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Abstract

For any given set-valued solution concept, it is possible to consider
iterative elimination of actions outside the solution set. This paper
applies such a procedure to define the concept of iterated monotone
potential maximizer (iterated MP-maximizer). It is shown that under
some monotonicity conditions, an iterated MP-maximizer is robust to
incomplete information (Kajii and Morris, Econometrica 65 (1997))
and absorbing and globally accessible under perfect foresight dynam-
ics for a small friction (Matsui and Matsuyama, Journal of Economic
Theory 65 (1995)). Several simple sufficient conditions under which
a game has an iterated MP-maximizer are also provided. Journal of
Economic Literature Classification Numbers: C72, C73, D82.

Keywords: equilibrium selection; robustness; incomplete infor-
mation; perfect foresight dynamics; iteration; monotone potential; p-
dominance.
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1 Introduction

Economic modeling, by its nature, is based on simplified assumptions that
schematize a given economic phenomenon. One way of assessing the role
of the assumptions postulated is to compare the model with its “perturbed
variants” based on slightly weakened assumptions. It is now well known
in game theory that outcomes of a game may dramatically change when
we allow for small departures from a given assumption (one may think of
departure from the common knowledge assumption as demonstrated, among
others, by Rubinstein (1989) or Carlsson and van Damme (1993)).1 Let us
say that an equilibrium is robust with respect to a given assumption if it is
still an equilibrium when this assumption is slightly weakened.

The lack of robustness of some Nash equilibria has led game theorists
to consider criteria that guarantees robustness. In bold strokes, two types
of methods have proved to be powerful in identifying equilibria that are
robust in various aspects: namely, the potential method (due to Monderer
and Shapley (1996); see also Blume (1993), Hofbauer and Sorger (1999,
2002), Ui (2001)) and the risk-dominance method (due to Harsanyi and
Selten (1988); see also Kandori, Mailath, and Rob (1993), Young (1993),
Matsui and Matsuyama (1995), Morris, Rob, and Shin (1995), and Kajii
and Morris (1997)). These criteria, however, are very demanding and such
concepts fail to exist in many games. In this paper, we introduce a notion
of iterative construction that enables us to enlarge the class of games where
these approaches apply and hence to extend the existing sufficient conditions
for equilibria to be robust.

In this paper, we consider two robustness tests. The first one is the
so-called “robustness to incomplete information” test as originally defined
by Kajii and Morris (1997). To motivate this approach, consider an analyst
who plans to model some strategic situation by a particular complete infor-
mation game. This analyst should be aware that his prediction might be (in
some games) highly dependent on the assumption of complete information.
Hence, if it is guaranteed that the analyst’s prediction based on the com-
plete information game is not qualitatively different from some equilibrium
of the real incomplete information game being played, then he is justified
in choosing the simplified assumption of complete information. To be more
precise, robustness to incomplete information is defined as follows. A (pure)
Nash equilibrium a∗ of a complete information game g is robust to incom-

1Sensitivity to simplified assumptions has also been discussed in many economic appli-
cations. For instance, Morris and Shin (1998) and Goldstein and Pauzner (2005) respec-
tively consider how the predictions of standard models on currency crises and on bank
runs which rely on the existence of multiple self-fulfilling beliefs are modified when allow-
ing for slight departure from the complete information assumption. In a series of papers,
Matsuyama (1991, 1992a, 1992b) departs from the perfect reversibility assumption on ac-
tion revisions such as career choice decisions and underlines its consequences in models of
sectoral adjustment and economic development.
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plete information if every “nearby” incomplete information elaboration of
g has a Bayesian Nash equilibrium that generates an (ex-ante) distribution
over actions assigning a weight close to one to a∗. “Nearby” incomplete in-
formation elaborations are incomplete information games such that the sets
of players and actions are the same as in the complete information game g,
and with high probability, each player knows that his payoffs are the same
as in g. Thus, payoffs of the incomplete information elaboration are allowed
to be very different of g with very low probability.

The second robustness test we consider is the one introduced by Matsui
and Matsuyama (1995), namely, the perfect foresight dynamics approach.
To motivate this approach, assume that an analyst considers a one-shot com-
plete information game to predict the long-run outcome of a given repeated
interaction. Consider a Nash equilibrium of this game and embed the game
in a dynamic game with a large society of agents. If there is no link between
time periods, then, regardless of the initial action distribution of the society,
the Nash equilibrium is the limit of some equilibrium path in this dynamic
game. But what if we slightly depart from such a simplified assumption
and assume that there exists a small amount of irreversibility or friction in
action revisions? If in this modified dynamic game, the Nash equilibrium
is always the limit of an equilibrium path regardless of the initial action
distribution, then the analyst can ignore the subtle complications induced
by intertemporal effects through irreversibility. To be more precise, we con-
sider a large society with continua of agents (one for each player position of
g), in which a one-shot game g is played repeatedly in a random matching
fashion. There is friction in action revisions: each agent cannot change his
action at every point in time. Action revision opportunities follow inde-
pendent Poisson processes. Agents, when given a revision opportunity, take
actions that maximize their expected discounted payoffs. The degree of fric-
tion is then measured by the discounted average duration of a commitment.
A perfect foresight path is a feasible path of action distribution along which
each revising agent takes a best response to the future course of play. A
Nash equilibrium a∗ is globally accessible if for any initial action distribu-
tion, there exists a perfect foresight path that converges to a∗; a∗ is linearly
absorbing if the feasible path converging linearly to a∗ is the unique perfect
foresight path from each initial action distribution in a neighborhood of a∗.
If a Nash equilibrium that is globally accessible is also absorbing, then it is
the unique globally accessible equilibrium.

It has been known that even a strict Nash equilibrium may fail to be ro-
bust in each sense above. In 2×2 coordination games, for instance, while the
risk-dominant equilibrium is robust in the above senses, the risk-dominated
equilibrium is not: the risk-dominated equilibrium is never played in any
Bayesian Nash equilibrium under some incomplete information structures
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(Rubinstein (1989), Morris, Rob, and Shin (1995))2 and it is never played
along any equilibrium path for some initial action distributions (Matsui and
Matsuyama (1995)). That is, even strict Nash equilibria which are often
considered as being immune against most perturbations (see Kohlberg and
Mertens (1986)) can be very sensitive to slight departure from some simpli-
fied assumptions.

In finding sufficient conditions for an equilibrium to be robust in each
sense above, the two concepts of potential maximizer and p-dominance (the
latter is a generalization of risk-dominance) have proved to be powerful.
Kajii and Morris (1997) show that if the complete information game has
a p-dominant equilibrium with low p, then it is robust to incomplete in-
formation,3 while Ui (2001) shows that in potential games, the potential
maximizer is robust to incomplete information. For perfect foresight dy-
namics, Hofbauer and Sorger (1999, 2002) show that a potential maximizer
is stable for any small degree of friction, while the p-dominance condition
is studied by Oyama (2002) (in a single population setting).4 Furthermore,
Morris and Ui (2005) introduce a generalization of potential and establishes
the robustness of generalized potential maximizer to incomplete informa-
tion. Oyama, Takahashi, and Hofbauer (2003, OTH henceforth) consider
the stability of monotone potential maximizer (a special case of general-
ized potential maximizer) under the perfect foresight dynamics. The class
of games with a monotone potential maximizer contains games with a p-
dominant equilibrium with a low p, and therefore the results on general-
ized/monotone potential maximizer unify the potential maximizer and the
p-dominance conditions.

This paper applies an iterative construction to potential and p-dominance
methods to generate new sufficient conditions that are obtained by iterat-
ing the existing conditions above. Considering monotone potential, which
unifies the two methods, we introduce iterated monotone potential maxi-
mizer (iterated MP-maximizer). Roughly speaking, our iterative procedure
to build this concept can be described as follows. An action profile a∗ is said
to be an iterated MP-maximizer if there exists a sequence of subsets of ac-
tion profiles S0 ⊃ S1 ⊃ · · · ⊃ Sm = {a∗} such that for all k = 1, · · · ,m, Sk

is an MP-maximizer set in the game restricted to Sk−1, where S0 is the set
of all action profiles. We show that under certain monotonicity conditions,
an iterated MP-maximizer is robust to incomplete information and globally
accessible and linearly absorbing for a small friction. This is proved by ex-

2Kajii and Morris (1997) also provide a three-player three-action game where a unique
Nash equilibrium, which is strict, is not robust to incomplete information.

3Tercieux (2006) proves a set-valued extension of this result.
4Kojima (2006) considers another generalization of risk-dominance and establishes the

stability result in a multiple population setting. Kim (1996) reports a similar result for
binary games with many identical players. Tercieux (2004) considers a set-valued extension
of the p-dominance condition.
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ploiting the similarity between the mathematical structures of incomplete
information elaborations and perfect foresight dynamics, which may be of
independent interest.5

Tercieux (2004) considers iteration of p-dominance and defines iter-
ated p-dominant equilibrium. We prove that if a game has an iterated
p-dominant equilibrium with low p, then this equilibrium is actually an
iterated MP-maximizer and the relevant monotonicity conditions for our ro-
bustness results to hold are satisfied. While finding iterated MP-maximizers
or even simply MP-maximizers can sometimes be a difficult task, iterated p-
dominance indeed provides a simpler procedure to find robust Nash equilib-
ria. Restricting our attention to specific classes of games, we also give several
other tools which are much easier to manipulate. In particular, for super-
modular games, we introduce the concept of iterated pairwise p-dominance
and, as a special case, that of iterated risk-dominance for two-player super-
modular coordination games, which are based on (a generalization of) the
pairwise risk-dominance concept considered by Kandori and Rob (1998) and
thus rely only on local properties of the payoff structure. We also consider
a 3×3 game example (due to Young (1993)) in which iterated p-dominance
is shown to be a strictly stronger concept than p-dominance.

The paper is organized as follows. Section 2 introduces the concept of
iterated MP-maximizer. Section 3 considers the informational robustness of
iterated MP-maximizer, while Section 4 considers the stability of iterated
MP-maximizer under the perfect foresight dynamics. Section 5 discusses
some extensions.

2 Iterated Monotone Potential Maximizer

2.1 Underlying Game

Throughout our analysis, we fix the set of players, I = {1, 2, · · · , N}, and
the linearly ordered set of actions, Ai = {0, 1, . . . , ni}, for each player i ∈
I. We denote

∏
i∈I Ai by A and

∏
j 6=iAj by A−i. A one-shot complete

information game is specified by, and identified with, a profile of payoff
functions, g = (gi)i∈I , where gi : A → R is the payoff function for player i.
For S = S1×· · ·×SN where Si ⊂ Ai, gi|S denotes the restriction of gi to S.
We identify g|S = (gi|S)i∈I with the restricted game with the sets of actions
Si.

For any nonempty, at most countable set S, we denote by ∆(S) the set of
all probability distributions on S. We sometimes identify each action in Ai

with the element of ∆(Ai) that assigns one to the corresponding coordinate.
5Takahashi (2005) reports a formal correspondence between perfect foresight dynamics

and global games (with a certain class of noise structures) for games with linear payoff
functions.
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For xi, yi ∈ ∆(Ai), we write xi - yi if

ni∑
k=h

xik ≤
ni∑

k=h

yik

for all h ∈ Ai. We write x - y for x, y ∈
∏

i ∆(Ai) if xi - yi for all i ∈ I,
and x−i - y−i for x−i, y−i ∈

∏
j 6=i ∆(Aj) if xj - yj for all j 6= i. For

πi, π
′
i ∈ ∆(A−i), we write πi - π′i if∑

a−i∈S−i

πi(a−i) ≤
∑

a−i∈S−i

π′i(a−i)

for any increasing subset S−i ⊂ A−i.6 The game g is said to be supermodular
if whenever h < k, the difference gi(k, a−i) − gi(h, a−i) is nondecreasing in
a−i ∈ A−i, i.e., if a−i ≤ b−i, then

gi(k, a−i)− gi(h, a−i) ≤ gi(k, b−i)− gi(h, b−i).

It is well known that this property extends to ∆(A−i): if h < k and πi - π′i,
then

gi(k, πi)− gi(h, πi) ≤ gi(k, π′i)− gi(h, π′i).

We endow
∏

i∈I ∆(Ai), ∆(A), and ∆(A−i), i ∈ I, with the sup (or max)
norm: |x| = maxi∈I maxh∈Ai

xih for x ∈
∏

i∈I ∆(Ai), |π| = maxa∈A π(a)
for π ∈ ∆(A), and |πi| = maxa−i∈A−i πi(a−i) for πi ∈ ∆(A−i). For ε > 0,
denote Bε(x) = {x′ ∈

∏
i ∆(Ai) | |x′ − x| < ε} for x ∈

∏
i∈I ∆(Ai), Bε(π) =

{π′ ∈ ∆(A) | |π′ − π| < ε} for π ∈ ∆(A), and Bε(πi) = {π′i ∈ ∆(A−i) |
|π′i − πi| < ε} for πi ∈ ∆(A−i). Write Bε(F ) =

⋃
π∈F Bε(π) for F ⊂ ∆(A)

and Bε(F−i) =
⋃

πi∈F−i
Bε(πi) for F−i ⊂ ∆(A−i).

Let f be a function from A to R. With abuse of notion, f(ai, ·) are
extended to

∏
j 6=i ∆(Aj) and ∆(A−i), and f(·) to

∏
j∈I ∆(Aj) and ∆(A) in

the usual way. For Si ⊂ Ai, let

br i
f (x−i|Si) = arg max{f(h, x−i) | h ∈ Si}

for x−i ∈
∏

j 6=i ∆(Aj), and

br i
f (πi|Si) = arg max{f(h, πi) | h ∈ Si}

for πi ∈ ∆(A−i). We also denote br i
f (x−i) = br i

f (x−i|Ai) and br i
f (πi) =

br i
f (πi|Ai).
Let S∗i be a nonempty subset of Ai for each i ∈ I, and S∗ =

∏
i∈I S

∗
i .

We say that S∗ is a best response set of g if for all i ∈ I, br i
gi

(πi)∩S∗i 6= ∅ for
all πi ∈ ∆(S−i) and that S∗ is a strict best response set of g if for all i ∈ I,
br i

gi
(πi) ⊂ S∗i for all πi ∈ ∆(S−i). An action profile a∗ ∈ A is a (strict) Nash

equilibrium of g if {a∗} is a (strict) best response set of g.
6S−i ⊂ A−i is said to be increasing if a−i ∈ S−i and a−i ≤ b−i imply b−i ∈ S−i.
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2.2 Iterated MP-Maximizer

In this subsection, we define our main concept of iterated monotone potential
maximizer (iterated MP-maximizer, in short). In the sequel, we denote
[ai, ai] = {h ∈ Ai | ai ≤ h ≤ ai}, and for a = (ai)i∈I and a = (ai)i∈I ,
[a, a] =

∏
i∈I [ai, ai] and [a−i, a−i] =

∏
j 6=i[aj , aj ]. We say that S ⊂ A is an

order interval, or simply an interval, if S = [a, a] for some a, a ∈ A such that
ai ≤ ai for all i ∈ I, and denote Si = [ai, ai] and S−i = [a−i, a−i].

We employ a refinement of the MP-maximizer concept due to Morris
and Ui (2005).7

Definition 2.1. An interval S∗ ⊂ A is a strict MP-maximizer set of g if
there exists a function v : A → R such that S∗ = arg maxa∈A v(a), and for
all i ∈ I and all πi ∈ ∆(A−i),

min br i
v(πi|[minAi,minS∗i ]) ≤ min br i

gi
(πi|[minAi,maxS∗i ]), (2.1)

and

max br i
v(πi|[maxS∗i ,maxAi]) ≥ max br i

gi
(πi|[minS∗i ,maxAi]). (2.2)

Such a function v is called a strict monotone potential function.

Now our concept of iterated strict MP-maximizer is obtained by iteration
of strict MP-maximizer.

