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Abstract

This paper studies a dynamic adjustment process in a large society
of forward-looking agents where payoffs are given by a normal form
supermodular game. The stationary states of the dynamics correspond
to the Nash equilibria of the stage game. It is shown that if the stage
game has a monotone potential maximizer, then the corresponding
stationary state is uniquely linearly absorbing and globally accessible
for any small degree of friction. Among binary supermodular games,
a simple example of a unanimity game with three players is provided
where there are multiple globally accessible states for a small friction.
Journal of Economic Literature Classification Numbers: C72, C73.

Keywords: equilibrium selection; perfect foresight dynamics; super-
modular game; strategic complementarity; stochastic dominance; po-
tential; monotone potential.
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1 Introduction

Supermodular games capture the key concept of strategic complementarity
in various economic phenomena. Examples include oligopolistic competi-
tion, adoption of new technologies, bank runs, currency crises, and eco-
nomic development. Strategic complementarity plays an important role in
particular in Keynesian macroeconomics (Cooper (1999)). From a theoreti-
cal viewpoint, those games have appealing properties due to their monotone
structure (Topkis (1979), Milgrom and Roberts (1990), Vives (1990), and
Athey (2001)).

A salient feature of supermodular games is that there typically exist
multiple Nash equilibria due to strategic complementarities, which raises
the question as to which equilibrium is likely to be played. To address the
problem of equilibrium selection, game theory has so far proposed two major
strands of approaches besides the classic one by Harsanyi and Selten (1988).
One is to consider the stability of Nash equilibria in the context of evolution-
ary dynamics (Kandori, Mailath, and Rob (1993), Young (1993), Kandori
and Rob (1995) for stochastic models; Hofbauer (1999) for a deterministic
model); the other is to embed the original game in a static incomplete infor-
mation game and examine the robustness of equilibrium outcomes to a small
amount of uncertainty (Carlsson and van Damme (1993), Frankel, Morris,
and Pauzner (2003), Morris and Shin (2003); Kajii and Morris (1997), Morris
and Ui (2005)).

Our approach in the present paper is to examine the stability of Nash
equilibria in supermodular games under perfect foresight dynamics, first in-
troduced by Matsui and Matsuyama (1995) for 2 × 2 games.1 We consider
a dynamics adjustment process in a large society where agents make irre-
versible decisions (e.g., career or sector choices as considered in Matsuyama
(1991)) and instantaneous payoffs are given by a normal form supermodular
game. In contrast to most evolutionary models where agents are myopic
and boundedly rational, our model has forward-looking, rational agents.
Combined with a dynamic environment with frictions in action revisions,
this gives rise to the possibility that self-fulfilling beliefs destabilize strict
Nash equilibria, which allows us to discriminate among Nash equilibria. In-
deed, Matsui and Matsuyama (1995) demonstrate that in 2×2 coordination
games, the society can escape from the risk-dominated equilibrium to the
risk-dominant equilibrium but not vice versa, provided that the friction is
sufficiently small. The purpose of this paper is to derive sufficient condi-
tions for the stability of Nash equilibria for broader classes of supermodular
games, thereby providing a link between ours and other approaches. In
particular, we show that for games with monotone potentials (Morris and

1This class of dynamics is also studied by Matsuyama (1991) but with nonlinear payoff
functions in the context of development economics. See also Matsuyama (1992) and
Kaneda (1995).
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Ui (2005)), our condition coincides with that for the robustness to incom-
plete information (Kajii and Morris (1997)). On the other hand, there are
also disagreements: e.g., in unanimity games with more than two players,
the equilibrium selection criterion based on Nash product (Harsanyi and
Selten (1988)) is not supported.

We employ the following framework. The society consists of N large pop-
ulations of infinitesimal agents, who are repeatedly and randomly matched
to play an N -player normal form game. There are frictions: each agent must
make a commitment to a particular action for a random time interval. Op-
portunities to revise actions follow Poisson processes which are independent
across agents. The dynamics thus exhibits inertia in that the action distri-
bution in the society changes continuously. Unlike in standard evolutionary
games, each agent forms his belief about the future path of the action distri-
bution and, when given a revision opportunity, takes an action to maximize
his expected discounted payoff. A perfect foresight path is defined to be a
feasible path of action distribution along which every revising agent takes a
best response to the future course of play. While the stationary states of this
dynamics corresponds to the Nash equilibria of the stage game, there may
also exist a perfect foresight path that escapes from a strict Nash equilib-
rium when the degree of friction, defined as the discounted average duration
of the commitment, is sufficiently small. We say that a Nash equilibrium
a∗ is linearly absorbing if the feasible path converging linearly to a∗ is the
unique perfect foresight path whenever the initial state is close enough to a∗;
a∗ is globally accessible if for any initial state, there exists a perfect foresight
path converging to a∗.2 If a Nash equilibrium is both linearly absorbing and
globally accessible, then self-fulfilling expectations cannot destabilize this
equilibrium, whereas from any other equilibrium, expectations may lead the
society to this equilibrium; that is to say, it is the unique equilibrium that
is robust to the possibility of self-fulfilling prophecies.

Several equilibrium selection results based on the perfect foresight dy-
namics have been obtained so far. Matsui and Matsuyama (1995) demon-
strate that in 2× 2 coordination games, a strict Nash equilibrium is linearly
absorbing and globally accessible for any small degree of friction if and only
if it is the risk-dominant equilibrium. Beyond 2 × 2 games, Oyama (2002)
appeals to the notion of p-dominance to identify (in a single population
setting) a class of games where one can explicitly characterize the set of per-
fect foresight paths relevant for stability considerations, showing that a p-
dominant equilibrium with p < 1/2 is selected.3 Hofbauer and Sorger (2002)
and Kojima (2003) obtain related results based on other generalizations of

2Since there may exist multiple perfect foresight paths for a given initial state, it is
possible that a state is globally accessible but not linearly absorbing. Indeed, we provide
an example where there exist multiple globally accessible states when the friction is small;
by definition, none of them is linearly absorbing.

3Tercieux (2004) considers set-valued stability concepts and obtains a similar result.
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the risk-dominance concept in a multiple population setting.4 Hofbauer
and Sorger (1999, 2002) establish the selection of the unique potential max-
imizer for potential games, both in a single population setting and in a
multi-population setting.5 Their results rely on the relationship between
the perfect foresight paths and the solutions to an associated optimal con-
trol problem as well as the Hamiltonian structure that the dynamics has
when the stage game is a potential game.

In this paper, we consider supermodular games and games that have
some monotonic relationship with supermodular games, by employing meth-
ods of analysis based on monotonicity and comparison. An underlying ob-
servation is that a perfect foresight path is characterized as a fixed point
of the best response correspondence defined on the set of feasible paths.
We observe that if the stage game is supermodular, this correspondence is
monotone with respect to the partial order over feasible paths induced by the
stochastic dominance order. We then compare the perfect foresight paths
of two different stage games that are comparable in terms of best responses
and show the following analogue to the comparison theorem from the theory
of monotone dynamical systems (Smith (1995)):6 if at least one of the two
games is supermodular, then the order of best responses between the games
is preserved in the perfect foresight dynamics. This fact allows us to transfer
stability properties from one game to the other.

We apply our monotone methods to the class of games with monotone
potentials introduced by Morris and Ui (2005), who show that a monotone
potential maximizer (MP-maximizer) is robust to incomplete information
(Kajii and Morris (1997)).7 A normal form game is said to have a mono-
tone potential if it is comparable (in terms of best responses) to a potential
game, and the action profile that maximizes the potential is said to be an
MP-maximizer. Monotone potential games include both potential games
and, interestingly, games with a p-dominant equilibrium with

∑
i pi < 1.

By invoking the potential game results due to Hofbauer and Sorger (2002),

4Kim (1996) establishes a similar result for binary games with many identical players.
5To be precise, they show that a unique potential maximizer a∗ is absorbing (and

globally accessible for small friction): i.e., any perfect foresight path, which may or may
not be unique, from a neighborhood of a∗ must converge to a∗. It is not known whether a
potential maximizer is linearly absorbing. In supermodular games, as we show, absorption
and linear absorption are equivalent.

6Hofbauer and Sandholm (2002) show that when the underlying game is supermodular,
the perturbed best response dynamics forms a monotone dynamical system. The perfect
foresight dynamics, on the other hand, cannot be considered as a dynamical system due
to the multiplicity of perfect foresight paths.

7More generally, Morris and Ui (2005) show that a generalized potential maximizer is
robust to incomplete information. A monotone potential induces a generalized potential
in the case considered here. Frankel, Morris, and Pauzner (2003) show that under cer-
tain conditions, a local potential maximizer (LP-maximizer) is selected in global games
with strategic complementarities. In games with marginal diminishing returns, an LP-
maximizer is an MP-maximizer.
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our main result shows that if the stage game or the monotone potential is
supermodular, then an MP-maximizer is globally accessible for any small
degree of friction and (generically) linearly absorbing for any degree of fric-
tion. Our result thus unifies and extends the previous results using potential
maximization and p-dominance, as done by Morris and Ui (2005) for the ro-
bustness of equilibria to incomplete information.

We then study the class of binary supermodular games, for which we
obtain complete characterizations for linear absorption and for global acces-
sibility. These characterizations are applied to three subclasses. First, for
unanimity games, we show that our selection criterion is not in agreement
with that in terms of Nash product.8 In fact, the perfect foresight dy-
namics fails to select a single Nash equilibrium for some unanimity games.
A nondegenerate example (Example 5.2.1 in Subsection 5.2) demonstrates
that the two strict Nash equilibria are mutually accessible, actually glob-
ally accessible, for a small friction. Second, for games with linear incentives
(Selten (1995)), we find a connection to the concept of spatial dominance
due to Hofbauer (1999). It is shown that if a strict Nash equilibrium is glob-
ally accessible under the perfect foresight dynamics with a small friction,
then it is spatially dominant. This implies in particular that for (generic)
games with linear incentives, a globally accessible equilibrium is unique if
it exists.9 Third, we introduce the class of games with invariant diagonal,
in which all players receive the same payoffs when they all play the same
mixed strategy. For this class of games, we obtain the generic existence of
a linearly absorbing and globally accessible equilibrium for a small friction.

The concept of perfect foresight path requires that agents optimize against
their beliefs about the future path of the action distribution and that those
beliefs coincide with the actual path. Relaxing the latter requirement,
Matsui and Oyama (2002) introduce the model of rationalizable foresight
dynamics, where while the rationality of the agents as well as the struc-
ture of the society is common knowledge, beliefs about the future path are
not necessarily coordinated among the agents. It is instead assumed that
the agents form their beliefs in a rationalizable manner: in particular, they
may misforecast the future. A rationalizable foresight path is a feasible path
along which every revising agent optimizes against another rationalizable
foresight path. We show that in supermodular games, a linearly absorbing
and globally accessible state is the unique state from which no rationalizable
foresight path escapes. That is, our stability results for supermodular games
also hold under the less demanding assumption of rationalizable foresight.

8Hofbauer (1999) shows that in unanimity games, the Nash equilibrium with the higher
Nash product is selected in his spatio-temporal model.

9Takahashi (2004) considers many-action supermodular games with linear incentives
and shows that, for generic payoffs, there always exists a unique Nash equilibrium that is
linearly absorbing and globally accessible for zero degree of friction, and it is also spatially
dominant.
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The paper is organized as follows. Section 2 introduces the perfect fore-
sight dynamics for general finite N -player games and provides a character-
ization of perfect foresight paths as the fixed points of the best response
correspondence defined on the set of feasible paths. Section 3 studies mono-
tone properties of the perfect foresight dynamics and proves our comparison
theorem. It also examines the relationship between the stability concepts
under perfect foresight and those under rationalizable foresight. Section 4
considers games with monotone potentials and establishes the selection of
MP-maximizer. Section 5 gives complete characterizations for the stability
of strict Nash equilibria in binary supermodular games. Detailed analyses
are conducted for unanimity games, games with linear incentives, and games
with invariant diagonal. Section 6 concludes.

2 Perfect Foresight Dynamics

2.1 Stage Game

Let G = (I, (Ai)i∈I , (ui)i∈I) be a normal form game with N ≥ 2 players,
where I = {1, 2, . . . , N} is the set of players, Ai = {0, 1, . . . , ni} the finite
set of actions for player i ∈ I, and ui :

∏
i∈I Ai → R the payoff function for

player i. We denote
∏

i∈I Ai by A and
∏

j 6=i Aj by A−i.
Denote by R+ the set of all nonnegative real numbers and by R++ the

set of all positive real numbers. The set of mixed strategies for player i is
denoted by

∆(Ai) =
{

xi = (xi0, xi1, . . . , xini) ∈ Rni+1
+

∣∣∣ ∑
h∈Ai

xih = 1
}

,

which is identified with the ni-dimensional simplex. We sometimes iden-
tify each action in Ai with the element of ∆(Ai) that assigns one to the
corresponding coordinate. The polyhedron

∏
i∈I ∆(Ai) is a subset of the n-

dimensional real space endowed with the sup norm | · |, where n =
∑

i∈I(ni+
1). For x ∈

∏
i ∆(Ai) and ε > 0, Bε(x) denotes the ε-neighborhood of x

relative to
∏

i ∆(Ai), i.e., Bε(x) = {y ∈
∏

i ∆(Ai) | |y − x| < ε}.
Payoff functions ui(h, ·) are extended to

∏
j 6=i ∆(Aj), and ui(·) to

∏
j∈I ∆(Aj),

i.e.,
ui(h, x−i) =

∑
a−i∈A−i

(∏
j 6=i

xjaj

)
ui(h, a−i)

for x−i ∈
∏

j 6=i ∆(Aj), and

ui(x) =
∑
h∈Ai

xihui(h, x−i)

for x ∈
∏

j∈I ∆(Aj). Let br i(x−i) be the set of best responses to x−i ∈

5



∏
j 6=i ∆(Aj) in pure strategies, i.e.,

br i(x−i) = arg max
h∈Ai

ui(h, x−i)

= {h ∈ Ai |ui(h, x−i) ≥ ui(k, x−i) for all k ∈ Ai}.

An element x∗ ∈
∏

i ∆(Ai) is a Nash equilibrium if for all i ∈ I and all
h ∈ Ai,

x∗
ih > 0 ⇒ h ∈ br i(x∗

−i),

and x∗ is a strict Nash equilibrium if for all i ∈ I and all h ∈ Ai,

x∗
ih > 0 ⇒ {h} = br i(x∗

−i).

Let ∆(A−i) be the set of probability distributions on A−i. We some-
times extend ui(h, ·) to ∆(A−i). For πi ∈ ∆(A−i), we write ui(h, πi) =∑

a−i∈A−i
πi(a−i)ui(h, a−i) and br i(πi) = arg maxh∈Ai

ui(h, πi).

2.2 Perfect Foresight Paths

Given an N -player normal form game, which will be called the stage game,
we consider the following dynamic societal game. Society consists of N large
populations of infinitesimal agents, one for each role in the stage game. In
each population, agents are identical and anonymous. At each point in
time, one agent is selected randomly from each population and matched to
form an N -tuple and play the stage game. Agents cannot switch actions
at every point in time. Instead, every agent must make a commitment
to a particular action for a random time interval. Time instants at which
each agent can switch actions follow a Poisson process with the arrival rate
λ > 0. The processes are independent across agents. We choose without
loss of generality the unit of time in such a way that λ = 1.10

The action distribution in population i ∈ I at time t ∈ R+ is denoted by

φi(t) = (φi0(t), φi1(t), . . . , φini(t)) ∈ ∆(Ai),

where φih(t) is the fraction of agents who are committing to action h ∈ Ai

at time t. Let φ(t) = (φ1(t), φ2(t), . . . , φN (t)) ∈
∏

i ∆(Ai). Due to the
assumption that the switching times follow independent Poisson processes
with arrival rate λ = 1, φih(·) is Lipschitz continuous with Lipschitz constant
1, which implies in particular that it is differentiable at almost all t ≥ 0.
Moreover, its speed of adjustment is bounded: φ̇ih(t) ≥ −φih(t), where∑

h∈Ai
φ̇ih(t) = 0. We call such a path φ(·) a feasible path.

