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1 Introduction

Parameterized optimization problems are ubiquitous in economics, from
classical price theory to dynamic macroeconomics, game theory, mechanism
design, and so on. There, the envelope theorem serves as a standard tool
in understanding the marginal effects of changes in the parameter, such as
price or technology, on the value of the optimal choice of the agents in the
model. While textbook envelope theorems usually only derive a formula
(“envelope formula”) that the derivative of the value function, the optimal
value as a function of the parameter, should satisfy under the (often implicit)
assumption that the value function is differentiable, a rigorous statement of
the theorem also describes a sufficient condition on the primitives under
which this assumption holds true. The latter issue, the differentiability of
the value function, is what we are concerned with in this paper.

We consider the following setting. Let X be a nonempty topological
space (the choice set), and A ⊂ R a nonempty open set (the parameter
space). The objective function f : X × A → R is to be maximized with
respect to x ∈ X, given α ∈ A. The optimal value function is given by

v(α) = sup
x∈X

f(x, α),

associated with the optimal solution correspondence

X∗(α) = {x ∈ X | f(x, α) = v(α)},

where we assume that the partial derivative of f with respect to α, fα, exists
and that X∗(α) ̸= ∅ for all α ∈ A. We are interested in the differentiability
of the value function v (in the classical sense, rather than notions such as
directional differentiability or subdifferentiability).

1. If v is assumed to be differentiable at α = ᾱ, then it is easy to derive the
envelope formula: for any x̄ ∈ X∗(ᾱ),

v′(ᾱ) = fα(x̄, ᾱ).

Indeed, fix any x̄ ∈ X∗(ᾱ). Then the function g(α) = f(x̄, α) − v(α),
which is differentiable at ᾱ, is maximized at ᾱ, so the first-order condition
g′(ᾱ) = 0 yields the formula.

2. One can easily construct an example in which the value function is not
differentiable when there are more than one solutions. For example, let
X = R and A = (−1, 1), and consider

f(x, α) = −1

4
x4 − α

3
x3 +

1

2
x2 + αx− 1

4
,
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with fx(x, α) = −(x+ 1)(x+ α)(x− 1). Then we have

v(α) =
2

3
|α|, X∗(α) =


{−1} if α < 0,

{−1, 1} if α = 0,

{1} if α > 0,

where v is not differentiable at α = 0, for which there are two optimal
solutions.

3. The question we ask in this paper is: is the value function always differ-
entiable when the optimal solution is unique (and the objective function
is continuous and the solution correspondence admits a continuous selec-
tion)? The answer is no: we present in Section 2 an example in which
fα exists and X∗ is a single-valued continuous function, but neverthe-
less v is not differentiable at some ᾱ (Example 2.1). The main feature
in our example is that fα is not continuous at (x, α) = (x̄, ᾱ), where
{x̄} = X∗(ᾱ). In fact, if X∗ admits a selection continuous at ᾱ and fα is
continuous jointly in (x, α) at (x̄, ᾱ), then v must be differentiable at ᾱ
(Proposition 2.1).

Numerous forms of sufficient conditions for the differentiability of the
value function have been obtained in the literature. In Section 3, we dis-
cuss the results by Danskin (1966, 1967) and Milgrom and Segal (2002).
Danskin’s theorem also assumes the continuity of fα, and when applied to
the case where the optimal solution is unique, his assumptions are slightly
stronger than those in Proposition 2.1 mentioned above, while they are not
nested in general. Our Example 2.1 illustrates that the continuity of fα is
indispensable also in Danskin’s theorem.

Milgrom and Segal (2002, Theorem 3) provide a sufficient condition in
terms of the equidifferentiability of the objective function f . It turns out
that our example does not satisfy this condition. We present examples that
illustrate that neither of the continuity of fα at (x̄, ᾱ) and the equidiffer-
entiability of {f(x, ·)}x∈X implies the other, showing that the conditions in
Danskin’s theorem, or our Proposition 2.1, and those in Milgrom and Segal’s
theorem are independent from each other.

It has been known that certain convexity/concavity conditions allow the
differentiability of the value function. For instance, the support function of
a closed convex set in a finite-dimensional space, examples of which include
the profit, cost, and expenditure functions in price theory, is differentiable
if and only if the maximum (or minimum) is attained at a single point; see
Mas-Colell et al. (1995, Proposition 3.F.1) or Rockafellar (1970, Corollary
25.1.3). In this case, the partial derivative of the objective function with re-
spect to the parameter is clearly continuous. In fact, we show in Section 5.1
that this theorem, well known from convex analysis, also follows from (a mul-
tidimensional parameter version of) our envelope theorem Proposition 2.1,
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despite the possible unboundedness of the choice set. If the objective func-
tion f is concave jointly in the choice variable x and the parameter α and
if fα exists, then the value function, which is necessarily concave, is al-
ways differentiable; see Hogan (1973), Benveniste and Scheinkman (1979),
or Milgrom and Segal (2002, Corollary 3). For this result, topology is not
needed for the choice set (only being a convex subset of a linear space), and
hence the continuity of fα is irrelevant.

In Section 4, we extend our example to optimization problems with in-
equality constraints that vary with the parameter α. We provide examples
with a binding constraint in which the Lagrange function L is differentiable
in α and the optimal solution and the Kuhn-Tucker vector (which consti-
tute a saddle point of L) are unique and continuous in α, but the optimal
value function is not differentiable. Again, in these examples, Lα fails to
be continuous: in fact, if a function L(x, y, α) has a saddle point selection
(x̄(α), ȳ(α)) that is continuous in α and Lα is continuous in (x, y, α), then its
saddle value function L(x̄(α), ȳ(α), α) is differentiable in α (Proposition 4.1).
We also observe that if the value function of the constrained problem is con-
cave, then the existence of a continuous selection of Kuhn-Tucker vectors is
sufficient for the differentiability (Proposition 4.3).1

In Section 5, we apply our analysis within the context of price theory.
Section 5.1 considers the profit function (or the support function) for a closed
convex production set, where, as mentioned, we present a proof for its dif-
ferentiability that uses our Proposition 2.1. Section 5.2 concerns the value
functions for consumption choice. We first state envelope theorems derived
from Proposition 2.1 for the indirect utility function and the expenditure
function: if the utility function is continuous and locally nonsatiated and
has partial derivatives which are continuous and nonvanishing at the opti-
mum, then these functions are differentiable whenever the optimal solutions
are unique. Then, extending our main example into this framework, we
construct an example of a continuous utility function with positive partial
derivatives for which, for some fixed price vector, the Walrasian and Hick-
sian demands are unique and continuous in wealth w and required utility
u, but the indirect utility and expenditure functions fail to be differentiable
in w and u, respectively. In this example, the partial derivatives of the
utility function are not continuous, demonstrating that the continuous dif-
ferentiability condition cannot be replaced with the mere existence of partial
derivatives for the differentiability of the value functions in this case as well.

1This result extends Corollary 3 in Milgrom and Segal (2002) to the case of parametric
constraints. See also Marimon and Werner (2016).
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2 (Non-)Differentiability of the Value Function

Let X be a nonempty topological space, and A ⊂ R a nonempty open set.
Given the objective function f : X ×A → R, we consider the optimal value
function

v(α) = sup
x∈X

f(x, α),

associated with the optimal solution correspondence

X∗(α) = {x ∈ X | f(x, α) = v(α)}.

We are interested in the differentiability of v when X∗ is point-valued.
We first state a sufficient condition of direct relevance for our study.

Proposition 2.1. Assume that

(a) X∗ has a selection x∗ continuous at ᾱ, and

(b) f is differentiable in α in a neighborhood of (x∗(ᾱ), ᾱ), and fα is con-
tinuous in (x, α) at (x∗(ᾱ), ᾱ).

Then v is differentiable at ᾱ with v′(ᾱ) = fα(x
∗(ᾱ), ᾱ).

Assumption (a) holds ifX∗ is nonempty-valued and upper semi-continuous
(which holds true, e.g., when f is continuous and X is compact) and X∗(ᾱ)
is a singleton, in which case any selection of X∗ is continuous at ᾱ.

A version of this proposition is found in the lecture notes by Border
(2015, Corollary 299). For completeness, we present the proof in Appendix
A.1.

Our main observation in this paper is that, even when there is a unique
optimal solution, the differentiability of v may fail if one drops the continuity
of fα.

Proposition 2.2. There exists a continuous function f : X × A → R such
that

(a) X∗(α) is a singleton for all α and is continuous in α (as a single-valued
function), and

(b) f is differentiable in α,

but v is not differentiable at some α.

In the following, we present an example of such a function f .