Definition 2.2. An interval S∗ ⊂ A is an iterated strict MP-maximizer set
of g if there exists a sequence of intervals S0, S1, . . . , Sm with A = S0 ⊃
S1 ⊃ · · · ⊃ Sm = S∗ such that Sk is a strict MP-maximizer set of g|Sk−1 for
each k = 1, . . . ,m.

An action profile a∗ ∈ A is an iterated strict MP-maximizer of g if {a∗}
is an iterated strict MP-maximizer set of g.

For supermodular games, an iterated strict MP-maximizer is unique if
it exists, due to Theorems 4.1 and 4.7 given in Section 4.

We also introduce a weaker, but more complicated, version of iterated
MP-maximizer, which is sufficient to obtain the robustness to incomplete
information and the stability under perfect foresight dynamics.

Definition 2.3. Let S∗ and S be intervals such that S∗ ⊂ S ⊂ A. S∗ is an
MP-maximizer set of g relative to S if there exist a function v : A→ R and
a real number η > 0 such that S∗ = arg maxa∈A v(a), and for all i ∈ I and
all πi ∈ Bη(∆(S−i)),

min br i
v(πi|[minSi,minS∗i ]) ≤ max br i

gi
(πi|[minSi,maxS∗i ]), (2.3)

7This refinement has been introduced by OTH (2003, Definition 4.2) for action profiles
(singleton sets).
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and

max br i
v(πi|[maxS∗i ,maxSi]) ≥ min br i

gi
(πi|[minS∗i ,maxSi]). (2.4)

Such a function v is called a monotone potential function relative to Bη(∆(S)).

Notice the ‘max’ and the ‘min’ in the right hand sides of (2.3) and (2.4),
respectively (cf. those of (2.1) and (2.2)). Notice also that v is defined on
the whole set A and that (2.3) and (2.4) must be satisfied also for beliefs
πi that assign small probability (less than η) to actions outside S−i, which
is an indispensable requirement for the informational robustness and the
stability; see Example 2.7.

Definition 2.4. An interval S∗ ⊂ A is an iterated MP-maximizer set of g
if there exists a sequence of intervals S0, S1, . . . , Sm with A = S0 ⊃ S1 ⊃
· · · ⊃ Sm = S∗ such that Sk is an MP-maximizer set relative to Sk−1 for
each k = 1, . . . ,m.

An action profile a∗ ∈ A is an iterated MP-maximizer of g if {a∗} is an
iterated MP-maximizer set of g.

For an iterated (strict) MP-maximizer set S∗, the sequence S0, S1, . . . , Sm

in the definition will be called associated intervals of S∗.

Remark 2.1. In Definition 2.3, let Pi = {S∗i } ∪ {{ai} | ai /∈ S∗i } and P =
{
∏

i∈I Xi | Xi ∈ Pi for i ∈ I}. If v is P-measurable, then “[minSi,minS∗i ]”
in the left hand side of (2.1) and (2.3) and “[maxS∗i ,maxSi]” in the left
hand side of (2.2) and (2.4) can be replaced with “[minSi,maxS∗i ]” and
“[minS∗i ,maxSi]”, respectively. If S∗ is an MP-maximizer set relative to A
with v being P-measurable, then it is an MP-maximizer (with respect to P)
in the sense of Morris and Ui (2005, Definition 8).

Here we show that iterated strict MP-maximizer is actually a refinement
of iterated MP-maximizer.

Proposition 2.1. An iterated strict MP-maximizer set is an iterated MP-
maximizer set.

It is sufficient to show the following.

Lemma 2.2. Let S∗ and S be intervals such that S∗ ⊂ S ⊂ A. If S∗ is
a strict MP-maximizer set of g|S with a strict monotone potential function
v : S → R, then there exist a function ṽ : A → R and a real number η > 0
such that S∗ = arg maxa∈A ṽ(a), and (2.1) and (2.2) with A = S hold for
all i ∈ I and all πi ∈ Bη(∆(S−i)).

Moreover, if v|S is supermodular, then ṽ can be taken so that ṽ|A is
supermodular.

We call such a function ṽ a strict monotone potential function relative
to Bη(∆(S)).

7



Proof. See Appendix.

Finally, we report a useful fact for reference.

Lemma 2.3. Suppose that g has an iterated MP-maximizer S∗ with A =
S0 ⊃ S1 ⊃ · · · ⊃ Sm = S∗ and (vk)m

k=1. Then, there exists η > 0 such that
for all k = 1, . . . ,m and for all i ∈ I and all πi ∈ Bη(∆(Sk

−i)),

br i
gi

(πi) ∩ Sk
i 6= ∅.

Proof. Note first that for all ` = 1, . . . , k, S` = arg maxa∈S`−1 v`(a), and
therefore we can take ε` > 0 such that for all i ∈ I and all πi ∈ Bε`(∆(S`

−i)),

br i
v`(πi|[minS`−1

i ,minS`
i ]) = minS`

i ,

br i
v`(πi|[maxS`

i ,maxS`−1
i ]) = maxS`

i

due to the continuity of v`(h, πi) in πi. By definition, for all ` = 1, . . . , k,
there exists η` > 0 such that for all i ∈ I and all πi ∈ Bη`(∆(S`

−i)),

max br i
gi

(πi|[minS`−1
i ,maxS`

i ]) ≥ min br i
v`(πi|[minS`−1

i ,minS`
i ]),

min br i
gi

(πi|[minS`
i ,maxS`−1

i ]) ≤ max br i
v`(πi|[maxS`

i ,maxS`−1
i ]).

Setting η = min` ε
` ∧ min` η

`, we have that for all ` = 1, . . . , k and for all
i ∈ I and all πi ∈ Bη(∆(Sk

−i)) (⊂ Bη(∆(S`
−i))),

max br i
gi

(πi|[minS`−1
i ,maxS`−1

i ]) ≥ minS`
i ,

min br i
gi

(πi|[minS`−1
i ,maxS`−1

i ]) ≤ maxS`
i ,

and therefore,
br i

gi
(πi|S`−1

i ) ∩ S`
i 6= ∅.

An induction argument thus proves that

br i
gi

(πi) ∩ Sk
i 6= ∅

for all i ∈ I and all πi ∈ Bη(∆(Sk
−i)), as claimed.

2.3 Iterated p-Dominance

This subsection provides simple ways to find iterated monotone potentials
using iteration of p-dominance as considered in Tercieux (2004).

Let p = (pi)i∈I ∈ [0, 1)N . Let us first review the definition of strict
p-dominant equilibrium due to Kajii and Morris (1997).

Definition 2.5. An action profile a∗ ∈ A is a strict p-dominant equilibrium
of g if for all i ∈ I,

{a∗i } = br i
gi

(πi)

holds for all πi ∈ ∆(A−i) with πi(a∗−i) > pi.

8



Next we define strict p-best response set. This concept is a set-valued
extension of the strict p-dominance concept (see Tercieux (2004, 2006)). The
set S =

∏
i∈I Si (Si ⊂ Ai, i ∈ I) is a strict p-best response set if, whenever

any player i believes with probability strictly greater than pi that the other
players will play actions in S−i, all of his best responses are contained in Si.

Definition 2.6. Let S∗i be a nonempty subset of Ai for each i ∈ I, and
S∗ =

∏
i∈I S

∗
i . The set S∗ is a strict p-best response set of g if for all i ∈ I,

br i
gi

(πi) ⊂ S∗i

holds for all πi ∈ ∆(A−i) with πi(S∗−i) > pi.

Now with the two steps procedure that we used to define an iterated MP-
maximizer, we define iterated (strict) p-dominant equilibrium. Formally,
this can be stated as follows.

Definition 2.7. Let S∗i be a nonempty subset of Ai for each i ∈ I, and
S∗ =

∏
i∈I S

∗
i . The set S∗ is an iterated strict p-best response set of g if

there exists a sequence S0, S1, . . . , Sm with A = S0 ⊃ S1 ⊃ · · · ⊃ Sm = S∗

such that Sk is a strict p-best response set in g|Sk−1 for each k = 1, . . . ,m.
An action profile a∗ ∈ A is an iterated strict p-dominant equilibrium of

g if {a∗} is an iterated strict p-best response set of g.

For an iterated strict p-best response set S∗, the sequence S0, S1, . . . , Sm

in the definition will be called associated subsets of S∗.
We now prove a link between iterated p-dominant equilibrium and iter-

ated MP-maximizer.

Proposition 2.4. Let a∗ be an iterated strict p-dominant equilibrium of
g with

∑
i∈I pi < 1, and A = S0 ⊃ S1 ⊃ · · · ⊃ Sm = {a∗} associated

subsets. Then, there exists an order < on A such that Sk’s are intervals and
a∗ is an iterated strict MP-maximizer with monotone potential functions vk

(k = 1, . . . ,m) that are supermodular and of the form:

vk(a) =

{
1−

∑
i∈I pi if a ∈ Sk,

−
∑

i∈Ck(a) pi otherwise,
(2.5)

where Ck(a) = {i ∈ I | ai ∈ Sk
i }.

To have vk’s be supermodular, re-order the actions so that for all i ∈ I,
for all k = 1, . . . ,m, and for all ai ∈ Sk

i , a
′
i ∈ S

k−1
i \ Sk

i , a′i < ai. Note that
this implies that a∗ = maxA = maxS1 = · · ·maxSm. One can verify that
for all k, vk is supermodular with respect to the new order.

Now Proposition 2.4 follows from the following lemma.
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Lemma 2.5. Let (Sk)m
k=0 be intervals such that A = S0 ⊃ S1 ⊃ · · · ⊃ Sm

and maxSk = maxA for all k = 1, . . . ,m. If for each k = 1, . . . ,m, Sk

is a strict pk-best response set in g|Sk−1 with
∑

i∈I p
k
i < 1, then Sm is an

iterated strict MP-maximizer set of g.

Proof. For each k = 1, . . . ,m, let vk be given as in (2.5) with pi = pk
i .

Consider any k = 1, . . . ,m and any i ∈ I. It is now sufficient to show
that vk is a strict monotone potential functions for Sk in g|Sk−1 . Denote
a`

j = minS`
j for each j ∈ I and ` = k − 1, k. We want to show that for all

πi ∈ ∆(Sk−1
−i ),

min br i
vk(πi|Sk−1

i ) ≤ min br i
gi

(πi|Sk−1
i )

(note that br i
vk(πi|Sk−1

i ) = br i
vk(πi|[ak−1

i , ak
i ]) by construction).

Fix any πi ∈ ∆(Sk−1
−i ). Observe that

vk(h, πi) =
∑

a−i∈Sk−1
−i

πi(a−i)vk(h, a−i)

takes only two different values: one for h < ak
i and another for h ≥ ak

i .
Hence,

min br i
vk(πi|Sk−1

i ) ∈ {ak−1
i , ak

i }.

It is sufficient to consider the case where min br i
vk(πi|Sk−1

i ) = ak
i . For such

πi ∈ (Sk−1
−i ), we have

0 < vk(ak
i , πi)− vk(ak−1

i , πi) =
∑

a−i∈Sk
−i

πi(a−i)(1− pk
i )−

∑
a−i /∈Sk

−i

πi(a−i)pk
i

=
∑

a−i∈Sk
−i

πi(a−i)− pk
i ,

and thus πi(Sk
−i) > pk

i . Since Sk is a strict pk-best response set in
g|Sk−1 , br i

gi
(πi|Sk−1

i ) ⊂ Sk
i . Therefore, we have min br i

gi
(πi|Sk−1

i ) ≥ ak
i =

min br i
vk(πi|Sk−1

i ), completing the proof.

In the case where g is supermodular, we have a simple characterization of
iterated p-dominant equilibrium by means of the notion of iterated pairwise
p-dominance.

Definition 2.8. An action profile a∗ ∈ A is an iterated pairwise strict p-
dominant equilibrium of g if there exists a sequence 0 = a0

i ≤ a1
i ≤ · · · ≤

am
i = a∗i = am

i ≤ · · · ≤ a1
i ≤ a0

i = ni for each i ∈ I such that for all
k = 1, . . . ,m, ak is a strict p-dominant equilibrium in g|[ak−1,ak] and ak is a
strict p-dominant equilibrium in g|[ak,ak−1].
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Proposition 2.6. Suppose that g is supermodular. If a∗ is an iterated
pairwise strict p-dominant equilibrium of g, then a∗ is an iterated strict
p-dominant equilibrium of g.

Hence, by Proposition 2.4, if a∗ is an iterated pairwise strict p-dominant
equilibrium of a supermodular game g with

∑
i∈I pi < 1, then a∗ is an

iterated strict MP-maximizer of g.
The proof utilizes the following fact.

Lemma 2.7. Suppose that g is supermodular. Let S be an interval such that
maxS = maxA. If minS is a strict p-dominant equilibrium in g|[0,min S],
then S is a strict p-best response set of g.

Proof. Given S as above, denote ai = minSi for each i ∈ I. Take any
i ∈ I and any πi ∈ ∆(A−i) such that πi(S−i) > pi. We want to show that
br i

gi
(πi) ⊂ Si. Define π′i ∈ ∆(A−i) by

π′i(a−i) =


πi(S−i) if a−i = a−i,

1− πi(S−i) if a−i = 0,
0 otherwise.

Since π′i(ai) > pi, we have br i
gi

(π′i|[0, ai]) = {ai} by the assumption that a is
a strict p-dominant equilibrium in g|[0,a], so that min br i

gi
(π′i) ≥ ai. On the

other hand, since π′i - πi, we have min br i
gi

(π′i) ≤ min br i
gi

(πi) due to the
supermodularity of g. It thus follows that min br i

gi
(πi) ≥ ai, which implies

that br i
gi

(πi) ⊂ Si.

Proof of Proposition 2.6. Suppose that a∗ is an iterated pairwise p-dominant
equilibrium. It is sufficient to show that (a) for each k = 1, . . . ,m, [ak, a0] is
a strict p-best response set in g|[ak−1,a0], and (b) for each k = 1, . . . ,m,
[a∗, ak] is a strict p-best response set in g|[a∗,ak−1]. But, since ak is a
strict p-dominant equilibrium in g|[ak−1,ak], (a) follows from Lemma 2.7 with
A = [ak−1, a0] and S = [ak, a0]. One can similarly prove (b) by Lemma 2.7
(by reversing the order on actions).

Remark 2.2. For supermodular games, it is simple to check whether ak is
a strict p-dominant equilibrium in g|[ak−1,ak] for some p with

∑
i∈I pi <

1. Indeed, it is necessary and sufficient to check that for each i ∈ I,
br i

gi
(πi|[ak−1

i , ak
i ]) = {ak

i } for πi ∈ ∆([ak−1
−i , a

k
−i]) such that πi(ak−1

−i ) = 1−pi

and πi(ak
−i) = pi.

2.4 Examples

2.4.1 Iterated Risk-Dominance

We consider the class of two-player coordination games, where there are two
players with the same action set Ai = {0, 1, . . . , n} for each i = 1, 2, and all
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the action profiles on the diagonal are strict Nash equilibria, i.e., (h, k) is a
strict Nash equilibrium if and only if h = k.

We provide a simpler way to find iterated strict MP-maximizers in two-
player supermodular coordination games. Let us first generalize the notion
of pairwise risk-dominance by Kandori and Rob (1998) to asymmetric two-
player games and then define our notion of iterated risk-dominance.

Definition 2.9. Let g be a two-player coordination game. We say that
(h, h) pairwise risk dominates (k, k) in g if(

g1(h, h)− g1(k, h)
)
×

(
g2(h, h)− g2(k, h)

)
>

(
g1(k, k)− g1(h, k)

)
×

(
g2(k, k)− g2(h, k)

)
, (2.6)

and write (h, h) PRD (k, k).

Definition 2.10. Let g be a two-player coordination game. (h∗, h∗) is an
iterated risk-dominant equilibrium of g if

1. (h, h) PRD (h− 1, h− 1) for each h = 1, . . . , h∗, and

2. (h, h) PRD (h+ 1, h+ 1) for each h = h∗, . . . , n− 1.

