP(§24)) > 1 — 5. By Lemma 5.6, it follows that there exists
a Bayesian Nash equilibrium o of U/ with op, (a*) > P;(C?(£2g)) > 1 — 6, meaning that [a*] is
r-robust. 0O
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5.3. Interim robustness

We discuss the robustness concept due to Weinstein and Yildiz [23, Definition 101.%

Definition 5.3. (U, w) is an N-perturbation of g if w € (_, (K.)" (2g).

Definition 5.4. a* € A is interim robust to incomplete information in g if there exists N > 0 such
that for any N-perturbation of g, (U, w), such that U/ satisfies the CPA, U/ has a Bayesian Nash
equilibrium o * such that o *(w) = [a*].

Note that it is not required that P (§2g) be large in U/, where P is the common prior.
Weinstein and Yildiz [23, Proposition 11] showed the following.?%

Proposition 5.8. Suppose that S°°[g] = W°[g]. Then, a* is interim robust in g if and only if
S®[g] = {a*}.

Let us prove that we can derive this result from our previous results.

Lemma 5.9. For any ¢ > 0 and N > 0, there exists an (e, N)-perturbation of g with a common
prior such that for all a € W°[g], there exists w € ﬂ,ivzl (K4)"(82¢) such that o (w) = [a] for
any rationalizable strategy profile .

Proof. Let (u;);c7 € (A(A))! be a strict a posteriori equilibrium such that supp(u;) = W°[g]
for all i € Z. Consider the (e, N)-perturbation UEN as built in Lemma 3.4 but where r > 1 is
chosen large enough so that for all i € Z,

wiai,a—;)
wilai) + lr;g Zj;éi wjlai)

forall ¢; € W and a_; € W (where 7 is chosen as in Lemma 3.4). In addition, the common
prior over 2 =7 x Z4 x W|[g], P, is defined as follows. For each i € 7 and a € W°[g], let

. 1_/1-28\*
P(z,k,a):;e( ; )m(a)

for all k < N 4 2. Observe that ) ; 7 Z,ICV:JBZ ZaeWoo[g] P(i,k,a) < 1.Then, forall k > N + 3,
define P (i, k,a) so that P(£2) = 1.

Now let o be any rationalizable strategy profile of 2" . We show that for all i € Z and all
a; € W*[g], oi(aj|lw) =1 forall w € U,y;[)z E{‘ai. By construction, o;(a;|w) = 1 for all w € E?a,-
and all i € Z. Then suppose that for k < N + 1, o;(a;|w) =1 for all w € E{‘al_ and all i € 7.
k+1

ia;

P (G, k, a;, a—)| Qi ())

= (1 —nuila—ila;)

Consider any w € E; "' . By the construction of the state space, we have

25 Note that the exact definition in Weinstein and Yildiz [23, Definition 10] uses B}fs instead of K. One can show
that our proofs would work with their formulation.
26 One can also show this result using Lemma 3.4 and Lipman [13, Theorem 1].
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P, k,ai,a_)
T Y PGkand )+ Yy X PGk + 1 aial )
. wiai, a—i)

B wi(a;i) + lr;é Zj;éi ,U«j(ai),

so that

|P (G, k,ai,a—)| Qi (@) — wi(a—ila)| < nuiailai) <n,

where the last inequality follows from the choice of r. Thus, by the definition of w; and the
choice of n as well as the induction hypothesis, we have o;(a;|w) = 1. The proof is completed
observing that (i, N + 1,a) € EZIZIJFZ N ﬂ#i Eﬁjl, so that a is played at (i, N + 1, a) at any

rationalizable strategy profile and that (i, N +1,a) € ﬂfl\;l (K)"($2¢). O

Proof of Proposition 5.8. The sufficiency part follows from Lemma 2.1. To show the neces-
sity, assume that a* is interim robust to incomplete information. Take any a € W°[g]. Note
that the set of strict a posteriori equilibria (u;);e7 such that supp(u;) = W°[g] is non-empty.
Consider any such (u;);c7. Then, by Lemma 5.9, we have that for all ¢ > 0 and N > 0, there
exists an (e, N)-perturbation of g, 4> such that (1) it satisfies the CPA; and (2) there is
some w € ﬂivzl[l(*]” (£2g) where o (w) = [a] for any rationalizable strategy profile o. Since
USN , w) is an N-perturbation of g satisfying the CPA, we must have that |[W*°[g]| = 1 and
hence W°[g] ={a*}. O

In the constructed perturbation with a common prior P, when P (§2g) becomes close to one,?’
then op(a*) must in some cases (e.g., when a* is the risk-dominated equilibrium of a 2 x 2
coordination game) be vanishingly small. We explore this point in detail (in two-player games)
in Oyama and Tercieux [18].