Example 2.1. Let X = R and A = R, and let the continuous function f
be defined by

f(x, α) =


− 1

α3
x2(x− 2α)2 if 2α < x < 0,

1

α3
x2(x− 2α)2 if 0 < x < 2α,

−x2(x− 2α)2 otherwise.

4



x
02α α

−α

(1) α < 0

x
0 2αα

α

(2) α > 0

Figure 1: Graph of f(·, α)
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Figure 2: Graph of f(x, ·) (x > 0)

The left and the right panels in Figure 1 depict the graph of f(·, α) for α < 0
and α > 0, respectively, while Figure 2 depicts the graph of f(x, ·) for x > 0.

The function f is differentiable in α at all (x, α) with

fα(x, α) =


1

α4
x2(x− 2α)(3x− 2α) if 2α < x < 0,

− 1

α4
x2(x− 2α)(3x− 2α) if 0 < x < 2α,

4x2(x− 2α) otherwise.

One can verify that
X∗(α) = {α},

and
v(α) = |α|,

which is not differentiable at α = 0.
While continuous separately in x and in α, fα is not continuous jointly

in (x, α) at (x, α) = (0, 0). To see this, set x = cα, α ̸= 0, and let α → 0.
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Then, depending on c we have

lim
α→0−

fα(cα, α) = c2(c− 2)(3c− 2),

lim
α→0+

fα(cα, α) = −c2(c− 2)(3c− 2),

so that 0 ̸= limα→0− fα(cα, α) ̸= limα→0+ fα(cα, α) ̸= 0 if 0 < c < 2,
c ̸= 2/3, while

lim
α→0−

fα(cα, α) = lim
α→0+

fα(cα, α) = 0

otherwise (and limx→0 fα(x, 0) = 0). Thus, Assumption (b) in Proposi-
tion 2.1 is violated.

Remark 2.1. It is easy to find an example of a non-differentiable value func-
tion where X∗(α) is a singleton for all α and f is differentiable in α, but f
or X∗ (as a single-valued function) is not continuous. As such an example,
let X = R and A = R, and let f be defined by

f(x, α) =

{
α− (x− α)2 if x ≥ 0,

−α− (x− α)2 if x < 0.

Then X∗(α) = {α}, and v(α) = |α|, which is not differentiable at α = 0.
Here, f is not continuous and X∗ is continuous with the Euclidean topology
on X, while if X is endowed with the discrete topology, then f is continuous
but X∗ is not.

3 Relation to Danskin and Milgrom and Segal

In this section, we discuss the relation to the sufficient conditions for (di-
rectional) differentiability obtained by Danskin (1966) and Milgrom and
Segal (2002) and between them.

3.1 Danskin (1966)

A careful inspection of the proof of Theorem 1 in Danskin (1966), or the
earlier result in Gross (1954),2 shows the following to hold.

Theorem 3.1 (Danskin). Assume that

(a) X∗ is upper semi-continuous with X∗(α) ̸= ∅ for all α ∈ A, and X∗(ᾱ)
is compact, and

(b) for all x̄ ∈ X∗(ᾱ), f is differentiable in α in a neighborhood of (x̄, ᾱ),
and fα is continuous in (x, α) at (x̄, ᾱ).

2See also the Addendum in Danskin (1966).
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Then v is left- and right-hand differentiable at ᾱ, and the directional deriva-
tives of v at ᾱ are given by

v′(ᾱ+) = max
x̄∈X∗(ᾱ)

fα(x̄, ᾱ), (1)

v′(ᾱ−) = min
x̄∈X∗(ᾱ)

fα(x̄, ᾱ). (2)

v is differentiable at ᾱ if and only if fα(x̄, ᾱ) = fα(x̄
′, ᾱ) for all x̄, x̄′ ∈

X∗(ᾱ), in which case v′(ᾱ) = fα(x̄, ᾱ) for any x̄ ∈ X∗(ᾱ).

Two stronger assumptions are made in the original statement in Danskin
(1966, Theorem 1) which are relaxed here: first, it is assumed that X is
compact and f is continuous, while its consequence, Assumption (a), is
what is used; second, the (existence and) continuity of fα is assumed on the
whole space of X×A, while the continuity only on X∗(ᾱ)×{ᾱ} is sufficient
for the conclusion. For completeness, we present the proof in Appendix A.2.

When X∗(ᾱ) is a singleton, under Assumption (a) any selection of X∗ is
continuous at ᾱ, so that the differentiability of v at ᾱ follows from Propo-
sition 2.1, while in general, the assumptions in Proposition 2.1 and Theo-
rem 3.1 are not nested.

Our Example 2.1 in the previous section illustrates that the continuity of
fα is indispensable for Theorem 3.1. In Example 2.1, fα is not continuous at
(x, α) = (0, 0), where X∗(0) = {0}. The value function v is left- and right-
hand differentiable at α = 0, while the directional derivatives do not obey
the formulas (1) and (2): v′(0+) = 1 and v′(0−) = −1, while fα(0, 0) = 0.

3.2 Milgrom and Segal (2002)

Milgrom and Segal (2002, Theorem 3) provide a sufficient condition in terms
of equidifferentiability. A family of functions {f(x, ·)}x∈X is equidifferentia-
ble at ᾱ ∈ A if for all x ∈ X, f(x, ·) is differentiable in α at ᾱ, and for any
ε > 0, there exists δ > 0 such that for all x ∈ X,∣∣∣∣f(x, α)− f(x, ᾱ)

α− ᾱ
− fα(x, ᾱ)

∣∣∣∣ ≤ ε

whenever |α − ᾱ| ≤ δ, α ̸= ᾱ. Note that in their theorem, no structure is
imposed on the choice set X.

Theorem 3.2 (Milgrom and Segal). Assume that

(a) X∗(α) ̸= ∅ for all α ∈ A, and

(b) {f(x, ·)}x∈X is equidifferentiable at ᾱ, and supx∈X |fα(x, ᾱ)| < ∞.
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Then v is left- and right-hand differentiable at ᾱ, and for any selection x∗

of X∗, the directional derivatives of v at ᾱ are given by

v′(ᾱ+) = lim
α→ᾱ+

fα(x
∗(α), ᾱ), (3)

v′(ᾱ−) = lim
α→ᾱ−

fα(x
∗(α), ᾱ). (4)

v is differentiable at ᾱ if and only if fα(x
∗(α), ᾱ) is continuous in α at ᾱ for

some selection x∗ of X∗, in which case v′(ᾱ) = fα(x̄, ᾱ) for any x̄ ∈ X∗(ᾱ).

If one assumed in Assumption (b) in Proposition 2.1 or Theorem 3.1 that
X is compact and fα exists and is continuous onX×A,3 then Assumption (b)
in Theorem 3.2 would hold (see Corollary 4 in Milgrom and Segal (2002)),
and hence the conclusion of Proposition 2.1 or Theorem 3.1 would follow
from Theorem 3.2. Otherwise, the assumptions in Proposition 2.1 or Theo-
rem 3.1 and those in Theorem 3.2 are not nested; see Subsection 3.3.

In our Example 2.1, if we restrict X to be any bounded interval contain-
ing x = 0, all the conditions in Theorem 3.2 except the equidifferentiability
are satisfied. To see that the equidifferentiability fails at α = 0, for any
δ > 0 let (x, α) = (δ, δ). Then we have∣∣∣∣f(δ, δ)− f(δ, 0)

δ − 0
− fα(δ, 0)

∣∣∣∣ = ∣∣∣∣δ − (−4δ4)

δ
− 4δ3

∣∣∣∣ = 1

for all δ > 0. Again, the directional derivatives of v at α = 0 do not obey
the formulas (3) and (4): v′(0+) = 1 and v′(0−) = −1, while fα(x

∗(α), 0) =
4|α|3 → 0 as α → 0.

We note that if f(x, α) is continuous in x for all α ∈ A, then the equi-
differentiability of {f(x, ·)}x∈X at ᾱ implies that fα(x, ᾱ) is continuous in x
(but it may not be continuous in α; see Example 3.1 in Subsection 3.3).

Proposition 3.3. Assume that f(·, α) is continuous for all α ∈ A. If
{f(x, ·)}x∈X is equidifferentiable at ᾱ, then fα(·, ᾱ) is continuous in x.

The proof is given in Appendix A.3.
Thus, if f(·, α) is continuous for all α ∈ A, X∗ has a selection that

is continuous at ᾱ, and Assumption (b) in Theorem 3.2 holds, then v is
differentiable at ᾱ by Theorem 3.2.

