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Abstract

This paper studies equilibrium selection based on a class of perfect
foresight dynamics and relates it to the notion of p-dominance. A
continuum of rational players are repeatedly and randomly matched
to play a symmetric n × n game. There are frictions: opportunities
to revise actions follow independent Poisson processes. The dynamics
has stationary states, each of which corresponds to a Nash equilibrium
of the static game. A strict Nash equilibrium is linearly stable under
the perfect foresight dynamics if, independently of the current action
distribution, there exists a consistent belief that any player necessarily
plays the Nash equilibrium action at every revision opportunity. It is
shown that a strict Nash equilibrium is linearly stable under the perfect
foresight dynamics with a small degree of friction if and only if it is the
p-dominant equilibrium with p < 1/2. It is also shown that if a strict
Nash equilibrium is the p-dominant equilibrium with p < 1/2, then
it is uniquely absorbing (and globally accessible) for a small friction
(but not vice versa). Set-valued stability concepts are introduced and
their existence is shown. Journal of Economic Literature Classification
Numbers: C72, C73.
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1 Introduction

The concept of Nash equilibrium (Nash [18]) has played a central role in
the field of game theory and economics. However, in games with multiple
strict Nash equilibria such as coordination games, it is difficult to predict
the outcomes, which limits the predictive power of the theory and gives a
motivation for the study of equilibrium selection. Recent approaches have
addressed this issue by embedding the normal form game in the context of
explicit dynamics to examine the stability of strict Nash equilibria under the
dynamics. Well known are stochastic evolutionary dynamic models due to
Kandori, Mailath, and Rob [11] and Young [20], in which boundedly rational
players repeatedly play a normal form game. Those models can select a
particular strict Nash equilibrium as a stochastically stable outcome in that
it is played most frequently in the long run independently of the initial state.

In the present paper, we study the perfect foresight dynamics with Pois-
son revision opportunities, originally proposed by Matsui and Matsuyma [16]
for 2× 2 games. Our model has a single large population of identical ratio-
nal players who are repeatedly and randomly matched to play a symmetric
n×n game. Unlike the standard evolutionary approaches, players maximize
their expected discounted payoffs. Each player must make a commitment
to a particular action for a random time interval. Opportunities to revise
actions follow Poisson processes, which are independent across players. By
this assumption of friction, within a small time interval only a small frac-
tion of players can change their actions, and hence a change in the action
distribution is made in a continuous way. The stationary states of this dy-
namics correspond to the Nash equilibria of the static game. Our goal is to
demonstrate that different strict Nash equilibria may have different stability
properties.

The stability concept we employ is called linear stability. In this dynam-
ics, if every player chooses action a∗ whenever given a revision opportunity,
then the resulting path of action distribution converges linearly to the state
where all players play a∗. A Nash equilibrium is said to be linearly stable
under the perfect foresight dynamics if for any initial state, the linear path
that converges to the corresponding stationary state is a perfect foresight
equilibrium path.1 That is, the linearly stable equilibrium (a∗, a∗) is such
that, whatever the current action distribution is, if all players share a com-
mon belief that any player, given an opportunity, necessarily plays action
a∗, then they actually play action a∗ at every opportunity. In other words,
if players agree on a certain action and have no incentive to deviate from the
agreement regardless of the actions to which they are currently committing,
then this action constitutes a linearly stable equilibrium.

Our main result is that the linearly stable equilibrium is characterized
1A perfect foresight equilibrium path need not be a straight line in general.
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by the notion of p-dominance (Morris, Rob, and Shin [17], Kajii and Mor-
ris [10]). An action pair in a two-player game is said to be a p-dominant
equilibrium if each action is a best response to any belief that the other
player takes the action in this pair with probability at least p. It is shown
that a (pure strategy) Nash equilibrium is linearly stable under the perfect
foresight dynamics with a sufficiently small friction if and only if it is the
p-dominant equilibrium with p < 1/2.

The notion of p-dominance was introduced for an equilibrium selection
criterion based on the incomplete information approach. Morris, Rob, and
Shin [17] and Kajii and Morris [10] show that the p-dominant equilibrium
with p < 1/2 is selected in the sense that it is robust to incomplete infor-
mation, i.e., behavior close to it is played in an equilibrium of every nearby
incomplete information game.

We then examine alternative stability concepts introduced by Matsui
and Matsuyma [16]. A Nash equilibrium state x∗ is absorbing if for every
initial state close enough to x∗, any equilibrium path must converge to x∗; x∗

is globally accessible if for any initial state, there exists an equilibrium path
converging to x∗.2 By definition, a linearly stable state is globally accessi-
ble. The concept of absorption incorporates local stability, while globally
accessibility and linear stability concern global stability. We show that a
strict Nash equilibrium that is linearly stable is also absorbing (and globally
accessible). Therefore, for strict Nash equilibria, a linearly stable state in
fact has a local stability property.

This, together with our main theorem stated above, implies that if a
strict Nash equilibrium is the p-dominant equilibrium with p < 1/2, then it
is uniquely absorbing and globally accessible when the friction is sufficiently
small.3 Since for symmetric 2 × 2 games, p-dominance with p < 1/2 is
reduced to risk-dominance à la Harsanyi and Selten [7], this result extends
that of Matsui and Matsuyama [16], who show that for 2×2 games the unique
absorbing and globally accessible state for a small friction corresponds to
the risk-dominant equilibrium.4

The p-dominant equilibrium with p < 1/2 is also selected by other evo-
lutionary models. Kandori and Rob [12], Maruta [14], and Ellison [4] show
that the p-dominant equilibrium with p < 1/2 is uniquely selected by equi-
librium selection criteria based on stochastic evolutionary dynamics, i.e.,
it is the long run equilibrium (Kandori and Rob [12]), the stochastically

2There may exist multiple equilibrium paths due to the assumption of perfect foresight.
Therefore, it is possible that a state is globally accessible but not absorbing.