10We can alternatively assume as follows. Each agent exits from his population accord-
ing to the Poisson process with parameter λ and is replaced by his successor. Agents make
once-and-for-all decisions upon entry, i.e., one cannot change his action once it is chosen.
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Definition 2.1. A path φ : R+ →
∏

i ∆(Ai) is said to be feasible if it is
Lipschitz continuous, and for all i ∈ I and almost all t ≥ 0, there exists
αi(t) ∈ ∆(Ai) such that

φ̇i(t) = αi(t) − φi(t). (2.1)

In Equation (2.1), αi(t) ∈ ∆(Ai) denotes the action distribution of the
agents in population i who have a revision opportunity during the short time
interval [t, t + dt). In particular, if for some action profile a = (ai)i∈I ∈ A,
αi(t) = ai for all i ∈ I and all t ≥ 0, then the resulting feasible path, which
converges linearly to a, is called a linear path to a.

Denote by Φi the set of feasible paths for population i, and let Φ =
∏

i Φ
i

and Φ−i =
∏

j 6=i Φ
j . For x ∈

∏
i ∆(Ai), the set of feasible paths starting

from x is denoted by Φx =
∏

i Φ
i
x. For each x ∈

∏
i ∆(Ai), Φx is convex and

compact in the topology of uniform convergence on compact intervals.11

An agent in population i anticipates the future evolution of the action
distribution, and, if given the opportunity to switch actions, commits to an
action that maximizes his expected discounted payoff. Since the duration of
the commitment has an exponential distribution with mean 1, the expected
discounted payoff of committing to action h ∈ Ai at time t with a given
anticipated path φ ∈ Φ is represented by

Vih(φ)(t) = (1 + θ)
∫ ∞

0

∫ t+s

t
e−θ(z−t)ui(h, φ−i(z)) dz e−sds

= (1 + θ)
∫ ∞

t
e−(1+θ)(s−t)ui(h, φ−i(s)) ds,

where θ > 0 is a common discount rate (relative to λ = 1). We view the
discounted average duration of a commitment, θ/λ = θ, as the degree of
friction. Note that V is well-defined whenever θ > −1.

Given a feasible path φ ∈ Φ, let BRi(φ)(t) be the set of best responses
in pure strategies to φ−i = (φj)j 6=i at time t, i.e.,

BRi(φ)(t) = arg max
h∈Ai

Vih(φ)(t).

Note that for each i ∈ I, the correspondence BRi : Φ × R+ → Ai is upper
semi-continuous since Vi is continuous.

A perfect foresight path is a feasible path along which each agent opti-
mizes against the correctly anticipated future path.

Definition 2.2. A feasible path φ is said to be a perfect foresight path if
for all i ∈ I, all h ∈ Ai, and almost all t ≥ 0,

φ̇ih(t) > −φih(t) ⇒ h ∈ BRi(φ)(t). (2.2)
11One can instead use the topology induced by the discounted sup norm.
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Note that φ̇ih(t) > −φih(t) (i.e., αih(t) > 0 in (2.1)) implies that action
h is taken by some positive fraction of the agents in population i having a
revision opportunity during the short time interval [t, t+dt). The definition
says that such an action must be a best response to the path φ itself.

2.3 Best Response Correspondence

For a given initial state x ∈
∏

i ∆(Ai), a best response path for population
i to a feasible path φ ∈ Φx is a feasible path ψi ∈ Φi

x along which every
agent takes an optimal action against φ. This defines the best response
correspondence βi

x : Φx → Φi
x which maps each feasible path φ ∈ Φx to the

set of best response paths for population i:

βi
x(φ) = {ψi ∈ Φi

x | ψ̇ih(t) > −ψih(t) ⇒ h ∈ BRi(φ)(t) a.e.}. (2.3)

Let βx : Φx → Φx be defined by βx(φ) =
∏

i β
i
x(φ). We denote by β : Φ → Φ

the extension of βx to Φ, i.e., β(φ) = βφ(0)(φ) for φ ∈ Φ.
A perfect foresight path φ with φ(0) = x is a fixed point of βx : Φx →

Φx, i.e., φ ∈ βx(φ). The existence of perfect foresight paths follows, due
to Kakutani’s fixed point theorem, from the fact that βx is a nonempty-,
convex-, and compact-valued upper semi-continuous correspondence. This
fact can be shown by either of the two characterizations given below.

Remark 2.1. For a given feasible path φ ∈ Φx, a best response path ψ ∈
βx(φ) is a Lipschitz solution to the differential inclusion

ψ̇(t) ∈ F (φ)(t) − ψ(t) a.e., ψ(0) = x, (2.4)

where F : Φ × R+ →
∏

i ∆(Ai) is defined by

Fi(φ)(t) = {αi ∈ ∆(Ai) |αih > 0 ⇒ h ∈ BRi(φ)(t)}, (2.5)

which is the convex hull of BRi(φ)(t). Since F (φ)(·) is convex- and compact-
valued, and upper semi-continuous, the existence theorem for differential
inclusions (see, e.g., Aubin and Cellina (1984, Theorem 2.1.4)) implies the
nonemptiness of the set of solutions, βx(φ). The convexity of βx(φ) is obvi-
ous. Furthermore, we can show that βx(φ) is compact and depends upper
semi-continuously on φ. For these properties of βx, we only need the upper
semi-continuity of BRi, which is in turn implied by the continuity of Vi.

Lemma 2.1. βx is compact-valued and upper semi-continuous.

Proof. Since the values are contained in the compact set Φx, it is sufficient
to show that βx has a closed graph. Let {φk}∞k=1 and {ψk}∞k=1 be such that
ψk ∈ βx(φk), and assume that φk → φ and ψk → ψ as k → ∞. Take any
i ∈ I, h ∈ Ai, and t ≥ 0 such that ψ̇ih(t) > −ψih(t). We want to show that
h ∈ BRi(φ)(t).

8



Observe that for any ε > 0, there exists k̄ such that for all k ≥ k̄,

ψ̇k
ih(tk) > −ψk

ih(tk)

for some tk ∈ (t − ε, t + ε). Take a sequence {ε`}∞`=1 such that ε` > 0
and ε` → 0 as ` → ∞. Then, we can take a subsequence {ψk`}∞`=1 of
{ψk}∞k=1 such that ψ̇k`

ih(t`) > −ψk`
ih(t`) holds for some t` ∈ (t− ε`, t+ ε`). By

assumption, h ∈ BRi(φk`)(t`) for all `. Now let ` → ∞. Since BRi(·)(·) is
upper semi-continuous, we have h ∈ BRi(φ)(t).

Remark 2.2. The correspondence βi
x is actually the best response correspon-

dence for an associated differential game, as constructed in Hofbauer and
Sorger (2002). With the stage game G, the discount rate θ > 0, and an
initial state x ∈

∏
i ∆(Ai) given, the associated differential game is an N -

player normal form game in which the set of actions for player i ∈ I is Φi
x

and the payoff function for player i is given by

Ji(φ) =
∫ ∞

0
e−θtui(φ(t)) dt. (2.6)

As shown by Hofbauer and Sorger (2002), the perfect foresight paths are
precisely the Nash equilibria of this game, due to the following fact.

Lemma 2.2. For a feasible path φ ∈ Φx,

βi
x(φ) = arg max

ψi∈Φi
x

Ji(ψi, φ−i).

Proof. Follows from Lemma 3.1 in Hofbauer and Sorger (2002).

The continuity of Ji, the quasi-concavity of Ji(·, φ−i), and the compact-
ness of Φi

x therefore imply the desired properties of βi
x.

2.4 Stability Concepts

The constant path φ̄ given by φ̄(t) = x∗ ∈
∏

i ∆(Ai) for all t ≥ 0 is a perfect
foresight path if and only if x∗ is a Nash equilibrium of the stage game.
Nevertheless, there may exist another perfect foresight path starting at x∗

which converges to a different Nash equilibrium; that is to say, self-fulfilling
beliefs may enable the society to escape from a Nash equilibrium. When the
degree of friction θ > 0 is sufficiently small, this may happen even from a
strict Nash equilibrium. In fact, in 2 × 2 coordination games, there exists
a perfect foresight path from the risk-dominated equilibrium to the risk-
dominant equilibrium for small θ > 0, but not vice versa. This motivates
the following stability concepts.

9



Definition 2.3. (a) x∗ ∈
∏

i ∆(Ai) is absorbing if there exists ε > 0 such
that any perfect foresight path from any x ∈ Bε(x∗) converges to x∗.

(b) a∗ ∈ A is linearly absorbing if there exists ε > 0 such that for any
x ∈ Bε(a∗), the linear path to a∗ is a unique perfect foresight path from x.

(c) x∗ ∈
∏

i ∆(Ai) is accessible from x ∈
∏

i ∆(Ai) if there exists a
perfect foresight path from x that converges to x∗. x∗ is globally accessible
if it is accessible from any x.

If x∗ is absorbing and the current state is close enough to x∗, then along
any (not necessarily unique) perfect foresight path, the behavior pattern of
the society converges to x∗. Linear absorption is a stronger concept than
absorption:12 if a∗ is linearly absorbing and the current state is close enough
to a∗, then the perfect foresight path is unique, along which every agent
at revision opportunity takes the action prescribed in a∗. If a (linearly)
absorbing state is also globally accessible, then it is the unique (linearly)
absorbing state; if a globally accessible state is also absorbing, then it is the
unique globally accessible state.

A globally accessible state is not necessarily absorbing, as there are gen-
erally multiple perfect foresight paths from a given initial state. We present
a (nondegenerate) example in Subsection 5.2 (Example 5.2.1) that has two
globally accessible states for small θ; by definition, neither of them is ab-
sorbing.

Any absorbing or globally accessible state is a Nash equilibrium of the
stage game, which follows from the proposition below.

Proposition 2.3. If x∗ ∈
∏

i ∆(Ai) is the limit of a perfect foresight path,
then x∗ is a Nash equilibrium.

Proof. Suppose that x∗ is the limit of a perfect foresight path φ∗. Let φ̄ be
the constant path at x∗, i.e., φ̄(t) = x∗ for all t ≥ 0. Let φt be the feasible
path defined by φt(s) = φ∗(s + t) for all s ≥ 0. Then, {φt}t≥0 converges to
φ̄ as t → ∞.

Take any i ∈ I and any h ∈ Ai with x∗
ih > 0. Then, there exists a

sequence {tk}∞k=1 such that tk → ∞ as k → ∞ and h ∈ BRi(φ∗)(tk) =
BRi(φtk)(0) for any k since φ∗ is a perfect foresight path that converges
to x∗. Let k → ∞. By the upper semi-continuity of BRi(·)(0), we have
h ∈ BRi(φ̄)(0) = br i(x∗

−i).

3 Supermodularity and Monotonicity

Supermodular games are games in which actions are ordered so that each
player’s marginal payoff to any increase in his action is nondecreasing in

12No example is known of a state that is absorbing but not linearly absorbing. We will
show that in supermodular games, any absorbing state is a strict Nash equilibrium and is
also linearly absorbing.
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other players’ actions. In this section, we first identify monotone properties
of the perfect foresight dynamics for supermodular stage games. In partic-
ular, we observe the monotonicity of the best response correspondence β
with respect to a partial order on Φ induced by the stochastic dominance
relation over mixed strategies. We then prove a comparison theorem for
the perfect foresight paths associated with two different stage games that
are comparable in terms of best responses. This theorem implies that if at
least one of the two games is supermodular, then one game inherits stability
properties from the other. Finally, we show that for supermodular games,
stability under perfect foresight is equivalent to that under rationalizable
foresight (Matsui and Oyama (2002)).

3.1 Supermodular Games

For xi, yi ∈ ∆(Ai), we write xi - yi if yi stochastically dominates xi, i.e.,

ni∑
k=h

xik ≤
ni∑

k=h

yik

for all h ∈ Ai. For x, y ∈
∏

i ∆(Ai), we write x - y if xi - yi for all i ∈ I
and x−i - y−i if xj - yj for all j 6= i. Moreover, we define φi - ψi for
φi, ψi ∈ Φi by φi(t) - ψi(t) for all t ≥ 0; φ - ψ for φ, ψ ∈ Φ by φi - ψi for
all i ∈ I; and φ−i - ψ−i for φ−i, ψ−i ∈ Φ−i by φj - ψj for all j 6= i. Note
that if φ(0) - ψ(0) and φ̇(t) + φ(t) - ψ̇(t) + ψ(t) for almost all t ≥ 0, then
φ - ψ.

The game G is said to be supermodular if whenever h < k, the difference
ui(k, a−i) − ui(h, a−i) is nondecreasing in a−i ∈ A−i, i.e., if a−i ≤ b−i, then

ui(k, a−i) − ui(h, a−i) ≤ ui(k, b−i) − ui(h, b−i).

It is well known that this property extends to mixed strategies: if h < k and
x−i - y−i, then

ui(k, x−i) − ui(h, x−i) ≤ ui(k, y−i) − ui(h, y−i).

The expected discounted payoff function Vi preserves this property, implying
that BRi is monotone with respect to the partial order on Φ.

Lemma 3.1. Suppose that the stage game is supermodular. For φ, ψ ∈ Φ,
if φ−i - ψ−i, then for all i ∈ I and all t ≥ 0,

Vik(φ)(t) − Vih(φ)(t) ≤ Vik(ψ)(t) − Vih(ψ)(t)

for h < k, and

minBRi(φ)(t) ≤ minBRi(ψ)(t),

maxBRi(φ)(t) ≤ maxBRi(ψ)(t).

11



Proof. Suppose φ−i - ψ−i and fix any t. If k > h, then

Vik(φ)(t) − Vih(φ)(t)

= (1 + θ)
∫ ∞

t
e−(1+θ)(s−t)

{
ui(k, φ−i(s)) − ui(h, φ−i(s))

}
ds

≤ (1 + θ)
∫ ∞

t
e−(1+θ)(s−t)

{
ui(k, ψ−i(s)) − ui(h, ψ−i(s))

}
ds

= Vik(ψ)(t) − Vih(ψ)(t).

Next, let k = minBRi(φ)(t). For any h < k,

Vik(ψ)(t) − Vih(ψ)(t) ≥ Vik(φ)(t) − Vih(φ)(t) > 0

since h /∈ BRi(φ)(t). Hence, if ` ∈ BRi(ψ)(t), then ` ≥ k = minBRi(φ)(t).
We thus have minBRi(ψ)(t) ≥ minBRi(φ)(t).

The other claim that maxBRi(φ)(t) ≤ maxBRi(ψ)(t) can be proved
similarly.

The next proposition establishes the monotonicity of the best response
correspondence βi over Φ. For φ ∈ Φ, a feasible path φ−

i ∈ βi(φ) is the
smallest element of βi(φ) if φ−

i - φ′
i for all φ′

i ∈ βi(φ), and φ+
i ∈ βi(φ) is

the largest element of βi(φ) if φ′
i - φ+

i for all φ′
i ∈ βi(φ).

Proposition 3.2. Suppose that the stage game is supermodular. For φ ∈ Φ,
βi(φ) has the smallest element minβi(φ) and the largest element max βi(φ).
If φi(0) - ψi(0) and φ−i - ψ−i, then

minβi(φ) - minβi(ψ),

max βi(φ) - max βi(ψ).