3.3 Independence of the Theorems

In this section, we see the independence of the assumptions in Proposi-
tion 2.1 or Theorem 3.1 and those in Theorem 3.2. First, the equidifferenti-
ability of f does not imply the continuity of fα, and thus Theorem 3.2 does

3Or more weakly, that for some neighborhood B of ᾱ in A, X∗(B) is relatively compact
(i.e., its closure cl(X∗(B)) is compact) and fα exists and is continuous on cl(X∗(B))×B.
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not follow from Proposition 2.1 or Theorem 3.1. One can easily construct
a continuous function f : X × A → R such that for some ᾱ ∈ A, the as-
sumptions in Theorem 3.2 hold, but fα is not continuous at (x̄, ᾱ) for any
x̄ ∈ X∗(ᾱ).

Example 3.1. Let X = R and A = R, and let f : X × A → R be defined
by

f(x, α) =

−x2 + α2 sin
1

α
if α ̸= 0,

−x2 if α = 0.

This function is differentiable at all (x, α), whose derivative with respect to
α is given by

fα(x, α) =

2α2 sin
1

α
− cos

1

α
if α ̸= 0,

0 if α = 0,

which is discontinuous in α at α = 0. It is immediate that X∗(α) = {0} for
all α, and the value function v(α) = f(0, α) is differentiable with v′(α) =
fα(0, α) for all α. Clearly, the convergence (f(x, α′) − f(x, α))/(α′ − α) →
fα(x, α) as α

′ → α does not depend on x, so that {f(x, ·)}x∈X is equidiffer-
entiable at all α including α = 0.

Second, the continuity of fα does not imply the equidifferentiability of f ,
and thus neither Proposition 2.1 nor Theorem 3.1 follows from Theorem 3.2.

Proposition 3.4. There exists a continuous function f : X × A → R such
that for some ᾱ ∈ A, the assumptions in Proposition 2.1 and Theorem 3.1
hold, but {f(x, ·)}x∈U is not equidifferentiable at ᾱ for any neighborhood U
of X∗(ᾱ).

This is proved by the following example.

Example 3.2. Let X = R and A = R, and let f : X × A → R be defined
by

f(x, α) =

−x2 + gk(x, α) if
1

2k
< x <

1

2k

[
1 +

2

π
tan−1 α

]
,

−x2 otherwise,

where k runs through all the integers, and gk is defined by

gk(x, α) =
2(2+γ)k

(tan−1 α)3

(
x− 1

2k

)2(
x− 1

2k

[
1 +

2

π
tan−1 α

])2
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with some constant γ ∈ (0, 2). Since limx→±∞ f(x, α) = −∞ and hence we
can restrict x to a compact set, and since f is continuous, X∗ is nonempty-
valued and upper semi-continuous. Since X∗(0) = {0}, Assumption (a) in
Proposition 2.1 as well as Assumption (a) in Theorem 3.1 hold with ᾱ = 0.4

The partial derivative of gk with respect to α is calculated as

∂gk
∂α

(x, α) = − 2(2+γ)k

(1 + α2)(tan−1 α)4

(
x− 1

2k

)2

×
(
x− 1

2k

[
1 +

2

π
tan−1 α

])(
3x− 1

2k

[
3 +

2

π
tan−1 α

])
(where the formula (tan−1 α)′ = 1/(1+α2) is used). To verify that Assump-
tion (b) in Proposition 2.1 or Theorem 3.1 is satisfied, note that any point
(x, α) such that 1

2k
< x < 1

2k

[
1 + 2

π tan−1 α
]
is written as

(x, α) =

(
1

2k

[
1 + c

2

π
tan−1 α

]
, α

)
for some c ∈ (0, 1). For such points (x, α), we have

fα(x, α) =
∂gk
∂α

(x, α) = −
(
2

π

)4 1

2(2−γ)k(1 + α2)
c2(c− 1)(3c− 1).

First, since this tends to 0 as c → 1, it follows that f is differentiable in
α at points (x, α) such that x = 1

2k

[
1 + 2

π tan−1 α
]
(the differentiability at

other points is clear). Second, since k → ∞ as x → 0, for those points
(x, α) we have fα(x, α) → 0 as (x, α) → (0, 0), which implies that fα is
continuous in (x, α) at (x, α) = (0, 0) (while it is discontinuous at points
(x, α) = (1/2k, 0)).

Now we claim that for any neighborhood B of x = 0, {f(x, ·)}x∈B is not
equidifferentiable at α = 0. Let B = [−η, η], η > 0, and set, for example,
ε = 1/(π42(2−γ)K+1), where K is such that 1/2K−1 ≤ η. For any δ > 0, let
α′ ∈ (0, δ] be such that (tan−1 α′)/α′ ≥ 1/2 (note that (tan−1 α)/α → 1 as
α → 0), and let x′ = 1

2K

[
1 + 1

π tan−1 α′] ∈ B. Then we have

f(x′, α′)− f(x′, 0)

α′ − 0
− fα(x

′, 0) =
1

π42(2−γ)K

tan−1 α′

α′ ≥ ε,

as claimed.

4 Parameterized Constraints

In this section, we discuss optimization problems with parameterized con-
straints and provide examples analogous to Example 2.1.

4The condition γ > 0 implies that 0 /∈ X∗(α) for α > 0, while γ < 2 will ensure the
continuity of fα at (x, α) = (0, 0). Let γ < 1 if one wants f to be differentiable everywhere
with respect to x as well.
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4.1 Saddle Point Problems

We first consider parameterized saddle point problems. Let X and Y be
nonempty topological spaces, and A ⊂ R a nonempty open set. For L : X ×
Y ×A → R, (x̄, ȳ) ∈ X × Y is a saddle point of L at α ∈ A if

L(x, ȳ, α) ≤ L(x̄, ȳ, α) ≤ L(x̄, y, α)

for all x ∈ X and all y ∈ Y . It is well known that if the set of saddle points
of L at α is nonempty, then it is written as the product set X̄(α) × Ȳ (α),
where

X̄(α) =

{
x ∈ X

∣∣∣∣ inf
y∈Y

L(x, y, α) = sup
x′∈X

inf
y∈Y

L(x′, y, α)

}
,

Ȳ (α) =

{
y ∈ Y

∣∣∣∣ sup
x∈X

L(x, y, α) = inf
y′∈Y

sup
x∈X

L(x, y′, α)

}
,

and for any (x̄, ȳ) ∈ X̄(α)× Ȳ (α), we have

L(x̄, ȳ, α) = inf
y∈Y

L(x̄, y, α) = sup
x∈X

L(x, ȳ, α).

We denote this value, the saddle value of L at α, by v̄(α).
As a counterpart of Proposition 2.1, we have the following (see also

Border (2015, Theorem 298)).

Proposition 4.1. Assume that

(a) X̄ × Ȳ has a selection (x̄, ȳ) continuous at ᾱ, and

(b) L is differentiable in α in a neighborhood of (x̄(ᾱ), ȳ(ᾱ), ᾱ), and Lα is
continuous in (x, y, α) at (x̄(ᾱ), ȳ(ᾱ), ᾱ).

Then v̄ is differentiable at ᾱ with v̄′(ᾱ) = Lα(x̄(ᾱ), ȳ(ᾱ), ᾱ).

The proof of this proposition is similar to that of Proposition 2.1 and
thus is omitted.

4.2 Constrained Optimization Problems

For functions f : X×A → R and g : X×A → Rk, consider the maximization
problem with parameterized inequality constrains:

v(α) = sup
x∈X(α)

f(x, α),

X∗(α) = {x ∈ X | x ∈ X(α), f(x, α) = v(α)},

where
X(α) = {x ∈ X | g(x, α) ≥ 0}.
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Let L : X × Rk
+ ×A → R be the associated Lagrange function:

L(x, y, α) = f(x, α) +

k∑
i=1

yigi(x, α).

Let

Y ∗(α) =

{
y ∈ Rk

+

∣∣∣∣ sup
x∈X

L(x, y, α) = v(α)

}
,

which is the set of Kuhn-Tucker vectors (Rockafellar (1970)) at α. Note
that (x∗, y∗) ∈ X∗(α) × Y ∗(α) if and only if it is a saddle point of L at α,
and in this case, v(α) = L(x∗, y∗, α).

We show that even if the optimal solution and the Kuhn-Tucker vector
are unique, the optimal value function may not be differentiable.

Proposition 4.2. There exist continuous functions f : X × A → R and
g : X ×A → Rk such that

(a) X∗(α) × Y ∗(α) is a singleton for all α and is continuous in α (as a
single-valued function), where the element of Y ∗(α) is nonzero for all
α, and

(b) f and g are differentiable in α,

but v is not differentiable at some α.