3Hofbauer and Sorger [9] independently obtain a similar result for asymmetric N -player
games with linear incentives.

4Similar selection results for 2 × 2 games are obtained by other approaches. Those
are the payoff-uncertainty approach of Carlsson and van Damme [3], and the evolutionary
approach of Kandori, Mailath, and Rob [11] and Young [20]. For two-action games with
more than three players, however, the coincidence may break (Kim [13]).
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stable equilibrium (Maruta [14]), or the long run stochastically equilibrium
(Ellison [4]). Our results supply another justification for p-dominance as a
selection tool that differs from those by the incomplete information approach
and by the stochastic evolutionary approach.

There are games which do not possess the p-dominant equilibrium with
p < 1/2. We provide an example in which a p-dominant equilibrium with
p ≥ 1/2 is absorbing and globally accessible when the friction is small. This
shows that a strict Nash equilibrium that is absorbing and globally accessible
for a small friction is not necessarily p-dominant for p < 1/2.5

There also exist games in which no state is stable. In order to determine
which equilibria are likely selected, it is natural to ask if a set of states is
stable in some sense. Following Gilboa and Matsui [6], we introduce a set-
valued stability concept called the cyclically stable set. We also propose an
alternative concept called the globally accessible set. It is shown that at least
one cyclically stable set always exists, and that the union of all cyclically
stable sets is the globally accessible set, which implies the existence of the
globally accessible set.

The perfect foresight dynamics with Poisson revision opportunities is
also studied by Hofbauer and Sorger [8], who apply the dynamics to poten-
tial games. They consider the global maximization of the potential function
which is applicable to potential games, and show that for the class of poten-
tial games the unique maximizer of the potential function is the absorbing
and globally accessible state for a small friction. Their analysis is restricted
to the class of symmetric two-player games with a symmetric payoff matrix
and of those linearly equivalent to them.6

The selection results based on the perfect foresight approach are so far
in agreement with those by the incomplete information approach. The p-
dominant equilibrium with p < 1/2 is robust to incomplete information
(Morris, Rob, and Shin [17], Kajii and Morris [10]). For the class of po-
tential games, Ui [19] shows that a Nash equilibrium that maximizes the
potential function is robust to incomplete information. Based on the payoff-
uncertainty approach due to Carlsson and van Damme [3], Frankel, Morris,
and Pauzner [5] obtain the noise-independent selection of the p-dominant
equilibrium with p < 1/2 and the potential maximizer.

Another related work is conducted by Burdzy, Frankel, and Pauzner [2].
They apply techniques from the payoff-uncertainty approach to dynamic
games with payoff shocks in a similar environment to ours. In their model,
a continuum of players are repeatedly and randomly matched to play a 2×2
coordination game, with frictions in action revisions, but whose payoff ma-

5The example also shows that our equilibrium selection approach based on the perfect
foresight dynamics with frictions and those based on stochastic evolutionary dynamics
may lead to different selections in general.

6Hofbauer and Sorger [9] extend the result to N -player games with potential functions,
where every player has the same payoff function.
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trix changes randomly over time. They show that iterated conditional dom-
inance leads to the selection of the risk-dominant equilibrium through a con-
tagion argument similar to that of Carlsson and van Damme [3]. When the
friction is sufficiently small, every player necessarily plays the risk-dominant
action at the revision opportunity. It remains open whether their approach
yields the same selection as that by the present paper beyond the class of
2× 2 games.

The organization of this paper is as follows. Section 2 sets up our model
of perfect foresight dynamics, proves the existence theorem for equilibrium
paths, and introduces the concept of linear stability. Section 3 reviews
the notion of p-dominance of strict Nash equilibria. Section 4 establishes
the main result, which states the equivalence between linear stability and
p-dominance with p < 1/2. Section 5 examines the stability concepts intro-
duced by Matsui and Matsuyama [16]. Section 6 provides some examples.
Section 7 discusses set-valued stability concepts. Section 8 concludes.

2 Perfect Foresight Dynamics

In this section we set up the model of perfect foresight dynamics, estab-
lish the existence theorem for equilibrium paths, and introduce a stability
concept. We denote by Rn the n-dimensional real space with the sup norm
| · |, by ∆n−1 the (n− 1)-dimensional simplex, and by ei its ith vertex. For
x ∈ ∆n−1 and ε > 0, Bε(x) denotes the ε-neighborhood of x relative to
∆n−1, i.e., Bε(x) = {y ∈ ∆n−1 | |y − x| < ε}.

2.1 Model

We consider a symmetric two-player game with n ≥ 2 actions. The action
set of the game is denoted by A = {a1, . . . , an}, and the payoff matrix is
(uij), where uij is the payoff received by a player using action ai against
an opponent playing action aj . In this paper, we shall only consider sym-
metric Nash equilibria. This game is played repeatedly in a society with a
continuum of identical, anonymous players. At each point in time, players
are matched randomly to form pairs and play the game anonymously. We
assume that players cannot switch actions at every point in time. Instead,
every player must make a commitment to a particular action for a random
time interval. Time instants at which each player can switch actions follow a
Poisson process with the mean arrival rate λ. The processes are independent
across players.

