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Abstract

This supplementary material contains detailed proofs and additional examples.

Supplementary Appendix

B.1. Proof of Strict Monotonicity in Example 5.1

In this section, we verify the positivity of the partial derivatives of the utility
function u : R2

+ → R given in Example 5.1:

u(x1, x2) = 6(x1 + x2 − 2) + (x1 + x2 − 2)2 + u0(x1, x2) (1)

with

u0(x1, x2) =



−8(x1 − 1)2(x2 − 1)2

(x1 + x2 − 2)3
if (x1, x2) ∈ [0, 1)2,

8(x1 − 1)2(x2 − 1)2

(x1 + x2 − 2)3
if (x1, x2) ∈ (1,∞)2,

−(x1 − 1)2(x2 − 1)2 otherwise.

(2)

The function u0 is differentiable in each xi, i = 1, 2, at all (x1, x2) ∈ R2
+, where

the partial derivatives are given by

u0
xi
(x1, x2) =



−8(xi − 1)(xj − 1)2(−xi + 2xj − 1)

(x1 + x2 − 2)4
if (x1, x2) ∈ [0, 1)2,

8(xi − 1)(xj − 1)2(−xi + 2xj − 1)

(x1 + x2 − 2)4
if (x1, x2) ∈ (1,∞)2,

−2(xi − 1)(xj − 1)2 otherwise.

Proposition B.1. For the function u : R2
+ → R defined by (1)–(2),

uxi
(x1, x2) > 0 for all i = 1, 2 and all (x1, x2) ∈ R2

+.

By symmetry, we only show this for i = 1.
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Observation 1.
∂

∂x1

[
6(x1+x2−2)+(x1+x2−2)2

]
≥ 2 for all (x1, x2) ∈ R2

+.

Proof. For all x1, x2 ≥ 0,

∂

∂x1

[
6(x1 + x2 − 2) + (x1 + x2 − 2)2

]
= 6 + 2(x1 + x2 − 2) ≥ 2,

as stated.

Observation 2. u0
x1
(x1, x2) > −2 for all (x1, x2) ∈ [0, 1)2.

Proof. Evaluating u0
x1

on each line segment x2 = c(x1 − 1) + 1 in [0, 1)2, where
c > 0, we have

u0
x1
(x1, c(x1 − 1) + 1) = −8c2(2c− 1)

(c+ 1)4
.

This value is nonnegative for c ≤ 1
2 . For c > 1

2 , by the inequality of arithmetic
and geometric means we have

8c2(2c− 1)

(c+ 1)4
=

8

5

5× c× c× (2c− 1)

(c+ 1)4

≤ 8

5

[
1

4

(
5

c+ 1
+

c

c+ 1
+

c

c+ 1
+

2c− 1

c+ 1

)]4
=

8

5
< 2.

Hence, u0
x1
(x1, x2) > −2 for all (x1, x2) ∈ [0, 1)2.

Observation 3. u0
x1
(x1, x2) > −2 for all (x1, x2) ∈ (1,∞)2.

Proof. Evaluating u0
x1

on each half line x2 = c(x1 − 1) + 1 in (1,∞)2, where
c > 0, we have

u0
x1
(x1, c(x1 − 1) + 1) =

8c2(2c− 1)

(c+ 1)4
.

This value is nonnegative for c ≥ 1
2 . For c < 1

2 , by the inequality of arithmetic
and geometric means we have

−8c2(2c− 1)

(c+ 1)4
= 2

1× 2c× 2c× (1− 2c)

(c+ 1)4

≤ 2

[
1

4

(
1

c+ 1
+

2c

c+ 1
+

2c

c+ 1
+

1− 2c

c+ 1

)]4
= 2

(
1

2

)4

=
1

8
< 2.

Hence, u0
x1
(x1, x2) > −2 for all (x1, x2) ∈ (1,∞)2.

Observation 4. ux1
(x1, x2) ≥ 4 for all (x1, x2) ∈ ([0, 1] × [1,∞)) ∪ ([1,∞) ×

[0, 1]).
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Proof. For (x1, x2) ∈ ([0, 1]× [1,∞)) ∪ ([1,∞)× [0, 1]), we have

ux1
(x1, x2) = 6 + 2(x1 + x2 − 2)− 2(x1 − 1)(x2 − 1)2

= 2x2[1− (x1 − 1)(x2 − 2)] + 4.