Proof. Take φ and ψ such that φi(0) = xi, ψi(0) = yi, xi - yi, and φ−i -
ψ−i. First, we construct φ−

i = min βi(φ); the construction of maxβi(φ) is
similar. Define

αi(t) = minBRi(φ)(t),

where the right hand side is considered as a mixed strategy. Note that αi is
lower semi-continuous, and hence, measurable, since BRi(φ)(·) is an upper
semi-continuous correspondence. Then, the unique solution φ−

i to

φ̇−
i (t) = αi(t) − φ−

i (t) a.e., φ−
i (0) = xi

is given by

φ−
i (t) = e−txi +

∫ t

0
es−tαi(s) ds.

By construction, φ−
i ∈ βi(φ), and φ−

i - φ′
i for all φ′

i ∈ βi(φ), i.e., φ−
i is the

smallest element of βi(φ).
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On the other hand, any path ψ′
i ∈ βi(ψ) is given by

ψ′
i(t) = e−tyi +

∫ t

0
es−tα′

i(s) ds

for some α′
i : R+ → ∆(Ai) such that α′

i(t) ∈ Fi(ψ)(t) for almost all t ≥ 0,
where Fi(ψ) is defined by (2.5). Since φ−i - ψ−i, it follows from Lemma 3.1
that

minBRi(φ)(t) ≤ minBRi(ψ)(t),

and hence, αi(t) - α′
i(t) for almost all t. Together with the assumption

that xi - yi, this implies that φ−
i - ψ′

i, thereby completing the proof of
minβi(φ) - minβi(ψ).

3.2 Comparison Theorem

Fix the set of players, I, and the set of action profiles, A. Consider two
games G = (I, (Ai)i∈I , (ui)i∈I) and G′ = (I, (Ai)i∈I , (vi)i∈I) satisfying that
for all i ∈ I and all πi ∈ ∆(A−i),

min br i
vi

(πi) ≤ min br i
ui

(πi), (3.1)

or that for all i ∈ I and all πi ∈ ∆(A−i),

max br i
vi

(πi) ≤ max br i
ui

(πi), (3.2)

where br i
ui

(πi) and br i
vi

(πi) are the sets of best responses to πi in games G
and G′, respectively. In this subsection, we study the relationship between
the perfect foresight paths for the stage game G and those for G′. Note that
the state space

∏
i ∆(Ai) is common in both cases. We will show that if

G or G′ is supermodular, then the perfect foresight dynamics preserves the
order of best responses between G and G′, and therefore, G inherits stability
properties from G′.

To specify the payoff functions, we denote by BRi
ui

(φ)(t) (BRi
vi

(φ)(t),
resp.) the set of best responses for population i to a feasible path φ at time
t when the stage game is G (G′, resp.). Note that this can be written as

BRi
ui

(φ)(t) = br i
ui

(πt
i(φ))

with a probability distribution πt
i(φ) ∈ ∆(A−i) which is given by

πt
i(φ)(a−i) = (1 + θ)

∫ ∞

t
e−(1+θ)(s−t)

(∏
j 6=i

φjaj (s)
)

ds.

Thus, if (3.1) is satisfied, then for any φ ∈ Φ and any t ≥ 0,

minBRi
vi

(φ)(t) ≤ minBRi
ui

(φ)(t), (3.3)

13



while if (3.2) is satisfied, then for any φ ∈ Φ and any t ≥ 0,

maxBRi
vi

(φ)(t) ≤ maxBRi
ui

(φ)(t). (3.4)

The following lemma is a key to our comparison theorem. The proof
relies on a fixed point argument together with the monotonicity of BRi.

Lemma 3.3. Let x, y ∈
∏

i ∆(Ai) be such that y - x.
(a) Suppose that G and G′ satisfy (3.1) and that G or G′ is supermodular.

If a feasible path φ ∈ Φx satisfies that for all i ∈ I, all h ∈ Ai, and almost
all t ≥ 0,

φ̇ih(t) > −φih(t) ⇒ h ≥ minBRi
ui

(φ)(t), (3.5)

then there exists a perfect foresight path ψ∗ ∈ Φy for G′ such that ψ∗ - φ.
(b) Suppose that G and G′ satisfy (3.2) and that G or G′ is supermodular.

If a feasible path ψ ∈ Φy satisfies that for all i ∈ I, all h ∈ Ai, and almost
all t ≥ 0,

ψ̇ih(t) > −ψih(t) ⇒ h ≤ maxBRi
vi

(ψ)(t), (3.6)

then there exists a perfect foresight path φ∗ ∈ Φx for G such that ψ - φ∗.

Proof. We only show (a). Given x, y ∈
∏

i ∆(Ai) with y - x and φ ∈ Φx

satisfying (3.5), define the convex and compact subset Φ̃y ⊂ Φy to be

Φ̃y = {ψ ∈ Φy |ψ - φ}.

Let βG′ be the best response correspondence for the stage game G′. We
define a convex- and compact-valued and upper semi-continuous correspon-
dence β̃G′ : Φ̃y → Φ̃y by

β̃G′(ψ) = βG′(ψ) ∩ Φ̃y (ψ ∈ Φ̃y).

We want to show that β̃G′(ψ) is nonempty for any ψ ∈ Φ̃y. Then, it
follows from Kakutani’s fixed point theorem that β̃G′ has a fixed point
ψ∗ ∈ β̃G′(ψ∗) ⊂ Φ̃y, which is a perfect foresight path for G′ and satisfies
ψ∗ - φ.

For ψ ∈ Φ̃y, take any i ∈ I, h ∈ Ai, and t ≥ 0 such that φ̇ih(t) > −φih(t).
If G is supermodular, then

h ≥ minBRi
ui

(φ)(t) ≥ minBRi
ui

(ψ)(t) ≥ minBRi
vi

(ψ)(t),

where the second inequality follows from the supermodularity of G and
Lemma 3.1, and the third inequality follows from the assumption of (3.1).
If G′ is supermodular, then

h ≥ minBRi
ui

(φ)(t) ≥ minBRi
vi

(φ)(t) ≥ minBRi
vi

(ψ)(t),
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where the second inequality follows from the assumption of (3.1), and the
third inequality follows from the supermodularity of G′ and Lemma 3.1.
Therefore, in each case, we have

h ≥ minBRi
vi

(ψ)(t)

for all h such that φ̇ih(t) > −φih(t).
Now let ψ′ ∈ Φy be given by

ψ̇′
i(t) = minBRi

vi
(ψ)(t) − ψ′

i(t) a.e., ψ′
i(0) = yi

for all i ∈ I. By construction, we have ψ′ ∈ βG′(ψ). Since ψ′(0) = y -
x = φ(0) and ψ̇′(t) + ψ′(t) - φ̇(t) + φ(t) for almost all t, we also have
ψ′ - φ. Therefore, we have ψ′ ∈ β̃G′(ψ), which implies the nonemptiness of
β̃G′(ψ).

As a corollary, we have the following result, which is an analogue to the
comparison theorem from the theory of differential equations (Walter (1970))
or monotone (cooperative) dynamical systems (Smith (1995)) and to the
comparative statics theorem (Milgrom and Roberts (1990)).

Theorem 3.4. Let x, y ∈
∏

i ∆(Ai) be such that y - x.
(a) Suppose that G and G′ satisfy (3.1) and that G or G′ is supermodular.

For any perfect foresight path φ∗ for G with φ∗(0) = x, there exists a perfect
foresight path ψ∗ for G′ with ψ∗(0) = y such that ψ∗ - φ∗.

(b) Suppose that G and G′ satisfy (3.2) and that G or G′ is supermodular.
For any perfect foresight path ψ∗ for G′ with ψ∗(0) = y, there exists a perfect
foresight path φ∗ for G with φ∗(0) = x such that ψ∗ - φ∗.

Suppose that G or G′ is supermodular. This theorem implies that if G
is comparable (in terms of best responses) to G′, then G inherits stability
properties from G′. First, assume that G and G′ satisfy (3.1) and that
action profile max A = (ni)i∈I is (linearly) absorbing in G′. Take any state
x ∈ Bε(maxA) for a sufficiently small ε > 0 and any perfect foresight path
φ∗ for G with φ∗(0) = x. By Theorem 3.4(a), there exists a perfect foresight
path ψ∗ for G′ with ψ∗(0) = x such that ψ∗ - φ∗. By the assumption
that max A is (linearly) absorbing in G′, ψ∗ converges (linearly) to maxA,
so that φ∗ also converges (linearly) to max A. This implies that max A is
(linearly) absorbing in G as well.

Second, assume that G and G′ satisfy (3.2) and that maxA is globally
accessible in G′. Take any state x ∈

∏
i ∆(Ai). By the assumption that

max A is globally accessible in G′, there exists a perfect foresight path ψ∗

for G′ with ψ∗(0) = x that converges to maxA. By Theorem 3.4(b), there
exists a perfect foresight path φ∗ for G with φ∗(0) = x such that ψ∗ - φ∗.
Since ψ∗ converges to max A, φ∗ also converges to max A. This implies that
max A is globally accessible in G as well.
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Note that by reversing the orders of actions, the above arguments can
be applied to minA.

A candidate for the game G′ is a potential game. Such a case is consid-
ered, with some refinement, in Section 4.

Lemma 3.3 with G′ = G (i.e., vi = ui for all i ∈ I) yields the following
corollary. We say that a feasible path φ is a superpath if

φ̇ih(t) > −φih(t) ⇒ h ≥ minBRi(φ)(t) (3.7)

for all i ∈ I, all h ∈ Ai, and almost all t ≥ 0; a feasible path ψ is a subpath
if

ψ̇ih(t) > −ψih(t) ⇒ h ≤ maxBRi(ψ)(t) (3.8)

for all i ∈ I, all h ∈ Ai, and almost all t ≥ 0.

Lemma 3.5. Suppose that the stage game is supermodular. Let x, y ∈∏
i ∆(Ai) be such that y - x.
(a) If there exists a superpath φ with φ(0) = x, then there exists a perfect

foresight path ψ∗ with ψ∗(0) = y such that ψ∗ - φ.
(b) If there exists a subpath ψ with ψ(0) = y, then there exists a perfect

foresight path φ∗ with φ∗(0) = x such that ψ - φ∗.

This lemma is used in Section 5 as well as in the following propositions.

Proposition 3.6. Suppose that the stage game is supermodular. If x∗ ∈∏
i ∆(Ai) is absorbing, then it is a strict Nash equilibrium.

Proof. In light of Proposition 2.3, it is sufficient to show that any Nash equi-
librium that is not a strict Nash equilibrium is not absorbing. Suppose that
x∗ is a non-strict Nash equilibrium. We show the existence of an escaping
path from x∗.

Let a′i (a′′i , resp.) be the smallest (the largest, resp.) in br i(x∗
−i) for

each player i, and let a′ = (a′i)i∈I and a′′ = (a′′i )i∈I , which are considered as
mixed strategy profiles. Note that a′ - x∗ - a′′ and, by the definition of a
non-strict Nash equilibrium, a′ 6= a′′, so that a′ or a′′ is different from x∗.
Let us assume that a′ 6= x∗.

Now denote by φ̄ the constant path such that φ̄(t) = x∗ for all t. Note
that BRi(φ̄)(t) = br i(x∗

−i), so that minBRi(φ̄)(t) = a′i for all t. Let φ be
the feasible path starting from x∗ and converging linearly to a′, i.e.,

φ(t) = e−tx∗ + (1 − e−t)a′.

This path satisfies φ - φ̄, φ 6= φ̄, and φ̇ih(t) > −φih(t) only for h = a′i. We
also have

a′i = minBRi(φ̄)(t) ≥ minBRi(φ)(t),

where the inequality follows from Lemma 3.1. This means that φ is a super-
path. Therefore, it follows from Lemma 3.5 that there exists a perfect
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foresight path ψ∗ from x∗ such that ψ∗ - φ, which does not converge to
x∗.

The next proposition shows the equivalence of absorption and linear
absorption for supermodular games.

Proposition 3.7. Suppose that the stage game is supermodular. If a∗ ∈ A
is absorbing, then it is linearly absorbing.

Proof. See Appendix.

A globally accessible state need not be a strict Nash equilibrium in gen-
eral. Even for the class of strict supermodular games, there are degenerate
games where a non-strict, pure-strategy Nash equilibrium is globally accessi-
ble. In the game given by Figure 1, the non-strict Nash equilibrium (0, 1) is
globally accessible for any degree of friction. It is an open problem whether
every globally accessible state must be a pure Nash equilibrium in generic
supermodular games.

0

1

0 1

1, 1 1, 1

0, 0 1, 1

Figure 1: Globally accessible, non-strict Nash equilibrium

3.3 Stability under Rationalizable Foresight

The concept of perfect foresight path requires that agents maximize their
future discounted payoffs against their beliefs about the future path of the
action distribution and that those beliefs coincide with the actual path. Re-
laxing the latter requirement, Matsui and Oyama (2002) introduce the model
of rationalizable foresight dynamics. In this model, while the rationality of
agents as well as the structure of the society is common knowledge, beliefs
about the future path are not necessarily coordinated among agents. It is
instead assumed that agents form their beliefs in a rationalizable manner:
in particular, they may misforecast the future. In this subsection, we con-
sider stability under the rationalizable foresight dynamics and show that in
supermodular games, an absorbing and globally accessible state under the
perfect foresight dynamics is uniquely absorbing under the rationalizable
foresight dynamics as well.
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Following Matsui and Oyama (2002), we define rationalizable foresight
paths as follows. First let Ψ0 be the set of all feasible paths, Φ. Then for
each positive integer k, define Ψk to be

Ψk =
{
ψ ∈ Ψk−1

∣∣∀ i ∈ I, ∀h ∈ Ai, a.a. t ≥ 0 :
[
ψ̇ih(t) > −ψih(t)

⇒ ∃ψ′ ∈ Ψk−1 : ψ′(s) = ψ(s) ∀ s ∈ [0, t] and h ∈ BRi(ψ′)(t)
]}

.

Along a path in Ψk, an agent with a revision opportunity at time t takes a
best response to some path in Ψk−1 while knowing the past history up to
time t.13 Let Ψ∗ =

∩∞
k=0 Ψk.

Definition 3.1. A path in Ψ∗ is a rationalizable foresight path.

Our concept of rationalizable foresight path differs from rationalizability
in the associated differential game defined in Remark 2.2. The former incor-
porates the feature of societal games that different agents in a population
can have different beliefs and a single agent can have different beliefs at
different revision opportunities, while for the latter, each population acts as
a single player, who makes his decision only at time zero.

Along every rationalizable foresight path, each agent optimizes against
some, possibly different, rationalizable foresight path. We state this with-
out a proof, as it is essentially the same as Proposition 3.3 in Matsui and
Oyama (2002).

Proposition 3.8. A feasible path ψ ∈ Φ is contained in Ψ∗ if and only if for
all i ∈ I, all h ∈ Ai, and almost all t ≥ 0 such that ψ̇ih(t) > −ψih(t), there
exists ψ′ ∈ Ψ∗ such that ψ′(s) = ψ(s) for all s ∈ [0, t] and h ∈ BRi(ψ′)(t).

As in a one-shot game, we have the following relationship between perfect
and rationalizable foresight paths. This is verified by observing that every
perfect foresight path is contained in each Ψk.

Lemma 3.9. A perfect foresight path is a rationalizable foresight path.

We define absorption under rationalizable foresight analogously to that
under perfect foresight.14

Definition 3.2. x∗ ∈
∏

i ∆(Ai) is absorbing under rationalizable foresight
if there exists ε > 0 such that any rationalizable foresight path from any
x ∈ Bε(x∗) converges to x∗.

13Since the environment is stationary and BRi(φ)(t) depends only on the behavior of φ
after time t, in the definition of Ψk one can equivalently take ψ′ as a path in Ψk−1 that
only satisfies ψ′(t) = ψ(t).