The action distribution in the society at time t is denoted by

x(t) = (x1(t), . . . , xn(t)) ∈ ∆n−1, (1)

where xi(t) is the fraction of players who are committing to action ai at time
t. Due to the assumption that the switching times follow independent Pois-
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son processes with arrival rate λ, xi(·) is Lipschitz continuous with Lipschitz
constant λ, which implies in particular that it is differentiable at almost all
t ∈ [0,∞). A rational player anticipates the future evolution of action distri-
bution x(t), and, if given the opportunity to switch actions, commits to the
action that maximizes the expected discounted payoff. Since the duration
of the commitment has an exponential distribution with the mean 1/λ, the
expected discounted payoff of committing to action ai at time t with a given
anticipated path x(·) is represented by

Vi(t) = (λ+ θ)
∫ ∞

0
e−(λ+θ)s

n∑

k=1

xk(t+ s)uik ds, (2)

where θ > 0 is a common discount rate.
Endowed with perfect foresight, players correctly anticipate the future

evolution of x(t). Hence, the action distribution path x(·) with an initial
state x0 satisfies the conditions

ẋi(t) ∈



{λ(1− xi(t))} if Vi(t) > Vj(t) ∀ j 6= i
{−λxi(t)} if Vi(t) < Vj(t) ∃ j 6= i
[−λxi(t), λ(1− xi(t))] otherwise,

x(0) = x0 ∈ ∆n−1

(3)

for all t where xi(t) is differentiable. Given x0 ∈ ∆n−1, we call a Lipschitz
continuous function x(·) such that equations (1)–(3) hold a perfect foresight
equilibrium path from x0. When, for instance, Vi > Vj holds for all j 6= i, all
players taking actions other than ai switch to ai at the revision opportunity.
During the interval [t, t + h), at most λh portion of players are given the
opportunity to change their actions.

Finally, following Matsui and Matsuyama (1995), we define the degree
of friction by δ = θ/λ > 0.

2.2 Existence

The concept of the perfect foresight dynamics requires that players make
rational choices based on their expectations about the future evolution of
action distribution, and that those expectations coincide with the actual
path of action distribution. We must make sure of the existence of such
consistent expectations for any initial condition of action distribution. In
order to prove the existence of perfect foresight equilibrium paths for games
with more than two actions, we need a new technique which is based on
a fixed point argument, while for 2 × 2 games studied in Matsui and Mat-
suyama [16], it can be established constructively.7

7Hofbauer and Sorger [9] also prove a similar existence result by a different method.
They identify perfect foresight equilibrium paths with equilibrium paths of an associated
differential game and prove the existence of the latter.
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Theorem 1 For each initial condition, there exists a perfect foresight equi-
librium path.

Proof. See Appendix.

The basic idea of the proof is as follows. Fix an arbitrary initial con-
dition x0. Suppose that all players anticipate the evolution of the action
distribution as, say, x(·) with x(0) = x0, which is not necessarily consistent.
If they played the game based on the belief of x(·), then the action distri-
bution path, say, y(·) with y(0) = x0 would evolve. We denote by Ψ(x) the
set of such y(·)’s. This correspondence Ψ maps each path to the set of “best
response paths” against it, and a fixed point (in a function space) of Ψ is
a perfect foresight equilibrium path. We shall apply Kakutani’s fixed point
theorem.

2.3 Stability

We state the following obvious but important fact for reference.

Proposition 0 A path x(·) such that x(t) = x∗ for all t is a perfect foresight
equilibrium path if and only if (x∗, x∗) is a Nash equilibrium of the static
game.

Our analysis of equilibrium selection is to study the stability of the sta-
tionary states in the dynamics described by equations (1)–(3). We propose
a stability concept called linear stability. We first define a linear path from
x′ ∈ ∆n−1 to x ∈ ∆n−1 by

x(t) = x− (x− x′)e−λt.

The action distribution moves along the linear path to the state where all
players play action a∗ if every player chooses a∗ at revision opportunities.

Definition 1 x ∈ ∆n−1 is linearly stable if for any x′ ∈ ∆n−1, the linear
path from x′ to x is a perfect foresight equilibrium path from x′. A Nash
equilibrium of the static game is linearly stable under the perfect foresight
dynamics if the corresponding state is linearly stable.

By definition, a linearly stable equilibrium (a∗, a∗) is such that, whatever
the current action distribution is, if all players share a common belief that
any player, given an opportunity, necessarily chooses action a∗, then they
actually choose action a∗ at every opportunity.

3 p-Dominance

Let G be a symmetric two-player normal form game with the action set
A = {a1, . . . , an} and the payoff matrix (uij). Denote by ∆(A) the set of
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probability distributions on A. We define the notion of p-dominance for a
symmetric Nash equilibrium of G as follows.

Definition 2 (Morris, Rob, and Shin [17], Kajii and Morris [10]) Ac-
tion profile (ai, ai) is a p-dominant equilibrium of G if for all j = 1, . . . , n,
and all π ∈ ∆(A) with π(ai) ≥ p,

n∑

k=1

π(ak)uik ≥
n∑

k=1

π(ak)ujk.

That is, playing ai is a best response if the player believes that the other
player will play ai with probability at least p. Note that (ai, ai) is a Nash
equilibrium if and only if (ai, ai) is a p-dominant equilibrium for some p.
For a strict Nash equilibrium, this definition is equivalent to the following.

Definition 3 Action profile (ai, ai) is a strict p-dominant equilibrium of G
if for all j 6= i, and all π ∈ ∆(A) with π(ai) > p,

n∑

k=1

π(ak)uik >
n∑

k=1

π(ak)ujk.

There exist nongeneric games where a p-dominant equilibrium is not a
strict p-dominant equilibrium. For example, in a degenerate game where
payoffs are constant for any pair of actions, every action profile is a 0-
dominant equilibrium while no action profile is a strict p-dominant equilib-
rium for any p. For a generic choice of payoffs, however, any p-dominant
equilibrium is a strict p-dominant equilibrium.

Notice that if action pair (ai, ai) is a p-dominant equilibrium for some p,
then (ai, ai) is a q-dominant equilibrium for any q with p ≤ q ≤ 1. There-
fore, we are interested in the smallest p for which (ai, ai) is a p-dominant
equilibrium.