We claim that (x1 − 1)(x2 − 2) ≤ 1 for all (x1, x2) ∈ ([0, 1]× [1,∞))∪ ([1,∞)×
[0, 1]). Indeed, (x1−1)(x2−2) ≤ 0 for (x1, x2) ∈ ([0, 1]×[2,∞))∪([1,∞)×[0, 1]),
while for (x1, x2) ∈ [0, 1] × [1, 2], (x1 − 1)(x2 − 2) is nonincreasing, so that
(x1 − 1)(x2 − 2) ≤ (0− 1)(1− 2) = 1, as claimed.

Proof of Proposition B.1. By Observations 1–4, ux1(x1, x2) > 0, and
ux2(x1, x2) > 0 by symmetry, for all (x1, x2) ∈ R2

+.

B.2. Totally Differentiable Version of Examples 2.1 and 5.1

While the differentiability of the objective function f with respect to the
choice variable x is never an issue (and not even defined) in our main analysis,
we can modify the function in Example 2.1 to be (totally) differentiable in (x, α)
keeping the other properties, as we show in Example B.1. Correspondingly, in
Example B.2 we present a modified version of the utility function in Example 5.1
that is differentiable in (x1, x2).

Example B.1. Let X = R and A = R, and denote

R1 =
{
(x, α) ∈ R2

∣∣∣ x < 0, x2 + 3α < 0
}
,

R2 =
{
(x, α) ∈ R2

∣∣∣ x ≤ 0, x2 + 3α ≥ 0
}
,

R3 =
{
(x, α) ∈ R2

∣∣∣ x > 0, x2 − 3α < 0
}
,

R4 =
{
(x, α) ∈ R2

∣∣∣ x ≥ 0, x2 − 3α ≥ 0
}
.

Then define the continuous function f : X ×A → R by

f(x, α) =



1

4α2
x2(x2 + 3α)2 if (x, α) ∈ R1,

−x2(x2 + 3α)2 if (x, α) ∈ R2,

1

4α2
x2(x2 − 3α)2 if (x, α) ∈ R3,

−x2(x2 − 3α)2 if (x, α) ∈ R4.

Its partial derivatives are

fx(x, α) =



3

2α2
x(x2 + α)(x2 + 3α) if (x, α) ∈ R1,

−6x(x2 + α)(x2 + 3α) if (x, α) ∈ R2,

3

2α2
x(x2 − α)(x2 − 3α) if (x, α) ∈ R3,

−6x(x2 − α)(x2 − 3α) if (x, α) ∈ R4,
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and

fα(x, α) =



− 1

2α3
x4(x2 + 3α) if (x, α) ∈ R1,

−6x2(x2 + 3α) if (x, α) ∈ R2,

− 1

2α3
x4(x2 − 3α) if (x, α) ∈ R3,

6x2(x2 − 3α) if (x, α) ∈ R4.

One can verify that

X∗(α) =

{
{−

√
−α} if α < 0,

{
√
α} if α ≥ 0,

and
v(α) = |α|,

which is not differentiable at α = 0.
We claim that f is differentiable in (x, α) everywhere. The differentiability

at (x, α) ̸= (0, 0) is clear. To establish the differentiability at (x, α) = (0, 0), take
any ε > 0. Since f(0, 0) = 0 and fx(0, 0) = fα(0, 0) = 0, we want to find a δ > 0
such that |f(x, α)| ≤ ε|(x, α)| whenever |(x, α)| ≤ δ, where |(x, α)| =

√
x2 + α2.

For C1 functions g1(x, α) = −x2(x2 + 3α)2 and g2(x, α) = −x2(x2 − 3α)2

on R2, let δ0 > 0 be such that |∇gk(x, α)| ≤ ε, k = 1, 2, whenever |(x, α)| ≤ δ0.
Then let δ = min{δ0, 4ε/9} > 0, and take any (x, α) with |(x, α)| ≤ δ. If
(x, α) ∈ R2 ∪R4, we have

|f(x, α)| ≤ max
k=1,2, θ∈[0,1]

|∇gk(θx, θα)||(x, α)| ≤ ε|(x, α)|,

where the first inequality follows from the mean value theorem. If (x, α) ∈ R1,
let cα = x2 with −3 < c < 0. Then we have

0 ≤ f(x, α) =
1

4
(c+ 3)2x2 ≤ 9

4
x2 ≤ 9

4
|(x, α)|2

≤ 9

4
δ|(x, α)| ≤ ε|(x, α)|.