Modifying Example 2.1, we construct two examples of such functions f
and g. In the former (Example 4.1), fα fails to be continuous, violating As-
sumption (b) in Proposition 4.1, while gα does in the latter (Example 4.2).5

Example 4.1. Let X = R, A = R, and k = 1, and let continuous functions
f and g be defined by

f(x, α) = f0(x, α) + x,

g(x, α) = −x+ α,

where f0 is the function defined in Example 2.1, i.e.,

f0(x, α) =


− 1

α3
x2(x− 2α)2 if 2α < x < 0,

1

α3
x2(x− 2α)2 if 0 < x < 2α,

−x2(x− 2α)2 otherwise,

which is uniquely maximized at x = α (on X). One can verify that

X∗(α) = {α},
5These examples also demonstrate that the continuity of Lα is indispensable in Theo-

rem 5 in Milgrom and Segal (2002) and Theorem 3 in Marimon and Werner (2016).
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and

v(α) =

{
0 if α < 0,

2α if α ≥ 0,

which is not differentiable at α = 0.
The Lagrange function is given by

L(x, y, α) = f0(x, α) + x+ y(−x+ α).

If y∗ ∈ Y ∗(α), then by the first-order condition Lx(α, y
∗, α) = f0

x(α, α) +
1 − y∗ = 0, where f0

x(α, α) = 0, we have y∗ = 1, and indeed, 1 ∈ Y ∗(α).
Therefore,

Y ∗(α) = {1}
for all α.

As discussed in Example 2.1, fα (and thus Lα) is not jointly continuous
in (x, α) at (x, α) = (0, 0). Thus Assumption (b) in Proposition 4.1 is
violated.

Example 4.2. Let X = R, A = R, and k = 1, and let continuous functions
f and g be defined by

f(x, α) = x,

g(x, α) = g0(x, α)− x,

where

g0(x, α) =


− 1

α3
x2(x+ 2α)2 if 0 < x < −2α,

1

α3
x2(x− 2α)2 if 0 < x < 2α,

0 otherwise.

Note that g0(x, α) = f0(x, α) if 0 < x < 2α and g0(x, α) = f0(x,−α) if
0 < x < −2α, where f0 is the function defined in Example 2.1, and so refer
to Figure 1(2) for the shape of the function g0 for these ranges. One can

verify that X(α) = (−∞, 0] ∪
[
3−

√
5

2 |α|, |α|
]
, so that

X∗(α) = {|α|},

and
v(α) = |α|

which is not differentiable at α = 0. As in Example 4.1, one can also verify
that

Y ∗(α) = {1}
for all α (note that g0x(|α|, α) = 0).

A similar argument as in Example 2.1 shows that gα (and thus Lα) is
not jointly continuous in (x, α) at (x, α) = (0, 0). Thus Assumption (b) in
Proposition 4.1 is violated.
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As a final remark, we observe that if the optimal value function v is
concave, which is the case when the objective function f and the constraint
functions gi are concave jointly in x and α, then the continuity of fα and
gα is not needed and the existence of a continuous selection of the Kuhn-
Tucker vectors is sufficient to guarantee the differentiability of v. This result
extends Corollary 3 in Milgrom and Segal (2002) to the case of parametric
constraints.6 Here, we let X be any nonempty set, and A ⊂ R a nonempty
open interval.

Proposition 4.3. Assume that

(a) X∗(α) ̸= ∅ for all α ∈ A,

(b) Y ∗ has a selection y∗ continuous at ᾱ,

(c) for all x̄ ∈ X∗(ᾱ), f and g are differentiable in α at (x̄, ᾱ), and

(d) v is concave.

Then v is differentiable at ᾱ with v′(ᾱ) = Lα(x̄, y
∗(ᾱ), ᾱ) for any x̄ ∈ X∗(ᾱ).

The proof is given in Appendix A.4.
If X is a compact convex subset of a topological vector space, f and g

are continuous, and for each α ∈ A, f(·, α) and gi(·, α), i = 1, . . . , k, are
concave and the Slater condition holds, i.e., there exists x̂ ∈ X such that
gi(x̂, α) > 0 for all i = 1, . . . , k, then X∗ and Y ∗ are nonempty-valued and
upper semi-continuous. In this case, any selection of Y ∗ is continuous at ᾱ
whenever Y ∗(ᾱ) is a singleton, which holds true, for example, when f and
g are differentiable in x (where X is a subset of a Euclidean space) and the
linear independence constraint qualification holds.

Assumption (b) in Proposition 4.3 is indispensable, as seen in the fol-
lowing example.

Example 4.3. Let X = R, A = R, and k = 1, and consider the problem
given by

f(x, α) = −|x|, g(x, α) = −(x− α)2 + 1,

which are concave in (x, α) and differentiable in α and for which the Slater
condition holds. One can verify that

X∗(α) =


{1 + α} if α < −1,

{0} if −1 ≤ α ≤ 1,

{−1 + α} if α > 1,

and

v(α) =


1 + α if α < −1,

0 if −1 ≤ α ≤ 1,

1− α if α > 1,
6See also Corollary 2(i) in Marimon and Werner (2016), which is obtained under addi-

tional assumptions.

14



which is not differentiable at α = −1, 1, while

Y ∗(α) =



{
1

2

}
if α < −1 or α > 1,[

0,
1

2

]
if α = −1, 1,

{0} if −1 < α < 1,

any selection of which is discontinuous at α = −1, 1.

5 Applications

In this section, we discuss the (non-)differentiability of the optimal value
function in some economic contexts, producer and consumer theories, in
connection to Proposition 2.1 and Example 2.1 in Section 2.

5.1 Differentiability of the Support Function (or the Profit
Function)

For a nonempty subset X of Rn, let πX denote the support function of X,
the function πX : Rn → (−∞,∞] defined by

πX(p) = sup
x∈X

p · x,

and let SX denote the associated optimal solution correspondence:

SX(p) = {x ∈ Rn | x ∈ X, p · x = πX(p)}.

If X is the production set of a firm, πX and SX are the profit function and
the supply correspondence of the firm, respectively.

For support functions, it is well known that, if X is closed and convex,
differentiability holds precisely when the optimal solution is unique.

Theorem 5.1. Assume that X is a nonempty closed convex subset of Rn.
Then πX is differentiable at p̄ if and only if SX(p̄) is a singleton, in which
case SX(p̄) = {∇πX(p̄)}.

In convex analysis (for example in Rockafellar (1970, Chapter 25)), this
theorem is proved via conjugate duality for convex functions. Here, we
present an alternative proof, showing that it also follows from our enve-
lope theorem, Proposition 2.1 (or its multidimensional parameter version,
Proposition A.1, or Corollary A.2, in Appendix A.1). The continuity of the
partial derivative of the objective function p · x with respect to p is obvious
in this case. The main obstacle in applying our proposition is the possible
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unboundedness of X, but it turns out that under the closedness and con-
vexity of X, the linearity (or more generally, quasi-concavity) of p · x in x,
and its continuity in (x, p), the point boundedness of SX in fact implies the
neighborhood boundedness.

Lemma 5.2. Assume that X is a nonempty closed convex subset of Rn.
If SX(p̄) is nonempty and bounded, then SX is nonempty and uniformly
bounded near p̄, i.e., there exists a neighborhood U ⊂ Rn of p̄ such that
SX(p) ̸= ∅ for all p ∈ U and

∪
p∈U SX(p) is bounded.

The proof is given in Appendix A.5 as a slightly more general form of
Lemma A.4.

Given Lemma 5.2, the “if” part of Theorem 5.1 follows readily from our
envelope theorem.

Proof of Theorem 5.1. For the “if” part, given a p̄ for which SX(p̄) is a
singleton, let U ⊂ Rn be a neighborhood of p̄ as given in Lemma 5.2, and let
X̂ be the closure of

∪
p∈U SX(p), which is nonempty and compact. For all

p ∈ U , we have πX̂(p) = πX(p) and SX̂(p) = SX(p) (where πX̂ is the support

function of X̂ and SX̂ is the associated optimal solution correspondence),
and SX̂ is nonempty-valued and upper semi-continuous on U . The function
f(x, p) = p ·x is differentiable in p, and ∇pf(x, p) = x is continuous in (x, p).
Thus, it follows from Corollary A.2 that πX̂ , and hence πX , is differentiable
at p̄ with∇πX(p̄) = ∇πX̂(p̄) = ∇pf(x̄, p̄) = x̄, where x̄ is the unique element
of SX̂(p̄), and hence of SX(p̄).