Morris, Rob, and Shin [17] and Kajii and Morris [10] show that the p-
dominant equilibrium with p < 1/2 is selected in the sense that it is robust
to incomplete information. That is, behavior close to it is played in an
equilibrium of every nearby incomplete information game.

The notion of p-dominance is a generalization of Harsanyi and Selten’s [7]
notion of risk-dominance. For symmetric 2×2 games, the p-dominant equi-
librium with p < 1/2 is equivalent to the risk-dominant equilibrium. Con-
sider a symmetric 2× 2 game with the payoff matrix

(uij) =
(
a c
b d

)

with a > b and c < d. In this game, (a1, a1) is a µ-dominant equilibrium and
(a2, a2) is a (1−µ)-dominant equilibrium, where µ = (d−c)/{(a−b)+(d−c)}.
(a1, a1) risk-dominates (a2, a2) if and only if a− b > d− c or µ < 1/2.

Finally, we state the following claim, which one can easily show.
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Claim 1 Suppose that (ai, ai) and (aj , aj) are distinct strict Nash equilibria
of G. Take the smallest p, q such that (ai, ai) and (aj , aj) are p-dominant
and q-dominant, respectively. Then p + q ≥ 1. In particular, if G is a
two-action game, then p+ q = 1.

4 Main Result

This section presents the main theorem, which exhibits the equivalence be-
tween p-dominance with p < 1/2 and linear stability under the perfect
foresight dynamics with a small degree of friction.

Theorem 2 There exists δ̄ > 0 such that a symmetric pure strategy Nash
equilibrium is linearly stable for all δ < δ̄ if and only if it is the p-dominant
equilibrium with p < 1/2.

This theorem follows from the lemma below. Recall that the ith vertex
ei of the simplex ∆n−1 corresponds to action ai.

Lemma 1 Suppose that (ai, ai) is a p-dominant equilibrium. Then, ei is
linearly stable if and only if p ≤ 1/(2 + δ).

Proof. First, we show that if p ≤ 1/(2 + δ), then for any initial condition
x0, the linear path to ei satisfies the equilibrium condition, that is, for all
j 6= i, Vi(t) ≥ Vj(t) for all t along this linear path.

The expected discounted payoff to action aj at t along the linear path
from x0 to ei is given by

Vj(t) = (λ+ θ)
∫ ∞

0
e−(λ+θ)s

[{
1− (1− x0

i )e
−λ(t+s)

}
uji

+
∑

k 6=i
x0
ke
−λ(t+s)ujk

]
ds

=
n∑

k=1

π(ak)ujk,

where π ∈ ∆(A) is such that

π(ai) = 1− (1− x0
i )e
−λt 1 + δ

2 + δ
, and π(aj) = x0

je
−λt 1 + δ

2 + δ
for j 6= i.

Here,

π(ai) ≥ 1
2 + δ

+ x0
i

1 + δ

2 + δ

≥ 1
2 + δ

≥ p,
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since e−λt ≤ 1 and 0 ≤ x0
i ≤ 1. It follows that Vi(t) ≥ Vj(t) for all j from

the supposition that (ai, ai) is a p-dominant equilibrium.
To show the converse, suppose that p > 1/(2 + δ). There then exists a

probability distribution π ∈ ∆(A) with π(ai) = 1/(2 + δ) such that

n∑

k=1

π(ak)uik <
n∑

k=1

π(ak)ujk

for some j 6= i. It follows that for an initial condition x0 with x0
i = 0 and

x0
k = π(ak)(2 + δ)/(1 + δ), the linear path from x0 to ei does not satisfy the

equilibrium condition, since

Vi(0)− Vj(0) =
n∑

k=1

π(ak)uik −
n∑

k=1

π(ak)ujk < 0

holds along this path. This implies that ei is not linearly stable.

Example 4.1 We apply our main result to the class of marginal bandwagon
games (Kandori and Rob [12]), which includes pure coordination games.
Let us consider a symmetric two-player game G with the action set A =
{a1, . . . , an}, and denote the payoff matrix by (uij). G is said to have
the marginal bandwagon property (MBP) if uii − uji > uik − ujk for all
distinct i, j, k. Action profile (ai, ai) is said to be a pairwise risk-dominant
equilibrium if it is risk-dominant in the reduced game {ai, ai} × {aj , aj} for
every j 6= i.

Suppose thatG has MBP and has the pairwise risk-dominant equilibrium
(ai, ai). Then (ai, ai) is the p-dominant equilibrium with p < 1/2, as shown
in Kandori and Rob [12]. Thus, it is linearly stable for a small friction by
Theorem 2. In particular, we consider a pure coordination game, whose
payoff matrix (uij) is such that u11 > u22 > · · · > unn > 0 and uij = 0
for i 6= j. A Pareto dominant equilibrium (a1, a1), which is pairwise risk-
dominant and therefore p-dominant for p < 1/2, is linearly stable for a small
friction.

5 Absorption and Global Accessibility

This section examines alternative stability concepts introduced by Matsui
and Matsuyama [16].

Definition 4 (Matsui and Matsuyama [16]) (a) x ∈ ∆n−1 is accessible
from x′ ∈ ∆n−1, if there exists a perfect foresight equilibrium path from x′

that converges to x. x ∈ ∆n−1 is globally accessible if it is accessible from
any x′ ∈ ∆n−1. x ∈ ∆n−1 is locally accessible if there exists ε > 0 such that
x is accessible from any x′ ∈ Bε(x).
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(b) x ∈ ∆n−1 is absorbing if there exists ε > 0 such that any perfect
foresight equilibrium path from Bε(x) converges to x. x ∈ ∆n−1 is fragile if
it is not absorbing.

We say that a Nash equilibrium is globally accessible (absorbing, re-
spectively) if the corresponding state is globally accessible (absorbing, re-
spectively). By definition, linear stability implies global accessibility. It
will be shown that a linearly stable state that corresponds to a strict Nash
equilibrium is also absorbing.