6. Conclusion

Following Kajii and Morris [10], the present paper has investigated the question of ex ante
robustness of action distributions of complete information games to a small amount of incomplete
information. Contrary to previous work in this literature, we postulated that in our incomplete
information perturbations, players may have heterogeneous prior beliefs. We demonstrated that
dropping the common prior assumption (CPA) has far reaching consequences. Our first result
shows that an action distribution of a generic complete information game is robust under non-
common priors if and only if the game is dominance solvable and the action distribution assigns
weight one on the unique action profile surviving iterative deletion of strictly dominated actions.
This implies that the robustness test that allows for incomplete information perturbations without
common prior is substantially stronger than the one with common prior as considered by Kajii
and Morris [10].

Our approach in this paper is an ex ante one, where the outside analyst has no information
about interim beliefs of the players and thus is concerned with the ex ante average behavior of the
players. On the contrary, Weinstein and Yildiz [24] consider a similar robustness question with
an interim approach where the analyst is given a hierarchy of interim beliefs and is concerned

27 Observe that this is the case in the perturbation in the proof of Lemma 5.9.
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with the behavior the players may have at this specific hierarchy. They show that an equilibrium
is interim robust if and only if it is the unique action profile surviving iterative deletion of strictly
dominated strategies. Importantly, by the result of Lipman [12], this characterization remains
valid even when players are assumed to share a common prior in incomplete information pertur-
bations. Our characterization, in contrast, does not hold under the CPA. This is due to the fact
that, as the critical path result of Kajii and Morris [10] establishes, under the CPA the restrictions
on prior beliefs also impose restrictions on interim (higher order) beliefs.

We also investigated the question of robustness of sets of action distributions. Our second
result, which generalizes our result on point-valued robustness, shows that in generic games, a
smallest robust set exists and coincides with the set of a posteriori equilibria. Given the result
by Brandenburger and Dekel [4], this means that even if the analyst uses any refinement of
rationalizability such as Nash equilibrium, in order to obtain robust predictions he cannot reject
any outcome from the set of rationalizable outcomes when he takes into account the possibility
that the players may not share a common prior in nearby incomplete information perturbations.
For the set of robust predictions to be sharpened further, the analyst has to have more information
about the actual situation, to impose some more restrictions on prior beliefs than the present paper
assumes. As an example, we provided a measure of disagreement among the players’ prior beliefs
such that a bound on this measure may lead to a shaper robust prediction (Proposition 5.7).
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Appendix A

A.l. Proof of Lemma 5.2

Proof. The proof mimics the proof of Lemma 3.4. Fix § > 0 and ¢ > 0. For each k =
0,....,.N —1, let (,uf.‘)iez € (A(A))! be a strict k-subjective correlated equilibrium such that

supp(ui.‘) = Wl.kH[g] X Wfl.[g].28 By continuity of g;’s, we can take for each k=0,..., N,
(i%);e1 € (A(A))! such that for each i € Z, (1) |i¥ — pu¥| < 8/2; (2) supp(ji¥) = A; and (3) for

28 Any strict k-subjective correlated equilibrium (p,f )i ez must satisfy supp(uf.( ) C Wik"'1 [g] x Wf ;[glforalli e 1.
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some n; > 0, and all a; € A; with ,uf(ai) > 0, {a;} = br;i(m;) for all m; € A(A_;) satisfying
I7mi(a—) — i (a-ila;)| < n; foralla_; € WX, [g].
Set n = min;c7 n; > 0, and take an r > 0 such that 1/(1 +r) < 7. Let £ € (0, 1), which

will be taken to be small depending on ¢ and r. We now construct an (¢, N — 1)-perturbation
USN=1 as follows. Let 2 =7 x {0,..., N + 1} x A and define P; € A(£2) for each i € Z and
k=0,....N—1,N+1by