For the “only if” part, first, the definition immediately implies that
SX(p̄) ⊂ ∂πX(p̄), where ∂πX(p̄) is the set of subgradients of πX at p̄, which,
by the convexity of πX , equals {∇πX(p̄)} if πX is differentiable at p̄. Then,
the nonemptiness of SX(p̄) follows from the fact that SX(p̄) ⊃ ∂πX(p̄) for
closed convex set X, which is proved via the separation theorem. Alterna-
tively, the nonemptiness of SX(p̄) directly follows by an elementary argu-
ment (see Lemma A.5 in Appendix A.5) from the differentiability of πX at
p̄ (under the closedness of X), and, as we demonstrated in the Introduction,
with the differentiability of πX it is straightforward to derive the envelope
formula, ∇πX(p̄) = ∇pf(x̄, p̄) = x̄ for any x̄ ∈ SX(p̄), which implies that
SX(p̄) = {∇πX(p̄)}.

The convexity of X can be dropped if X is compact, in which case
convX, the convex hull of X, is closed.

Corollary 5.3. Assume that X is a nonempty compact subset of Rn. Then
πX is differentiable at p̄ if and only if SX(p̄) is a singleton, in which case
SX(p̄) = {∇πX(p̄)}.

Proof. By the convexity of p ·x in x, if x ∈ convX, then there exists x′ ∈ X
such that p · x ≤ p · x′. This implies that, for all p, πX(p) = πconvX(p) and
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convSX(p) ⊂ SconvX(p). Conversely, suppose that x̄ ∈ SconvX(p), so that
x̄ =

∑k
i=1 λ

ixi for some x1, . . . , xk ∈ X and λ1, . . . , λk > 0, and p · x̄ ≥ p · x
for all x ∈ convX. Then for any i = 1, . . . , k, λip ·xi = p · x̄−

∑
j ̸=i λ

jp ·xj ≥
p · x̄−

∑
j ̸=i λ

jp · x̄ = λip · x̄, or p ·xi ≥ p · x̄, so that xi ∈ SX(p). This implies
that x̄ ∈ convSX(p).

Now, convX is nonempty and closed if X is nonempty and compact.
Therefore, it follows from Theorem 5.1 that πX = πconvX is differentiable
at p̄ if and only if SconvX(p̄) = convSX(p̄) is a singleton, which holds true
if and only if SX(p̄) is a singleton, in which case SX(p̄) = {∇πX(p̄)}.

Remark 5.1. The “if” part of Theorem 5.1 follows also from Milgrom and Se-
gal’s (2002) theorem (Theorem 3.2). Let U ⊂ Rn be as in Lemma 5.2. Then,
for each i = 1, . . . , n, the family of functions pi 7→ (p̄−i, pi) · x, x ∈ X̂, on
the domain {pi ∈ R | (p̄−i, pi) ∈ U} is equidifferentiable by the compactness
of X̂ (where X̂ is the closure of

∪
p∈U SX(p)). (The other assumptions can

be verified to hold as in our proof above.) Thus by Theorem 3.2, πX = πX̂
is differentiable for each pi at p̄. Since πX is convex, the existence of all the
partial derivatives implies its differentiability.

5.2 (Non-)Differentiability of the Indirect Utility Function
and the Expenditure Function

In this subsection, we consider the (non-)differentiability of the optimal value
function in consumer theory. First, as a corollary to our envelope theorem,
Proposition 2.1 (or Corollary A.2), we provide a set of sufficient conditions
under which the indirect utility and the expenditure functions are differen-
tiable when the optimal solution is unique. Second, based on Example 2.1,
we present an example of a continuous utility function with strictly positive
partial derivatives for which these functions fail to be differentiable even
when the solution is unique. In this example, again, the partial derivatives
of the utility function fail to be continuous. In what follows, we let X = Rn

+.

5.2.1 Differentiability of the Indirect Utility Function

Let a utility function u : X → R be given, and consider the indirect utility
function v defined on Rn

++ × R++:

v(p, w) = sup
x∈B(p,w)

u(x),

where B(p, w) = {x ∈ X | p · x ≤ w}. Let D be the Walrasian demand
correspondence, i.e., D(p, w) = {x ∈ X | x ∈ B(p, w), u(x) = v(p, w)}.
We obtain as a corollary to our envelope theorem the following sufficient
condition for the differentiability of v.

Proposition 5.4. Assume that
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(a) u is locally nonsatiated and continuous,

(b) D(p̄, w̄) = {x̄}, and
(c) for some j with x̄j > 0 and for some neighborhoods X0

j and X0
−j of x̄j

and x̄−j in R+ and Rn−1
+ , respectively, uxj exists on X0

j ×X0
−j and is

continuous in x at x̄.

Then v is differentiable at (p̄, w̄) with

vpi(p̄, w̄) = −
uxj (x̄)

p̄j
x̄i, vw(p̄, w̄) =

uxj (x̄)

p̄j

for any j satisfying the condition in (c).

Proof. By the local nonsatiability, the inequality constraint p · x ≤ w can
be replaced with the equality constraint p · x = w. Let D(p̄, w̄) = {x̄},
where p̄ · x̄ = w̄. Let j, X0

j , and X0
−j be as in Assumption (c), where

x̄j = 1
p̄j

(
w̄ −

∑
i ̸=j p̄ix̄i

)
∈ X0

j . Since 1
pj

(
w −

∑
i ̸=j pixi

)
is continuous in

(x−j , p, w), there exist a compact neighborhood X1
−j ⊂ X0

−j of x̄−j in Rn−1
+ ,

an open neighborhood P 0 of p̄ in Rn
++, and an open neighborhood W 0 of

w̄ in R++ such that 1
pj

(
w −

∑
i ̸=j pixi

)
∈ X0

j for all (x−n, p, w) ∈ X1
−j ×

P 0×W 0. Since D is upper semi-continuous by the continuity of u and since
D−j(p̄, w̄) ⊂ X1

−j , we can take open neighborhoods P 1 ⊂ P 0 and W 1 ⊂ W 0

of p̄ and w̄, respectively, such that D−j(p, w) ⊂ X1
−j for all (p, w) ∈ P 1×W 1,

where D−j(p, w) = {x−j ∈ Rn−1
+ | (xj , x−j) ∈ D(p, w) for some xj ∈ R+}.

Now define the continuous function f : X1
−j × P 1 ×W 1 → R by

f(x−j , p, w) = u

(
1

pj

(
w −

∑
i ̸=j pixi

)
, x−j

)
.

By construction, v(p, w) = maxx−j∈X1
−j

f(x−j , p, w) for all (p, w) ∈ P 1×W 1

and {x−j ∈ X1
−j | f(x−j , p̄, w̄) = v(p̄, w̄)} = {x̄−j}, while by Assump-

tion (c), ∇(p,w)f exists on X1
−j×P 1×W 1 and is continuous in (x−j , p, w) at

(x̄−j , p̄, w̄). Therefore, it follows from Corollary A.2 that v is differentiable
at (p̄, w̄), and

vpi(p̄, w̄) = fpi(x̄−j , p̄, w̄) = uxj (x̄)
1

p̄j
(−x̄i),

vw(p̄, w̄) = fw(x̄−j , p̄, w̄) = uxj (x̄)
1

p̄j
,

as claimed.
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5.2.2 Differentiability of the Expenditure Function

Let a utility function u : X → R be given, and let U ⊂ R be the open interval
(inf u(X), supu(X)). We assume that U ̸= ∅ (i.e., u is non-constant), and
consider the expenditure function e defined on Rn

++ × U :

e(p, u) = inf
x∈V (u)

p · x,

where V (u) = {x ∈ X | u(x) ≥ u} (which is nonempty for all u ∈ U). Let
H be the Hicksian demand correspondence, i.e., H(p, u) = {x ∈ X | x ∈
V (u), p · x = e(p, u)}.

With ū fixed, the expenditure function e(p, ū), being the support func-
tion of V (ū), is differentiable in p if and only if the solution to the expendi-
ture minimization problem is unique, as discussed in Subsection 5.1.

Proposition 5.5. Assume that u is continuous. Then e(·, ū) is differen-
tiable at p̄ if and only if H(p̄, ū) is a singleton, in which case H(p̄, ū) =
{ep(p̄, ū)}.

Proof. Fix any ū ∈ U , and denote ē = e(p̄, ū) (< ∞). Let V 0 = V (ū)∩{x ∈
X | p̄ · x ≤ ē+ 1} ̸= ∅, which is bounded by construction and closed by the
continuity of u. Take any x0 ∈ V (ū) such that p̄ · x0 ≤ ē + 1/2. By the
upper semi-continuity of the correspondence p 7→ {x ∈ X | p · x ≤ p · x0},
we can take an open neighborhood U ⊂ Rn

++ of p̄ such that {x ∈ X | p ·x ≤
p · x0} ⊂ {x ∈ X | p̄ · x ≤ ē + 1} for all p ∈ U . Then by construction, we
have e(p, ū) = infx∈V 0 p · x and H(p, ū) = {x ∈ X | x ∈ V 0, p · x = e(p, ū)}
for all p ∈ U . Thus, by the compactness of V 0, the proposition follows from
Corollary 5.3.