The following lemma relates the stability concepts stated above to the
notion of p-dominance. If the state ei, where all players play action ai,
corresponds to a strict p-dominant equilibrium with a sufficiently small p,
then in a neighborhood of ei, every player chooses ai and thus any perfect
foresight equilibrium path must converge to ei.

Lemma 2 (a) Suppose that (ai, ai) is a p-dominant equilibrium. Then, ei
is globally accessible if p ≤ 1/(2 + δ).

(b) Suppose that (ai, ai) is a strict p-dominant equilibrium. Then, ei is
absorbing if p < (1 + δ)/(2 + δ).

Proof. (a) This immediately follows from Lemma 1.
(b) We show that if p < (1 + δ)/(2 + δ), then the equilibrium path x(·)

from any x0 sufficiently close to ei is unique and converges to ei. Note that
any feasible path from x0 satisfies xj(t) ≥ x0

je
−λt.

The expected discounted payoff to action aj at time 0 along the path
x(·) is given by

Vj(0) =
n∑

k=1

π(ak)ujk,

where π ∈ ∆(A) is such that

π(ak) = (λ+ θ)
∫ ∞

0
e−(λ+θ)sxk(s) ds.

If x0 is sufficiently close to ei so that p(2 + δ)/(1 + δ) < x0
i < 1, then

π(ai) ≥ (λ+ θ)
∫ ∞

0
e−(λ+θ)sx0

i e
−λs ds

= x0
i

1 + δ

2 + δ
> p.

It follows that Vi(0) > Vj(0) for all j 6= i from the supposition that (ai, ai)
is a strict p-dominant equilibrium. This implies that x0

i ≤ xi(t) < 1, and
Vi(t) > Vj(t) for all t. Thus xi(t) = 1−(1−x0

i )e
−λt, and limt→∞ x(t) = ei.
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Combining Lemma 1 and Lemma 2, we obtain the following result on
the relationship between stability concepts. Whereas linear stability con-
cerns global stability, it in fact has a local stability property for strict Nash
equilibria.

Proposition 1 If a symmetric strict Nash equilibrium is linearly stable,
then it is also absorbing.

From Lemma 2, we obtain the following theorem, which extends the
result of Matsui and Matsuyama [16].8

Theorem 3 If a symmetric strict Nash equilibrium is the p-dominant equi-
librium with p < 1/2, then it is absorbing for all δ and there exists δ̄ > 0
such that it is globally accessible for all δ < δ̄

Remark 1. Hofbauer and Sorger [8] study potential games under the same
dynamic environment and show that the unique maximizer of the potential
function is the absorbing and globally accessible state for a small friction.
Their analysis is restricted to the class of games that is linearly equivalent to
games with a symmetric payoff matrix. An example to which their analysis
does not apply is the marginal bandwagon game described by

(uij) =




6 0 0
5 7 5
4 5 8


 , (4)

which is taken from Kandori and Rob [12]. This game is not a potential
game, while it has a p-dominant equilibrium with p < 1/2. Nash equilibrium
(a3, a3) is 2/5-dominant and therefore is uniquely absorbing and globally
accessible for a small friction by Theorem 3.

As mentioned earlier, p-dominance is a generalization of risk-dominance.
Indeed, p-dominance with p < 1/2 is equivalent to risk-dominance for sym-
metric 2× 2 games. Theorem 3 can be paraphrased by saying that a many-
action generalization of risk-dominance is a sufficient condition for a Nash
equilibrium being absorbing and globally accessible. Although the sufficient
condition gives a limited characterization in general, it is enough to give a
full characterization of the stability for symmetric 2× 2 coordination games
as studied in Matsui and Matsuyama [16]. We obtain the following known
result as a corollary to Lemma 2.

Corollary 1 (Matsui and Matsuyama [16]) Consider the case of sym-
metric two-action games with two symmetric strict Nash equilibria. Suppose
that (ai, ai) is a p-dominant equilibrium.

(a) ei is globally accessible if and only if p ≤ 1/(2 + δ),
(b) ei is absorbing if and only if p < (1 + δ)/(2 + δ).

8A similar result for asymmetric N -player games with linear incentives is independently
obtained by Hofbauer and Sorger [9].
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Proof. The “if” part is the n = 2 case of Lemma 2. We prove the “only if”
part. Suppose that (aj , aj) is a q-dominant equilibrium for j 6= i. Notice
that p+ q = 1 by Claim 1.

(a) If p > 1/(2 + δ), then q < (1 + δ)/(2 + δ). Thus it follows from the
“if” part of (b) that ej is absorbing, which implies that ei is not globally
accessible.

(b) If p ≥ (1 + δ)/(2 + δ), then q ≤ 1/(2 + δ). Therefore, it follows from
the “if” part of (a) that ej is globally accessible, which implies that ei is not
absorbing.

Consider a symmetric 2× 2 game with the payoff matrix given by

(uij) =
(
a c
b d

)
,

where a > b and c < d. Write µ = (d−c)/{(a−b)+(d−c)}. If µ < 1/2, then
(a1, a1) is absorbing and globally accessible for a small friction, as (a1, a1)
is a µ-dominant equilibrium. Conversely, if (a1, a1) is uniquely absorbing
and globally accessible for some friction, then µ < 1/2, due to Corollary 1.
Therefore, a Nash equilibrium is uniquely absorbing and globally accessible
for a small friction if and only if it is the µ-dominant equilibrium with
µ < 1/2, equivalently, the risk-dominant equilibrium.

We state some other stability properties. Recall that a strict Nash equi-
librium is p-dominant for some p < 1.

Proposition 2 Every symmetric strict Nash equilibrium is locally accessible
independently of the friction.