14We can also define global accessibility under rationalizable foresight in a similar man-
ner. Due to Lemma 3.9, it is weaker than that under perfect foresight.
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An absorbing state under rationalizable foresight is also absorbing under
perfect foresight due to Lemma 3.9, but not vice versa in general. See
Examples 3.1 and 4.1 in Matsui and Oyama (2002). For supermodular
games, however, we can show the converse.

Theorem 3.10. Suppose that the stage game is supermodular. Then, x∗ ∈∏
i ∆(Ai) is absorbing under rationalizable foresight if and only if it is ab-

sorbing under perfect foresight.

Therefore, in supermodular games, an absorbing and globally accessible
state under perfect foresight is the unique state that is absorbing under
rationalizable foresight.

The “if” part of this theorem follows from the lemma below. For x ∈∏
i ∆(Ai), let Ψk

x = Ψk ∩ Φx and Ψ∗
x =

∩∞
k=0 Ψk

x. Note that Ψ∗
x = Ψ∗ ∩ Φx,

i.e., Ψ∗
x is the set of rationalizable foresight paths from x.

Lemma 3.11. Suppose that the stage game is supermodular. Then, Ψ∗
x

has the smallest and the largest elements, and these elements are perfect
foresight paths.

Proof. We show that Ψ∗
x has the smallest element and that it is a perfect

foresight path. Let φ0 be the smallest feasible path from x (i.e., the linear
path from x to min A) and φk the smallest best response path to φk−1, which
is given by

φ̇k
i (t) = minBRi(φk−1)(t) − φk

i (t) a.e., φk
i (0) = xi.

Then, {φk}∞k=0 is an increasing sequence in the compact set Φx, so that
{φk}∞k=0 converges to some φ∗ ∈ Φx. By the upper semi-continuity of βx, φ∗

is a perfect foresight path, and hence, an element of Ψ∗
x by Lemma 3.9.

It suffices to show that φ∗ is a lower bound of Ψ∗
x. Let us show that φk

is a lower bound of Ψk
x (⊃ Ψ∗

x) for all k. Then, it follows that the limit φ∗ is
also a lower bound of Ψ∗

x.
First, φ0 is a lower bound of Ψ0

x. Then, suppose that φk−1 is a lower
bound of Ψk−1

x . Fix any ψ ∈ Ψk
x, and take any i and any t such that φk

i

and ψi are differentiable at t. For any h such that ψ̇ih(t) > −ψih(t), we
have h ∈ BRi(ψ′)(t) for some ψ′ ∈ Ψk−1

x . Since φk−1 - ψ′ by assumption, it
follows from the supermodularity and Lemma 3.1 that minBRi(φk−1)(t) ≤
minBRi(ψ′)(t) ≤ h. Therefore, we have φ̇k

i (t) + φk
i (t) - ψ̇i(t) + ψi(t) for

almost all t, which implies that φk - ψ. Hence, φk is a lower bound of Ψk
x.

Proof of Theorem 3.10. “If” part: Take any rationalizable foresight path ψ
from x sufficiently close to x∗. By Lemma 3.11, there exist perfect foresight
paths φ and φ′ from x such that φ - ψ - φ′. If x∗ is absorbing under perfect
foresight, then both φ and φ′ converge to x∗, and therefore, ψ also converges
to x∗.

“Only if” part: Follows from Lemma 3.9.
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Remark 3.1. All the results in this section, as well as Lemma 2.1, hold under
more general settings (after appropriate modifications of replacing “φ−i -
ψ−i” with “φ - ψ”, and br i with BRi) where Vi(·)(·) : Φ × R+ → Rni+1 is
continuous and Vi(·)(t) : Φ → Rni+1 is supermodular, i.e., if φ - ψ, then

Vik(φ)(t) − Vih(φ)(t) ≤ Vik(ψ)(t) − Vih(ψ)(t)

for k > h. Examples of such functions include the expected discounted pay-
offs induced by the stage game where the payoff to an agent in population i
taking action h ∈ Ai is given by a continuous function gih :

∏
i ∆(Ai) → R.

Note here that the payoff function for an agent in population i may depend
on the action distribution within population i itself and may not be N -linear
in

∏
i ∆(Ai). Such payoff functions can describe random matching models

within a single population, considered in Matsui and Matsuyama (1995),
Hofbauer and Sorger (1999), and Oyama (2002), as well as models with non-
linear payoffs, considered in Matsuyama (1991, 1992) and Kaneda (1995).
In alternative settings, Vi may depend on the past behavior of φ.

4 Games with Monotone Potentials

This section applies the monotonicity argument developed in the previ-
ous section to games with monotone potentials introduced by Morris and
Ui (2005). Suppose that games G and G′ satisfy (3.1) or (3.2). Roughly
speaking, G has a monotone potential if G′ can be chosen as a potential
game, and action profile max A is a monotone potential maximizer of G if
it is the unique potential maximizer of G′. For potential games, Hofbauer
and Sorger (2002) show that the unique potential maximizer is absorbing
and globally accessible for any small degree of friction. Therefore, we can
conclude from Theorem 3.4 and the subsequent discussion that if G or G′

is supermodular, then max A is absorbing (if (3.1) is satisfied) and globally
accessible (if (3.2) is satisfied) for any small degree of friction in the stage
game G.

For the precise definition, which is given in the subsection below, two
remarks are in order. First, when G′ is a potential game, a condition weaker
than both (3.1) and (3.2) is sufficient for the global accessibility result.
Morris and Ui’s (2005) definition of monotone potential employs this weaker
version (Definition 4.1), while (3.1) corresponds to what we call strict mono-
tone potential (Definition 4.2). Second, in order to define the concept for
action profiles a∗ other than max A or minA, we need to divide the set of
actions for each player i into two parts: the actions below a∗i and those
above a∗i .

20



4.1 Monotone Potential Maximizer

Fix an action profile a∗ ∈ A. Let A−
i = {h ∈ Ai |h ≤ a∗i } and A+

i =
{h ∈ Ai |h ≥ a∗i }. For a function f : A → R, a probability distribution
πi ∈ ∆(A−i), and a nonempty set of actions A′

i ⊂ Ai, let

br i
f (πi|A′

i) = arg max
h∈A′

i

f(h, πi),

where f(h, πi) =
∑

a−i∈A−i
πi(a−i) f(h, a−i). We employ the following sim-

plified version of monotone potential.15

Definition 4.1. The action profile a∗ ∈ A is a monotone potential maxi-
mizer, or an MP-maximizer, of G if there exists a function v : A → R with
v(a∗) > v(a) for all a 6= a∗ such that for all i ∈ I and all πi ∈ ∆(A−i),

min br i
v(πi|A−

i ) ≤ max br i
ui

(πi|A−
i ), (4.1)

and
max br i

v(πi|A+
i ) ≥ min br i

ui
(πi|A+

i ). (4.2)

Such a function v is called a monotone potential function for a∗.

In addition, we introduce a slight refinement of MP-maximizer.16

Definition 4.2. The action profile a∗ ∈ A is a strict monotone potential
maximizer, or a strict MP-maximizer, of G if there exists a function v : A →
R with v(a∗) > v(a) for all a 6= a∗ such that for all i ∈ I and all πi ∈ ∆(A−i),

min br i
v(πi|A−

i ) ≤ min br i
ui

(πi|A−
i ), (4.3)

and
max br i

v(πi|A+
i ) ≥ max br i

ui
(πi|A+

i ). (4.4)

Such a function v is called a strict monotone potential function for a∗.

A (strict) MP-maximizer is a (strict) Nash equilibrium. A strict MP-
maximizer is always an MP-maximizer, but the converse is not true. In a
degenerate game (with at least two action profiles) where payoffs are con-
stant for each player, all the action profiles become MP-maximizers, while
none of them is a strict MP-maximizer. For a generic choice of payoffs, an
MP-maximizer is a strict MP-maximizer. For supermodular games, a strict
MP-maximizer is unique if it exists, due to Theorems 4.1 and 4.2 given
below.

15In Morris and Ui (2005), a monotone potential function is defined on a given partition
of A.

16Morris (1999) introduces a version of MP-maximizer, which is stronger than our con-
cept of strict MP-maximizer: if a∗ is an MP-maximizer in the sense of Morris (1999), then
it is a strict MP-maximizer, but not vice versa in general.
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MP-maximizer unifies several existing concepts. A unique weighted po-
tential maximizer is a strict MP-maximizer. A (strict) p-dominant equilib-
rium with

∑
i∈I pi < 1 is a (strict) MP-maximizer. For games with dimin-

ishing marginal returns, MP-maximizer reduces to local potential maximizer
(Morris (1999) and Morris and Ui (2005)). See Subsection 4.3 for details.

4.2 Results

For a function f : A → R, a feasible path φ, and a nonempty set of actions
A′

i ⊂ Ai, let

BRi
f (φ|A′

i)(t) = arg max
h∈A′

i

(1 + θ)
∫ ∞

t
e−(1+θ)(s−t)f(h, φ−i(s)) ds,

where f(h, x−i) =
∑

a−i∈A−i
(
∏

j 6=i xjaj )f(h, a−i) for x−i ∈
∏

j 6=i ∆(Aj). Let
Gv = (I, (Ai)i∈I , (v)i∈I) be the potential game in which all players have
the common payoff function v. We have the following two theorems. Their
proofs are given in the Appendix.

Theorem 4.1. Suppose that the stage game G has an MP-maximizer a∗

with a monotone potential function v. If G or Gv is supermodular, then
there exists θ̄ > 0 such that a∗ is globally accessible for all θ ∈ (0, θ̄).

Theorem 4.2. Suppose that the stage game G has a strict MP-maximizer
a∗ with a strict monotone potential function v. If G or Gv is supermodular,
then a∗ is linearly absorbing for all θ > 0.

In particular, a strict MP-maximizer is the unique linearly absorbing
(and globally accessible) state for any small degree of friction, if G or Gv is
supermodular.

Given an MP-maximizer a∗ and a monotone potential v, observe that
the restricted games G−

v = (I, (A−
i )i∈I , (v)i∈I) and G+

v = (I, (A+
i )i∈I , (v)i∈I)

are potential games with the unique potential maximizer a∗. The proofs of
Theorems 4.1 and 4.2 utilize this observation to apply results on potential
games by Hofbauer and Sorger (2002).

The proofs proceed as follows. Suppose that a∗ is an MP-maximizer with
a monotone potential function v. Observe (for the case where a∗ = max A)
that (4.1) is weaker than (3.2). We thus need feasible paths φ− and φ+ such
that

φ̇−
i (t) = minBRi

v(φ
−|A−

i )(t) − φ−
i (t) a.e., φ−

i (0) = min Ai,

φ̇+
i (t) = maxBRi

v(φ
+|A+

i )(t) − φ+
i (t) a.e., φ+

i (0) = max Ai

for all i ∈ I, and limt→∞ φ−(t) = limt→∞ φ+(t) = a∗. Notice that φ− (φ+,
resp.) is a feasible path on

∏
i ∆(A−

i ) (
∏

i ∆(A+
i ), resp.), and actually a

perfect foresight path for the stage game G−
v (G+

v , resp.).
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To obtain these paths, we use the fact that if the stage game is a potential
game, then any solution to a certain optimal control problem is a perfect
foresight path, and when the friction θ > 0 is sufficiently small, it converges
to the potential maximizer a∗. Fix such a small θ. We show that a minimal
(maximal, resp.) solution to the optimal control problem associated with
G−

v (G+
v , resp.) satisfies the above conditions.

Then, an argument similar to that in the proof of Lemma 3.3 allows us
to show that if G or Gv is supermodular, then for any x ∈

∏
i ∆(Ai), there

exists a perfect foresight path φ∗ with φ∗(0) = x such that φ− - φ∗ - φ+.
Since φ− and φ+ converge to a∗, φ∗ also converges to a∗. This implies that
a∗ is globally accessible for a small friction.

Next, suppose that a∗ is a strict MP-maximizer with a strict monotone
potential function v. Take any perfect foresight path φ∗ starting from a
state sufficiently close to a∗. As in the proof of Lemma 3.3, we can show
that if G or Gv is supermodular, then there exist feasible paths φ− and
φ+ starting from states sufficiently close to a∗ such that φ− - φ∗ - φ+

and that φ− and φ+ are perfect foresight paths for the restricted games G−
v

and G+
v , respectively. Since a∗, the potential maximizer of G−

v and G+
v , is

absorbing in G−
v and G+

v , φ− and φ+ converge to a∗, and therefore, φ∗ also
converges to a∗. In the case where G is supermodular, this implies that a∗

is linearly absorbing in G, due to Proposition 3.7. In the case where Gv is
supermodular, a∗ is linearly absorbing in G−

v and G+
v , so that φ− and φ+

converge linearly to a∗. Therefore, φ∗ also converges linearly to a∗, implying
the linear absorption of a∗ in G.

4.3 Examples

This subsection provides special cases of games with monotone potentials.
For games with no monotone potential, see Examples 5.2.1 and 5.4.1.

4.3.1 p-Dominance

Let p = (p1, . . . , pN ) ∈ [0, 1)N . The notion of p-dominance (Kajii and
Morris (1997)) is a many-player, many-action generalization of risk-dominance.

Definition 4.3. (a) An action profile a∗ ∈ A is a p-dominant equilibrium
of G if for all i ∈ I, a∗i ∈ br i(πi) holds for all πi ∈ ∆(A−i) with πi(a∗−i) ≥ pi.

(b) An action profile a∗ is a strict p-dominant equilibrium of G if for all
i ∈ I, {a∗i } = br i(πi) holds for all πi ∈ ∆(A−i) with πi(a∗−i) > pi.

A p-dominant equilibrium with low enough p is an MP-maximizer with
a monotone potential function that is supermodular (with appropriate re-
ordering of actions).
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Lemma 4.3. If a∗ is a (strict) p-dominant equilibrium with
∑

i∈I pi < 1,
then a∗ is a (strict) MP-maximizer with the (strict) monotone potential v
given by

v(a) =

{
1 −

∑
i∈I pi if a = a∗,

−
∑

i∈C(a) pi otherwise,

where C(a) = {i ∈ I | ai = a∗i }.

Proof. See Appendix.

By relabeling actions so that a∗i = max Ai for all i ∈ I, we can have
v supermodular. Therefore, we have the following result as a corollary to
Theorems 4.1 and 4.2, which generalizes a result for symmetric two-player
games by Oyama (2002, Theorem 3).

Corollary 4.4. (a) A p-dominant equilibrium with
∑

i∈I pi < 1 is globally
accessible for any small degree of friction.

(b) A strict p-dominant equilibrium with
∑

i∈I pi < 1 is linearly absorb-
ing for any degree of friction.

In particular, a strict p-dominant equilibrium with
∑

i∈I pi < 1 is the
unique linearly absorbing (and globally accessible) state for any small degree
of friction.

Remark 4.1. Hofbauer and Sorger (2002) consider the following concept of
1/2-dominance and show that for games with linear incentives, it implies
linear absorption and global accessibility for small frictions. An action profile
a∗ ∈ A is said to be 1/2-dominant if for all i ∈ I, {a∗i } = br i(x−i) holds
for all x−i ∈

∏
j 6=i ∆(Aj) such that xja∗

j
≥ 1/2 for all j 6= i. For two-player

games, 1/2-dominance is equivalent to strict p-dominance with pi < 1/2 for
any i ∈ I, so that Corollary 4.4 covers their result. For games with more
than two players, there is no obvious relation. Note the difference between
πi and x−i in the definitions.

4.3.2 Local Potential Maximizer

We consider a simplified version of local potential maximizer introduced by
Morris and Ui (2005) as well as its refinement.