Proposition 2.8. Suppose that g is a two-player supermodular coordination
game. If (h∗, h∗) is an iterated risk-dominant equilibrium of g, then it is an
iterated strict MP-maximizer of g.

Proof. Suppose that (h∗, h∗) is an iterated risk-dominant equilibrium. In
light of Lemma 2.5, it is sufficient to show that (a) for each h = 1, . . . , h∗,
[h, n]× [h, n] is a strict ph-best response set in g|[h−1,n]×[h−1,n] for some ph

such that ph
1 + ph

2 < 1, and (b) for each k = h∗, . . . , n − 1, [h∗, k] × [h∗, k]
is a strict pk-best response set in g|[h∗,k+1]×[h∗,k+1] for some pk such that
pk
1 + pk

2 < 1. We only show (a).
Consider any h = 1, . . . , h∗, and let

ph
i =

gi(h− 1, h− 1)− gi(h, h− 1)
gi(h, h)− gi(h− 1, h) + gi(h− 1, h− 1)− gi(h, h− 1)

> 0

and ph = (ph
1 , p

h
2). Verify that ph

1+ph
2 < 1 due to the condition (2.6) and that

(h, h) is a strict ph-dominant equilibrium in g|[h−1,h]×[h−1,h]. It therefore
follows from Lemma 2.7 that [h, n]× [h, n] is a strict ph-best response set in
g|[h−1,n]×[h−1,n].

Example 2.1. Consider the following asymmetric supermodular game:

0 1 2

0 3, 1 0, 0 −2,−2

1 0, 0 2, 2 0, 0

2 −2,−2 0, 0 1, 3

12



In this game, (1, 1) is an iterated risk-dominant equilibrium and hence an
iterated strict MP-maximizer. Note that this game has no iterated p-
dominant equilibrium for p1 + p2 < 1.

If we consider symmetric games (i.e., g2(k, h) = g1(h, k) for all h ∈ A1

and k ∈ A2), the proof of Proposition 2.8 in fact shows also the following
link between iterated p-dominance and iterated risk-dominance.

Proposition 2.9. Suppose that g is a symmetric two-player supermodular
coordination game. If (h∗, h∗) is an iterated risk-dominant equilibrium of
g, then it is an iterated strict (p, p)-dominant equilibrium of g for some
p < 1/2.

Example 2.2. Consider the following symmetric supermodular game:

0 1 2

0 1, 1 0, 0 −3,−6

1 0, 0 2, 2 0, 0

2 −6,−3 0, 0 3, 3

In this game, (2, 2) is an iterated risk-dominant equilibrium and indeed an
iterated strict (2/5, 2/5)-dominant equilibrium. Observe that this game has
no (p, p)-dominant equilibrium for any p < 1/2.8

2.4.2 Morris’ Example

Example 2.3. Consider the following symmetric 4 × 4 supermodular game
due to Morris (1999):

0 1 2 3

0 50, 50 46, 41 32, 23 8, 3

1 41, 46 50, 50 42, 47 27, 29

2 23, 32 47, 42 50, 50 41, 52

3 3, 8 29, 27 52, 41 50, 50

Morris (1999) shows that this game has no robust equilibrium to incomplete
information. Therefore, this game has no iterated MP-maximizer due to our
Theorem 3.1.

Example 2.4. Consider the following slight modification of the above game:
8Note also that this game has no globally risk-dominant equilibrium as defined by

Kandori and Rob (1998); see Remark 2.4 below.
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0 1 2 3

0 50, 50 40, 41 32, 23 8, 3

1 41, 40 50, 50 42, 47 27, 29

2 23, 32 47, 42 50, 50 41, 52

3 3, 8 29, 27 52, 41 50, 50

Notice that g1(0, 1) = g2(1, 0) = 40. In this game, (3, 3) is an iterated
pairwise strict (p, p)-dominant equilibrium for some p < 1/2 and hence an
iterated strict MP-maximizer, with a sequence S1 = {1, 2, 3} × {1, 2, 3},
S2 = {2, 3} × {2, 3}, and S3 = {(3, 3)}.

2.4.3 Young’s Example

Example 2.5. Consider the following symmetric 3 × 3 game due to Young
(1993):

0 1 2

0 6, 6 0, 5 0, 0

1 5, 0 7, 7 5, 5

2 0, 0 5, 5 8, 8

This game does not have any (p, p)-dominant equilibrium for p < 3/5, but
(2, 2) is an iterated strict (2/5, 2/5)-dominant equilibrium with a sequence
S1 = {1, 2} × {1, 2} and S2 = {(2, 2)}.
Remark 2.3. For the above game, OTH (2003) have reported that (2, 2) is a
strict MP-maximizer with a strict monotone potential function that is super-
modular. Therefore, the results by Morris and Ui (2005) and OTH (2003)
show that (2, 2) is robust to incomplete information and globally accessible
and linearly accessible under perfect foresight dynamics with small friction.
On the other hand, our Proposition 3.8 shows that (2, 2) is the unique robust
equilibrium to incomplete information.

Remark 2.4. In the above game, (2, 2) is globally pairwise risk-dominant
(Kandori and Rob (1998)), i.e., (2, 2) PRD (h, h) for all h 6= 2. In general,
however, an iterated strict (p, p)-dominant equilibrium with p < 1/2 need
not be globally pairwise risk-dominant (see Example 2.2).

2.4.4 A Binary Game with Three Players

Example 2.6. Consider the following 2× 2× 2 supermodular game:
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0 1 0 1

0 1, 1, x 0, 0, x 0 1, 1, 0 0, 0, 0

1 0, 0, x 2, 2, 1 1 0, 0, 0 2, 2, 2

0 1

where x > 0 is arbitrarily large. In this game, (1, 1, 1) is an iterated
strict (1/3,1/3,0)-dominant equilibrium and hence an iterated strict MP-
maximizer with a sequence S1 = {1} × {1} × {0, 1} and S2 = {(1, 1, 1)}.

2.4.5 A Degenerate Game with No Robust Equilibrium

Example 2.7. Consider the following 2× 3 supermodular game:

0 1 2

0 1, 0 1, 1 0, 0

1 0, 0 1, 1 1, 0

In this game, both (0, 1) and (1, 1) were iterated MP-maximizers if η in
Definition 2.3 were allowed to be set to zero. But one can verify that none
of them are robust to incomplete information or globally accessible under
perfect foresight dynamics. Hence, this example shows that the requirement
(in the definition of iterated MP-maximizer) that the conditions be satisfied
for all πi ∈ Bη(∆(Sk−1)) (where η > 0) is indispensable for robustness to
incomplete information and stability under perfect foresight dynamics.

3 Robustness to Incomplete Information

3.1 ε-Elaborations and Robust Equilibria

Given the game g, we consider the following class of incomplete information
games. Each player i ∈ I has a countable set of types, denoted by Ti. We
write T =

∏
i∈I Ti and T−i =

∏
j 6=i Ti. The prior probability distribution on

T is given by P . We assume that P satisfies that
∑

t−i∈T−i
P (ti, t−i) > 0

for all i ∈ I and ti ∈ Ti. Let ∆0(T ) be the set of such probability distribu-
tions on T . Under this assumption, the conditional probability of t−i given
ti, P (t−i|ti), is well-defined by P (t−i|ti) = P (ti, t−i)/

∑
t′−i∈T−i

P (ti, t′−i).
An event T ′ ⊂ T is said to be a simple event if it is a product of sets
of types of each player, i.e., T ′ =

∏
i∈I T

′
i where each T ′i ⊂ Ti. Given a

simple event T ′, we write T ′−i = T ′1 × · · · × T ′i−1 × T ′i+1 × · · · × T ′N and
P (T ′−i|ti) =

∑
t−i∈T ′−i

P (t−i|ti). The payoff function for player i ∈ I is a
bounded function ui : A × T → R. Denote u = (ui)i∈I . Fixing type space
T , we represent an incomplete information game by (u, P ).
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A (behavioral) strategy for player i is a function σi : Ti → ∆(Ai), where
∆(Ai) is the set of probability distributions over Ai. Denote by Σi the
set of strategies for player i, and let Σ =

∏
i∈I Σi, σ = (σ1, . . . , σn) ∈ Σ,

Σ−i =
∏

j 6=i Σj , and σ−i = (σ1, . . . , σi−1, σi+1, . . . , σn) ∈ Σ−i. For a strategy
σi, we denote by σi(ai|ti) the probability that ai ∈ Ai is chosen at ti ∈ Ti.
We write σ(a|t) =

∏
i∈I σi(ai|ti) and σ−i(a−i|t−i) =

∏
j 6=i σj(aj |tj). We also

write σP (a) =
∑

t∈T P (t)σ(a|t). We endow Σ with the topology of uniform
convergence on finite subsets of T .9 The set Σ is convex, and compact with
respect to this topology.

We define σi - σ′i for σi, σ
′
i ∈ Σi by σi(ti) - σ′i(ti) for all ti ∈ Ti; σ - σ′

for σ, σ′ ∈ Σ by σi - σ′i for all i ∈ I; and σ−i - σ′−i for σ−i, σ
′
−i ∈ Σ−i by

σj - σ′j for all j 6= i.
The expected payoff to player i with type ti ∈ Ti playing h ∈ Ai against

strategy profile σ−i is given by

Ui(h, σ−i)(ti) =
∑

t−i∈T−i

P (t−i|ti)ui

(
(h, σ−i(t−i)), (ti, t−i)

)
,

where ui((h, σ−i(t−i)), t) =
∑

a−i∈A−i
σ−i(a−i|t−i)ui((h, a−i), t). Let

BRi : Σ−i × Ti → Ai be defined for each i by

BRi(σ−i)(ti) = arg max{Ui(h, σ−i)(ti) | h ∈ Ai}.

Note that for each i ∈ I, the correspondence BRi is upper semi-continuous
since Ui is continuous.

Definition 3.1. A strategy profile σ ∈ Σ is a Bayesian Nash equilibrium of
(u, P ) if for all i ∈ I, all h ∈ Ai, and all ti ∈ Ti,

σi(h|ti) > 0 ⇒ h ∈ BRi(σ−i)(ti).

Let βi : Σ−i → Σi be player i’s best response correspondence in (u, P ),
defined by

βi(σ−i) =
{
ξi ∈ Σi

∣∣ ∀h ∈ Ai, ∀ ti ∈ Ti :[
ξi(h|ti) > 0 ⇒ h ∈ BRi(σ−i)(ti)

]}
, (3.1)

and β : Σ → Σ be given by β(σ) =
∏

i∈I β
i(σ−i). A Bayesian Nash equi-

librium of (u, P ), σ ∈ Σ, is a fixed point of β, i.e., σ ∈ β(σ). Since β is
nonempty-, convex-, and compact-valued and upper semi-continuous, the

9This topology is metrizable by the metric dµ defined by

dµ(σ, σ′) = sup
t∈T

µ(t)
˛̨
σ(t)− σ′(t)

˛̨
for µ ∈ ∆(T ) such that supp(µ) = T .
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existence of Bayesian Nash equilibria then follows from Kakutani’s fixed
point theorem.

Given g, let T gi
i be the set of types ti such that payoffs of player i of

type ti is given by gi and he knows his payoffs:

T gi
i = {ti ∈ Ti |ui(a, (ti, t−i)) = gi(a)

for all a ∈ A and all t−i ∈ T−i with P (ti, t−i) > 0}.

Denote T g =
∏

i T
gi
i .

Definition 3.2. Let ε ∈ [0, 1]. An incomplete information game (u, P ) is
an ε-elaboration of g if P (T g) = 1− ε.

Following Kajii and Morris (1997), we say that a∗ is robust if, for small
ε > 0, every ε-elaboration of g has a Bayesian Nash equilibrium σ with
σP (a∗) close to 1.

Definition 3.3. Action profile a∗ ∈ A is robust to all elaborations in g if
for every δ > 0, there exists ε̄ > 0 such that for all ε ≤ ε̄, any ε-elaboration
(u, P ) of g has a Bayesian Nash equilibrium σ such that σP (a∗) ≥ 1− δ.

Given P ∈ ∆0(T ), we write for any function f : A→ R

BRi
f (σ−i|Si)(ti) = arg max

h∈Si

∑
t−i∈T−i

P (t−i|ti)f(h, σ−i(t−i)),

where Si ⊂ Ai, σ−i ∈ Σ−i, and ti ∈ Ti. Note that this can be written as

BRi
f (σ−i|Si)(ti) = br i

f (πti
i (σ−i)|Si)

where πti
i (σ−i) ∈ ∆(A−i) is given by

πti
i (σ−i)(a−i) =

∑
t−i∈T−i

P (t−i|ti)σ−i(a−i|t−i).

Thus, if f |Si×A−i is supermodular, then whenever σ−i - σ′−i, we have

minBRi
f (σ−i|Si)(ti) ≤ minBRi

f (σ′−i|Si)(ti),

maxBRi
f (σ−i|Si)(ti) ≤ maxBRi

f (σ′−i|Si)(ti).

3.2 Informational Robustness of Iterated MP-Maximizer

In this subsection, we state and prove our first main result, which shows
that under certain monotonicity conditions, an iterated MP-maximizer is
robust to incomplete information.
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Theorem 3.1. Suppose that g has an iterated MP-maximizer a∗ with as-
sociated intervals (Sk)m

k=0 and monotone potential functions (vk)m
k=1. If for

each k = 1, . . . ,m, gi|Sk−1
i ×A−i

is supermodular for all i ∈ I or vk|Sk−1
i ×A−i

is supermodular for all i ∈ I, then a∗ is robust to all elaborations in g.

Due to Lemma 2.2, we immediately have the following.

Corollary 3.2. Suppose that g has an iterated strict MP-maximizer a∗ with
associated intervals (Sk)m

k=0 and strict monotone potential functions (vk)m
k=1.

If for each k = 1, . . . ,m, gi|Sk−1
i ×A−i

is supermodular for all i ∈ I or vk|Sk−1

is supermodular, then a∗ is robust to all elaborations in g.

Suppose that a∗ is an iterated MP-maximizer of g with monotone po-
tential functions (vk)m

k=1 that are relative to B2η(Sk−1) respectively for
k = 1, . . . ,m, where η > 0 is sufficiently small so that for all i ∈ I and
all k = 1, . . . ,m,

br i
gi

(πi) ∩ Sk
i 6= ∅,

and therefore,
br i

gi
(πi|Sk

i ) ⊂ br i
gi

(πi)

hold for πi ∈ B2η(Sk
−i) (see Lemma 2.3). For each k = 0, 1, . . . ,m and i ∈ I,

write Sk
i = [ak

i , a
k
i ], where 0 = a0

i ≤ a1
i ≤ · · · ≤ am

i = a∗i = am
i ≤ · · · ≤ a1

i ≤
a0

i = ni. We assume without loss of generality that for all k = 1, . . . ,m,
Sk 6= Sk−1, i.e., for some i ∈ I, ak

i 6= ak−1
i or ak

i 6= ak−1
i .

Now, given P ∈ ∆0(T ), define Jk
P : Σ → R for each k = 1, . . . ,m to be

Jk
P (σ) =

∑
t∈T

P (t)vk(σ(t)),

and for any ξ, ζ ∈ Σ such that ξ(t) ∈
∏

i ∆([a0
i , a

k−1
i ]) and ζ(t) ∈∏

i ∆([ak−1
i , a0

i ]) for all t ∈ T , and any simple event T ′ ⊂ T , let

Σk,−
ξ,T ′ = {σ ∈ Σ | ∀ i ∈ I : σi(ti) = ξi(ti) ∀ ti ∈ Ti \ T ′i ,

σi(ti) ∈ ∆([ak−1
i , ak

i ]) ∀ ti ∈ T ′i},

Σk,+
ζ,T ′ = {σ ∈ Σ | ∀ i ∈ I : σi(ti) = ζi(ti) ∀ ti ∈ Ti \ T ′i ,

σi(ti) ∈ ∆([ak
i , a

k−1
i ]) ∀ ti ∈ T ′i}.