Proof. Suppose that (ai, ai) is a p-dominant equilibrium with p < 1. It is
sufficient to show that the linear path from any initial condition x0 to state
ei satisfies the equilibrium condition. This can be verified in precisely the
same way as in the proof of Lemma 1.

Proposition 3 Every symmetric strict Nash equilibrium is absorbing for a
sufficiently large friction.

Proof. This immediately follows from Lemma 2.

Proposition 3 states that, in the case of a large friction, the dynamics is
similar to the best response dynamics studied in Gilboa and Matsui [6] and
Matsui [15].

6 Examples

For games with three or more actions, there are games that do not possess
the p-dominant equilibrium with p < 1/2. This section lists some simple
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examples, which show that: (i) a strict Nash equilibrium that is absorbing
and globally accessible need not be p-dominant for p < 1/2; (ii) there may
not exist absorbing states nor globally accessible states.

6.1 Young’s Example

The following example shows that the converse of Theorem 3 is not necessar-
ily true, except for the case of two-action games. A p-dominant equilibrium
with p ≥ 1/2 may be absorbing or globally accessible for a small friction.
Consider the 3× 3 game with the payoff matrix given by

(uij) =




6 0 0
5 7 5
0 5 8


 , (5)

which is taken from Young [20]. In this game, (a1, a1) is 7/8-dominant;
(a2, a2) is 3/5-dominant; (a3, a3) is 5/8-dominant. It can be verified that
(a3, a3) is absorbing for any degree of friction and globally accessible for a
small friction δ.9 Figure 1 is a geometric representation of this game. One
can verify the global accessibility of (a3, a3) for a small friction by direct
computation along the paths described below. When the society starts from
a state below the dotted line, there exists a perfect foresight equilibrium
path linearly converging to vertex 3, along which players always switch to
action a3 at their first opportunities. On the other hand, when the society
starts from a state above the dotted line, the linear path to vertex 3 does not
satisfy the equilibrium condition. Given the belief of such a path, players
choose a2 rather than a3, since V2(0) > V3(0) holds for that path. A perfect
foresight equilibrium path from a state above the dotted line is the path
depicted in Figure 1, along which the society first moves toward vertex 2
and then changes its direction toward vertex 3 at the dotted line.

To show that (a3, a3) is absorbing, verify first by direct computation that
unless the initial state is close to e1, V2(0) > V1(0) holds for any feasible
path. Therefore, any perfect foresight equilibrium path x(·) must satisfy
x1(t) = x0

1e
−λt when it starts from a state close to e3. Then verify again

by direct computation that if the initial condition is sufficiently close to e3,
V3(0) > V2(0) holds for any feasible path x(·) with x1(t) = x0

1e
−λt.

Note that (a2, a2) is the long-run equilibrium (Kandori and Rob [12])
and the stochastically stable equilibrium (Young [20]), while it is neither
absorbing nor globally accessible when the friction is small. This example
suggests that our equilibrium selection approach based on the perfect fore-
sight dynamics and those based on the stochastic evolutionary dynamics
lead to different predictions in general.

9Notice that the level of p-dominance of (a3, a3) is not the smallest among those of
three strict Nash equilibria.
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6.2 Nonexistence

In games that do not possess the p-dominant equilibrium with p < 1/2, all
states may be fragile for a small friction. Consider the following example:10

(uij) =




2 1 0
0 2 1
1 0 2


 . (6)

Each strict Nash equilibrium is 2/3-dominant. If δ > 1, then each strict
equilibrium is absorbing due to Lemma 2, while if δ ≤ 1, then each strict
equilibrium is fragile since each linear path from ei to ei−1 (mod 3) becomes
a perfect foresight equilibrium path, which is checked by direct computation.

It is verified that each strict equilibrium is not globally accessible, either.
We show that if δ ≤ 1, then e1 is not accessible from e3. Take any equilibrium
path converging to e1, and denote it x(·). There then exists t such that

x(s) = e1 − (e1 − x(t))e−λ(s−t)

for all s ≥ t. We denote by T the infimum of such t’s. We show that
x(·) does not change its direction, i.e., T = 0. Suppose that T > 0. Then
V1(T ) = Vi(T ) must hold for some i 6= 1, where Vi(T ) is the discounted
expected payoff of choosing ai at T along the path such that x(t) = e1−(e1−
x(T ))e−λ(t−T ) for t ≥ T . One can verify that if δ ≤ 1, then V1(T ) > V2(T )
for any linear path to e1, unless x(T ) = e2. Therefore, x(·) does not move
toward e2 at T − 0. Moreover, it can be verified that V1(T ) = V3(T ) if
and only if x3(T ) = (2 + δ)/3(1 + δ) and that V1(T ) > V3(T ) if and only if

10Note that this example is generic.
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x3(T ) < (2 + δ)/3(1 + δ), which implies that x(·) does not move toward e3

at T − 0, either. Hence, we can conclude that T = 0. One can verify that
V1(0) < V3(0) holds for the linear path from e3 to e1, thereby completing
the proof.

7 Set-Valued Stability Concepts

As we see in Section 6.2, there may not exist absorbing states nor globally
accessible states for a small friction. However, even in such cases there
may be sets of states that are good asymptotic description of the long-run
behavior. We introduce two set-valued stability concepts and show their
existence.

We first redefine accessibility following Matsui [15]. Given a path x :
[0,∞) → ∆n−1, we say that x∗ is an accumulation point of x(·) if there
exists a real sequence {tk} such that tk → ∞ and x(tk) → x∗ as k → ∞.
Note that any path x(·) has at least one accumulation point because of the
compactness of ∆n−1.