Definition 4.4. (a) An action profile a∗ ∈ A is a local potential maximizer,
or an LP-maximizer, of G if there exists a function v : A → R with v(a∗) >
v(a) for all a 6= a∗ such that for all i ∈ I, there exists a function µi : Ai → R+

such that if h < a∗i , then for all a−i ∈ A−i,

µi(h)
(
v(h + 1, a−i) − v(h, a−i)

)
≤ ui(h + 1, a−i) − ui(h, a−i),

and if h > a∗i , then for all a−i ∈ A−i,

µi(h)
(
v(h − 1, a−i) − v(h, a−i)

)
≤ ui(h − 1, a−i) − ui(h, a−i).
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Such a function v is called a local potential function for a∗.
(b) An action profile a∗ is a strict local potential maximizer, or a strict

LP-maximizer, of G if there exists a function v : A → R with v(a∗) > v(a)
for all a 6= a∗ such that for all i ∈ I, there exists a function µi : Ai → R++

such that if h < a∗i , then for all a−i ∈ A−i,

µi(h)
(
v(h + 1, a−i) − v(h, a−i)

)
≤ ui(h + 1, a−i) − ui(h, a−i),

and if h > a∗i , then for all a−i ∈ A−i,

µi(h)
(
v(h − 1, a−i) − v(h, a−i)

)
≤ ui(h − 1, a−i) − ui(h, a−i).

Such a function v is called a strict local potential function for a∗.

An LP-maximizer is a strict LP-maximizer if one can take strictly posi-
tive numbers for the weights µi.17

The game G is said to have diminishing marginal returns if for all i ∈ I,
all h 6= 0, ni, and all a−i ∈ A−i,

ui(h, a−i) − ui(h − 1, a−i) ≥ ui(h + 1, a−i) − ui(h, a−i).

In games with diminishing marginal returns, the MP-maximizer conditions
reduce to the LP-maximizer conditions.

Lemma 4.5. If the game G has a (strict) LP-maximizer a∗ with a (strict)
local potential function v and if G or Gv has diminishing marginal returns,
then a∗ is a (strict) MP-maximizer with the same function v.

Proof. See Appendix.

We have the following result as a corollary to Theorems 4.1 and 4.2.

Corollary 4.6. (a) Suppose that the stage game G has an LP-maximizer
a∗ with a local potential function v. If G or Gv has diminishing marginal
returns and if G or Gv is supermodular, then a∗ is globally accessible for
any small degree of friction.

(b) Suppose that the stage game G has a strict LP-maximizer a∗ with a
strict local potential function v. If G or Gv has diminishing marginal returns
and if G or Gv is supermodular, then a∗ is linearly absorbing for any degree
of friction.

In particular, a strict LP-maximizer is the unique linearly absorbing
(and globally accessible) state for any small degree of friction, if G or Gv

has diminishing marginal returns and G or Gv is supermodular.

17Morris (1999) and Frankel, Morris, and Pauzner (2003) give a slightly different defi-
nition of LP-maximizer, which is weaker than strict LP-maximizer.
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4.3.3 Symmetric 3 × 3 Supermodular Games

Consider symmetric 3 × 3 games with three strict Nash equilibria, where
I = {1, 2}, A1 = A2 = {0, 1, 2}, u1(h, k) = u2(k, h) for all h, k ∈ {0, 1, 2},
and u1(h, h) > u1(k, h) for all k 6= h. Assume strict supermodularity, i.e.,
u1(h, k) − u1(h′, k) > u1(h, k′) − u1(h′, k′) if h > h′ and k > k′. We show
that this class of games generically have a strict MP-maximizer.18

For h, k ∈ {0, 1, 2}, let u1(h, k) = whk and

∆hk
h′k′ = wh′h + wh′k − wk′h − wk′k.

The inequality ∆hk
h′k′ > 0 means that action h′ is better than action k′

against the 50-50 mixture of actions h and k. Note that ∆kh
h′k′ = ∆hk

h′k′ and
∆hk

k′h′ = −∆hk
h′k′ . Note also that ∆hk

hk > 0 if and only if h pairwise risk-
dominates k. We have the following complete characterization (for generic
games) of the strict MP-maximizer.

Lemma 4.7.
(1) ∆02

01 > 0 and ∆02
02 > 0.

(0, 0) is the strict MP-maximizer.

(2) ∆20
21 > 0 and ∆20

20 > 0.
(2, 2) is the strict MP-maximizer.

(3) ∆02
10 > 0 and ∆02

12 > 0.

(a) If ∆10
10 > 0 and ∆12

12 > 0, then (1, 1) is the strict MP-maximizer.
(b) If ∆01

01 > 0 and ∆12
12 > 0, then (0, 0) is the strict MP-maximizer.

(c) If ∆21
21 > 0 and ∆10

10 > 0, then (2, 2) is the strict MP-maximizer.
(d) If ∆01

01 > 0 and ∆21
21 > 0 and

( i ) if ∆02
10/∆01

01 < ∆02
12/∆21

21, then (0, 0) is the strict MP-maximizer.
(ii) if ∆02

10/∆01
01 > ∆02

12/∆21
21, then (2, 2) is the strict MP-maximizer.

Proof. See Appendix.

We therefore have the following result as a corollary to Theorems 4.1
and 4.2.

Corollary 4.8. For a generic symmetric 3 × 3 supermodular game, there
exists a unique linearly absorbing and globally accessible state for any small
degree of friction, given by the MP-maximizer in Lemma 4.7.

This corrects Theorem 4.3 in Hofbauer and Sorger (2002)19 and resolves
their conjecture on the generic existence of an absorbing state.

18Morris (1999) establishes the generic existence of LP-maximizers for this class of
games. There is an open subset of games, however, that have two strict LP-maximizers.
Note that this class of games do not necessarily have diminishing marginal returns. For
symmetric 4× 4 supermodular games, Morris (1999) presents a (nondegenerate) example
with diminishing marginal returns that has no robust equilibrium, and hence, no MP-
maximizer.

19Their result only considers Case (3) in Lemma 4.7.
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4.3.4 Young’s Example

Consider the 3 × 3 game given in Figure 2(a), taken from Young (1993).
Oyama (2002) shows by direct computation that (2, 2) is linearly absorb-
ing and globally accessible for a small degree of friction. In fact, (2, 2) is
a strict MP-maximizer with a strict monotone potential function that is
supermodular (Figure 2(b)), while the original game is not supermodular
(for any ordering of actions). Therefore, our results, Theorems 4.1 and 4.2,
also apply to this game.

Note that (1, 1) is stochastically stable (Young (1993)), while it is neither
absorbing nor globally accessible when the friction is small.

0

1

2

0 1 2

6, 6 0, 5 0, 0

5, 0 7, 7 5, 5

0, 0 5, 5 8, 8

(a) Original game

0

1

2

0 1 2

6 5 0

5 7 5

0 5 8

(b) Monotone potential function

Figure 2: Young’s example

5 Binary Supermodular Games

In this section, we restrict our attention to supermodular games with two
actions for each player, where Ai = {0, 1} for all i ∈ I. Note that in this
case, the stochastic dominance order reduces to the following simple form:
φ - ψ if and only if φi1(t) ≤ ψi1(t) for all i ∈ I and all t ≥ 0. Denoting
pj = xj1, we define the incentive function di : [0, 1]N → R for player i by

di(p1, . . . , pN ) = ui(1, x−i) − ui(0, x−i).

In the following, we identify a = (ai)i∈I ∈ A with p = (p1, . . . , pN ) ∈ [0, 1]N

such that pi = 0 if ai = 0 and pi = 1 if ai = 1. We assume that action
profiles 0, where all players play 0, and 1, where all players play 1, are strict
Nash equilibria, i.e.,

di(0) < 0 < di(1)

for all i. We further assume that di is nondecreasing in each pj (j 6= i) so
that the game is supermodular. In the first subsection, we give complete
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characterizations for the strict Nash equilibrium 1 to be globally accessible
and to be absorbing (or, equivalently, linearly absorbing), respectively. By
reversing the orders of actions, the results can be applied to the other Nash
equilibrium 0. The subsequent subsections then consider three subclasses of
binary supermodular games.

For a feasible path φ, denote

∆V θ
i (φ)(t) = Vi1(φ)(t) − Vi0(φ)(t)

= (1 + θ)
∫ ∞

t
e−(1+θ)(s−t)di(φ(s)) ds.

We write the superscript θ of ∆V to specify the discount rate. Note that
∆V θ is well-defined also for θ = 0. Recall from Lemma 3.1 that if φ -
ψ, then ∆V θ

i (φ)(t) ≤ ∆V θ
i (ψ)(t) for all i ∈ I and all t ≥ 0 due to the

supermodularity.

5.1 General Results

For T = (Ti)i∈I ∈ RN
+ , let φu

T be the feasible path given by

(φu
T)i1(t) =

{
0 if t < Ti

1 − e−(t−Ti) if t ≥ Ti,
(5.1)

which starts at 0 and converges to 1. Along φu
T, agents in population i ∈ I

start choosing action 1 at time Ti.
Denote R̄+ = R+ ∪ {∞}. For T = (Ti)i∈I ∈ R̄N

+ , let ψd
T be the feasible

path given by

(ψd
T)i1(t) =

{
1 if t < Ti

e−(t−Ti) if t ≥ Ti

for i ∈ S, (5.2)

and
(ψd

T)i1(t) = 1 for i /∈ S, (5.3)

where S = {i ∈ I |Ti 6= ∞}. Let 0S be the action profile such that i chooses
0 if i ∈ S and 1 if i /∈ S. Along ψd

T, which starts at 1 and converges to 0S ,
agents in population i ∈ S start choosing action 0 at time Ti, while those in
population i /∈ S always play action 1.

First, we provide necessary and sufficient conditions for the state 1 to be
globally accessible for a given degree of friction (Proposition 5.1.1) and for
any small degree of friction (Proposition 5.1.2), respectively. Each condition
is equivalent to the existence of a subpath of the form (5.1).

Proposition 5.1.1. Let θ > 0 be given. The strict Nash equilibrium 1 is
globally accessible for θ if and only if there exists T = (Ti)i∈I ∈ RN

+ such
that for all i ∈ I,

∆V θ
i (φu

T)(Ti) ≥ 0.
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Proof. See Appendix.

Proposition 5.1.2. There exists θ̄ > 0 such that the strict Nash equilibrium
1 is globally accessible for all θ ∈ (0, θ̄) if and only if there exists T =
(Ti)i∈I ∈ RN

+ such that for all i ∈ I,

∆V 0
i (φu

T)(Ti) > 0.

Proof. See Appendix.

Next, we provide necessary and sufficient conditions for the state 1 to be
absorbing for a given degree of friction (Proposition 5.1.3) and for any degree
of friction (Proposition 5.1.4), respectively. Each condition is equivalent to
the nonexistence of a superpath of the form (5.2)–(5.3) with 0S being a Nash
equilibrium of the stage game.

Proposition 5.1.3. Let θ > 0 be given. The strict Nash equilibrium 1 is
absorbing for θ if and only if for any T = (Ti)i∈I ∈ R̄N

+ such that S = {i ∈
I |Ti 6= ∞} is nonempty and 0S is a Nash equilibrium, there exists i ∈ S
such that

∆V θ
i (ψd

T)(Ti) > 0.

Proof. See Appendix.

Proposition 5.1.4. The strict Nash equilibrium 1 is absorbing for all θ > 0
if and only if for any T = (Ti)i∈I ∈ R̄N

+ such that S = {i ∈ I |Ti 6= ∞} is
nonempty and 0S is a Nash equilibrium, there exists i ∈ S such that

∆V 0
i (ψd

T)(Ti) ≥ 0.

Proof. See Appendix.

5.2 Unanimity Games

This subsection considers N -player unanimity games. The stage game is
given by

ui(a) =


yi if a = 0
zi if a = 1
0 otherwise,

(5.4)

where yi, zi > 0. The incentive function for player i is then given by

di(p1, · · · , pN ) = zi

∏
j 6=i

pj − yi

∏
j 6=i

(1 − pj).

Note that this game is supermodular.
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For T = (Ti)i∈I ∈ RN
+ , let

πi(T) =
∫ ∞

Ti

e−(t−Ti)
∏
j 6=i

[
0 ∨

{
1 − e−(t−Tj)

}]
dt

=
∫ ∞

maxj Tj

e−(t−Ti)
∏
j 6=i

{
1 − e−(t−Tj)

}
dt, (5.5)

and
ρi(T) =

∫ ∞

Ti

e−(t−Ti)
∏
j 6=i

{
1 ∧ e−(t−Tj)

}
dt. (5.6)

5.2.1 Global Accessibility

For a feasible path φu
T defined by (5.1) with a given T = (Ti)i∈I ∈ RN

+ , the
discounted payoff difference is given by

∆V 0
i (φu

T)(Ti) = ziπi(T) − yiρi(T),

so that ∆V 0
i (φu

T)(Ti) > 0 if and only if zi/yi > ρi(T)/πi(T).
We immediately have the following from Proposition 5.1.2.

Proposition 5.2.1. Suppose that the stage game is a unanimity game given
by (5.4). Then there exists θ̄ > 0 such that 1 is globally accessible for all
θ ∈ (0, θ̄) if and only if there exists T ∈ RN

+ such that for all i ∈ I,

zi

yi
>

ρi(T)
πi(T)

.

Symmetrically, there exists θ̄ > 0 such that 0 is globally accessible for all
θ ∈ (0, θ̄) if and only if there exists T ∈ RN

+ such that for all i ∈ I,

yi

zi
>

ρi(T)
πi(T)

.

5.2.2 Absorption

For a feasible path ψd
T defined by (5.2) with a given T = (Ti)i∈I ∈ RN

+ , the
discounted payoff difference is given by

∆V 0
i (ψd

T)(Ti) = ziρi(T) − yiπi(T),

so that ∆V 0
i (ψd

T)(Ti) ≥ 0 if and only if zi/yi ≥ πi(T)/ρi(T).
We have the following from Proposition 5.1.4. Observe that in this case,

S satisfies the condition in Proposition 5.1.4 only if S = I.
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Proposition 5.2.2. Suppose that the stage game is a unanimity game given
by (5.4). Then 1 is absorbing for all θ > 0 if and only if for any T ∈ RN

+ ,
there exists i ∈ I such that

zi

yi
≥ πi(T)

ρi(T)
.

Symmetrically, 0 is absorbing for all θ > 0 if and only if for any T ∈ RN
+ ,

there exists i ∈ I such that
yi

zi
≥ πi(T)

ρi(T)
.

5.2.3 Two-Player Case

In the case where N = 2, there exists T ∈ R2
+ such that

z1

y1
>

ρ1(T)
π1(T)

,
z2

y2
>

ρ2(T)
π2(T)

if and only if z1z2 > y1y2. Therefore, by Propositions 5.2.1 and 5.2.2, 1
is absorbing and globally accessible for any small degree of friction if and
only if 1 has the higher Nash product over 0. In the two-player case, this is
equivalent to that 1 risk-dominates 0.

5.2.4 Three-Player Case

When N ≥ 3, the complete characterizations given in Propositions 5.2.1 and
5.2.2 turn out to be rather complex. Here we consider three-player binary
games with a symmetry between players 2 and 3. We demonstrate that
even for this simple class of games, both Nash equilibria 1 and 0 may be
simultaneously globally accessible states when the friction is small.

Specifically, we consider the case where

(z1/y1, z2/y2, z3/y3) = (r, s, s). (5.7)

We can exploit the symmetry due to the following fact. Note here that if
Ti = Tj , then πi(T) = πj(T) and ρi(T) = ρj(T).

Lemma 5.2.3. Suppose that the stage game is given by (5.4). Then 1 is
globally accessible for any small degree of friction if and only if there exists
T such that for all i ∈ I,

zi

yi
>

ρi(T)
πi(T)

, (5.8)

and
zi

yi
≥ zj

yj
⇒ Ti ≤ Tj . (5.9)
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Proof. It suffices to show that if there exists T that satisfies (5.8), then there
exists T′ that satisfies both (5.8) and (5.9).