For the differentiability of e(p, u) in (p, u), we have the following sufficient
condition by Proposition 5.4.

Proposition 5.6. Assume that

(a) u is locally nonsatiated and continuous,

(b) H(p̄, ū) = {x̄}, where ū > u(0),

(c) for some j with x̄j > 0 and for some neighborhoods X0
j and X0

−j of x̄j

and x̄−j in R+ and Rn−1
+ , respectively, uxj exists on X0

j ×X0
−j and is

continuous in x at x̄, and

(d) uxj (x̄) ̸= 0 for some j satisfying the condition in (c).

Then e is differentiable at (p̄, ū) with

epi(p̄, ū) = x̄i, eu(p̄, ū) =
p̄j

uxj (x̄)

for any j satisfying the condition in (c).

19



Proof. By (a), (i) e is continuous, and duality applies so that (ii) e(p, u) is
the solution to the equation v(p, w)−u = 0 in w, and (iii) D(p̄, w̄) = H(p̄, ū)
which equals {x̄} by (b), where w̄ = e(p̄, ū). Conditions (a), (iii), and (c)
ensure Proposition 5.4 to hold, so that (iv) v is differentiable at (p̄, w̄) with

vpi(p̄, w̄) = −uxj (x̄)

p̄j
x̄i and vw(p̄, w̄) =

uxj (x̄)

p̄j
, where j is any index that

satisfies the condition in (c). By (d), we have (v) vw(p̄, w̄) ̸= 0. By (i),
(ii), (iv), and (v), it follows from Halkin’s (1974, Theorem D) version of the
implicit function theorem7 applied to the equation v(p, w)− u = 0 that e is
differentiable at (p̄, ū) with

epi(p̄, ū) = −vpi(p̄, ū)

vw(p̄, ū)
= x̄i,

eu(p̄, ū) = − −1

vw(p̄, ū)
=

p̄j
uxj (x̄)

,

as claimed.

5.2.3 Non-Differentiability of the Indirect Utility Function and
the Expenditure Function

Now, we demonstrate that, even when the optimal solution is unique, the
indirect utility function v(p, w) and the expenditure function e(p, u) may
fail to be differentiable in wealth w and required utility u, respectively, if
the continuity of the partial derivatives of the utility function is dropped in
Propositions 5.4 and 5.6.

Proposition 5.7. There exists a continuous utility function u : X → R such
that for some p̄ ∈ Rn

++,

(a) D(p̄, w) and H(p̄, u) are singletons for all w and all u and are contin-
uous (as single-valued functions) in w and u, respectively,

(b) u is partially differentiable in each xi, i = 1, . . . , n, at all x ∈ X, and

(c) uxi(x) > 0 for all i = 1, . . . , n and all x ∈ X,

but v(p̄, w) and e(p̄, u) are not differentiable in w and u at some w̄ and some
ū, respectively.

Below we provide such a utility function with two commodities, which
is shaped similarly to the function f given in Example 2.1 in Section 2 on
the budget lines for some fixed price ratio.

Example 5.1. Let X = R2
+, and let the continuous function u : X → R be

defined by

u(x1, x2) = 6(x1 + x2 − 2) + (x1 + x2 − 2)2 + u0(x1, x2),

7See also Border (2016).
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where

u0(x1, x2) =



−8(x1 − 1)2(x2 − 1)2

(x1 + x2 − 2)3
if (x1, x2) ∈ [0, 1)2,

8(x1 − 1)2(x2 − 1)2

(x1 + x2 − 2)3
if (x1, x2) ∈ (1,∞)2,

−(x1 − 1)2(x2 − 1)2 otherwise.

Observe that u0(x1, x2) = f
(
x1 − 1, 12(x1 + x2 − 2)

)
, where f is the function

in Example 2.1. The function u(x1, x2) is differentiable in each xi at all
x ∈ X, and its partial derivatives are given by

uxi(x1, x2) = 6 + 2(x1 + x2 − 2) + u0xi
(x1, x2),

where

u0xi
(x1, x2) =



−8(xi − 1)(xj − 1)2(−xi + 2xj − 1)

(x1 + x2 − 2)4
if (x1, x2) ∈ [0, 1)2,

8(xi − 1)(xj − 1)2(−xi + 2xj − 1)

(x1 + x2 − 2)4
if (x1, x2) ∈ (1,∞)2,

−2(xi − 1)(xj − 1)2 otherwise.

In Supplementary Appendix B.1, we show that uxi(x1, x2) > 0, i = 1, 2,
for all (x1, x2) ∈ X. Thus, our utility function u is strictly increasing,
so that the optimal consumption lies on the budget line. Note also that
U = (inf u(X), supu(X)) = (u(0, 0),∞) = (−7,∞).

In the following, we fix the price vector to p̄ = (12 ,
1
2). For utility max-

imization, substitute the budget equality 1
2x1 + 1

2x2 = w into the util-
ity function. Then, with the function f defined in Example 2.1, we have
u0(x1, 2w − x1) = f(x1 − 1, w − 1) for all (x1, w) such that 0 ≤ x1 ≤ 2w,
and therefore,

v(p̄, w) = max
0≤x1≤2w

12(w − 1) + 4(w − 1)2 + f(x1 − 1, w − 1).

Thus, as in Example 2.1, for all w, the solution is x∗1 = w, so that the optimal
consumption is given byD(p̄, w) = {(w,w)}, and the indirect utility function
with p = p̄ is given by

v(p̄, w) = 12(w − 1) + 4(w − 1)2 + |w − 1|,

which is not differentiable in w at w = 1.
For expenditure minimization, duality applies by the continuity and

strict monotonicity of u. Therefore, the expenditure function for u ∈ U
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with p = p̄ is given by the inverse function of w 7→ v(p̄, w): in a closed form,

e(p̄, u) =


−3 +

√
16u+ 121

8
if −7 < u < 0,

−5 +
√
16u+ 169

8
if u ≥ 0,

which is not differentiable in u at u = 0. The Hicksian demand is given by
H(p̄, u) = D(p̄, e(p̄, u)) = {(e(p̄, u), e(p̄, u))}.

While continuous separately in x1 and in x2, the partial derivatives uxi

are not continuous jointly in (x1, x2) at (x1, x2) = (1, 1). To see this for
i = 1, set x2 = c(x1 − 1) + 1, and let x1 → 1. Then, if c > 0, then

lim
x1→1−0

ux1(x1, c(x1 − 1) + 1) = −8c2(2c− 1)

(c+ 1)4
,

lim
x1→1+0

ux1(x1, c(x1 − 1) + 1) =
8c2(2c− 1)

(c+ 1)4
,

while limx1→1 ux1(x1, c(x1− 1)+1) = 0 otherwise (and limx2→1 ux1(1, x2) =
0). Thus, Assumption (c) in Propositions 5.4 and 5.6 is violated.

Remark 5.2. Clearly, this example can also be read as an example of a failure
of the differentiability of the cost function in production. With the function
u above, define the production function by F (L,K) = u(L,K) − u(0, 0)
(where u(0, 0) = −7). With the factor price vector fixed to (w̄, r̄) = (12 ,

1
2),

the cost function for this production function is given by c(y) = e((w̄, r̄), y−
7), which is not differentiable at y = 7. Furthermore, this example also
demonstrates that the property that the short-run cost curves are tangent
to the long-run cost curve (in the strict sense that both are differentiable
and share a common tangent line) may fail even when the short-run cost
function is differentiable in y and the cost minimizer is unique. Note that,
in this example, since with K fixed, F (L,K) is continuously differentiable
in L and FL(L,K) > 0, the inverse function y 7→ L(y;K) of L 7→ F (L,K)
is well defined and continuously differentiable, and thus the short-run cost
function c(y;K) = w̄L(y;K) + r̄K is differentiable in y.

Remark 5.3. The function u in the above example is not (totally) differen-
tiable in x at x = (1, 1). One can in fact modify the example to be differen-
tiable in x everywhere, thereby strengthening Proposition 5.7 by replacing
Condition (b) with the condition “u is differentiable in x at all x ∈ X”.
In Supplementary Appendix B.2, we present such a function, as well as the
corresponding totally differentiable version of Example 2.1.
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Appendix

A.1 Proof of Proposition 2.1

In this section, we prove a slight generalization of Proposition 2.1 where α is
a multidimensional variable, which is used in Section 5. Let A be a nonempty
open subset of Rm (instead of one of R). The function v : A → (−∞,∞] is
differentiable at α ∈ A if v(α) < ∞, and there exists q ∈ Rm such that for
any ε > 0, there exists δ > 0 such that

|v(α+ z)− v(α)− q · z|
|z|

≤ ε

whenever |z| ≤ δ, z ̸= 0. In this case, q is called the derivative, or gradient,
of v at α and is denoted ∇v(α), which equals (vα1(α), . . . , vαm(α))

′. The
gradient of the function α 7→ f(x, α) at (x, α), if it exists, will be denoted
∇αf(x, α).