Definition 5 x ∈ ∆n−1 is directly accessible from x′ ∈ ∆n−1 if there exists a
perfect foresight equilibrium path x(·) from x′ such that x is an accumulation
point of x(·).

x ∈ ∆n−1 is accessible from x′ ∈ ∆n−1 if at least one of the following
is satisfied: (i) x is directly accessible from x′; (ii) there exists a sequence
{xk} converging to x such that xk is accessible from x′ for all k; (iii) x is
accessible from y which is accessible from x′.

Now we define a set-valued stability concept which is analogous to that
of Gilboa and Matsui [6].

Definition 6 A nonempty subset F ∗ of ∆n−1 is a cyclically stable set (with
respect to the perfect foresight dynamics), or CSS, if

(a) no x /∈ F ∗ is accessible from any x′ ∈ F ∗,
(b) every x ∈ F ∗ is accessible from every x′ ∈ F ∗.
An absorbing state, taken as a singleton, is a CSS.
We prove the existence of CSS. For each x ∈ ∆n−1, we define R(x) to be

R(x) = {y ∈ ∆n−1 | y is accessible from x}.

From the fact that every equilibrium path has an accumulation point, R(x)
is nonempty.

Now we state the existence theorem. The proof is by direct application
of Gilboa and Matsui [6].

Theorem 4 Every game has at least one CSS.
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Proof. Observe that R(x) is closed and x′ ∈ R(x) implies R(x′) ⊂ R(x) by
the definition of accessibility.

We consider the partially ordered set ({R(x)}x∈∆n−1 ,⊂). Take any to-
tally ordered subset of {R(x)}x∈∆n−1 and denote it by {R(x)}x∈∆′ . Since
for each x ∈ ∆′, R(x) is a closed and nonempty subset of a compact set,⋂
x∈∆′ R(x) is nonempty. Choose any y ∈ ⋂x∈∆′ R(x). Since R(y) ⊂ R(x)

holds for all x ∈ ∆′, R(y) is a lower bound of {R(x)}x∈∆′ in {R(x)}x∈∆n−1 .
Therefore, by Zorn’s lemma, there exists a minimal element R∗ = R(x∗) in
{R(x)}x∈∆n−1 .

We claim that R∗ is a CSS. Indeed, for any x ∈ R∗, R(x) ⊂ R∗ holds,
and since R∗ is a minimal set, R(x) = R∗ holds, which implies that no
point outside R∗ is accessible from any point in R∗, and every point in R∗

is accessible form any point in R∗.

We introduce an alternative concept of stability.

Definition 7 A nonempty subset G∗ of ∆n−1 is a globally accessible set, or
GAS, if G∗ is the minimum set among those satisfying the following:

(a) no x /∈ G∗ is accessible from any x′ ∈ G∗,
(b) for all x ∈ ∆n−1, there exists x′ ∈ G∗ such that x′ is accessible from

x.

An absorbing and globally accessible state, taken as a singleton, is a
GAS.

By definition, a GAS is unique if it exists. The following proposition
ensures its existence.

Proposition 4 The union of all CSS’s is the GAS.

Proof. Denote by F∗ the family of all CSS’s. By the definition of CSS, no
x /∈ ⋃F∗ is accessible from any x′ ∈ ⋃F∗. For any x0 ∈ ∆n−1, define
R = {R ∈ {R(x)}x∈∆n−1 |R ⊂ R(x0)}. By a similar argument to the proof
of Theorem 4, R has a minimal element. Therefore, for each x0 ∈ ∆n−1,
there exists a minimal element R∗ of {R(x)}x∈∆n−1 such that R∗ ⊂ R(x0).
Since R∗ is a CSS, there exists x ∈ ⋃F∗ such that x is accessible from x0.
Obviously,

⋃F∗ is the minimum set, thereby completing the proof.

Theorem 5 Every game has the GAS.

Example 7.1 Consider the 4× 4 game given by

(uij) =




2 1 0 0
0 2 1 0
1 0 2 0
0 0 0 1


 .

The set {e1, e2, e3} is a CSS and a GAS.
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8 Conclusion

We have considered equilibrium selection for symmetric n×n games by em-
bedding the original game into the perfect foresight dynamics with Poisson
revision opportunities. Different strict Nash equilibria may have different
stability properties under the dynamics, based on which we can select a par-
ticular equilibrium. We have established that a strict Nash equilibrium is
linearly stable under the perfect foresight dynamics with a sufficiently small
friction if and only if it is the p-dominant equilibrium with p < 1/2. The
result thus provides a dynamical characterization for the p-dominant equi-
librium with p < 1/2. We have also shown that the p-dominant equilibrium
with p < 1/2 is generically absorbing for any degree of friction.

Appendix

We introduce a Banach space X, the set of bounded functions f : [0,∞)→
Rn with norm

‖f‖r = sup
t≥0

e−rt|f(t)|

for r > 0. Given any x0 ∈ ∆n−1, define K ⊂ X to be

K = {x : [0,∞)→ ∆n−1 |x is Lipschitz with constant λ, and x(0) = x0}.

Lemma 3 K is convex and compact.

Proof. Given an arbitrary ε > 0, take T which satisfies e−rT < ε. Observe
that K is equi-continuous and uniformly bounded. By the Ascoli-Arzelà
theorem, there exist finitely many elements x1, . . . , xN ∈ K such that for
any y ∈ K,

sup
t∈[0,T ]

|y(t)− xk(t)| < ε

holds for some k = 1, . . . , N . Therefore, for any y ∈ K

‖y − xk‖r < ε,

i.e., K is totally bounded. Since K is also complete, which is easily verified,
K is compact.

The fact that it is convex is easy to check.

Note that each x ∈ K is differentiable almost everywhere, since it is
Lipschitz continuous and hence of bounded variation.