Consider the maximization problems:

max Jk
P (σ) s.t. σ ∈ Σk,−

ξ,T ′ , (3.2)

max Jk
P (σ) s.t. σ ∈ Σk,+

ζ,T ′ . (3.3)

Since Jk
P is continuous, and Σk,−

ξ,T ′ and Σk,+
ζ,T ′ are compact, the above maxi-

mization problems admit solutions.
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Lemma 3.3. (1) For each k = 1, . . . ,m and for any P ∈ ∆0(T ), any
simple event T ′ ⊂ T , and any ξ, ζ ∈ Σ such that ξ(t) ∈

∏
i ∆([a0

i , a
k
i ])

and ζ(t) ∈
∏

i ∆([ak
i , a

0
i ]) for all t ∈ T : there exists a solution σk,− to the

maximization problem (3.2) such that

σk,−
i (ti) = minBRi

vk(σk,−
−i |[a

k−1
i , ak

i ])(ti) (3.4)

for all i ∈ I and all ti ∈ T ′i ; and there exists a solution σk,+ to the maxi-
mization problem (3.3) such that

σk,+
i (ti) = maxBRi

vk(σk,+
−i |[a

k
i , a

k−1
i ])(ti) (3.5)

for all i ∈ I and all ti ∈ T ′i .
(2) For each k = 1, . . . ,m, there exists κk > 0 such that for any

P ∈ ∆0(T ), any simple event T ′ ⊂ T , and any ξ, ζ ∈ Σ such that
ξ(t) ∈

∏
i ∆([a0

i , a
k
i ]) and ζ(t) ∈

∏
i ∆([ak

i , a
0
i ]) for all t ∈ T : any solution σ

to the maximization problem (3.2) satisfies

σP (ak) ≥ 1− κkP (T \ T ′);

and any solution σ to the maximization problem (3.3) satisfies

σP (ak) ≥ 1− κkP (T \ T ′).

Proof. (1) We only show the existence of a solution that satisfies (3.4) (the
existence of a solution that satisfies (3.5) is proved similarly). First note
that for each i,∑

t−i∈T−i

P (ti, t−i)vk(σ(ti, t−i))

=
(∑

t′−i∈T−i

P (ti, t′−i)
) ∑

h∈Ai

σi(h|ti)Uk
i (h, σ−i)(ti) (3.6)

for all ti ∈ T ′i , where

Uk
i (h, σ−i)(ti) =

∑
t−i∈T−i

P (t−i|ti) vk
(
(h, σ−i(t−i)), (ti, t−i)

)
.

Therefore, any solution to (3.2), σk, satisfies, for all i ∈ I,

σk
i (h|ti) > 0 ⇒ h ∈ BRi

vk(σk
−i|[ak−1

i , ak
i ])(ti) (3.7)

for all ti ∈ T ′i .
Since Jk

P is continuous on Σk,−
ξ,T ′ , the set of maximizers is a nonempty,

closed, and hence compact, subset of Σk,−
ξ,T ′ . Hence, a minimal optimal solu-

tion (with respect to the order - on Σ) exists by Zorn’s lemma (see Lemma
A.2.2 in OTH (2003)). Let σk,− be such a minimal solution.
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Take any i ∈ I, and consider the strategy σi given by

σi(ti) =

{
ξi(ti) for all ti ∈ Ti \ T ′i
minBRi

vk(σk,−
−i |[a

k−1
i , ak

i ])(ti) for all ti ∈ T ′i .

By the definition of σi together with equation (3.7), we have σi - σk,−
i . On

the other hand, by equation (3.6)

Jk
P (σi, σ

k,−
−i ) ≥ Jk

P (σk,−),

meaning that (σi, σ
k,−
−i ) ∈ Σk,−

ξ,T ′ is also optimal. Hence, the minimality of

σk,− implies that σi(ti) = σk,−
i (ti) for all ti ∈ Ti. Thus, we have (3.4).

(2) Let vk
max = vk(ak) = vk(ak), vk = maxa∈A\[ak,ak] v

k(a), and vk =
mina∈A v

k(a). Note that vk
max > vk ≥ vk. Set κk = (vk

max − vk)/(vk
max −

vk). Then, the same argument in the proof of Theorem 3 in Ui (2001) will
establish the conclusion. Let σ̃ ∈ Σk,−

ξ,T ′ be such that, σ̃(ak|t) = 1 for all
t ∈ T ′. Let σ be any solution to the maximization problem (3.2). Hence we
have

Jk
P (σ) ≥ Jk

P (σ̃) =
∑
t∈T ′

∑
a∈A

P (t)σ̃(a|t)vk(a) +
∑

t∈T\T ′

∑
a∈A

P (t)σ̃(a|t)vk(a)

= P (T ′)vk
max +

∑
t∈T\T ′

∑
a∈A

P (t)σ̃(a|t)vk(a)

≥ P (T ′)vk
max + [1− P (T ′)]vk.

We also have

Jk
P (σ) =

∑
a∈A

[∑
t∈T

P (t)σ(a|t)

]
v(a)

=
∑
a∈A

σP (a)v(a)

= σP (ak)vk
max +

∑
a 6=ak

σP (a)v(a)

≤ σP (ak)vk
max + (1− σP (ak))vk.

Combining the above inequalities, we have:

σP (ak)vk
max + (1− σP (ak))vk ≥ P (T ′)vk

max + [1− P (T ′)]vk

and thus,

σP (ak) ≥ 1− vk
max − vk

vk
max − vk

P (T \ T ′),

as claimed.
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We will need the following lemma, the proof of which mimics that of
Lemma B in Kajii and Morris (1997).

Lemma 3.4. Given any simple event S ⊂ T , let

T ′i = Si ∩ {ti ∈ Ti |P (S−i|ti) ≥ 1− η}

for i ∈ I, and T ′ =
∏

i∈I T
′
i . Then,

1− P (T ′) ≤ γ(1− P (S)),

where γ = 1 +N(1− η)/η > 0.

Proof. Let Bi = {ti ∈ Ti |P (S−i|ti) ≥ 1 − η} and B =
∏

i∈I Bi. By Kajii
and Morris (1997, Lemma A), we have

P (S ∩ (Bc
i × T−i)) ≤

1− η

η
P ((Bc

i × T−i) \ S)

for all i ∈ I. Note then that

P (S \B) ≤
∑
i∈I

P (S ∩ (Bc
i × T−i)) ≤ N

1− η

η
P ((Bc

i′ × T−i′) \ S)

for some i′ ∈ I. We therefore have

1− P (T ′) = P (S \B) + P (T \ S)

≤ N
1− η

η
P ((Bc

i′ × T−i′) \ S) + P (T \ S)

≤ N
1− η

η
P (T \ S) + P (T \ S)

= γP (T \ S),

as claimed.

In the following, we let σ0,−, σ0,+ ∈ Σ be such that σ0,−(t) = a0 and
σ0,+(t) = a0 for all t ∈ T , respectively.

Lemma 3.5. There exist c1, . . . , cm > 0 such that for any P ∈ ∆0(T ) and
any simple event T 0 ⊂ T , there exist σ1,−, . . . , σm,−, σ1,+, . . . , σm,+ ∈ Σ and
simple events T 1, . . . , Tm−1 ⊂ T with T 0 ⊃ T 1 ⊃ · · · ⊃ Tm−1 such that for
each k = 1, . . . ,m,

(∗−k ) for all i ∈ I, σk,−
i (ti) = σk−1,−

i (ti) for all ti ∈ Ti \ T k−1
i ,

σk,−
i (ti) = minBRi

vk(σk,−
−i |[a

k−1
i , ak

i ])(ti) for all ti ∈ T k−1
i (3.8)

and∑
t−i∈T−i

P (t−i|ti)σk,−
−i ([ak−1

−i , a
∗
−i]|t−i) ≥ 1−η for all ti ∈ T k−1

i , (3.9)

and σk,−
P (ak) ≥ 1− ckP (T \ T 0).
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and

(∗+
k ) for all i ∈ I, σk,+

i (t) = σk−1,+
i (t) for all ti ∈ Ti \ T k−1

i ,

σk,+
i (ti) = maxBRi

vk(σk,+
−i |[a

k
i , a

k−1
i ])(ti) for all ti ∈ T k−1

i (3.10)

and ∑
t−i∈T−i

P (t−i|ti)σk,+
−i ([a∗−i, a

k−1
−i ]|t−i) ≥ 1− η for all ti ∈ T k−1

i ,

(3.11)
and σk,+

P (ak) ≥ 1− ckP (T \ T 0).

Proof. Let κ1, . . . , κm > 0 be as in Lemma 3.3(2) and γ as in Lemma 3.4.
Set ck = (2γ)k−1κ1 · · ·κk for k = 1, . . . ,m. Fix any P ∈ ∆0(T ) and any
simple event T 0 ⊂ T . First, by Lemma 3.3 for (3.2) and (3.3) with k = 1,
ξ = σ0,−, ζ = σ0,+, and T ′ = T 0, we have σ1,− and σ1,+ that satisfy (∗−1 )
and (∗+

1 ), respectively.
Next, for k ≥ 2 assume that there exist T 1, . . . , T k−2, σ1,−, . . . , σk−1,−,

and σ1,+, . . . , σk−1,+ that satisfy (∗−1 ), . . . , (∗−k−1) and (∗+
1 ), . . . , (∗+

k−1), re-
spectively. We can assume that there is no redundancy in T 1, . . . , T k−2 (if
k ≥ 3); i.e., for all ` = 2, . . . , k − 1, if a`

i = a`−1
i and a`

i = a`−1
i , then

T `−1
i = T `−2

i . Let

Sk−1
i = T k−2

i ∩ {ti ∈ Ti | σk−1,−
i (ti) = ak−1

i and σk−1,+
i (ti) = ak−1

i }

for each i ∈ I, and Sk−1 =
∏

i∈I S
k−1
i . Let also

T k−1
i = Sk−1

i ∩ {ti ∈ Ti |P (Sk−1
−i |ti) ≥ 1− η} (3.12)

for each i ∈ I, and T k−1 =
∏

i∈I T
k−1
i . Note that T k−1 ⊂ T k−2.

Now consider the maximization problems (3.2) and (3.3) with ξ =
σk−1,−, ζ = σk−1,+, and T ′ = T k−1. Then by Lemma 3.3, we have σk,−

and σk,+ that satisfy (3.8) and (3.10), and σk,−
P (ak) ≥ 1 − κkP (T \ T k−1)

and σk,+
P (ak) ≥ 1−κkP (T \T k−1), respectively. Since σk,−

−i ([ak−1
−i , a

∗
−i]|t−i) =

σk,+
−i ([a∗−i, a

k−1
−i ]|t−i) = 1 for all t−i ∈ Sk−1

−i (by the definition of Sk−1
−i and

the maximization problems), it follows that∑
t−i∈T−i

P (t−i|ti)σk,−
−i ([ak−1

−i , a
∗
−i]|t−i)

≥
∑

t−i∈Sk−1
−i

P (t−i|ti)σk,−
−i ([ak−1

−i , a
∗
−i]|t−i) = P (Sk−1

−i |ti) ≥ 1− η

for all i ∈ I and all ti ∈ T k−1
i , where the last inequality follows from the

definition of T k−1
i , (3.12). This means that σk,− satisfies (3.9). Note that
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since σk−1,− and σk−1,+ are pure strategies, σk−1,−
P (ak−1) = P ({t ∈ T |

σk−1,−(t) = ak−1}) and σk−1,+
P (ak−1) = P ({t ∈ T | σk−1,+(t) = ak−1}).

Since, by the no-redundancy assumption, for all t ∈ T \ T k−2, there exists
an i ∈ I such that σk−1,−

i (ti) < ak−1
i or σk−1,+

i (ti) > ak−1
i , it follows that

Sk−1 = {t ∈ T | σk−1,−(t) = ak−1 and σk−1,+(t) = ak−1}. Hence,

P (T \ Sk−1) ≤ P (T \ {t ∈ T | σk−1,−(t) = ak−1})
+ P (T \ {t ∈ T | σk−1,+(t) = ak−1})

=
(
1− σk−1,−

P (ak−1)
)

+
(
1− σk−1,+

P (ak−1)
)

≤ 2ck−1P (T \ T 0). (3.13)

Thus, we have

σk,−
P (ak) ≥ 1− κkP (T \ T k−1) ≥ 1− κk × γP (T \ Sk−1)

≥ 1− κkγ × 2ck−1P (T \ T 0) = 1− ckP (T \ T 0),

where the first inequality follows from Lemma 3.3, the second inequality
follows from Lemma 3.4, and the third inequality follows from (3.13). The
same argument applies to σk,+.

Lemma 3.6. For every δ > 0, there exists ε̄ > 0 such that for any ε-
elaboration (u, P ) with ε ≤ ε̄, there exist σ−, σ+ ∈ Σ and simple events
T 1, . . . , Tm−1 ⊂ T with T g = T 0 ⊃ T 1 ⊃ · · · ⊃ Tm−1 ⊃ Tm = ∅ such that

(∗−) for all i ∈ I, σ−i (ti) = a0
i for all ti ∈ Ti \ T gi

i ,

σ−i (ti) = minBRi
vk(σ−−i|[a

k−1
i , ak

i ])(ti) for all ti ∈ T k−1
i \ T k

i (3.14)

and∑
t−i∈T−i

P (t−i|ti)σ−−i([a
k−1
−i , a

∗
−i]|t−i) ≥ 1− η for all ti ∈ T k−1

i (3.15)

for each k = 1, . . . ,m, and σ−P (a∗) ≥ 1− δ,

and

(∗+) for all i ∈ I, σ+
i (ti) = a0

i for all ti ∈ Ti \ T gi
i ,

σ+
i (ti) = maxBRi

vk(σ+
−i|[a

k
i , a

k−1
i ])(ti) for all ti ∈ T k−1

i \ T k
i (3.16)

and∑
t−i∈T−i

P (t−i|ti)σ+
−i([a

∗
−i, a

k−1
−i ]|t−i) ≥ 1− η for all ti ∈ T k−1

i (3.17)

for each k = 1, . . . ,m, and σ+
P (a∗) ≥ 1− δ.
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Proof. Take c1, . . . , cm > 0 as in Lemma 3.5. Given any δ > 0, let ε̄ =
δ/cm. Fix any ε-elaboration (u, P ) of g with ε ≤ ε̄, and let T 0 = T g.
Then take σ0,−, . . . , σm,− and σ0,+, . . . , σm,+ that satisfy (∗−k ) and (∗+

k ) for
k = 1, . . . ,m, respectively, with T 1, . . . , Tm−1 ⊂ T . Set σ− = σm,− and
σ+ = σm,+. We only verify that σ− satisfies (∗−).

By construction, we have (3.15) for each k = 1, . . . ,m. We also have
σ−P (a∗) ≥ 1− δ by (∗−m).

Consider any k = 1, . . . ,m− 1. Note from (3.12) that∑
t−i∈T−i

P (t−i|ti)σk,−
−i (ak

−i|t−i) ≥ 1− η,

for all ti ∈ T k
i . It follows by the choice of η that for all i ∈ I,

σk,−
i (ti) = minBRi

vk(σk,−
−i |[a

k−1
i , ak

i ])(ti) = ak
i

for all ti ∈ T k
i (⊂ T k−1

i ), so that σk,−(t) = ak and hence σ−(t) ∈ [ak, a∗]
for all t ∈ T k. Note also that σ−(t) = σk,−(t) for all t ∈ T \ T k. Since
vk(a) = vk(a′) for all a, a′ ∈ [ak, ak], it follows that for all i ∈ I and all
ti ∈ T k−1

i , BRi
vk(σ−−i|[a

k−1
i , ak

i ])(ti) = BRi
vk(σk,−

−i |[a
k−1
i , ak

i ])(ti). Therefore,
for all i ∈ I and all ti ∈ T k−1

i \ T k
i ,

σ−−i(ti) = σk,−
−i (ti) = minBRi

vk(σk,−
−i |[a

k−1
i , ak

i ])(ti)

= minBRi
vk(σ−−i|[a

k−1
i , ak

i ])(ti),

which means that σ− satisfies (3.14).