Proposition A.1. Assume that

(a) X∗ has a selection x∗ continuous at ᾱ, and

(b) f is differentiable in α in a neighborhood of (x∗(ᾱ), ᾱ), and ∇αf is
continuous in (x, α) at (x∗(ᾱ), ᾱ).

Then v is differentiable at ᾱ with ∇v(ᾱ) = ∇αf(x
∗(ᾱ), ᾱ).

Proof. Let x∗ be a selection of X∗ continuous at ᾱ as assumed, and denote
x∗(ᾱ) = x̄. By the definition of v, for any z ∈ Rm with ᾱ+ z ∈ A we have

f(x̄, ᾱ+ z)− f(x̄, ᾱ) ≤ v(ᾱ+ z)− v(ᾱ)

≤ f(x∗(ᾱ+ z), ᾱ+ z)− f(x∗(ᾱ+ z), ᾱ).

Let δ0 > 0 be such that for all z with |z| ≤ δ0 and all θ ∈ [0, 1], (x∗(ᾱ +
z), ᾱ + θz) lies in the neighborhood of (x̄, ᾱ) in which f is differentiable in
α. By the mean value theorem, for any z with |z| ≤ δ0, we have

f(x∗(ᾱ+ z), ᾱ+ z)− f(x∗(ᾱ+ z), ᾱ) = ∇αf(x
∗(ᾱ+ z), ᾱ+ θz) · z

for some θ ∈ (0, 1).
Now fix any ε > 0. By the differentiability of f(x̄, ·) at ᾱ, we can take a

δ1 > 0 such that if |z| ≤ δ1, z ̸= 0, then

|f(x̄, ᾱ+ z)− f(x̄, ᾱ)−∇αf(x̄, ᾱ) · z|
|z|

≤ ε.

By the continuity of ∇αf at (x̄, ᾱ) as well as that of x∗ at ᾱ, we can also
take a δ2 > 0, where δ2 ≤ δ0, such that if |z| ≤ δ2 and |z′| ≤ δ2, then

|∇αf(x
∗(ᾱ+ z), ᾱ+ z′)−∇αf(x̄, ᾱ)| ≤ ε.
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Let δ = min{δ1, δ2} > 0. Then it follows that if |z| ≤ δ, z ̸= 0, then

∇αf(x̄, ᾱ) · z
|z|

− ε ≤ v(ᾱ+ z)− v(ᾱ)

|z|
≤ ∇αf(x̄, ᾱ) · z

|z|
+ ε,

or
|v(ᾱ+ z)− v(ᾱ)−∇αf(x̄, ᾱ) · z|

|z|
≤ ε.

This means that v is differentiable at ᾱ, and its derivative satisfies ∇v(ᾱ) =
∇αf(x̄, ᾱ).

Assumption (a) in Proposition A.1 holds if X∗ is nonempty-valued and
upper semi-continuous and X∗(ᾱ) is a singleton, in which case any selection
of X∗ is continuous at ᾱ.

Corollary A.2. Assume that

(a) X∗ is upper semi-continuous with X∗(α) ̸= ∅ for all α ∈ A, and
X∗(ᾱ) = {x̄}, and

(b) f is differentiable in α in a neighborhood of (x̄, ᾱ), and ∇αf is contin-
uous in (x, α) at (x̄, ᾱ).

Then v is differentiable at ᾱ with ∇v(ᾱ) = ∇αf(x̄, ᾱ).

A.2 Proof of Theorem 3.1

In this section, we prove the directional differentiability part of Theorem 3.1
with a multidimensional parameter α. As in Section A.1, letA be a nonempty
open subset of Rm (instead of one of R). For the function v : A → (−∞,∞]
and for α ∈ A with v(α) < ∞, the (one-sided) directional derivative of v at
α with respect to d is defined by

v′(α; d) = lim
λ↘0

v(α+ λd)− v(α)

λ

if it exists (with ∞ and −∞ being allowed as limits); v is directionally
differentiable at α if v(α) < ∞ and v′(α; d) exists and is finite for all d ∈ Rm.

Theorem A.3 (Danskin). Assume that

(a) X∗ is upper semi-continuous with X∗(α) ̸= ∅ for all α ∈ A, and X∗(ᾱ)
is compact, and

(b) for all x̄ ∈ X∗(ᾱ), f is differentiable in α in a neighborhood of (x̄, ᾱ),
and ∇αf is continuous in (x, α) at (x̄, ᾱ).

Then v is directionally differentiable at ᾱ with

v′(ᾱ; d) = max
x̄∈X∗(ᾱ)

∇αf(x̄, ᾱ) · d.
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Proof. Fix any d ∈ Rm. By the definition of v, for all λ > 0 we have

f(x̄, ᾱ+ λd)− f(x̄, ᾱ)

λ
≤ v(ᾱ+ λd)− v(ᾱ)

λ

for all x̄ ∈ X∗(ᾱ). By the differentiability of f(x̄, ·) at ᾱ, we have

∇αf(x̄, ᾱ) · d ≤ lim inf
λ↘0

v(ᾱ+ λd)− v(ᾱ)

λ
(5)

for all x̄ ∈ X∗(ᾱ).
Next, let {λk}∞k=1 be a sequence such that λk ↘ 0 and

lim sup
λ↘0

v(ᾱ+ λd)− v(ᾱ)

λ
= lim

k→∞

v(ᾱ+ λkd)− v(ᾱ)

λk
.

In the following, we write αk = ᾱ + λkd. For each k, take any x∗(αk) ∈
X∗(αk). Then, since X∗ is upper semi-continuous and X∗(ᾱ) is compact,
{x∗(αk)}∞k=1 has a cluster point (or limit point) inX∗(ᾱ) (see, e.g., Aliprantis
and Border (2006, Theorem 17.16)), i.e., there exists x̄ ∈ X∗(ᾱ) such that
for any neighborhood U of x̄ and any K, there exists k ≥ K such that
x∗(αk) ∈ U . Take any such x̄ ∈ X∗(ᾱ).

Fix any ε > 0. Let K1 be such that

lim sup
λ↘0

v(ᾱ+ λd)− v(ᾱ)

λ
≤ v(αk)− v(ᾱ)

λk
+

ε

2

for all k ≥ K1. By Assumption (b), we can take a neighborhood U of x̄
and δ > 0 such that for all x ∈ U and all α ∈ A with |α − ᾱ| ≤ δ, f is
differentiable and fα satisfies

|(∇αf(x, α)−∇αf(x̄, ᾱ)) · d| ≤
ε

2
.

Let K2 be such that |αk − ᾱ| ≤ δ for all k ≥ K2. Now take any ℓ ≥
max{K1,K2} such that x∗(αℓ) ∈ U . Then we have

lim sup
λ↘0

v(ᾱ+ λd)− v(ᾱ)

λ
≤ v(αℓ)− v(ᾱ)

λℓ
+

ε

2

≤ f(x∗(αℓ), αℓ)− f(x∗(αℓ), ᾱ)

λℓ
+

ε

2

= ∇αf(x
∗(αℓ), ᾱ+ θ(αℓ − ᾱ)) · d+ ε

2
≤ ∇αf(x̄, ᾱ) · d+ ε

with some θ ∈ (0, 1), where the second inequality follows from the definition
of v, and the equality from the mean value theorem. Since ε > 0 has been
taken arbitrarily, it follows that

lim sup
λ↘0

v(ᾱ+ λd)− v(ᾱ)

λ
≤ ∇αf(x̄, ᾱ) · d, (6)
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where x̄ ∈ X∗(ᾱ).
By (5) and (6), v′(ᾱ; d) exists and equals ∇αf(x̄, ᾱ) · d for some x̄ ∈

X∗(ᾱ). Furthermore, by (5) we have

v′(ᾱ; d) = max
x̄∈X∗(ᾱ)

∇αf(x̄, ᾱ) · d,

as desired.