Pi(i.k,a)=r&(I — 1)ji} (a)
and
. i ~ ~N
Pi(i,N,a)=(1—-8I = D)(r(N+ 1)+ N +2))i;" (a).
In addition, foreachi € Z and k=0, ..., N + 1
Pi(j.k,a)=Ej1; " (@)

for j #i where by convention, ,&l._l = ,&?.
Let each Q; consist of (i) the events
E) ={(j.0,ai,a-) | j#i, a_i € A},
(i1) all the events of the form
Ef, ={G,k—1,a;,a-),(j.k.aj,a_;) | j#i, aj € A}
foreachk=1,..., N + 1, and (iii) the events
E;\alj_z = {(i, N+1,a;,a_;) | a_j € A_,'}.
Finally, define each u; : A x 2 — R by
gilai,a) ifo¢Uy E),
ui((ai,a—i), ) = 1 if e EY,
0 if w € E), foral #a;.
Verify that 2g = {(i, k,a) | k > 1, i € T} and N\ [K.]"(2g) = {(i,k,a) |k > N, i € T and
a € A}. Simple algebra shows that for &€ small enough, P,-(ﬂyz_ol[[(*]” (£2g)) = 1 — ¢ for all
ier?
Now let o be any rationalizable strategy profile of 4>~ ~!. We show that forall k =0, ..., N,
alli € Z and all q; € Wik [g], oi(ai|lw) =1 for all w € Ezka,-' By construction, for all i € Z, and

a; € Wl.o[g], o;i(ajlw) =1 for all w € E?ai. Then suppose that for all i € Z, and all g; € Wik[g],
oi(ajlw) =1 for all w € E;‘ai. Consider any i € Z, a; € Wl.kH[g] (i.e., a; € A; such that
,uf.‘ (aj) >0)and w € Elk;l By construction of the state space, we have fork=1,..., N — 1
Pi((i, k,ai,a_)|Qi(w))
_ Pi(G, k,ai,a-i))
B rik (i, a) _
r+DY, Afaal) r+l

i a_ila),

29 By convention [K*]O(.Qg) = $2g.
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so that
| P (G ki, a—i)| Qi(w)) — ik (a—ilai)| < A Ka_ila))
< 1 <
N r+1 \na

where the last inequality follows from the choice of an appropriate (large enough) r. For k = N,
again, by the choice of an appropriate (small enough) £, a same reasoning applies and we obtain

|Pi (G, N, ai,a—) Qi (@) — A (a—ila)| <

Thus, by the induction hypothesis, the choice of 1, as well as the condition (3) in the definition
of ;lf, we have 0;(a;|w) = 1.

Finally, for ¢ > 0 small enough, we have by construction |op, (a) — ,&lN (a)] <é/2foralla e A
and so |op, (a) — [LlN (a)| < 6 for all a € A by construction. [

Remark A.1. Three remarks on the above proof are in order. First, the (¢, N — 1)-perturbation
constructed in the proof is not an (&, N)-perturbation. Second, contrary to the construction in
Lemma 3.4, this (¢, N — 1)-perturbation need not have a unique rationalizable strategy profile.
Finally, the proof is rather tricky compared to the proof of Lemma 3.4, in that the prior probability
of each player will put almost all its mass only on a small number of states.

A.2. Proof of Proposition 5.5

Fix an information system [£2, (P;);e7. (Qi)iez] and a simple event E = (),.7 E;, each
E; € F;. We use the same labeling as in Kajii and Morris [10, Lemma C]. Fix K > 0, and define
inductively {Ek, .. Ek Ek}K+] as follows: E1 E;, and E¥ = =();e7 and E{‘“ = Bfi(Ek).
By convention, let E0 £2. Then let Dk Ek \ EkJrl fork=0,1,..., K, and DZ.KJrl = El.KH.
Observe that {D"}KJ“1 is a partition coarser than Q;. Writing n = (n1,...,ny) for a typi-
cal element of {0,1,..., K + 1}1, we denote by min(n) the smallest number in {ny,...,n}.
Define L(n) =();c7 D;’i and 7;(n) = P;(L(n)) for n € {0, 1, ..., K + 1}!. Note that for all
k=0,1,...,K+1landieZ, D! =, nj=n L(m) and E"=, niSn L(n).