Take T that satisfies (5.8) and define T′ by

T ′
i = min

j : zj/yj≤zi/yi

Tj

for each i. Note that T ′
i ≤ Ti for any i.

Here we fix any i. By definition, there exists j such that T ′
i = Tj and

zj/yj ≤ zi/yi. Take such a j. Note that T−j ≥ T′
−j and Tj = T ′

j . Since T
satisfies (5.8), πj is decreasing in T−j , and ρj is increasing in T−j , we have

zj

yj
>

ρj(T)
πj(T)

≥ ρj(T′)
πj(T′)

.

On the other hand, πi(T′) = πj(T′) and ρi(T′) = ρj(T′) since T ′
i = T ′

j .
Therefore, it follows from zj/yj ≤ zi/yi that

zi

yi
≥ zj

yj
>

ρj(T′)
πj(T′)

=
ρi(T′)
πi(T′)

,

which completes the proof.

A direct computation utilizing Lemma 5.2.3 shows that 1 is globally
accessible for a small friction if and only if there exists u ≥ 1 such that

r < s, r >
1

3u2 − 3u + 1
, s >

3u2 − 1
3u − 1

,

or there exists v ≥ 1 such that

r ≥ s, r > 3v − 2, s >
2

3v − 1
.

The above condition is equivalent to that

r < s and r >
2

(s − 1)
√

9s2 − 12s + 12 + 3s2 − 5s + 4
,

or
r ≥ s and r >

2
s
− 1.

In the game given by (5.7), 1 has the higher Nash product over 0 if
rs2 > 1. A direct comparison between r > 1/s2 and the above expressions
gives the following sufficient condition in terms of Nash product.

Proposition 5.2.4. In the game given by (5.7), the Nash equilibrium with
the higher Nash product is globally accessible for any small degree of friction.

The converse is not true.
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Example 5.2.1. Let y1 = 6 + c > 0, y2 = y3 = 1, and z1 = z2 = z3 = 2
(see Figure 3). This game is a modified version of an example in Morris
and Ui (2005, Example 1).20 If c > 0, then 0 is globally accessible for a
small friction, while if c < 2

√
6, then 1 is globally accessible for a small

friction. Therefore, if 0 < c < 2
√

6, the game has two globally accessible
states simultaneously when the friction is small. Note that 0 (1, resp.) has
the higher Nash product if c > 2 (c < 2, resp.).

On the other hand, one can show that if c ≤ 0, then 1 is absorbing for
any degree of friction, while if c ≥ 2

√
6, then 0 is absorbing for any degree

of friction.

0

1

0 1

0

6 + c, 1, 1 0, 0, 0

0, 0, 0 0, 0, 0

0

1

0 1

1

0, 0, 0 0, 0, 0

0, 0, 0 2, 2, 2

Figure 3: Multiple globally accessible states

5.3 Binary Games with Linear Incentives

This subsection considers N -player binary supermodular games with linear
incentives (Selten (1995)). This class of games is prominent in the theory of
equilibrium selection. It includes incomplete information 2 × 2 games with
finitely many types (see Selten (1995)). Such games also arise as superposi-
tion of pairwise matches.

A binary game is said to have linear incentives if the incentive function
for player i takes the form (with pj = xj1)

di(p1, . . . , pN ) =
N∑

j=1

αijpj − si

with αii = 0. If 0 < si <
∑N

j=1 αij for all i, then both 0 and 1 are strict Nash
equilibria. We assume that αij ≥ 0 so that the game is supermodular. (The

20One can verify that 0 is not an MP-maximizer for any c, while 1 is an MP-maximizer
(and hence, robust to incomplete information) if and only if c < −2. In the case where
c ≥ −2, nothing seems to be known about the robustness of equilibria.
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special case αij = αji leads to a potential game and has been considered in
Hofbauer and Sorger (2002).)

We restate the characterization for global accessibility given in Proposi-
tion 5.1.2 in the following form.

Lemma 5.3.1. In a binary supermodular game, 1 is globally accessible for
any small θ > 0 if and only if there exists (ri)i∈I ∈ RN such that∫ ∞

0
e−tdi(Ψ(r1 − ri + t), . . . , Ψ(rN − ri + t)) dt > 0 (5.10)

for all i ∈ I, where Ψ is given by

Ψ(z) =

{
0 for z ≤ 0,

1 − e−z for z > 0.

Proof. Given (Ti)i∈I in Proposition 5.1.2, set, for example, ri = −Ti.

There is a relation to the concept of spatial dominance due to Hofbauer
(1999). He considers a spatial model with populations of agents each of
which is distributed along the real line, where agents move randomly on it
and interact locally across populations. This can be modeled mathematically
by a system of reaction-diffusion equations for the spatial distributions of
actions. The local interaction is assumed to be governed by the myopic
best response dynamics introduced by Gilboa and Matsui (1991). Each
Nash equilibrium corresponds to a spatially homogeneous stationary action
distribution. A Nash equilibrium p∗ ∈ [0, 1]N is called spatially dominant if
its basin of attraction contains an open set in the compact-open topology.
If initially the population is close to p∗ on a sufficiently large (but finite)
interval, then it will converge to p∗ everywhere. This implies that every
game has at most one spatially dominant equilibrium. Hence this model
provides a way of selecting a unique equilibrium for many important games;
e.g., in 2 × 2 coordination games the risk-dominant equilibrium is spatially
dominant. However, many games have no spatially dominant equilibrium at
all.

The connection with the perfect foresight dynamics follows from the
following fact, which holds for general binary supermodular games.

Lemma 5.3.2 (Hofbauer (1999, Lemma 1)). In a binary supermodular
game, 1 is spatially dominant if there exists (ri)i∈N ∈ RN such that

di(Φ(r1 − ri), . . . , Φ(rN − ri)) > 0 (5.11)

for all i ∈ I, where Φ is given by

Φ(z) =

{
ez/2, for z ≤ 0,

1 − e−z/2 for z > 0.
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We need the following.

Lemma 5.3.3.
∫ ∞
0 e−tΨ(z + t)dt = Φ(z).

Proof. If z ≤ 0,∫ ∞

0
e−tΨ(z + t)dt =

∫ ∞

−z
e−t

{
1 − e−(z+t)

}
dt = ez/2,

and if z > 0,∫ ∞

0
e−tΨ(z + t)dt =

∫ ∞

0
e−t

{
1 − e−(z+t)

}
dt = 1 − e−z/2,

as claimed.

Lemma 5.3.4. If di is linear, then the two conditions (5.10) and (5.11) are
equivalent.

Proof. By Lemma 5.3.3 and the linearity of di,∫ ∞

0
e−tdi(Ψ(r1 − ri + t), . . . , Ψ(rN − ri + t))dt

= di

(∫ ∞

0
e−tΨ(r1 − ri + t)dt, . . . ,

∫ ∞

0
e−tΨ(rN − ri + t)dt

)
= di(Φ(r1 − ri), . . . , Φ(rN − ri)),

which implies the claim.

Combining Lemmas 5.3.1, 5.3.2, and 5.3.4 establishes the following im-
plication.

Proposition 5.3.5. In a binary supermodular game with linear incentives,
if the strict Nash equilibrium 1 (or 0) is globally accessible for any small
degree of friction, then it is spatially dominant.

Since a game has at most one spatially dominant equilibrium, this propo-
sition implies in particular that in binary supermodular games with linear
incentives, 0 and 1 cannot be simultaneously globally accessible (in contrast
to the example of unanimity games in Subsection 5.2).21

The linearity of the incentive functions di is crucial in the proof of Lemma
5.3.4. Indeed, the agreement between the selected equilibrium by spatial
dominance and the one by the perfect foresight dynamics fails for nonlinear
incentives. One class of examples are unanimity games in Subsection 5.2, for
which the equilibrium with the higher Nash product is spatially dominant
(see Hofbauer (1999)). Another example will be given in Subsection 5.4.

21Takahashi (2004) analyzes supermodular games with linear incentives (not necessarily
binary) and shows that, for generic payoffs, there always exists a unique equilibrium that
is linearly absorbing and globally accessible under the dynamics with θ = 0, and it is also
spatially dominant.
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5.4 Binary Games with Invariant Diagonal

This subsection considers N -player binary supermodular games with invari-
ant diagonal. A binary game is said to have an invariant diagonal if the
incentive functions satisfy

d1(p, . . . , p) = · · · = dN (p, . . . , p)

for all p ∈ [0, 1]. This class of games includes games with “equistable bi-
forms” introduced in Selten (1995). We assume that di is nondecreasing in
each pj (j 6= i) so that the game is supermodular.

Denote by D(p) the restriction of any di to the diagonal p = p1 = · · · =
pN . Observe that D(p) is nondecreasing in p. This game has a potential
function along the diagonal, which is defined by

v(p) =
∫ p

0
D(q) dq. (5.12)

Proposition 5.4.1. Suppose that the stage game is a binary supermodular
game with an invariant diagonal. Let v be the potential function along the
diagonal given by (5.12). If v(1) > v(0), then

(a) there exists θ̄ > 0 such that 1 is globally accessible for all θ ∈ (0, θ̄);
(b) 1 is absorbing for all θ > 0.

Proof. (a) Along the linear path φ from 0 to 1, which is given by φi1(t) =
1 − e−t for all i ∈ I,

∆V 0
i (φ)(0) =

∫ ∞

0
e−sD(1 − e−s) ds

=
∫ 1

0
D(p) dp = v(1).

Hence, if v(1) > v(0) = 0, then ∆V 0
i (φ)(0) > 0, implying that 1 is globally

accessible for any small θ > 0 by Proposition 5.1.2.
(b) If v(1) > v(0) = 0, then there exists p < 1 such that v(p) > 0. Take

such a p and any perfect foresight path φ with φi1(0) ≥ p for all i ∈ I. Note
that φi1(t) ≥ pe−t. Then,

∆V θ
i (φ)(0) = (1 + θ)

∫ ∞

0
e−(1+θ)sdi((φi1(s))i∈I) ds

≥ (1 + θ)
∫ ∞

0
e−(1+θ)sD(pe−s) ds

≥
∫ ∞

0
e−sD(pe−s) ds

=
1
p

∫ p

0
D(q) dq =

v(p)
p

> 0,
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where the first inequality follows from the monotonicity of di, and the sec-
ond inequality follows from the stochastic dominance relation between the
distributions on [0,∞) with the density functions (1 + θ)e−(1+θ)s and e−s.
Hence, we have φi1(t) = 1 − (1 − φi1(0))e−t for all t ≥ 0, and therefore, φ
converges to 1, implying that 1 is absorbing (independently of θ > 0).

Similarly, if v(0) > v(1), then 0 is globally accessible for any small θ > 0
and absorbing for any θ > 0. Therefore, for generic binary supermodular
games with invariant diagonal, either 0 or 1 is a unique absorbing and
globally accessible state for any small degree of friction (even though there
may be other strict equilibria).

Remark 5.4.1. A state x∗ ∈
∏

i ∆(Ai) is linearly stable if for any x ∈∏
i ∆(Ai), the linear path from x to x∗ is a perfect foresight path. One

can verify that for binary supermodular games with invariant diagonal, if
v(1) > v(0), then 1 is linearly stable for any small degree of friction θ > 0.

Remark 5.4.2. The above result extends to the class of games with “mono-
tone diagonal”. Let Di(p) = di(p, . . . , p) and vi(p) =

∫ p
0 Di(q) dq. It can be

shown precisely in the same way as in Proposition 5.4.1 that if vi(1) > vi(0)
for all i ∈ I, then 1 is globally accessible for any small θ > 0 and absorbing
for any θ > 0.

Example 5.4.1. Consider the following three player game (see Figure 4). If
all three players match their actions, then their payoffs are given by ui(0) =
a > 0 and ui(1) = d > 0. For other action profiles, if i matches i + 1 with
action 0, then i’s payoff is b > 0; if i matches i + 1 with action 1, then i’s
payoff is c > 0; otherwise, all players receive payoff 0. Suppose here that
a > b and d > c. Note that this game is supermodular and has an invariant
diagonal.22 Proposition 5.4.1 implies that if 2a + b > c + 2d, then 0 is
absorbing and globally accessible for a small friction, while if 2a+b < c+2d,
then 1 is absorbing and globally accessible for a small friction.

The selection criterion based on MP-maximization, on the other hand,
yields a limited prediction: One can verify that 0 is an MP-maximizer if and
only if a > c + d, while 1 is an MP-maximizer if and only if a + b < d. For
this game, the notion of u-dominance introduced by Kojima (2003) gives
the same condition: 0 is u-dominant if and only if a > c + d, while 1 is
u-dominant if and only if a + b < d.23

Spatial dominance selects a different equilibrium for this game, namely,
the equilibrium with the larger best response region on the diagonal, i.e.,
0 is spatially dominant if and only if a + b > c + d, while 1 is spatially
dominant if and only if a + b < c + d.

22This game is not a (weighted) potential game, since it has a better reply cycle.
23In general, MP-maximization and u-dominance give different conditions.
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0

1

0 1

0

a, a, a 0, 0, b

0, b, 0 c, 0, 0

0

1

0 1

1

b, 0, 0 0, c, 0

0, 0, c d, d, d

Figure 4: Game with invariant diagonal

6 Conclusion

In this paper, we have considered a dynamic adjustment process in a large
society of forward-looking agents where decisions made by the agents are
irreversible as in Matsuyama (1991), but where instantaneous payoffs are
given by a normal form game as in Matsui and Matsuyama (1995). The
stationary states of the dynamics coincide with the Nash equilibria of the
stage game. Different stationary states may have different stability prop-
erties when the degree of friction is small, which allows us to discriminate
among strict Nash equilibria of the stage game. If a Nash equilibrium a∗

is linearly absorbing, then in its neighborhood, a perfect foresight path ex-
ists uniquely and converges linearly to a∗; namely, self-fulfilling expectations
cannot upset a∗. If in addition, a∗ is globally accessible, then from any other
equilibrium, self-fulfilling expectations may lead the society to a∗. Our task
was thus to derive conditions for a strict Nash equilibrium to be uniquely
robust to the possibility of self-fulfilling prophecies for any small degree of
friction.

We have focused on supermodular games and generalizations thereof,
those games that have a monotone relation, in terms of best responses,
with supermodular games, and elucidated the induced monotone structure
of the dynamics. We have proved, in particular, the stability of monotone
potential maximizer, which is shown to be robust to incomplete information
by Morris and Ui (2005). We have also shown that for supermodular games,
stability in the perfect foresight dynamics coincides with that under the less
demanding assumption of rationalizable foresight. On the other hand, we
have found that in certain unanimity games, no Nash equilibrium has the
required stability property.
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Appendix

A.1 Proof of Proposition 3.7

Suppose that the stage game is supermodular and that a∗ ∈ A is absorbing
(recall from Proposition 3.6 that in supermodular games, any absorbing
state is a pure-strategy state). We first show that a perfect foresight path
from a∗ is unique. Denote by φ̄ the constant path at a∗.

Lemma A.1.1. Suppose that the stage game is supermodular. If a∗ is ab-
sorbing, then φ̄ is the unique perfect foresight path from a∗.

Proof. Suppose that a∗ is absorbing. Let φ− and φ+ be the smallest and the
largest perfect foresight paths from a∗, respectively (these exist, as demon-
strated in Lemma 3.11, due to the supermodularity of the stage game). We
show that φ− is nonincreasing in the sense that φ−(s) - φ−(t) if t ≤ s; a
dual argument shows that φ+ is nondecreasing. Then, φ− and φ+ must be
constant at a∗; otherwise, φ− or φ+ would not converge to a∗, contradicting
the absorption of a∗.