If (x, α) ∈ R3, again let cα = x2 with 0 < c < 3. Then we similarly have

0 ≤ f(x, α) =
1

4
(c− 3)2x2 ≤ 9

4
x2 ≤ 9

4
|(x, α)|2

≤ 9

4
δ|(x, α)| ≤ ε|(x, α)|.

Thus, we have shown that f is differentiable at (x, α) = (0, 0).
Finally, one can verify that fα is not continuous in (x, α) at (x, α) = (0, 0)

(for (x, α) ∈ R1 ∪R3, let cα = x2).

The partial differentiability condition (b) in Proposition 5.7 can be strength-
ened to (total) differentiability (where X = Rn

+).
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Proposition B.2. There exists a continuous utility function u : X → R such
that for some p̄ ∈ Rn

++,

(a) D(p̄, w) and H(p̄, u) are singletons for all w and all u and are continuous
(as single-valued functions) in w and u, respectively,

(b) u is differentiable in x at all x ∈ X, and

(c) uxi
(x) > 0 for all i = 1, . . . , n and all x ∈ X,

but v(p̄, w) and e(p̄, u) are not differentiable in w and u at some w̄ and some ū,
respectively.

Using the function in Example B.1, we provide such a utility function with
n = 2.

Example B.2. Given the function f in Example B.1, define the continuous
function u0 : R2

+ → R by

u0(x1, x2) = f

(
x1 − 1,

1

2
(x1 + x2 − 2)

)
,

and then define the utility function u : R2
+ → R by

u(x1, x2) = a1(x1 + x2) + a6(x1 + x2)
6 + u0(x1, x2),

where a1 and a6 are positive constants.
(1) Being the composition of the differentiable functions (x1, x2) 7→(

x1 − 1, 1
2 (x1 + x2 − 2)

)
and f , u0 is differentiable in (x1, x2), and so is u.

(2) For sufficiently large a1 and a6, uxi(x1, x2) > 0, i = 1, 2, for all (x1, x2) ∈
R2

+. This can be verified as follows. Denote

Qj =

{
(x1, x2) ∈ R2

+

∣∣∣∣ (x1 − 1,
1

2
(x1 + x2 − 2)

)
∈ Rj

}
for j = 1, . . . , 4. Since u0

xi
(x1, x2), i = 1, 2, is written as

u0
xi
(x1, x2) =

(polynomial of (x1, x2) of degree 6)

(x1 + x2 − 2)3

on Q1 ∪Q3 and

u0
xi
(x1, x2) = (polynomial of (x1, x2) of degree 5)

on Q2 ∪Q4, we can take an a6 > 0 and a b > 2 large enough that

u0
xi
(x1, x2)

6a6(x1 + x2)5
> −1

for all i = 1, 2 and all (x1, x2) ∈ R2
+ such that x1 +x2 > b. Next, one can verify

that u0
xi
(x1, x2), i = 1, 2, is bounded on any bounded set. So let a1 > 0 be such

that
u0
xi
(x1, x2) > −a1
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for all i = 1, 2 and all (x1, x2) ∈ R2
+ such that x1 + x2 ≤ b. With these a1 and

a6 so constructed, we have

uxi(x1, x2) = a1 + 6a6(x1 + x2)
5 + u0

x1
(x1, x2) > 0

for all i = 1, 2 and all (x1, x2) ∈ R2
+.

(3) By (2), u is strictly increasing, so that the optimal consumption lies on
the budget line.

Fix the price vector to p̄ = ( 12 ,
1
2 ). By substituting the budget equality

1
2x1 +

1
2x2 = w, the indirect utility v(p̄, w) for the utility function u is given by

v(p̄, w) = max
0≤x1≤2w

a1(x1 + x2) + a6(x1 + x2)
6 + f(x1 − 1, w − 1).

As in Example B.1, the unique optimal solution is given by x∗
1 = 1 −

√
1− w

if w < 1 and x∗
1 = 1 +

√
w − 1 if w ≥ 1 (note that 0 ≤ x∗

1 ≤ 2w in each case).
Thus, the indirect utility function with p = p̄ is given by

v(p̄, w) = 2a1 + 64a6 + |w − 1|,

which is not differentiable at w = 1. The expenditure function e(p, u) with
p = p̄ is given by the inverse function of w 7→ v(p̄, w) and is not differentiable
in u at u = 0.
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