Let x;(i,0) =0 and

xj(i, k)= Z j(n)

n: n;=min(n), O<min(n) <k

fork=1,...,K, and

yj= Z JTJ'(II).

n: 7;>0, min(n)=0
Lemma A.2.1. Foralli € Z and k > 1,

x; (i, k) < 1 Zx,(hk D+ -
L ohti !

yi. (A.1)

Proof. Foralli e Zandk > 1,
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k
x@kh=y > = mm
£=1 n: n;=¢, min(n)=~¢

k

<Z bi Y mm

L= pi n: n;=¢, min(n)<¢

Z > 7 ()

m=0 n: n; >m, min(n)=m

Z Y mw+t— Y mm

m=1 n: n; >m, min(n)=m "n: n; >0, min(n)=0

1_pl

1—p,

1 - > i 1 = Y mm
pi h#i m=1 n: n;>m, np=m, min(n)_m pi n: n; >0, min(n)=0
N ik —
1 — Di hi

as claimed. O

Lemma A.2.2. Forall j € 7 and m > 0,

> i) +r Yy > T <ry Y mm. (A2

n: n;>m, min(n)=m i#j n: nj>m, min(n)=m i#j n: min(n)=m

Proof. Let J be a typical element of 27 \ {¢J}. For all j € Z and m > 0,

Z JTJ'(II)—I—I’Z Z i ()

n: n;>m, min(n)=m i#j n: n;>m, min(n)=m

= 2 2. i)

J#P: j¢J n: min(m)=m, argmin(n)=J

Y Y Y

i#j J#0: i¢J n: min(n)=m, argmin(n)=J

<2 > 7 (m)

i#j J#D: j¢J, ieJ n: min(n)=m, argmin(n)=J

Y Y Y

i#j J#P: i¢J n: min(n)=m, argmin(n)=J

ONEDY > mm

i#j J#B: j¢J, ieJ n: min(m)=m, argmin(n)=J

+ry Y > ;i ()

i#j J#0: i¢J n: min(m)=m, argmin(n)=J

:rz< )3 Y i (n)

i#j ~J#D: j¢J, ieJ n: min(n)=m, argmin(n)=J
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+ > > i (n))

J#P: i¢J n: min(n)=m, argmin(n)=J

<FZ Z i (m),

i#j n: min(n)=m

as claimed. O

In the following, we consider the case where p; = p for all i € 7.
Let xj(k) =) ;.7 x;(i, k) and

x(k) = (x1(k), x2(k), ..., x1 (k).

Lemma A.2.3. If p; = p foralli € T, then
x(k) < rR)x(k — 1) + e (rR)1'.

Proof. By Lemma A.2.1,

xj (k) =x;(j, k) + Y x; (i, k)

i#]
<xj(. k) + Y rxi(i k)
i#]
- Zx](hk D+ ¥
p] It pj

Zx,(h k=141

+z< )

i#£]

.

P th(hk D+ =y
Pi i 1’/

+Z( TPi le(hk D+ y)
it] — Di — Pi
_ ”’ ZZx,(hk 1)+—<y,+r2yi>

z;é] hel i#j
ka— D+ —(y, +rZy,)
Pz i#]j
where by Lemma A.2.2,
yir) = ), mmEry ), mm
i#]J n: n;>0, min(n)=0 i#j n: n;>0, min(n)=0

<r), ), m@

i#j n: min(n)=0
< — Dre.
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Hence, we have

rp
xj (k) < E;xi(k— D+ -1

rp

€
1 —
forall j € Z, or

x(k) < r'R)x(k — 1) + e(rR)T,

as claimed. O

Proposition A.2.4. Let P;(E°) <e¢.If pi = p foralli € Z, then
1= P;([BY]"(E)) <e[(T+ R+ + (R)1],
forall j el.

Proof. By Lemma A.2.3,
x(K) < rR)X(K — 1) + e(rR)Y
< rR)(rR)X(K —2) + e(rR)1') + e (rR)T’
= (rR)*x(K —2) +¢(rR+ (rR)*)1’

< (RXx(0) +e(rR+ (rR)* + - -- + ('R)F) 1
=¢(rR+ (rR)?* +---+ ('RF) 1.
Hence, we have

1-p([B] )= Y mmw+ Y mm

n: min(n)=0 n: O<min(n) <K

) —I-Xj(K)
<e+e[(rR+ R +---+ ('R)1],
=e[(I+rR+---+ (rR)K)l’]j,

as claimed. O

Theorem A.2.5. Let P;(E®) <e. If {1 +r(I — 1)}p < 1, then
l1—p
g
1={1+r(I=D}p

L py((B](E)) <
forall j €.
Proof. Observe first that
rRF = {(1 = 1)%}2’.

If{l14+r{—1)}p<1,then

783
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converges as K — oo to
1 1—p

I—(U=D{Z  T—{1+rd=D}p’

Hence, by Proposition A.2.4 we have the desired inequality. O
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