For each i ∈ I, denote by ai the smallest action among those h’s such
that minBRi(ψ)(t) = h for some t ≥ 0. Note that ai ≤ a∗i , since φ− - φ̄ and
hence minBRi(φ−)(t) ≤ minBRi(φ̄)(t) ≤ a∗i for all t ≥ 0 by Lemma 3.1.
Then, define for each i ∈ I a sequence T

ai
i , . . . , T

a∗
i

i by

T h
i = inf{t ≥ 0 | minBRi(φ−)(t) ≤ h}

for h = ai, . . . , a
∗
i . Note that 0 = T

a∗
i

i ≤ T
a∗

i −1
i ≤ · · · ≤ T

ai+1
i ≤ T

ai
i < ∞.

Now define α : R+ →
∏

i ∆(Ai) by

αih(t) = 1 if t ∈ [T h
i , T h−1

i ),

where T
ai−1
i = ∞, and let φ be the feasible path given by

φ̇i(t) = αi(t) − φi(t) a.e., φi(0) = a∗i

for all i ∈ I. Observe that φ is nonincreasing and that φ - φ−.
Let us show that φ is a superpath. Take any i ∈ I, h ∈ Ai, and t ≥ 0

such that φ̇ih(t) > −φih(t). By the definition of φ, t ∈ [T h
i , T h−1

i ). Then,

h ≥ minBRi(φ−)(T h
i ) ≥ minBRi(φ)(T h

i ) ≥ minBRi(φ)(t),

where the first inequality follows from the definition of T h
i , the second from

the fact that φ - φ−, and the third from the fact that φ is nonincreasing.
This means that φ is a superpath. It therefore follows from Lemma 3.5 that
there exists a perfect foresight path ψ∗ from a∗ such that ψ∗ - φ.

On the other hand, φ− is the smallest perfect foresight path from a∗.
Therefore, we must have φ− - ψ∗, so that ψ∗ = φ = φ−. This concludes
that φ− is nonincreasing.
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We now show that a∗ is linearly absorbing. Note that

BRi(φ̄)(t) = {a∗i } for all i ∈ I and all t ≥ 0, (A.1)

since a∗ is a strict Nash equilibrium by Proposition 3.6.

Proof of Proposition 3.7. Suppose that a∗ is absorbing. For ε ∈ [0, 1], let
x−

ε = ε minA+(1−ε)a∗ and x+
ε = ε max A+(1−ε)a∗. In order to show the

linear absorption of a∗, it is sufficient to prove that there exists ε̄ > 0 such
that the smallest perfect foresight path from x−

ε̄ , φ−, and the largest perfect
foresight path from x+

ε̄ , φ+, satisfy BRi(φ−)(t) = BRi(φ+)(t) = {a∗i } for all
i ∈ I and t ≥ 0. Then, for any perfect foresight path φ from Bε(a∗), which
satisfies φ− - φ - φ+ by Lemma 3.5, we have BRi(φ)(t) = {a∗i } for all i ∈ I
and t ≥ 0, so that φ converges linearly to a∗.

Take any sequence {εk}∞k=0 such that ε0 > ε1 > · · · > 0 and limk→∞ εk =
0, and let φk,− and φk,+ be the smallest perfect foresight path from x−

εk and
the largest perfect foresight path from x+

εk , respectively. Here, we assume
that ε0 is small enough so that both φ0,− and φ0,+ converge to a∗. We only
show that for some k, minBRi(φk,−)(t) ≥ a∗i for all i ∈ I and all t ≥ 0; a
dual argument shows that for some k′, maxBRi(φk′,+)(t) ≤ a∗i for all i ∈ I
and all t ≥ 0. Then, setting ε̄ = min{εk, εk′} completes the proof. Note that
φ0,− - φ1,− - · · · - φ̄ and that {φk,−}∞k=0 converges, as k → ∞, to some
perfect foresight path from a∗, which must be φ̄ by Lemma A.1.1.

Seeking a contradiction, suppose that for each k, there exists T k such
that minBRι̃(φk,−)(T k) < a∗i for some ι̃ ∈ I, where ι̃ can be taken indepen-
dently of k due to the finiteness of I. Since a∗ is absorbing (and a strict Nash
equilibrium), there exists T̄ such that minBRι̃(φ0,−)(t) = a∗ι̃ for all t ≥ T̄ .
Since φ0,− - φk,− (- φ̄), it follows that for all k, minBRι̃(φk,−)(t) = a∗ι̃
for all t ≥ T̄ . Therefore, it must be true that T k < T̄ for all k, so that
there exists a convergent subsequence of {T k}∞k=0 with some limit T ∗. By
the lower semi-continuity of minBRι̃, we have minBRι̃(φ̄)(T ∗) < a∗ι̃ , which
contradicts (A.1).

A.2 Proof of Theorem 4.1

Suppose that a∗ is an MP-maximizer with a monotone potential function
v. Let A′

i ⊂ Ai denote a set of actions for player i that contains a∗i . This
set will be taken as A−

i = {h ∈ Ai |h ≤ a∗i } or A+
i = {h ∈ Ai |h ≥ a∗i }.

For the potential game G′
v = (I, (A′

i)i∈I , (v)i∈I) with the unique potential
maximizer a∗ ∈ A′, consider the following optimal control problem with a
given initial state z ∈

∏
i ∆(A′

i):

maximize J(φ) =
∫ ∞

0
e−θtv(φ(t)) dt (A.2a)

subject to φ ∈ Φ′
z, (A.2b)
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where Φ′
z is the set of feasible paths defined on

∏
i ∆(A′

i) with the initial state
z. The state z will be taken as min A = (0, . . . , 0) or max A = (n1, . . . , nN ).

Lemma A.2.1. There exists θ̄ > 0 such that for any θ ∈ (0, θ̄) and any
z ∈

∏
i ∆(A′

i), any optimal solution to the optimal control problem (A.2)
converges to a∗.

Proof. Apply Lemma 1 in Hofbauer and Sorger (1999) and Lemmas 4.2 and
4.3 in Hofbauer and Sorger (2002) to the restricted potential game G′

v.

Lemma A.2.2. Let X be a nonempty compact set endowed with a preorder
-. Suppose that for all x ∈ X, the set Lx = {y ∈ X | y - x} is closed. Then
X has a minimal element.

Proof. Take any totally ordered subset of X, and denote it by X ′. Since
{Lx}x∈X′ consists of nonempty closed subsets of a compact set and has
the finite intersection property, L∗ =

∩
x∈X′ Lx is nonempty. Any element

x∗ ∈ L∗ is a lower bound of X ′ in X. Therefore, it follows from Zorn’s
lemma that X has a minimal element.

Lemma A.2.3. For any z ∈
∏

i ∆(A′
i), there exist optimal solutions to the

optimal control problem (A.2), φ− and φ+, such that

φ̇−
i (t) = minBRi

v(φ
−|A′

i)(t) − φ−
i (t),

φ̇+
i (t) = maxBRi

v(φ
+|A′

i)(t) − φ+
i (t)

for all i ∈ I and almost all t ≥ 0.

Proof. Fix z ∈
∏

i ∆(A′
i). We only show the existence of φ−; the existence

of φ+ is shown similarly. Since the functional J is continuous on Φ′
z, the set

of optimizers is a nonempty, closed, and hence compact subset of Φ′
z. Hence

a minimal optimal solution (with respect to the order φ - ψ, defined by
φ(t) - ψ(t) for all t ≥ 0) exists by Lemma A.2.2. Let φ− be such a minimal
solution.

Take any i ∈ I and consider the feasible path φi given by φi(0) = zi and

φ̇i(t) = minBRi
v(φ

−|A′
i)(t) − φi(t)

for almost all t ≥ 0. Since by Lemma 2.2, for almost all t ≥ 0 there exists
αi(t) in the convex hull of BRi

v(φ
−|A′

i)(t) such that

φ̇−
i (t) = αi(t) − φ−

i (t),

we have φi - φ−
i . On the other hand, since φi is a best response to φ−

−i for
the game G′

v by construction, we have

J(φi, φ
−
−i) ≥ J(φ−) = max

ψ∈Φ′
z

J(ψ)
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by Lemma 2.2, meaning that the path (φi, φ
−
−i) is also optimal. Hence, the

minimality of φ− implies φ−
i (t) = φi(t) for all t ≥ 0. Therefore, we have

φ̇−
i (t) = minBRi

v(φ
−|A′

i)(t) − φ−
i (t)

for almost all t ≥ 0, as claimed.

Lemma A.2.4. There exists θ̄ > 0 such that the following holds for all
θ ∈ (0, θ̄): there exists a feasible path φ− such that

φ̇−
i (t) = minBRi

v(φ
−|A−

i )(t) − φ−
i (t) a.e., φ−

i (0) = min Ai

for all i ∈ I and limt→∞ φ−(t) = a∗; there exists a feasible path φ+ such that

φ̇+
i (t) = maxBRi

v(φ
+|A+

i )(t) − φ+
i (t) a.e., φ+

i (0) = max Ai

for all i ∈ I and limt→∞ φ+(t) = a∗.

Proof. Follows from Lemmas A.2.1 and A.2.3.

Proof of Theorem 4.1. Suppose that v is a monotone potential function for
a∗. Take φ− and φ+ as in Lemma A.2.4. In what follows, we fix a sufficiently
small θ > 0 so that both φ− and φ+ converge to a∗.

Now fix any x ∈
∏

i ∆(Ai). Note that φ− - φ+ and φ−(0) - x - φ+(0).
Consider the best response correspondence βG for the stage game G. Let
Φ̃x = {φ ∈ Φx |φ− - φ - φ+}. We will show, as in the proof of Lemma 3.3,
that β̃G(φ) = βG(φ) ∩ Φ̃x is nonempty for any φ ∈ Φ̃x. Then, since Φ̃x is
convex and compact, it follows from Kakutani’s fixed point theorem that
there exists a fixed point φ∗ ∈ β̃G(φ∗) ⊂ Φ̃x, which is a perfect foresight
path in G and satisfies φ− - φ∗ - φ+. Since both φ− and φ+ converge to
a∗, φ∗ also converges to a∗.

Take any φ ∈ Φ̃x. Suppose first that the original game G is super-
modular. Then, we have

minBRi
v(φ

−|A−
i )(t) ≤ maxBRi

ui
(φ−|A−

i )(t) ≤ maxBRi
ui

(φ|A−
i )(t),

where the first inequality follows from the assumption that v is a monotone
potential, and the second inequality follows from the supermodularity of ui

and Lemma 3.1. Similarly, we have

maxBRi
v(φ

+|A+
i )(t) ≥ minBRi

ui
(φ+|A+

i )(t) ≥ minBRi
ui

(φ|A+
i )(t).

Suppose next that the potential game Gv is supermodular. Then, we
have

minBRi
v(φ

−|A−
i )(t) ≤ minBRi

v(φ|A−
i )(t) ≤ maxBRi

ui
(φ|A−

i )(t),

42



where the first inequality follows from the supermodularity of v and Lemma 3.1,
and the second inequality follows from the assumption that v is a monotone
potential. Similarly, we have

maxBRi
v(φ

+|A+
i ) ≥ maxBRi

v(φ|A+
i )(t) ≥ minBRi

ui
(φ|A+

i )(t).

Therefore, in each case, we have

maxBRi
ui

(φ|A−
i )(t) ≥ minBRi

v(φ
−|A−

i )(t),

minBRi
ui

(φ|A+
i )(t) ≤ maxBRi

v(φ
+|A+

i )(t)

for all i ∈ I and all t ≥ 0, so that there exists h ∈ BRi
ui

(φ)(t) such that

minBRi
v(φ

−|A−
i )(t) ≤ h ≤ maxBRi

v(φ
+|A+

i )(t).

Define

F̃i(φ)(t) = Fi(φ)(t) ∩
[
minBRi

v(φ
−|A−

i )(t), maxBRi
v(φ

+|A+
i )(t)

]
,

where
Fi(φ)(t) = {αi ∈ ∆(Ai) |αih > 0 ⇒ h ∈ BRi

ui
(φ)(t)},

and [αi, α
′
i] = {α′′

i ∈ ∆(Ai)|αi - α′′
i - α′

i} denotes the order interval. Then
the differential inclusion

ψ̇(t) ∈ F̃ (φ)(t) − ψ(t), ψ(0) = x

has a solution ψ as in Remark 2.1. Since F̃i(φ)(t) ⊂ Fi(φ)(t), we have
ψ ∈ βG(φ). By the construction of φ−, φ+, and ψ, we have φ− - ψ - φ+.
Thus, we have ψ ∈ β̃G(φ) = βG(φ) ∩ Φ̃x, implying the nonemptiness of
β̃G(φ).

A.3 Proof of Theorem 4.2

Suppose that a∗ is a strict MP-maximizer with a strict monotone potential
function v. For a nonempty set of actions A′

i ⊂ Ai that contains a∗i , consider
the potential game G′

v = (I, (A′
i)i∈I , (v)i∈I).

Lemma A.3.1 (Hofbauer and Sorger (2002)). Suppose that G′
v is a potential

game with a unique potential maximizer a∗ ∈ A′. Then, a∗ is absorbing for
all θ > 0.

Proof of Theorem 4.2. Suppose that v is a strict monotone potential func-
tion with the strict MP-maximizer a∗, and let A−

i = {h ∈ Ai |h ≤ a∗i } and
A+

i = {h ∈ Ai |h ≥ a∗i }. By Lemma A.3.1, a∗ is absorbing in each of the re-
stricted potential games G−

v = (I, (A−
i )i∈I , (v)i∈I) and G+

v = (I, (A+
i )i∈I , (v)i∈I).

Let

x−
ε = ε minA + (1 − ε)a∗,

x+
ε = ε max A + (1 − ε)a∗
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for ε ∈ [0, 1].
Choose a small ε > 0 so that any perfect foresight path for G−

v from x−
ε

and for G+
v from x+

ε converges to a∗. Fix any state x ∈
∏

i ∆(Ai) close to
a∗ satisfying

x−
ε - x - x+

ε ,

and let φ∗ be any perfect foresight path from x in the original game G.
In the following, we find perfect foresight paths φ− and φ+ for G−

v and
G+

v , respectively, such that φ−(0) = x−
ε , φ+(0) = x+

ε , and φ− - φ∗ - φ+.
Then, since a∗ is absorbing both in G−

v and in G+
v , φ− and φ+ converge to

a∗, and thus, φ∗ also converges to a∗. In the case where G is supermodular,
this implies that a∗ is linearly absorbing in G by Proposition 3.7. In the
case where Gv is supermodular, a∗ is linearly absorbing in G−

v and in G+
v ,

by Proposition 3.7, so that φ− and φ+ linearly converge to a∗, and therefore,
φ∗ also converges linearly to a∗, implying the linear absorption of a∗ in G.
We only show the existence of φ−; the existence of φ+ is proved similarly.

Let Φ̃x−
ε

= {φ ∈ Φx−
ε
|φ - φ∗ and φ(t) ∈

∏
i ∆(A−

i ) for all t ≥ 0}. Con-
sider the best response correspondence βG−

v
for the stage game G−

v . We will
show that β̃G−

v
(φ) = βG−

v
(φ) ∩ Φ̃x−

ε
is nonempty for any φ ∈ Φ̃x−

ε
. Then,

since Φ̃x−
ε

is convex and compact, it follows from Kakutani’s fixed point
theorem that there exists a fixed point φ− ∈ β̃G−

v
(φ−) ⊂ Φ̃x−

ε
, as desired.

Take any φ ∈ Φ̃x−
ε
. If G is supermodular, then

minBRi
v(φ|A−

i )(t) ≤ minBRi
ui

(φ|A−
i )(t) ≤ minBRi

ui
(φ∗|A−

i )(t),

where the first inequality follows from the assumption that v is a strict mono-
tone potential, and the second inequality follows from the supermodularity
of ui and Lemma 3.1.