Proof of Theorem 3.1. Suppose that vk’s are monotone potential functions
for a∗ relative to B2η([ak−1, ak−1]). Let δ > 0 be given Take ε̄ as in
Lemma 3.6. Fix any ε-elaboration (u, P ) with ε ≤ ε̄, and take σ−, σ+,
and T 0, T 1, . . . , Tm that satisfy (∗−) and (∗+), respectively. Let Σ̃ = {σ ∈
Σ | σ− - σ - σ+}. We will show that β̃(σ) = β(σ) ∩ Σ̃ is nonempty for
any σ ∈ Σ̃, where β is the best response correspondence of (u, P ) defined
in (3.1). Then, since Σ̃ is convex and compact, it follows from Kakutani’s
fixed point theorem that the nonempty-, convex-, and compact-valued upper
semi-continuous correspondence β has a fixed point σ∗ ∈ β̃(σ∗) ⊂ Σ̃, which
is a Bayesian Nash equilibrium of (u, P ) and satisfies σ− - σ∗ - σ+. Since
both σ− and σ+ satisfy σ−P (a∗) ≥ 1− δ and σ+

P (a∗) ≥ 1− δ, respectively, σ∗

satisfies σ∗P (a∗) ≥ 1− 2δ.
Take any σ ∈ Σ̃. For ti ∈ Ti \ T 0

i , BRi
gi

(σ)(ti) ⊂ [σ−i (ti), σ+
i (ti)] holds.

Consider any k = 1, . . . ,m. Note that∑
t−i∈T−i

P (t−i|ti)σ−i([ak−1
−i , a

k−1
−i ]|t−i) ≥ 1− 2η

for all i ∈ I and all ti ∈ T k−1
i .
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Suppose first that gi|[ak−1
i ,ak−1

i ]×A−i
are supermodular for all i ∈ I. Then,

for all i ∈ I,

minBRi
vk(σ−−i|[a

k−1
i , ak

i ])(ti) ≤ maxBRi
gi

(σ−−i|[a
k−1
i , ak

i ])(ti)

≤ maxBRi
gi

(σ−i|[ak−1
i , ak

i ])(ti)

for all ti ∈ T k−1
i \ T k

i , where the second inequality follows from
the assumption that vk is a monotone potential function relative to
B2η([ak−1, ak−1]), and the third inequality follows from the supermodularity
of gi|[ak−1

i ,ak−1
i ]×A−i

. Similarly, for all i ∈ I,

maxBRi
vk(σ+

−i|[a
k
i , a

k−1
i ])(ti) ≥ minBRi

gi
(σ+
−i|[a

k
i , a

k−1
i ])(ti)

≥ minBRi
gi

(σ−i|[ak
i , a

k−1
i ])(ti)

for all ti ∈ T k−1
i \ T k

i .
Suppose next that vk|[ak−1

i ,ak−1
i ]×A−i

are supermodular for all i ∈ I.
Then, for all i ∈ I,

minBRi
vk(σ−|[ak−1

i , ak
i ])(ti) ≤ minBRi

vk(σ|[ak−1
i , ak

i ])(ti)

≤ maxBRi
gi

(σ|[ak−1
i , ak

i ])(ti)

for all ti ∈ T k−1
i \ T k

i , where the second inequality follows from the su-
permodularity of vk|[ak−1

i ,ak−1
i ]×A−i

, and the third inequality follows from

the assumption that vk is a monotone potential function relative to
B2η([ak−1, ak−1]). Similarly, for all i ∈ I,

maxBRi
vk(σ+|[ak

i , a
k−1
i ])(ti) ≥ maxBRi

vk(σ|[ak
i , a

k−1
i ])(ti)

≥ minBRi
gi

(σ|[ak
i , a

k−1
i ])(ti)

for all ti ∈ T k−1
i \ T k

i .
Therefore, in each case, we have for all ti ∈ T k−1

i \ T k
i ,

maxBRi
gi

(σ|[ak−1
i , ak

i ])(ti) ≥ minBRi
vk(σ−|[ak−1

i , ak
i ])(ti),

minBRi
gi

(σ|[ak
i , a

k−1
i ])(ti) ≤ maxBRi

vk(σ+|[ak
i , a

k−1
i ])(ti).

Since ∑
t−i∈T−i

P (t−i|ti)σ−i([ak−1
−i , a

k−1
−i ]|t−i) ≥ 1− 2η

for all i ∈ I and all ti ∈ T k−1
i and hence

BRi
gi

(σ)(ti) ∩ [ak−1
i , ak−1

i ] 6= ∅

by the choice of η, it follows that

BRi
gi

(σ)(ti)

∩
[
minBRi

vk(σ−|[ak−1
i , ak

i ])(ti),maxBRi
vk(σ+|[ak

i , a
k−1
i ])(ti)

]
6= ∅.

This implies the nonemptiness of β̃(σ).
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By Proposition 2.4, we immediately have the following.

Corollary 3.7. If a∗ is an iterated strict p-dominant equilibrium of g with∑
i∈I pi < 1, then a∗ is robust to all elaborations in g.

3.3 Uniqueness of Robust Equilibrium and Iterated p-
Dominance

Our first theorem, together with our results provided in Subsection 2.3,
shows that an iterated p-dominant equilibrium with low p is actually robust
to incomplete information. In this subsection, we prove a stronger result:
when an iterated strict p-dominant equilibrium with low p exists, it is the
unique robust equilibrium.

Proposition 3.8. An iterated strict p-dominant equilibrium of g with∑
i∈I pi < 1 is the unique robust equilibrium in g.

This proposition is a corollary to the following lemma.

Lemma 3.9. Suppose that a∗ is an iterated strict p-dominant equilibrium
of g with

∑
i∈I pi ≤ 1. Then, for all ε > 0, there exists an ε-elaboration

where the strategy profile σ∗ such that σ∗(t) = a∗ for all t ∈ T is the unique
Bayesian Nash equilibrium.

Proof. Let a∗ be an iterated strict p-dominant equilibrium with
∑

i∈I pi ≤ 1
and (S0, . . . , Sm) an associated sequence. Let qi = (pi/

∑
j∈I pj) ≥ pi for

each i ∈ I (we can assume without loss of generality that pi > 0 for all
i). Note that

∑
i∈I qi = 1. Now let Ti = Z+ = {0, 1, 2, . . .} for each i ∈ I.

For each ε > 0, we construct an ε-elaboration (u, P ε) as follows. Define
P ε ∈ ∆0(T ) by

P ε(t1, . . . , tN ) =

{
ε(1− ε)τqi if ti = τ + 1 and tj = τ for all j 6= i,
0 otherwise,

and ui : A× T → R for each i ∈ I by

ui(a; t) =


gi(a) if ti 6= 0,
1 if ti = 0 and ai = a∗i ,
0 if ti = 0 and ai 6= a∗i .

Fix any ε > 0, and let us now study the set of Bayesian Nash equilibria of
(u, P ε).

Consider the sequence of modified incomplete information games
{(u|Sk , P ε)}m−1

k=0 where in (u|Sk , P ε), the set of actions available to player
i ∈ I is Sk

i and player i’s payoff function ui|Sk
i
: Sk × T → R is given by
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the restriction of ui to Sk × T . We want to show that any Bayesian Nash
equilibrium of (u, P ε), σ∗, satisfies σ∗(t) = a∗ for all t ∈ T .

First note that if σ∗ is a Bayesian Nash equilibrium of (u, P ε) such
that for k = 0, . . . ,m − 1, supp(σ∗(t)) ⊂ Sk for all t ∈ T , then σ∗ is an
equilibrium of (u|Sk , P ε). It is therefore sufficient to show that for each
k = 0, . . . ,m− 1, any Bayesian Nash equilibrium σ∗ of (u|Sk−1 , P ε) is such
that supp(σ∗(t)) ⊂ Sk for all t ∈ T . We proceed by induction.

Let σ∗ be a Bayesian Nash equilibrium of (u|Sk−1 , P ε). We show that
for all i ∈ I,

∑
ai∈Sk

i
σ∗i (ai|τ) = 1 for all τ ≥ 0. By construction, for all

i ∈ I,
∑

ai∈Sk
i
σ∗i (ai|0) = 1. Our inductive hypothesis is that for all i ∈ I,∑

ai∈Sk
i
σ∗i (ai|τ) = 1. Take any i ∈ I and consider the type ti = τ + 1. By

construction of the type space, we have

P ε((t1, . . . , ti−1, ti+1, . . . tN )|τ + 1) =
ε(1− ε)τqi

ε(1− ε)τqi +
∑

j 6=i ε(1− ε)τ+1qj

> qi ≥ pi

if tj = τ for all j 6= i. Thus by the inductive hypothesis, each agent i assigns
a probability strictly above pi to the other players playing actions in Sk

−i.
But since Sk is a strict p-best response set of g|Sk−1 and since τ + 1 ∈ T ui

i ,
this implies that

∑
ai∈Sk

i
σ∗i (ai|τ + 1) = 1. Thus our inductive hypothesis

holds for τ + 1.

Proof of Proposition 3.8. If a∗ is an iterated strict p-dominant equilibrium
with

∑
i∈I pi < 1, then it is an iterated MP-maximizer with supermodular

monotone potential functions by Proposition 2.4 and hence is robust to all
elaborations by Theorem 3.1. But by Lemma 3.9, no action profile other
than a∗ is played in any robust equilibrium.

4 Stability under Perfect Foresight Dynamics

4.1 Perfect Foresight Paths and Stability Concepts

Given the game g, we consider the following dynamic societal game. Society
consists of N continua of agents, one for each role in g. In each population,
agents are identical and anonymous. At each point in time, one agent is
selected randomly from each population and matched to form an N -tuple
and play g. Agents cannot switch actions at every point in time. Instead,
every agent must make a commitment to a particular action for a random
time interval. Time instants at which each agent can switch actions follow a
Poisson process with the arrival rate λ > 0. The processes are independent
across agents. We choose without loss of generality the unit of time in such
a way that λ = 1.

The action distribution in population i ∈ I at time t ∈ R+ is denoted by
φi(t) = (φih(t))h∈Ai

∈ ∆(Ai), where φih(t) is the fraction of agents who are
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committing to action h ∈ Ai at time t. Let φ(t) = (φi(t))i∈I ∈
∏

i∈I ∆(Ai)
and φ−i(t) = (φj(t))j 6=i ∈

∏
j 6=i ∆(Aj). Due to the assumption that the

switching times follow independent Poisson processes with arrival rate λ = 1,
φih(·) is Lipschitz continuous with Lipschitz constant 1, which implies in
particular that it is differentiable at almost all t ≥ 0.

Definition 4.1. A path φ : R+ →
∏

i∈I ∆(Ai) is said to be feasible if it is
Lipschitz continuous, and for all i ∈ I and almost all t ≥ 0, there exists
αi(t) ∈ ∆(Ai) such that

φ̇i(t) = αi(t)− φi(t). (4.1)

Denote by Φi the set of feasible paths for population i, and let Φ =∏
i∈I Φi and Φ−i =

∏
j 6=i Φ

j . For x ∈
∏

i∈I ∆(Ai), the set of feasible paths
starting from x is denoted by Φx =

∏
i Φ

i
x. We endow Φx with the topology

of uniform convergence on compact intervals.10 The set Φx is convex, and
compact with respect to this topology.

We define φi - ψi for φi, ψi ∈ Φi by φi(t) - ψi(t) for all t ≥ 0; φ - ψ
for φ, ψ ∈ Φ by φi - ψi for all i ∈ I; and φ−i - ψ−i for φ−i, ψ−i ∈ Φ−i by
φj - ψj for all j 6= i. Note that if φ(0) - ψ(0) and φ̇(t)+φ(t) - ψ̇(t)+ψ(t)
for almost all t ≥ 0, then φ - ψ.

A revising agent in population i anticipates the future evolution of the
action distribution, and commits to an action that maximizes his expected
discounted payoff. The expected discounted payoff of committing to action
h ∈ Ai at time t with a given anticipated path φ−i ∈ Φ−i is given by

Vih(φ−i)(t) = (1 + θ)
∫ ∞

0

∫ t+s

t
e−θ(z−t)gi(h, φ−i(z)) dz e−sds

= (1 + θ)
∫ ∞

t
e−(1+θ)(s−t)gi(h, φ−i(s)) ds,

where θ > 0 is a common discount rate. Following Matsui and Matsuyama
(1995), we view θ/λ = θ as the degree of friction.

Let BRi
gi

: Φ−i × R+ → Ai be defined for each i by

BRi
gi

(φ−i)(t) = arg max{Vih(φ−i)(t) | h ∈ Ai}.

Note that for each i ∈ I, the correspondence BRi
gi

is upper semi-continuous
since Vi is continuous.

10This topology is metrizable by the metric dr defined by

dr(φ, φ′) = sup
t≥0

e−rt
˛̨
φ(t)− φ′(t)

˛̨
for r > 0.
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Definition 4.2. A feasible path φ is said to be a perfect foresight path in g
if for all i ∈ I, all h ∈ Ai, and almost all t ≥ 0,

φ̇ih(t) > −φih(t) ⇒ h ∈ BRi
gi

(φ−i)(t).

Let βi
x : Φ−i

x → Φi
x be defined by

βi
x(φ−i) = {ψi ∈ Φi

x | ψ̇ih(t) > −ψih(t) ⇒ h ∈ BRi
gi

(φ−i)(t) a.e.}, (4.2)

and βx : Φx → Φx be given by βx(φ) =
∏

i β
i
x(φ−i). A perfect foresight path

φ with φ(0) = x is a fixed point of βx : Φx → Φx, i.e., φ ∈ βx(φ). Verify that
βx is nonempty-, convex-, and compact-valued and upper semi-continuous
(see, e.g., OTH (2003, Remark 2.1)). The existence of perfect foresight paths
then follows from Kakutani’s fixed point theorem.

Following Matsui and Matsuyama (1995) and OTH (2003), we employ
the following stability concepts.

Definition 4.3. (a) a∗ ∈ A is globally accessible in g if for any x ∈
∏

i ∆(Ai),
there exists a perfect foresight path from x that converges to a∗.

(b) a∗ ∈ A is absorbing in g if there exists ε > 0 such that any perfect
foresight path from any x ∈ Bε(a∗) converges to a∗.

(c) a∗ ∈ A is linearly absorbing in g if there exists ε > 0 such that for
any x ∈ Bε(a∗), the linear path to a∗ is a unique perfect foresight path from
x.

Given θ > 0, we write for any function f : A→ R

BRi
f (φ−i|Si)(t) = (1 + θ)

∫ ∞

t
e−(1+θ)(s−t)f(h, φ−i(s)) ds, ,

where Si ⊂ Ai, φ−i ∈ Φ−i, and t ≥ 0. Note that this can be written as

BRi
f (φ−i|Si)(t) = br i

f (πti
i (φ−i)|Si)

where πti
i (φ−i) ∈ ∆(A−i) is given by

πti
i (φ−i)(a−i) = (1 + θ)

∫ ∞

t
e−(1+θ)(s−t)

(∏
j 6=i

φjaj (s)
)
ds.

Thus, if f |Si×A−i is supermodular, then whenever φ−i - φ′−i, we have

minBRi
f (φ−i|Si)(t) ≤ minBRi

f (φ′−i|Si)(t),

maxBRi
f (φ−i|Si)(t) ≤ maxBRi

f (φ′−i|Si)(t).
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4.2 Global Accessibility of Iterated MP-Maximizer

In this subsection, we move to our second main result. We show that un-
der the same monotonicity conditions as in the incomplete information case,
an iterated MP-maximizer is selected by the perfect foresight dynamics ap-
proach.