A.3 Proof of Proposition 3.3

Proof. Fix any x̄ ∈ X and any ε > 0. By the equidifferentiability of
{f(x, ·)}x∈X , we can take an α1 such that∣∣∣∣f(x, α1)− f(x, ᾱ)

α1 − ᾱ
− fα(x, ᾱ)

∣∣∣∣ ≤ ε

3

for all x ∈ X. By the continuity of f in x, we can take a neighborhood U of
x̄ such that for each i = 0, 1,

|f(x, αi)− f(x̄, αi)| ≤ ε

6
|α1 − ᾱ|

for all x ∈ U .
Now let x ∈ U . Then we have

|fα(x, ᾱ)− fα(x̄, ᾱ)| ≤
∣∣∣∣fα(x, ᾱ)− f(x, α1)− f(x, ᾱ)

α1 − ᾱ

∣∣∣∣
+

|f(x, α1)− f(x̄, α1)|
|α1 − ᾱ|

+
|f(x̄, ᾱ)− f(x, ᾱ)|

|α1 − ᾱ|

+

∣∣∣∣f(x̄, α1)− f(x̄, ᾱ)

α1 − ᾱ
− fα(x̄, ᾱ)

∣∣∣∣ ≤ ε.

This means that fα(·, ᾱ) is continuous.

A.4 Proof of Proposition 4.3

Proof. Let x∗ be a selection of X∗, and y∗ a selection of Y ∗ continuous
at ᾱ, and denote x∗(ᾱ) = x̄ and y∗(ᾱ) = ȳ. Let ε̄ > 0 be such that
(ᾱ− ε̄, ᾱ+ ε̄) ⊂ A, and take any ε ∈ (0, ε̄]. Then we have

v(ᾱ)− v(ᾱ− ε)

= L(x̄, ȳ, ᾱ)− L(x̄, y∗(ᾱ− ε), ᾱ)

+ L(x̄, y∗(ᾱ− ε), ᾱ)− L(x̄, y∗(ᾱ− ε), ᾱ− ε)

+ L(x̄, y∗(ᾱ− ε), ᾱ− ε)− L(x∗(ᾱ− ε), y∗(ᾱ− ε), ᾱ− ε),
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where the first and the third terms are nonpositive by the saddle point
property, and hence we have

v(ᾱ)− v(ᾱ− ε) ≤ L(x̄, y∗(ᾱ− ε), ᾱ)− L(x̄, y∗(ᾱ− ε), ᾱ− ε),

so that

v(ᾱ)− v(ᾱ− ε)

ε
≤ f(x̄, ᾱ)− f(x̄, ᾱ− ε)

ε

+

k∑
i=1

y∗i (ᾱ− ε)
gi(x̄, ᾱ)− gi(x̄, ᾱ− ε)

ε
. (7)

Similarly, we have

v(ᾱ+ ε)− v(ᾱ)

= L(x∗(ᾱ+ ε), y∗(ᾱ+ ε), ᾱ+ ε)− L(x̄, y∗(ᾱ+ ε), ᾱ+ ε)

+ L(x̄, y∗(ᾱ+ ε), ᾱ+ ε)− L(x̄, y∗(ᾱ+ ε), ᾱ)

+ L(x̄, y∗(ᾱ+ ε), ᾱ)− L(x̄, ȳ, ᾱ)

≥ L(x̄, y∗(ᾱ+ ε), ᾱ+ ε)− L(x̄, y∗(ᾱ+ ε), ᾱ)

by the saddle point property, so that

v(ᾱ+ ε)− v(ᾱ)

ε
≥ f(x̄, ᾱ+ ε)− f(x̄, ᾱ)

ε

+

k∑
i=1

y∗i (ᾱ+ ε)
gi(x̄, ᾱ+ ε)− gi(x̄, ᾱ)

ε
. (8)

By the concavity of v, we also have

v(ᾱ)− v(ᾱ− ε)

ε
≥ v(ᾱ+ ε)− v(ᾱ)

ε
. (9)

Therefore, from (7)–(9) we have

f(x̄, ᾱ)− f(x̄, ᾱ− ε)

ε
+

k∑
i=1

y∗i (ᾱ− ε)
gi(x̄, ᾱ)− gi(x̄, ᾱ− ε)

ε

≥ v(ᾱ)− v(ᾱ− ε)

ε
≥ v(ᾱ+ ε)− v(ᾱ)

ε

≥ f(x̄, ᾱ+ ε)− f(x̄, ᾱ)

ε
+

k∑
i=1

y∗i (ᾱ+ ε)
gi(x̄, ᾱ+ ε)− gi(x̄, ᾱ)

ε

for all ε ∈ (0, ε̄]. Now let ε → 0. By the differentiability of f and g in α
at (x̄, ᾱ) and the continuity of y∗ at ᾱ, the left most and the right most
terms converge to Lα(x̄, ȳ, ᾱ) = fα(x̄, ᾱ) +

∑k
i=1 ȳigiα(x̄, ᾱ), and so do the

two terms in between.
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A.5 Proofs for Section 5.1

Let X ⊂ Rn be a nonempty set and A ⊂ Rm a nonempty open set, and, as in
Section 2, for a function f : X ×A → R let X∗ denote the optimal solution
correspondence: X∗(α) = {x ∈ Rn | x ∈ X, f(x, α) = supx′∈X f(x′, α)}.

Lemma A.4. Assume that

(a) X is closed and convex, and

(b) f is upper semi-continuous, f(x, ·) is lower semi-continuous for all x ∈
X, and f(·, α) is quasi-concave for all α ∈ A.

Then if X∗(ᾱ) is nonempty and bounded, then X∗ is nonempty and uni-
formly bounded near ᾱ, i.e., there exists a neighborhood U ⊂ A of ᾱ such
that X∗(α) ̸= ∅ for all α ∈ U and

∪
α∈U X∗(α) is bounded.8

Proof. For r > 0, we denote Br = {x ∈ Rn | ∥x∥ < r}, B̄r = {x ∈ Rn |
∥x∥ ≤ r}, and Sr = {x ∈ Rn | ∥x∥ = r}.

By the boundedness of X∗(ᾱ), we can take an r̄ > 0 such that X∗(ᾱ) ⊂
Br̄. The conclusion clearly holds if X ⊂ B̄r̄; so we assume that X \ B̄r̄ ̸=
∅. Let X0 = X ∩ B̄r̄ and X1 = X ∩ Sr̄. The sets X0 and X1 are
compact by the closedness of X, and X0 ̸= ∅ by the nonemptiness of
X∗(ᾱ) and thus X1 ̸= ∅ by the convexity of X. Fix any x0 ∈ X∗(ᾱ)
(⊂ X0). By construction X∗(ᾱ)∩X1 = ∅, and therefore, maxx∈X1 f(x, ᾱ)−
f(x0, ᾱ) < 0. Since f(x, α)− f(x0, α) is upper semi-continuous in (x, α) by
(b), maxx∈X1 f(x, α) − f(x0, α) is upper semi-continuous in α. Let U ⊂ A
be a neighborhood of ᾱ such that maxx∈X1 f(x, α) − f(x0, α) < 0 for all
α ∈ U .

We claim that f(x, α) < f(x0, α) for all x ∈ X \ X0 and all α ∈ U .
Indeed, let x ∈ X \ X0 and α ∈ U , and let λ ∈ (0, 1) be such that x′ =
(1−λ)x0+λx ∈ Sr̄; by the convexity of X, x′ ∈ X and hence x′ ∈ X1. Then
by the construction of U , f((1− λ)x0 + λx, α) < f(x0, α), but by the quasi-
concavity of f(x, α) in x, this implies that f(x, α) < f(x0, α). Thus, for all
α ∈ U , we have X∗(α) = argmaxx∈X0 f(x, α) ⊂ X0 with X∗(α) ̸= ∅.

Let πX(p) = supx∈X p · x be the support function of X ⊂ Rn, and let
SX(p) = {x ∈ Rn | x ∈ X, p · x = πX(p)}.

Lemma A.5. Assume that X is a nonempty closed subset of Rn. If SX(p̄)
is empty or unbounded, then there exists d ∈ Rn such that πX(p̄+ λd) = ∞
for all λ > 0.

Proof. If SX(p̄) is empty, let {xk}∞k=1 be a sequence of points in X such
that p̄ · xk → πX(p̄). Then |xk| → ∞; indeed, if {xk}∞k=1 was bounded, then
its accumulation points would attain πX(p̄) on the closed set X. If SX(p̄)
is unbounded, let {xk}∞k=1 simply be any sequence of points in SX(p̄) such

8A version of this lemma is also found in Hogan (1973, Theorem A.4).
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that |xk| → ∞. In any case, for some coordinate i = 1, . . . , n and for some
subsequence of {xk}∞k=1, denoted again by {xk}∞k=1, we have xki → ∞ or
xki → −∞. Let d = ei if xki → ∞ or d = −ei if xki → −∞, where ei is
the ith unit vector in Rn. Then for any λ > 0, we have (p̄ + λd) · xk =
p̄ · xk + λ|xki | → ∞ as k → ∞, and hence πX(p̄+ λd) = ∞.
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