17



We rewrite the expected discounted payoff as the functional V : K ×
[0,∞)→ Rn defined by

Vi[x](t) =
∫ ∞

0
e−(λ+θ)s

n∑

k=1

xk(t+ s)uik ds,

In order to establish the existence of equilibrium path, we consider the
following functional differential inclusion which is equivalent to (1)–(3):

ẋ(t) ∈ X[x](t, x(t)) a.e., x(0) = x0 ∈ ∆n−1, (7)

where

X[x](t, x(t)) = {λ(α− x(t)) |α ∈ ∆n−1, αi = 0 if i /∈M [x](t)}, (8)

and

M [x](t) = arg max{Vi[x](t) | i = 1, . . . , n}.
In equation (8), α ∈ ∆n−1 is a convex combination of best response actions
at t against the belief of future path x(·).

A solution x(·) ∈ K to the functional differential inclusion (7) is a perfect
foresight equilibrium path starting from the arbitrarily given initial condi-
tion x0. Our goal is to prove that there exists a solution x(·) ∈ K to (7).

First, for a fixed x ∈ K, we consider the following differential inclusion:

ẏ(t) ∈ X[x](t, y(t)) a.e., y(0) = x0 ∈ ∆n−1. (9)

Lemma 4 There exists a solution y(·) ∈ K to (9).

Proof. The correspondence X[x](·, ·) : [0,∞) × ∆n−1 → Rn is convex- and
compact-valued, and upper semi-continuous, since V [x](·) is continuous and
therefore M [x](·) is upper semi-continuous. It follows that there exists a
continuous function y(·), a solution to the problem (9) by the existence
theorem for differential inclusion (see, e.g., Theorem 2.1.4 in Aubin and
Cellina [1, p. 101]). Such y(·) is contained in K, since it satisfies (9).

We define the correspondence Ψ : K → K by

Ψ(x) = {y ∈ K | y(·) is a solution to (9)}.
Notice that y ∈ Ψ(x) if and only if

1
λ
ẏ(t) + y(t) ∈ Ft(x(·)) a.e.,

where the correspondence F : [0,∞)×K → ∆n−1 is defined by

Ft(x) = {α ∈ ∆n−1 |αi = 0 if i /∈M [x](t)}.
Note that Ft(x) is compact and convex for any t and x.
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Lemma 5 Ft(·) : K → ∆n−1 is upper semi-continuous.

Proof. For a fixed t, we define v : ∆n−1 ×K → R and v∗ : K → R by

v(α, x) =
n∑

i=1

αiVi[x](t)

and

v∗(x) = max{V1[x](t), . . . , Vn[x](t)}.

Since V [·](t) is continuous, v(·, ·) and v∗(·) are continuous.
Let us show that Ft(·) has a closed graph. Let {xk} and {αk} be such

that xk ∈ K and αk ∈ Ft(xk) for all k, and assume xk → x and αk → α.
Notice that αk ∈ Ft(xk) if and only if v(αk, xk) = v∗(xk). By the continuity
of v and v∗, we obtain v(α, x) = v∗(x), i.e., α ∈ Ft(x). Since the values are
contained in a compact set ∆n−1, Ft(·) is upper semi-continuous.

Lemma 6 (a) Ψ(x) is convex.
(b) Ψ is compact-valued and upper semi-continuous.

In order to prove Lemma 6, we need the following version of the conver-
gence theorem (Theorem 1.4.1) due to Aubin and Cellina [1].

Convergence Theorem (Aubin and Cellina [1]) Let X, Y be Banach
spaces, I an interval of R, and F : X → Y a closed- and convex-valued
upper semi-continuous correspondence. Suppose that xk ∈ X and yk : I → Y
satisfy yk(t) ∈ F (xk) for almost all t ∈ I. If

1. xk converges strongly to x,

2. yk belongs to L1(I, Y ) and converges weakly to y in L1(I, Y ),

then y(t) ∈ F (x) for almost all t ∈ I.

Proof of Lemma 6. (a) Convexity is easy to check.
(b) We show that Ψ has a closed graph. Let {xk} and {zk} be such that

xk ∈ K and zk ∈ Ψ(xk) for all k, and assume xk → x and zk → z. Define yk

by yk(t) = żk(t)/λ+zk(t). Since yk(t) ∈ Ft(zk(·)) for almost all t, yk belongs
to the unit ball in L∞([0, T ]), which is equal to the dual of L1([0, T ]), for any
T ∈ [0,∞). Therefore, by Alaoglu’s theorem, a subsequence (again denoted
by) yk converges in the weak* topology to some y in L∞([0, T ]), and hence,
yk converges weakly to y in L1([0, T ]) for any T ∈ [0,∞). Since Ft(·) is
convex- and compact-valued upper semi-continuous correspondence (Lemma
5), we obtain y(t) ∈ Ft(x(·)) almost everywhere due to the Convergence
Theorem.
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On the other hand,

zk(t) = zk(0) +
∫ t

0
λ(yk(s)− zk(s)) ds→ z(0) +

∫ t

0
λ(y(s)− z(s)) ds,

i.e., ż(t) = λ(y(t)− z(t)) or y(t) = ż(t)/λ+ z(t) almost everywhere. Hence
ż(t)/λ + z(t) ∈ Ft(x(·)) almost everywhere, i.e., z ∈ Ψ(x), which implies
that the graph of Ψ is closed. Since the values are contained in a compact
set K, Ψ is compact-valued and upper semi-continuous.

Now we are in a position to prove the equilibrium path existence theorem.

Proof of Theorem 1. Due to Kakutani’s fixed point theorem (see, e.g., Aubin
and Cellina [1, p. 85]), it follows from Lemma 6 that there exists x∗ ∈ K
such that x∗ ∈ Ψ(x∗), which is a perfect foresight equilibrium path starting
from an arbitrarily given x0.

Remark 2. In order to establish the existence of perfect foresight equilibrium
paths, it is sufficient to assume that V [x](·) : [0,∞)→ Rn and V [·](t) : K →
Rn are continuous.
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