In addition, as will become clear, by exploiting the similarity between the
mathematical structures of incomplete information elaborations and perfect
foresight dynamics, we provide a proof of this result that is strongly related
to the proof of our first main result.

Theorem 4.1. Suppose that g has an iterated MP-maximizer a∗ with as-
sociated intervals (Sk)m

k=0 and monotone potential functions (vk)m
k=1. If for

each k = 1, . . . ,m, gi|Sk−1
i ×A−i

is supermodular for all i ∈ I or vk|Sk−1
i ×A−i

is supermodular for all i ∈ I, then there exists θ̄ > 0 such that a∗ is globally
accessible in g for all θ ∈ (0, θ̄).

Due to Lemma 2.2, we immediately have the following.

Corollary 4.2. Suppose that g has an iterated strict MP-maximizer a∗ with
associated intervals (Sk)m

k=0 and strict monotone potential functions (vk)m
k=1.

If for each k = 1, . . . ,m, gi|Sk−1
i ×A−i

is supermodular for all i ∈ I or vk|Sk−1

is supermodular, then there exists θ̄ > 0 such that a∗ is globally accessible in
g for all θ ∈ (0, θ̄).

Suppose that a∗ is an iterated MP-maximizer of g with monotone po-
tential functions (vk)m

k=1 that are relative to Bη(Sk−1) respectively for
k = 1, . . . ,m, where η > 0 is sufficiently small so that for all i ∈ I and
all k = 1, . . . ,m,

br i
gi

(πi) ∩ Sk
i 6= ∅,

and therefore,
br i

gi
(πi|Sk

i ) ⊂ br i
gi

(πi)

hold for πi ∈ Bη(Sk
−i) (see Lemma 2.3). For each k = 0, 1, . . . ,m and i ∈ I,

write Sk
i = [ak

i , a
k
i ], where 0 = a0

i ≤ a1
i ≤ · · · ≤ am

i = a∗i = am
i ≤ · · · ≤ a1

i ≤
a0

i = ni.
For each k = 1, . . . ,m, define Jk

θ : Φ → R to be

Jk
θ (φ) =

∫ ∞

0
θe−θtvk(φ(t)) dt,

and for any x ∈
∏

i ∆([a0
i , a

k−1
i ]) and y ∈

∏
i ∆([ak−1

i , a0
i ]), let

Φk,−
x = {φ ∈ Φ |φ(0) = x,

φ̇i(t) + φi(t) ∈ ∆([ak−1
i , ak

i ]) ∀ i ∈ I, a.a. t ≥ 0},
Φk,+

y = {φ ∈ Φ |φ(0) = y,

φ̇i(t) + φi(t) ∈ ∆([ak
i , a

k−1
i ]) ∀ i ∈ I, a.a. t ≥ 0}.
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Consider the maximization problems:

max Jk
θ (φ) s.t. φ ∈ Φk,−

x , (4.3)

max Jk
θ (φ) s.t. φ ∈ Φk,+

y . (4.4)

Since Jk
θ is continuous, and Φk,−

x and Φk,+
y are compact, the above maxi-

mization problems admit solutions.

Lemma 4.3. (1) For each k = 1, . . . ,m, and for any θ > 0 and any
x ∈

∏
i ∆([a0

i , a
k
i ]) and y ∈

∏
i ∆([ak

i , a
0
i ]): there exists a solution to the

maximization problem (4.3), φk,−, such that

φ̇k,−
i (t) = minBRi

vk(φk,−
−i |[a

k−1
i , ak

i ])(t)− φk,−
i (t) (4.5)

for all i ∈ I and almost all t ≥ 0; there exists a solution to the maximization
problem (4.4), φk,+, such that

φ̇k,+
i (t) = minBRi

vk(φk,+
−i |[a

k−1
i , ak

i ])(t)− φk,+
i (t) (4.6)

for all i ∈ I and almost all t ≥ 0.
(2) For each k = 1, . . . ,m, there exists θ̄k > 0 such that for any θ ∈

(0, θ̄k) and any x ∈
∏

i ∆([a0
i , a

k
i ]) (y ∈

∏
i ∆([ak

i , a
0
i ]), resp.), any solution

to the maximization problem (4.3) ( (4.4), resp.) converges to ak (ak, resp.).

Proof. (1) We only show the existence of a solution that satisfies (4.5) (the
existence of a solution that satisfies (4.6) is proved similarly). First note
that for each i ∈ I,

(1 + θ)e−θtvk(φ(t)) =
∑
h∈Ai

etφih(t)
d

dt

(
−e−(1+θ)tV k

ih(φ−i)(t)
)

=
d

dt

(
−e−θt

∑
h∈Ai

φih(t)V k
ih(φ−i)(t)

)
+ e−θt

∑
h∈Ai

(
φ̇ih(t) + φih(t)

)
V k

ih(φ−i)(t)

for almost all t ≥ 0, where

V k
ih(φ−i)(t) = (1 + θ)

∫ ∞

t
e−(1+θ)(s−t)vk(h, φ−i(s)) ds.

Therefore, any solution to (4.3), φk, satisfies

φ̇k
ih(t) > −φk

ih ⇒ h ∈ BRi
vk(φk

−i|[ak−1
i , ak

i ])(t) (4.7)

for all i ∈ I and almost all t ≥ 0. It then follows from Lemma A.1.3 in
OTH (2003) that there exists a feasible path φk,−

i that satisfies (4.5).
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(2) We show that there exists θ̄k > 0 such that for any θ ∈ (0, θ̄k), any
solution to (4.3) ((4.4), resp.) approaches arbitrarily close to ak (ak, resp.).
Here, θ̄k can be taken independently of x and y. Then, by following the
proofs of Lemmas 3 and 4 in HS (1999) (see also Theorem 4.1 in HS (2002))
for the potential game v|[a0,ak], one can show that once any feasible path
that satisfies (4.7) gets close enough to the potential maximizer ak, it must
converge to ak. A dual argument applies to solutions to (4.4)

Let vk
max = vk(ak) = vk(ak), vk = maxa∈A\[ak,ak] v

k(a), and vk =
mina∈A v

k(a). Note that vk
max > vk ≥ vk. Let φ be any solution to

(4.3), and ψ the linear path from x to ak: i.e., for all i ∈ I and t ≥ 0,
ψih(t) = 1 − (1 − xih)e−t if h = ak

i and ψih(t) = xihe
−t otherwise. Denote

φ(a|t) =
∏

i∈I φiai(t) and ψ(a|t) =
∏

i∈I ψiai(t). We first have

Jk
θ (φ) ≥ Jk

θ (ψ)

=
∫ ∞

0
θe−θtψ(ak|t) dt vk

max +
∑
a 6=ak

∫ ∞

0
θe−θtψ(a|t) dt vk(a)

≥
∫ ∞

0
θe−θtψ(ak|t) dt vk

max +
[
1−

∫ ∞

0
θe−θtψ(ak|t) dt

]
vk

= vk
max −

[
1−

∫ ∞

0
θe−θt

∏
i∈I

{
1−

(
1− xiak

i

)
e−t

}
dt

] (
vk
max − vk

)
≥ vk

max −
[
1−

∫ ∞

0
θe−θt

(
1− e−t

)N
dt

](
vk
max − vk

)
.

We also have

Jk
θ (φ) =

∫ ∞

0
θe−θtφ(ak|t) dt vk

max +
∑
a 6=ak

∫ ∞

0
θe−θtφ(a|t) dt vk(a)

≤
∫ ∞

0
θe−θtφ(ak|t) dt vk

max +
[
1−

∫ ∞

0
θe−θtφ(ak|t) dt

]
vk.

Combining these inequalities, we have∫ ∞

0
θe−θtφ(ak|t) dt ≥ 1− vk

max − vk

vk
max − vk

[
1−

∫ ∞

0
θe−θt

(
1− e−t

)N
dt

]
.

The integral in the right hand side converges to one as θ goes to zero.
Therefore, given δ > 0 we have θk

> 0 such that for all θ ∈ (0, θk),∫ ∞

0
θe−θtφ(ak|t) dt ≥ 1− δ,

which implies that there exists t ≥ 0 such that φ(ak|t) ≥ 1 − δ, and hence,
φiak

i
(t) ≥ 1− δ for all i ∈ I.
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In the following, we set T 0 = 0, and φ0,− and φ0,+ to be such that
φ0,−(t) = a0 and φ0,+(t) = a0 for all t ≥ 0, respectively.

Lemma 4.4. There exists θ̄ > 0 such that for any θ ∈ (0, θ̄), there exist
T 1, . . . , Tm−1 with T 1 ≤ · · · ≤ Tm−1 <∞ and feasible paths φ1,−, . . . , φm,−

and φ1,+, . . . , φm,+ such that for each k = 1, . . . ,m,

(∗−k ) φk,−(t) = φk−1,−(t) for all t ∈ [0, T k−1], φk,−(T k−1) ∈ Bη(ak−1),

φ̇k,−
i (t) = minBRi

vk(φk,−
−i |[a

k−1
i , ak

i ])(t)− φk,−
i (t)

for all i ∈ I and almost all t ∈ [T k−1,∞), and limt→∞ φk,−(t) = ak,

and

(∗+
k ) φk,+(t) = φk−1,+(t) for all t ∈ [0, T k−1], φk,+(T k−1) ∈ Bη(ak−1),

φ̇k,+
i (t) = maxBRi

vk(φk,+
−i |[a

k
i , a

k−1
i ])(t)− φk,+

i (t)

for all i ∈ I and almost all t ∈ [T k−1,∞), and limt→∞ φk,+(t) = ak.

Proof. Take θ̄1, . . . , θ̄m as in Lemma 4.3, and set θ̄ = min{θ̄1, . . . , θ̄m}. Fix
any θ ∈ (0, θ̄). First, by Lemma 4.3 for (4.3) and (4.4) with k = 1, x = a0,
and y = a0, we have feasible paths φ1,− and φ1,+ that satisfy (∗−1 ) and (∗+

1 ),
respectively.

Next, for k ≥ 2 assume that there exist T 0, . . . , T k−2, φ1,−, . . . , φk−1,−,
and φ1,+, . . . , φk−1,+ that satisfy (∗−1 ), . . . , (∗−k−1) and (∗+

1 ), . . . , (∗+
k−1). Let

T k−1 ≥ T k−2 be such that φk−1,−(t) ∈ Bη(ak−1) and φk−1,+(t) ∈ Bη(ak−1)
for all t ≥ T k−1. Then, consider the maximization problems:

max Jk
θ (φ) s.t. φ ∈ Φk,−

T k−1 , (4.8)

max Jk
θ (φ) s.t. φ ∈ Φk,+

T k−1 , (4.9)

where

Φk,−
T k−1 = {φ ∈ Φ |φ(t) = φk−1,−(t) ∀ t ∈ [0, T k−1],

φ̇i(t) + φi(t) ∈ ∆([ak−1
i , ak

i ]) ∀ i ∈ I, a.a. t ∈ [T k−1,∞)},

Φk,+
T k−1 = {φ ∈ Φ |φ(t) = φk−1,+(t) ∀ t ∈ [0, T k−1],

φ̇i(t) + φi(t) ∈ ∆([ak
i , a

k−1
i ]) ∀ i ∈ I, a.a. t ∈ [T k−1,∞)}.

Observe that (4.8) and (4.9) are equivalent to (4.3) with x = φk−1,−(T k−1)
and (4.4) with y = φk−1,+(T k−1), respectively. Therefore, by Lemma 4.3 we
have feasible paths φk,− and φk,+ that satisfy (∗−k ) and (∗+

k ), respectively.

Let Tm = ∞.
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Lemma 4.5. There exists θ̄ > 0 such that for any θ ∈ (0, θ̄), there exist
T 1, . . . , Tm−1 with T 1 ≤ · · · < Tm−1 ≤ ∞ and feasible paths φ− and φ+

such that

(∗−) φ−(0) = a0, limt→∞ φ−(t) = a∗, and for each k = 1, . . . ,m, φ−(t) ∈
Bη([ak−1, a∗]) for all t ∈ [T k−1,∞) and

φ̇−i (t) = minBRi
vk(φ−−i|[a

k−1
i , ak

i ])(t)− φ−i (t)

for all i ∈ I and almost all t ∈ [T k−1, T k),

and

(∗+) φ+(0) = a0, limt→∞ φ+(t) = a∗, and for each k = 1, . . . ,m, φ+(t) ∈
Bη([a∗, ak−1]) for all t ∈ [T k−1,∞) and

φ̇+
i (t) = maxBRi

vk(φ+
−i|[a

k
i , a

k−1
i ])(t)− φ+

i (t)

for all i ∈ I and almost all t ∈ [T k−1, T k).

Proof. Take θ̄ as in Lemma 4.4. Fix any θ ∈ (0, θ̄), and let φ1,−, . . . , φm,−,
and φ1,+, . . . , φm,+ satisfy (∗−k ) and (∗+

k ) for k = 1, . . . ,m, respectively. Set
φ− = φm,− and φ+ = φm,+. We only verify that φ− satisfies (∗−).

For each k = 1, . . . ,m, we have φ−i (t) ∈ Bη([ak−1
i , a∗i ]) for all i ∈ I and

all t ≥ T k−1. We also have limt→∞ φ−(t) = a∗. Observe that T k’s can
be taken sufficiently large so that for each k = 1, . . . ,m − 1 and i ∈ I,
φ−ih(t) = φk,−

ih (t) = e−(t−T k)φk,−
ih (T k) for all h /∈ [ak

i , a
∗
i ] and all t ≥ T k. Note

that by construction, φ−(t) = φk,−(t) for all t ≤ T k. Since vk(a) = vk(a′)
for all a, a′ ∈ [ak, ak], it follows that for each k = 1, . . . ,m − 1 and i ∈ I,
BRi

vk(φ−−i|[a
k−1
i , ak

i ])(t) = BRi
vk(φk,−

−i |[a
k−1
i , ak

i ])(t) for all t ≤ T k.

Proof of Theorem 4.1. Suppose that vk’s are monotone potential functions
for a∗ relative toBη([ak−1, ak−1]). Take θ̄ as in Lemma 4.5. Fix any θ ∈ (0, θ̄)
and let φ− and φ+ satisfy (∗−) and (∗+), respectively.

Fix any x ∈
∏

i ∆(Ai). Let βx be the best response correspondence
defined in (4.2). Let Φ̃x = {φ ∈ Φx |φ− - φ - φ+}. We will show that
β̃x(φ) = βx(φ) ∩ Φ̃x is nonempty for any φ ∈ Φ̃x. Then, since Φ̃x is convex
and compact, it follows from Kakutani’s fixed point theorem that there
exists a fixed point φ∗ ∈ β̃x(φ∗) ⊂ Φ̃x, which is a perfect foresight path in g
and satisfies φ− - φ∗ - φ+. Since both φ− and φ+ converge to a∗, φ∗ also
converges to a∗.

Take any φ ∈ Φ̃x. Consider any k = 1, . . . ,m. Note that φ(t) ∈
Bη([ak−1, ak−1]) for all t ≥ T k−1.

Suppose first that gi|[ak−1
i ,ak−1

i ]×A−i
are supermodular for all i ∈ I. Then,

for all i ∈ I,

minBRi
vk(φ−−i|[a

k−1
i , ak

i ])(t) ≤ maxBRi
gi

(φ−−i|[a
k−1
i , ak

i ])(t)

≤ maxBRi
gi

(φ−i|[ak−1
i , ak

i ])(t)

34



for all t ∈ [T k−1, T k), where the second inequality follows from
the assumption that vk is a monotone potential function relative to
Bη([ak−1, ak−1]), and the third inequality follows from the supermodular-
ity of gi|[ak−1

i ,ak−1
i ]×A−i

. Similarly, for all i ∈ I,

maxBRi
vk(φ+

−i|[a
k
i , a

k−1
i ])(t) ≥ minBRi

gi
(φ+
−i|[a

k
i , a

k−1
i ])(t)

≥ minBRi
gi

(φ−i|[ak
i , a

k−1
i ])(t)

for all t ∈ [T k−1, T k).
Suppose next that vk|[ak−1

i ,ak−1
i ]×A−i

are supermodular for all i ∈ I.
Then, for all i ∈ I,

minBRi
vk(φ−−i|[a

k−1
i , ak

i ])(t) ≤ minBRi
vk(φ−i|[ak−1

i , ak
i ])(t)

≤ maxBRi
gi

(φ−i|[ak−1
i , ak

i ])(t)

for all t ∈ [T k−1, T k), where the second inequality follows from the su-
permodularity of vk|[ak−1

i ,ak−1
i ]×A−i

, and the third inequality follows from

the assumption that vk is a monotone potential function relative to
Bη([ak−1, ak−1]). Similarly, for all i ∈ I,

maxBRi
vk(φ+

−i|[a
k
i , a

k−1
i ])(t) ≥ maxBRi

vk(φ−i|[ak
i , a

k−1
i ])(t)

≥ minBRi
gi

(φ−i|[ak
i , a

k−1
i ])(t)

for all t ∈ [T k−1, T k).
Therefore, in each case, we have for all t ∈ [T k−1, T k),

maxBRi
gi

(φ−i|[ak−1
i , ak

i ])(t) ≥ minBRi
vk(φ−−i|[a

k−1
i , ak

i ])(t),

minBRi
gi

(φ−i|ak
i , a

k−1
i ])(t) ≤ maxBRi

vk(φ+
−i|[a

k
i , a

k−1
i ])(t).

Since φ(t) ∈ Bη(∆([ak−1, ak−1])) for all t ≥ T k−1 and hence

BRi
gi

(φ−i)(t) ∩ [ak−1
i , ak−1

i ] 6= ∅

by the choice of η, it follows that

BRi
gi

(φ−i)(t)

∩
[
minBRi

vk(φ−−i|[a
k−1
i , ak

i ])(t),maxBRi
vk(φ+

−i|[a
k
i , a

k−1
i ])(t)

]
6= ∅,

Let F̃i(φ−i)(t) be the convex hull of the above set. Then the differential
inclusion

ψ̇(t) ∈ F̃ (φ)(t)− ψ(t), ψ(0) = x

has a solution ψ (see OTH (2003, Remark 2.1)). Since F̃i(φ−i)(t) ⊂
Fi(φ−i)(t) = {αi ∈ ∆(Ai) |αih > 0 ⇒ h ∈ BRi

gi
(φ−i)(t)}, we have

ψ ∈ βx(φ). By the construction of φ−, φ+, and ψ, we have φ− - ψ - φ+.
Thus, we have ψ ∈ β̃x(φ) = βx(φ) ∩ Φ̃x, implying the nonemptiness of
β̃x(φ).
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By Proposition 2.4, we immediately have the following.

Corollary 4.6. If a∗ is an iterated strict p-dominant equilibrium of g with∑
i∈I pi < 1, then there exists θ̄ > 0 such that a∗ is globally accessible in g

for all θ ∈ (0, θ̄).

4.3 Linear Absorption of Iterated Strict MP-Maximizer

In this subsection, we prove that under the same monotonicity condition
as in the informational robustness and the global accessibility results, an
iterated strict MP-maximizer is linearly absorbing (regardless of the degree
of friction), and therefore, it is the unique equilibrium that is globally ac-
cessible and linearly absorbing for any small degree of friction.

Theorem 4.7. Suppose that g has an iterated strict MP-maximizer a∗ with
associated intervals (Sk)m

k=0 and strict monotone potential functions (vk)m
k=1.

If for each k = 1, . . . ,m, gi|Sk−1
i ×A−i

is supermodular for all i ∈ I or vk|Sk−1

is supermodular, then a∗ is linearly absorbing in g for all θ > 0.

We will use the following result due to Hofbauer and Sorger (2002) and
OTH (2003).

Lemma 4.8. Suppose that v|S is a potential game with a unique potential
maximizer a∗ ∈ S. Then, a∗ is absorbing in v|S for all θ > 0. If in addition,
v|S is supermodular, then a∗ is linearly absorbing in v|S for all θ > 0.

Suppose that a∗ is an iterated strict MP-maximizer of g with associated
intervals (Sk)m

k=0 and strict monotone potential functions (vk)m
k=1. Due to

Lemma 2.2, we can have (ṽk)m
k=1 and η > 0 such that for each k = 1, . . . ,m,

ṽk : A→ R is a strict monotone potential function relative to Bη(∆(Sk−1)).
For each k = 0, 1, . . . ,m and i ∈ I, write Sk

i = [ak
i , a

k
i ], where 0 = a0

i ≤ a1
i ≤

· · · ≤ am
i = a∗i = am

i ≤ · · · ≤ a1
i ≤ a0

i = ni. In defining such (ṽk)m
k=1 and

η > 0, we extend vk (k = 1, . . . ,m) to A so that [ak−1, ak] and [ak, ak−1] are
strict best response sets in the games ṽk|[a0,ak] and ṽk|[ak,a0], respectively,
and take η > 0 to be sufficiently small so that for all k = 1, . . . ,m and all
i ∈ I,

br i
ṽk(πi|[a0

i , a
k
i ]) ⊂ [ak−1

i , ak
i ]

for all πi ∈ Bη(∆([ak−1
−i , a

k
−i])) and

br i
ṽk(πi|[ak

i , a
0
i ]) ⊂ [[ak

i , a
k−1
i ]

for all πi ∈ Bη(∆([ak
−i, a

k−1
−i ])). In the case where vk|[ak−1,ak−1] is super-

modular, vk is extended so that ṽk|[a0,ak] and ṽk|[ak,a0] are supermodular.
We assume without loss of generality that in each potential game ṽk|[a0,ak]

(ṽk|[ak,a0], resp.), any perfect foresight path from Bη(ak) (Bη(ak), resp.)
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converges (linearly, in the case where the game is also supermodular) to ak

(ak, resp.).
For an interval S ⊂ A, we say that a feasible path φ is an S-perfect

foresight path if for all i ∈ I, all h ∈ Ai, and almost all t ≥ 0,

φ̇ih(t) > −φih(t) ⇒ h ∈ BRi
gi

(φ−i|Si)(t). (4.10)

Note that if φ is an S-perfect foresight path with φ(0) = x, then for all
i ∈ Ai and all h /∈ Si, φih(t) = xihe

−t for all t ≥ 0.

Lemma 4.9. For each k = 1, . . . ,m, if gi|[ak−1
i ,ak−1

i ]×A−i
is supermodular

for all i ∈ I or ṽk|[a0,ak] and ṽk|[ak,a0] are supermodular, then (1) for any
[ak−1, ak−1]-perfect foresight path φ∗ with φ∗(0) ∈ Bη(∆([ak, ak])),

lim
t→∞

∑
h∈[ak

i ,ak
i ]

φ∗ih(t) = 1 (4.11)

for all i ∈ I, and (2) there exists ηk ∈ (0, η] such that for any [ak−1, ak−1]-
perfect foresight path φ∗ with φ∗(0) ∈ Bηk(∆([ak, ak])),

BRi
gi

(φ∗−i|[ak−1
i , ak−1

i ])(t) ⊂ [ak
i , a

k
i ] (4.12)

for all i ∈ I and t ≥ 0.

Proof. (1) Take any x ∈ Bη(∆([ak, ak])) and any [ak−1, ak−1]-perfect fore-
sight path φ∗ with φ∗(0) = x. Note that φ∗(t) ∈ Bη(∆([ak−1, ak−1])) for all
t ≥ 0. Let

xk,−
i = ηa0

i + (1− η)ak
i , xk,+

i = ηa0
i + (1− η)ak

i ,

and denote xk,− =
(
xk,−

i

)
i∈I

and xk,+ =
(
xk,+

i

)
i∈I

. We will find perfect
foresight paths φk,− and φk,+ for ṽk|[a0,ak] and ṽk|[ak,a0], respectively, such
that φk,−(0) = xk,−, φk,+(0) = xk,+, and φk,−(t) - φ∗(t) - φk,+(t) for all
t ≥ 0. Then, since the potential maximizer ak (ak, resp.) is absorbing in
ṽk|[a0,ak] (ṽk|[ak,a0], resp.), and hence φk,− (φk,+, resp.) converges to ak (ak,
resp.), φ∗ must satisfy (4.11).

The argument below follows that in OTH (2003, Appendix A.3). We
show the existence of φk,−; the existence of φk,+ can be shown similarly. Let
Φ̃xk,− be the set of feasible paths φ ∈ Φxk,− such that for all i ∈ I and all t ≥
0, φi(t) ∈ ∆([a0

i , a
k
i ]), φi(t) - φ∗i (t), and φih(t) = xk,−

ih e−t for all h < ak−1
i .

Consider the best response correspondence β−
ṽk for the stage game ṽk|[a0,ak].

We will show that β̃−
ṽk(φ) = β−

ṽk(φ) ∩ Φ̃xk,− is nonempty for any φ ∈ Φ̃x−ε
.

Then, since Φ̃xk,− is convex and compact, it follows from Kakutani’s fixed
point theorem that there exists a fixed point φk,− ∈ β̃−

ṽk(φk,−) ⊂ Φ̃xk,− , as
desired.
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Take any φ ∈ Φ̃xk,− . Note that φ(t) ∈ Bη(∆([ak−1, ak])) for all t ≥ 0,
and therefore BRi

ṽk(φ−i|[a0
i , a

k
i ])(t) = BRi

ṽk(φ−i|[ak−1
i , ak

i ])(t) by the choice
of η. In the case where gi|[ak−1

i ,ak−1
i ]×A−i

is supermodular for all i ∈ I, we
have, for all i ∈ I and all t ≥ 0,

minBRi
ṽk(φ−i|[ak−1

i , ak
i ])(t) ≤ minBRi

gi
(φ−i|[ak−1

i , ak
i ])(t)

≤ minBRi
gi

(φ∗−i|[ak−1
i , ak

i ])(t),

where the first inequality follows from the assumption that ṽk is a strict
monotone potential relative toBη(∆([ak−1, ak−1])) and the second inequality
follows from the supermodularity of gi|[ak−1

i ,ak−1
i ]×A−i

. In the case where vk

is supermodular, we have, for all i ∈ I and all t ≥ 0,

minBRi
ṽk(φ−i|[ak−1

i , ak
i ])(t) ≤ minBRi

ṽk(φ−i|[ak−1
i , ak

i ])(t)

≤ minBRi
gi

(φ∗−i|[ak−1
i , ak

i ])(t),

where the first inequality follows from the supermodularity of ṽk|[a0,ak] and
the second inequality follows from the assumption that ṽk is a strict mono-
tone potential relative to Bη(∆([ak−1, ak−1])). Therefore, in each case, we
have, for all i ∈ I and all t ≥ 0,

minBRi
ṽk(φ−i|[a0

i , a
k
i ])(t) ≤ minBRi

gi
(φ∗−i|[ak−1

i , ak
i ])(t).

It follows that the solution ψ to

ψ̇i(t) = minBRi
ṽk(φ−i|[a0

i , a
k
i ])(t)− ψi(t), ψ(0) = xk,−

i ,

which is a best response to φ in the game ṽk|[a0,ak], satisfies ψ ∈ Φ̃xk,− . This
implies the nonemptiness of β̃−

ṽk(φ).
(2) If gi|[ak−1

i ,ak−1
i ]×A−i

is supermodular for all i ∈ I, then arguments
analogous to those in OTH (2003, Appendix A.1) show that (1) implies (2).
If ṽk|[a0,ak] and ṽk|[ak,a0] are supermodular, then ak (ak, resp.) is linearly
absorbing in ṽk|[a0,ak] (ṽk|[ak,a0], resp.) and hence φk,− (φk,+, resp.) con-
verges linearly to ak (ak, resp.). Therefore, for all i and all h /∈ [ak

i , a
k
i ],

φ∗(t) = xihe
−t for all t ≥ 0. Since [ak, ak] is a strict best response set in g,

it follows that φ∗ must satisfy (4.12).

Proof of Theorem 4.7. Suppose that ṽk’s are strict monotone potential func-
tions relative to Bη(∆([ak−1, ak−1])) and that for each k = 1, . . . ,m,
gi|[ak−1

i ,ak−1
i ]×A−i

is supermodular for all i ∈ I or ṽk|[a0,ak] and ṽk|[ak,a0]

are supermodular. Take η1, . . . , ηm as in Lemma 4.9, and let ε =
min{η1, . . . , ηm}.

Fix any x ∈ Bε(a∗) and any perfect foresight path φ∗ in g with φ∗(0) = x.
It is sufficient to prove that for all k = 1, . . . ,m,

BRi
gi

(φ∗−i|[ak−1
i , ak−1

i ])(t) ⊂ [ak
i , a

k
i ] (∗k)
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holds for all i ∈ I and all t ≥ 0, which can be done by applying Lemma 4.9
iteratively. Indeed, since φ∗ is an [a0, a0]-perfect foresight path, (∗1) is true
by Lemma 4.9. If (∗1)–(∗k−1) are true, then φ∗ is an [ak−1, ak−1]-perfect
foresight path, so that (∗k) is also true by Lemma 4.9.

By Proposition 2.4, we immediately have the following.

Corollary 4.10. If a∗ is an iterated strict p-dominant equilibrium of g with∑
i∈I pi < 1, then a∗ is linearly absorbing in g for all θ > 0.

5 Discussions

5.1 Set-Valued Concepts

In this subsection, we consider set-valued concepts of robustness to incom-
plete information and stability under perfect foresight dynamics.

5.1.1 Robust Sets to Incomplete Information

For σ ∈ Σ and S ⊂ A, denote σP (S) =
∑

t∈T

∑
a∈S P (t)σ(a|t).

Definition 5.1. A set of action profiles S∗ ⊂ A is robust to all elabora-
tions in g if for every δ > 0, there exists ε̄ > 0 such that for all ε ≤ ε̄,
any ε-elaboration (u, P ) of g has a Bayesian Nash equilibrium σ such that
σP (S∗) ≥ 1− δ.

The proof of Theorem 3.1 in fact shows the following.

Theorem 5.1. Suppose that g has an iterated MP-maximizer set S∗ with as-
sociated intervals (Sk)m

k=0 and monotone potential functions (vk)m
k=1. If for

each k = 1, . . . ,m, gi|Sk−1
i ×A−i

is supermodular for all i ∈ I or vk|Sk−1
i ×A−i

is supermodular for all i ∈ I, then S∗ is robust to all elaborations in g.

Remark 5.1. Denote by C ⊂ ∆(A) the set of all correlated equilibria of g. If
S∗ is robust to all elaborations, then the set of correlated equilibria of g that
assign probability one to S∗, ES∗ = {µ ∈ C | µ(S∗) = 1}, is nonempty and
robust to all elaborations in the sense of Morris and Ui (2005, Definition 2).

5.1.2 Stable Sets under Perfect Foresight Dynamics

We say that a feasible path φ converges to S if limt→∞
∑

h∈Si
φih(t) = 1 for

all i ∈ I, and that a feasible path φ is a linear path from x to S if φ(0) = x
and

∑
h/∈Si

φih(t) =
∑

h/∈Si
xihe

−t for all i ∈ I.

Definition 5.2. (a) A set of action profiles S∗ ⊂ A is globally accessible in
g if for any x ∈

∏
i ∆(Ai), there exists a perfect foresight path from x that

converges to S∗.

39



(b) A set of action profiles S∗ ⊂ A is absorbing in g if there exists ε > 0
such that for any x ∈ Bε(S∗), any unique perfect foresight path from x
converges to S∗.

(c) A set of action profiles S∗ ⊂ A is linearly absorbing in g if there
exists ε > 0 such that for any x ∈ Bε(S∗), any unique perfect foresight path
from x is a linear path to S∗.

Here we do not require minimality, contrary to the set-valued stability
concepts under perfect foresight dynamics defined in Matsui and Oyama
(2006), Oyama (2002), and Tercieux (2004).

The proofs of Theorems 4.1 and 4.7 in fact show the following.

Theorem 5.2. Suppose that g has an iterated MP-maximizer set S∗ with as-
sociated intervals (Sk)m

k=0 and monotone potential functions (vk)m
k=1. If for

each k = 1, . . . ,m, gi|Sk−1
i ×A−i

is supermodular for all i ∈ I or vk|Sk−1
i ×A−i

is supermodular for all i ∈ I, then there exists θ̄ > 0 such that S∗ is globally
accessible in g for all θ ∈ (0, θ̄).

Theorem 5.3. Suppose that g has an iterated strict MP-maximizer set S∗

with strict monotone potential functions (vk)m
k=1. If g is supermodular or vk

is supermodular for all k = 1, . . . ,m, then S∗ is linearly absorbing in g for
all θ > 0.

Remark 5.2. If S∗ is absorbing and globally accessible, then
∏

i∈I ∆(S∗i )
contains a unique globally accessible set in the sense of Oyama (2002, Defi-
nition 7). If S∗ is linearly absorbing, then

∏
i∈I ∆(S∗i ) is closed under perfect

foresight and hence contains a PF-stable set, and if in addition, S∗ is also
globally accessible, then

∏
i∈I ∆(S∗i ) contains all PF-stable sets in the sense

of Matsui and Oyama (2006, Definition 3.3).

5.2 Iterated GP-Maximizer

In this subsection, we apply our iterative construction to the concept of
generalized potential maximizer (GP-maximizer, in short) introduced by
Morris and Ui (2005).

We say that Ai ⊂ 2Ai \ {∅}, i ∈ I, is a covering of Ai if
⋃

Xi∈Ai
Xi = Ai

and that A ⊂ 2A \ {∅} is a product covering of A if A = {
∏

i∈I Xi | Xi ∈
Ai for i ∈ I} for some covering Ai of Ai for each i ∈ I. For a product
covering A, write A−i = {

∏
j 6=iXj | Xj ∈ Aj for j 6= i}. Given A−i and

Λi ∈ ∆(A−i), define ∆Λi(A−i) ⊂ ∆(A−i) by

∆Λi(A−i) =
{
λi ∈ ∆(A−i)

∣∣∣ λi(B−i) ≥ vΛi
i (B−i) for all B−i ⊂ A−i

}
,

where
vΛi
i (B−i) =

∑
X−i∈Ai,X−i⊂B−i

Λi(X−i).
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For a function F : A → R, which is extended to Ai × ∆(A−i) in the usual
way, write

BRi
F (Λi) = arg max{F (Xi,Λi) | Xi ∈ Ai}

for Λi ∈ ∆(A−i).

Definition 5.3. Let S∗i be a nonempty subset of Ai for each i ∈ I, and
S∗ =

∏
i∈I S

∗
i . The set S∗ is a GP-maximizer of g if there exist a product

covering A containing S∗ and a function F : A → R with F (S∗) > F (X)
for all X ∈ A \ {S∗} such that for all i ∈ I, all Λi ∈ ∆(A−i), and all
λi ∈ ∆Λi(Ai),

Xi ∩ br i
gi

(λi) 6= ∅

for every
Xi ∈ BRi

F (Λi)

that is maximal in BRi
F (Λi) with respect to set inclusion. Such a function

F is called a generalized potential function.

Morris and Ui (2005, Theorem 5) establish the informational robustness
of GP-maximizer.

Proposition 5.4. Suppose that g has a GP-maximizer S∗ with respect to
a product covering A. If Ai ∈ Ai for all i ∈ I, then S∗ is robust to all
elaborations in g.

In the proof of their Proposition 2, Morris and Ui (2005) show that with
the supermodularity condition, an MP-maximizer is indeed a GP-maximizer.
Suppose that an interval S∗ is an MP-maximizer of g with a monotone
potential function v, and let Pi = {S∗i }∪{{ai} | ai /∈ S∗i } and P = {

∏
i∈I Xi |

Xi ∈ Pi for i ∈ I}. Then let A be the covering induced by P: i.e.,

Ai = {[ai, a
′
i] | ai ≤ minS∗i , maxS∗i ≤ a′i}

for each i ∈ I. Finally, assume that v is P-measurable, and define F : A → R
by

F ([a, a′]) = v(a) + v(a′). (5.1)

Note that F (S∗) > F (S) for all S ∈ A \ S∗.

Proposition 5.5. Suppose that g has an MP-maximizer set S∗ with a P-
measurable monotone potential function v. If g or v is supermodular, then
S∗ is a GP-maximizer of g with F defined by (5.1) being a generalized po-
tential function.

Now we want to consider iteration of GP-maximizer keeping its robust-
ness to incomplete information. To this end, we employ a refinement of
GP-maximizer, as done in the case of MP-maximizer.
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Definition 5.4. Let S∗i be a nonempty subset of Ai for each i ∈ I, and
S∗ =

∏
i∈I S

∗
i . The set S∗ is a strict GP-maximizer of g if there exist a

product covering A containing S∗ and a function F : A → R with F (S∗) >
F (X) for all X ∈ A \ {S∗} such that for all i ∈ I, all Λi ∈ ∆(A−i), and all
λi ∈ ∆Λi(Ai),

Xi ⊃ br i
gi

(λi)

for every
Xi ∈ BRi

F (Λi)

that is maximal in BRi
F (Λi) with respect to set inclusion. Such a function

F is called a strict generalized potential function.

Analogously for Proposition 5.5, one can show the following.

Proposition 5.6. Suppose that g has a strict MP-maximizer set S∗ with
a P-measurable strict monotone potential function v. If g or v is super-
modular, then S∗ is a strict GP-maximizer of g with F defined by (5.1)
being a strict generalized potential function.

Applying our iterative construction to strict GP-maximizer leads us to
the following concept.

Definition 5.5. An interval S∗ is an iterated strict GP-maximizer set of g
if there exists a sequence of intervals S0, S1, . . . , Sm with A = S0 ⊃ S1 ⊃
· · · ⊃ Sm = S∗ such that Sk is a strict GP-maximizer set of g|Sk−1 for each
k = 1, . . . ,m.

We conclude this subsection with a set of conjectures.

Conjecture 1. Suppose that g has an iterated strict GP-maximizer S∗

with associated intervals (Sk)m
k=0 and coverings (Sk)m−1

k=0 . If for each k =
1, . . . ,m − 1, Sk

i ∈ Sk
i for all i ∈ I, then S∗ is robust to all elaborations in

g.

Conjecture 2. Suppose that g has an iterated strict GP-maximizer S∗

with associated intervals (Sk)m
k=0 and coverings (Sk)m−1

k=0 . If for each k =
1, . . . ,m − 1, Sk

i ∈ Sk
i is induced by an ordered partition on Sk

i for all
i ∈ I, then there exists θ̄ > 0 such that S∗ is globally accessible in g for all
θ ∈ (0, θ̄).

For the linear absorption, on the other hand, we conjecture that we will
need an additional structure, such as the supermodularity of g.

It is beyond the scope of the present paper to prove (or disprove) these
conjectures, and we leave them for future research.
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6 Conclusion

For any given set-valued solution concept, in principle, it is possible to con-
sider iterative elimination of actions outside the solution set. In this paper,
we applied such an iterative construction to two refinements of Nash equi-
librium: p-dominant equilibrium (Morris, Rob, and Shin (1995) and Kajii
and Morris (1997)) or p-best response set (Tercieux (2004)); and potential
maximizer (Monderer and Shapley (1996)) or MP-maximizer (Morris and
Ui (2005)). We showed that the iterative construction preserves their robust-
ness to incomplete information (Kajii and Morris (1997)) as well as stability
under perfect foresight dynamics (Matsui and Matsuyama (1995)): iter-
ated p-dominant equilibria as well as iterated MP-maximizers (under some
monotonicity conditions) are both robust to incomplete information and
globally accessible (for a small degree of friction) and linearly absorbing
under perfect foresight dynamics. We also proposed simple procedures, for
some special classes of games, to find an iterated p-dominant equilibrium or
an iterated MP-maximizer. In particular, we introduced iterated pairwise
p-dominance and iterated risk-dominance for general supermodular games
and two-player supermodular coordination games, respectively. Generally,
finding an MP-maximizer or iterated MP-maximizer is a difficult task; no
full characterization (i.e., necessary and sufficient condition) has been known
for a game to have an MP-maximizer and hence an iterated MP-maximizer
(unless the game is a simple game such as a 2× 2 game). We see these sim-
pler procedures as natural first steps to check whether our main theorems
apply.

We provided numerical examples to show that for the p-dominance ap-
proach, our iterative construction strictly generalizes the existing results. In
Example 2.5, for instance, the game has no (p1, p2)-dominant equilibrium
such that p1 + p2 < 1. Hence, the existing results relying on the notion of
p-dominance do not allow to conclude regarding the robustness of equilibria
of this game. In contrast, this game has an iterated strict (p, p)-dominant
equilibrium for some p < 1/2 and hence our results show that it is ro-
bust to incomplete information and stable under perfect foresight dynamics.
Nonetheless, it should be noted that it is left an open question whether iter-
ated MP-maximizer is a strictly more general concept than MP-maximizer.
An MP-maximizer, by definition, is an iterated MP-maximizer, whereas we
have not found any example that has an iterated MP-maximizer but no
MP-maximizer. To assess the usefulness of the iterative construction for the
potential maximization approach, this question is of importance. Investiga-
tion of conditions under which the iterative construction provides strictly
more general results than a given refinement is yet to be conducted in the
future.
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Appendix

A.1 Proof of Lemma 2.2

Let S∗, S ⊂ A, and v : S → R be as in the statement. For i ∈ I and ai ∈ Ai,
let

Π−iai
(gi) = {πi ∈ ∆(A−i) | min br i

gi
(πi|[minSi,maxS∗i ]) ≤ ai},

Π+
iai

(gi) = {πi ∈ ∆(A−i) | max br i
gi

(πi|[minS∗i ,maxSi]) ≥ ai};

and for f ∈ RA,

Π̂−iai
(f) = {πi ∈ ∆(A−i) | min br i

f (πi|[minSi,minS∗i ]) ≤ ai},

Π̂+
iai

(f) = {πi ∈ ∆(A−i) | max br i
f (πi|[maxS∗i ,maxSi]) ≥ ai}.

Observe that Π−iai
(gi) and Π̂−iai

(f) (Π+
iai

(gi) and Π̂+
iai

(f), resp.) are closed
(in ∆(A−i)) due to the lower (upper, resp.) semi-continuity of min br i

gi
and

min br i
f (max br i

gi
and max br i

f , resp.). Note that these sets may be empty.
Here we give a characterization of strict MP-maximizer in terms of these
sets.

Lemma A.1.1. S∗ is a strict MP-maximizer set of g|S with a strict mono-
tone potential function v if and only if S∗ = arg maxa∈S v(a), and for all
i ∈ I,

Π−iai
(gi) ∩∆(S−i) ⊂ Π̂−iai

(v) ∩∆(S−i)

for all ai ∈ [minSi,minS∗i ] and

Π+
iai

(gi) ∩∆(S−i) ⊂ Π̂+
iai

(v) ∩∆(S−i)

for all ai ∈ [maxS∗i ,maxSi].

Now, extend v arbitrarily to A (i.e., consider a function defined on A
that coincides with v on S, and denote it again by v) satisfying S∗ =
arg maxa∈S v(a). In the case where v is supermodular, extend v so that
v|A is supermodular.

For γ > 0, define cγ : A→ R by

cγ(a) = γ
∑
i∈I

|ai − S∗i |,

where

|ai − S∗i | =


0 if ai ∈ S∗i ,
minS∗i − ai if ai < minS∗i ,
ai −maxS∗i if ai > maxS∗i .
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Observe that if h < k ≤ minS∗i or h > k ≥ maxS∗i , then for all a−i ∈ A−i,

cγ(k, a−i)− cγ(h, a−i) = −|k − h|γ ≤ −γ.

Fix any γ > 0 such that γ <
(
maxa∈A v(a) − maxa/∈S∗ v(a)

)
/

∑
i∈I ni.

Then define ṽ : A→ R by

ṽ(a) = v(a) + cγ(a). (A.1)

By the choice of γ, S∗ = arg maxa∈A ṽ(a). Verify also that if v|S is super-
modular, then so is ṽ. The following lemma shows that the transformation
above expands Π̂−iai

(v) and Π̂+
iai

(v).

Lemma A.1.2. Given v : A → R, let ṽ : A → R be defined by (A.1). For
each i ∈ I and ai ∈ [minSi,minS∗i ], there exists an open set U−iai

⊂ ∆(A−i)
such that

Π̂−iai
(v) ⊂ U−iai

⊂ Π̂−iai
(ṽ).

Similarly, for each i ∈ I and ai ∈ [maxS∗i ,maxSi], there exists an open set
U+

iai
⊂ ∆(A−i) such that

Π̂+
iai

(v) ⊂ U+
iai
⊂ Π̂+

iai
(ṽ).

Proof. Fix i ∈ I and ai ∈ [minSi,minS∗i ]. Take any πi ∈ Π̂−iai
(v): i.e.,

min br i
v(πi|[minSi,minS∗i ]) ≤ ai. Take ε(πi) > 0 such that if π′i ∈ Bε(πi)(πi),

then
max

h,k∈Ai

∣∣(ṽ(k, π′i)− ṽ(h, π′i)
)
−

(
ṽ(k, πi)− ṽ(h, πi)

)∣∣ < γ.

Let us show that Bε(πi)(πi) ⊂ Π̂−iai
(ṽ). Take any π′i ∈ Bε(πi)(πi), and let

ai = min br i
ṽ(π

′
i|[minSi,minS∗i ]). We want to show that ai ≤ ai. It is

sufficient to show that ai ≤ min br i
v(πi|[minSi,minS∗i ]). If h < ai, then

v(ai, πi)− v(h, πi) =
(
ṽ(ai, πi)− cγ(ai, πi)

)
−

(
ṽ(h, πi)− cγ(h, πi)

)
= ṽ(ai, πi)− ṽ(h, πi) + (ai − h)γ
≥ ṽ(ai, πi)− ṽ(h, πi) + γ

> ṽ(ai, π
′
i)− ṽ(h, π′i) > 0.

This means that ai ≤ min br i
v(πi|[minSi,minS∗i ]), which implies that π′i ∈

Π̂−iai
(ṽ).
Then set U−iai

=
⋃

πi∈bΠ−
iai

(v)
Bε(πi)(πi).

Proof of Lemma 2.2. Given v : A → R, let ṽ : A → R be defined by (A.1).
Then, S∗ = arg maxa∈A ṽ(a); and if v|S is supermodular, then so is ṽ. For
each i ∈ I and ai ∈ [minSi,minS∗i ] such that Π−iai

(gi) 6= ∅, take an open set
U−iai

as in Lemma A.1.2. Note that Π−iai
(gi) ∩∆(S−i) ⊂ U−iai

. Since Π−iai
(gi)
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and ∆(S−i) are closed in a compact set ∆(A−i), there exists η−(i, ai) > 0
such that

Π−iai
(gi) ∩Bη−(i,ai)(∆(S−i)) ⊂ U−iai

.

Apply the same argument to each i ∈ I and a′i ∈ [maxS∗i ,maxSi] such that
Π+

ia′i
(gi) 6= ∅ to obtain η+(i, a′i) > 0 such that

Π+
ia′i

(gi) ∩Bη+(i,a′i)
(∆(S−i)) ⊂ U+

ia′i
,

where U+
ia′i

is as in Lemma A.1.2.
Finally, set η = mini,ai η

−(i, ai) ∧mini,a′i
η+(i, a′i).
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