If Gv is supermodular, then

minBRi
v(φ|A−

i )(t) ≤ minBRi
v(φ

∗|A−
i )(t) ≤ minBRi

ui
(φ∗|A−

i )(t),

where the first inequality follows from the supermodularity of v and Lemma 3.1,
and the second inequality follows from the assumption that v is a strict
monotone potential.

Therefore, in each case, we have

minBRi
v(φ|A−

i )(t) ≤ minBRi
ui

(φ∗|A−
i )(t),

so that there exists h ∈ BRi
v(φ|A−

i )(t) such that

h ≤ minBRi
ui

(φ∗|A−
i )(t).

Then, there exists a best response ψ to φ in the game G−
v such that ψ(0) =

x−
ε and ψ - φ∗, which can be constructed as in the proof of Proposi-

tion 3.2.
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A.4 Proofs for Subsection 4.3

Proof of Lemma 4.3. Let v be given as in the lemma. We only show the
conditions (4.1) and (4.3) for A−

i ; (4.2) and (4.4) are proved similarly. Fix
any i ∈ I and πi ∈ ∆(A−i). If a∗i = minAi, then (4.1) and (4.3) are
satisfied. Then consider the case of a∗i > minAi. Observe that v(h, πi) =∑

a−i∈A−i
πi(a−i)v(h, a−i) is constant for all h < a∗i , so that min br i

v(πi|A−
i )

is either min Ai or a∗i . It is sufficient to consider the case where a∗i =
min br i

v(πi|A−
i ).

Since

v(a∗i , πi) − v(min Ai, πi) = πi(a∗−i) · (1 − pi) +
∑

a−i 6=a∗
−i

πi(a−i) · (−pi)

= πi(a∗−i) − pi,

it follows from a∗i = min br i
v(πi|A−

i ) that πi(a∗−i) > pi.
Therefore, if a∗ is a p-dominant equilibrium, then a∗i ∈ br i

ui
(πi|A−

i ),
i.e., a∗i = max br i

ui
(πi|A−

i ); if a∗ is a strict p-dominant equilibrium, then
{a∗i } = br i

ui
(πi|A−

i ), i.e., a∗i = min br i
ui

(πi|A−
i ).

Proof of Lemma 4.5. (a) Suppose that a∗ is an LP-maximizer with a local
potential function v. We show that if G or Gv has diminishing marginal
returns, then a∗ is an MP-maximizer with this function v. Fix any i ∈ I
and πi ∈ ∆(A−i). We show that max br i

v(πi|A−
i ) ≤ max br i

ui
(πi|A−

i ). Let
ai = max br i

v(πi|A−
i ). It is sufficient to consider the case where ai > minAi.

Since a∗ is an LP-maximizer, for all h < ai there exists µi(h) ≥ 0 such
that

µi(h)
(
v(h + 1, a−i) − v(h, a−i)

)
≤ ui(h + 1, a−i) − ui(h, a−i)

for all a−i ∈ A−i, so that we have

µi(h)
(
v(h + 1, πi) − v(h, πi)

)
≤ ui(h + 1, πi) − ui(h, πi)

for all h < ai. On the other hand, we have

v(ai, πi) − v(ai − 1, πi) ≥ 0

by the definition of ai.
Suppose first that G has diminishing marginal returns. Then, we have

ui(h + 1, πi) − ui(h, πi) ≥ ui(ai, πi) − ui(ai − 1, πi)
≥ µi(ai − 1)

(
v(ai, πi) − v(ai − 1, πi)

)
≥ 0
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for any h < ai. Hence, we have

ui(ai, πi) − ui(h, πi) ≥ 0

for all h < ai, which implies that ai ≤ max br i
ui

(πi|A−
i ).

Suppose next that Gv has diminishing marginal returns. Then, we have

ui(h + 1, πi) − ui(h, πi) ≥ µi(h)
(
v(h + 1, πi) − v(h, πi)

)
≥ µi(h)

(
v(ai, πi) − v(ai − 1, πi)

)
≥ 0

for any h < ai. Hence, we have

ui(ai, πi) − ui(h, πi) ≥ 0

for all h < ai, which implies that ai ≤ max br i
ui

(πi|A−
i ).

(b) Suppose that a∗ is a strict LP-maximizer with a strict local potential
function v. We show that if G or Gv has diminishing marginal returns,
then a∗ is a strict MP-maximizer with the same function v. Fix any i ∈ I
and πi ∈ ∆(A−i). We show that min br i

v(πi|A−
i ) ≤ min brui(πi|A−

i ). Let
ai = min br i

v(πi|A−
i ). It is sufficient to consider the case where ai > minAi.

Since a∗ is a strict LP-maximizer, for all h < ai there exists µi(h) > 0
such that

µi(h)
(
v(h + 1, a−i) − v(h, a−i)

)
≤ ui(h + 1, a−i) − ui(h, a−i)

for all a−i ∈ A−i, so that we have

µi(h)
(
v(h + 1, πi) − v(h, πi)

)
≤ ui(h + 1, πi) − ui(h, πi)

for all h < ai. On the other hand, we have

v(ai, πi) − v(ai − 1, πi) > 0

by the definition of ai.
Suppose first that G has diminishing marginal returns. Then, we have

ui(h + 1, πi) − ui(h, πi) ≥ ui(ai, πi) − ui(ai − 1, πi)
≥ µi(ai − 1)

(
v(ai, πi) − v(ai − 1, πi)

)
> 0

for any h < ai. Hence, we have

ui(ai, πi) − ui(h, πi) > 0

for all h < ai, which implies that ai ≤ min br i
ui

(πi|A−
i ).
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Suppose next that Gv has diminishing marginal returns. Then, we have

ui(h + 1, πi) − ui(h, πi) ≥ µi(h)
(
v(h + 1, πi) − v(h, πi)

)
≥ µi(h)

(
v(ai, πi) − v(ai − 1, πi)

)
> 0

for any h < ai. Hence, we have

ui(ai, πi) − ui(h, πi) > 0

for all h < ai, which implies that ai ≤ min br i
ui

(πi|A−
i ).

Proof of Lemma 4.7. Case (1): (0, 0) is a strict p-dominant equilibrium with
p1 = p2 < 1/2, so that Lemma 4.3 applies.

Case (2): Symmetric with Case (1).
Case (3–a): (1, 1) is a strict p-dominant equilibrium with p1 = p2 < 1/2.
Case (3–b): A monotone potential function v for (0, 0) is the following:

0

1

2

0 1 2

ε∆01
01 ε(w01 − w11)

ε(w02 − w12)
+ (w21 − w11)

ε(w01 − w11) 0 w21 − w11

ε(w02 − w12)
+ (w21 − w11)

w21 − w11 0

where ε > 0 is sufficiently small. All entries but v(0, 0) are less than or equal
to zero. By verifying that

v(0, k) − v(1, k) = ε
(
u1(0, k) − u1(1, k)

)
,

v(1, k) − v(2, k) ≤ u1(1, k) − u1(2, k),
v(0, k) − v(2, k) ≤ u1(1, k) − u1(2, k)

for all k (let ε be sufficiently small, and use w20−w10 < w21−w11 and ∆12
12 >

0), one can show that the conditions in Definition 4.2 (with a∗ = (0, 0)) are
satisfied.

Case (3–c): Symmetric with Case (3–b).
Case (3–d–i): A monotone potential function v for (0, 0) is the following:
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0

1

2

0 1 2

ε ε + λ1(w10 − w00)
λ1(w02 − w12)

+ λ2(w12 − w22)

ε + λ1(w10 − w00) −λ2∆21
21 λ2(w12 − w22)

λ1(w02 − w12)
+ λ2(w12 − w22)

λ2(w12 − w22) 0

where ε > 0 is sufficiently small, and λ1 > 0 and λ2 > 0 are such that

∆21
21

∆01
01

<
λ1

λ2
<

∆02
12

∆02
10

.

This is the local potential function given in Morris (1999). Verify that

v(0, k) − v(1, k) ≤ λ1

(
u1(0, k) − u1(1, k)

)
,

v(1, k) − v(2, k) ≤ λ2

(
u1(1, k) − u1(2, k)

)
,

v(0, k) − v(2, k) ≤ (λ2 + λ3)
(
u1(1, k) − u1(2, k)

)
for all k, where λ3 > 0 is such that

w22 − w12

w12 − w02
<

λ1

λ3
<

w10 − w20

w12 − w02
.

Case (3–d–ii): Symmetric with Case (3–d–i).

A.5 Proofs for Subsection 5.1

We will need the following lemma.

Lemma A.5.1. For all i ∈ I and all t ≥ 0,
(a) for any T ∈ RN

+ , ∆V θ
i (φu

T)(t) is decreasing in θ ≥ 0,
(b) for any T ∈ R̄N

+ with S = {i ∈ I |Ti 6= ∞}, ∆V θ
i (ψd

T)(t) is nonde-
creasing in θ ≥ 0, and is increasing in θ ≥ 0 if di(1) > di(0S).

This lemma is a consequence of the stochastic dominance relation among
distributions on [t,∞) induced by discount rates: the distribution on [t,∞)
with density function (1 + θ)e−(1+θ)(s−t) strictly stochastically dominates
the one with density function (1 + θ′)e−(1+θ′)(s−t) for 0 ≤ θ < θ′. The
statements follow from the facts that di((φu

T)1(s)) is nondecreasing in s ≥ 0
and increasing in s ≥ maxj∈I Tj , and that di((ψd

T)1(s)) is nonincreasing in
s ≥ 0, and decreasing in s ≥ maxj∈S Tj if di(1) > di(0S).

We first prove the global accessibility results.
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Proof of Proposition 5.1.1. “If” part: Suppose that there exists T = (Ti)i∈I

such that for all i,
∆V θ

i (φu
T)(Ti) ≥ 0.

Since ∆V θ
i (φu

T)(t) is increasing in t, ∆V θ
i (φu

T)(t) ≥ 0 holds for all i ∈ I and
all t ≥ Ti. This implies that φu

T satisfies

(φ̇u
T)i1(t) > −(φu

T)i1(t) ⇒ 1 = maxBRi(φu
T)(t)

for almost all t ≥ 0, so that φu
T is a subpath. It follows from Lemma 3.5 that

for any x ∈
∏

i ∆(Ai), there exists a perfect foresight path φ∗ from x such
that φu

T - φ∗. Since φu
T converges to 1, φ∗ also converges to 1. Therefore,

1 is globally accessible.
“Only if” part: Suppose that 1 is globally accessible, so that there exists

a perfect foresight path φ such that φ(0) = 0 and limt→∞ φ(t) = 1. Take
such a perfect foresight path φ and let

Ti = inf{t ≥ 0 | φ̇i1(t) > −φi1(t)}

for each i ∈ I. Note that Ti < ∞ for all i ∈ I.
For T = (Ti)i∈I defined above, define φu

T as in (5.1). Since φ - φu
T, we

have
∆V θ

i (φu
T)(Ti) ≥ ∆V θ

i (φ)(Ti) ≥ 0

due to the supermodularity.

Proof of Proposition 5.1.2. “If” part: Take a T = (Ti)i∈I ∈ RN
+ such that

∆V 0
i (φu

T)(Ti) > 0

for all i ∈ I. Since ∆V θ
i (φu

T)(Ti) is continuous in θ, there exists θ̄ > 0 such
that for all θ ∈ (0, θ̄),

∆V θ
i (φu

T)(Ti) > 0

for all i ∈ I, implying that 1 is globally accessible for all θ ∈ (0, θ̄) by
Proposition 5.1.1.

“Only if” part: Suppose that 1 is globally accessible for a small θ > 0.
Then, by Proposition 5.1.1 there exists T such that

∆V θ
i (φu

T)(Ti) ≥ 0

for all i ∈ I. Since ∆V θ
i (φu

T)(Ti) is decreasing in θ by Lemma A.5.1, it
follows that

∆V 0
i (φu

T)(Ti) > ∆V θ
i (φu

T)(Ti) ≥ 0

for all i ∈ I.

Next we prove the absorption results. For Proposition 5.1.3, we show
the following.
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Lemma A.5.2. Let θ > 0 be given. The state 1 is absorbing for θ if and only
if for any T = (Ti)i∈I ∈ R̄N

+ such that S = {i ∈ I |Ti 6= ∞} is nonempty,
there exists i ∈ S such that

∆V θ
i (ψd

T)(Ti) > 0.

Proof. “If” part: Note first that by the uniform continuity of di, for each
positive integer m, there exists εm > 0 such that for any p = (pj)j∈I ,
q = (qj)j∈I ∈ [0, 1]N with pj ≥ qj − εm for all j ∈ I, we have

di(p) ≥ di(q) − 1
m

for all i ∈ I. Then, for any feasible paths φ and ψ such that φj1(t) ≥
ψj1(t) − εm for all j ∈ I and t ≥ 0, we have

∆V θ
i (φ)(t) ≥ ∆V θ

i (ψ)(t) − 1
m

for all i ∈ I and t ≥ 0.
Suppose that 1 is not absorbing. Take any positive integer m and the

corresponding εm given above. There exist x ∈
∏

i ∆(Ai) with x1i > 1− εm

and a perfect foresight path φm with φm(0) = x that does not converge to
1. Take any such perfect foresight path φm for each m.

Define
Tm

i = inf{t ≥ 0 | φ̇m
i1(t) < 1 − φm

i1(t)},

and Sm = {i ∈ I |Tm
i 6= ∞}. Note that Sm is nonempty as φm does

not converge to 1. Since φm is a perfect foresight path and ∆V θ
i (φm)(t) is

continuous in t, we must have

∆V θ
i (φm)(Tm

i ) ≤ 0 (A.3)

for i ∈ Sm.
Define T̃m = (T̃m

i )i∈I by T̃m
i = Tm

i −minj Tm
j . Take feasible paths ψd

Tm

and ψd
T̃m as in (5.2) and (5.3).

Observe that
φm

i1(t) ≥ (ψd
Tm)i1(t) − εm

for all i ∈ I and t ≥ 0. It follows from the definition of εm that

∆V θ
i (φm)(Tm

i ) ≥ ∆V θ
i (ψd

Tm)(Tm
i ) − 1

m

= ∆V θ
i (ψd

T̃m)(T̃m
i ) − 1

m
,

so that
∆V θ

i (ψd
T̃m)(T̃m

i ) − 1
m

≤ 0 (A.4)
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for any i ∈ Sm by (A.3).
Now let m → ∞. Since the set of feasible paths Φ is compact, {ψT̃m}∞m=1

has a convergent subsequence {ψd
T̃m(k)}∞k=1 with a limit, which is written as

ψd
T for some T ∈ R̄N

+ . Note that limk→∞ T̃m(k) = T. Since mini∈I T̃m
i = 0

for all m, S = {i ∈ I |Ti 6= ∞} is nonempty due to the finiteness of I.
Moreover, since ∆V θ

i is continuous on Φ × R+, we have

∆V θ
i (ψd

T)(Ti) ≤ 0

for any i ∈ S by (A.4).
“Only if” part: Suppose that there exists T = (Ti)i∈I ∈ R̄N

+ such that
S = {i ∈ I |Ti 6= ∞} is nonempty, and

∆V θ
i (ψd

T)(Ti) ≤ 0

for any i ∈ S. Since ∆V θ
i (ψd

T)(t) is decreasing in t, ∆V θ
i (ψd

T)(t) ≤ 0 holds
for all i and all t ≥ Ti. This implies that ψd

T satisfies

(ψ̇d
T)i0(t) > −(ψd

T)i0(t) ⇒ 0 = minBRi(ψd
T)(t)

for almost all t ≥ 0, so that ψd
T is a superpath. It follows from Lemma 3.5

that there exists a perfect foresight path φ∗ from 1 such that φ∗ - ψd
T. Since

ψd
T is such that (ψd

T)i1(t) → 0 as t → ∞ for i ∈ S, it follows that φ∗ does
not converge to 1. Therefore, 1 is not absorbing.

Proof of Proposition 5.1.3. By Lemma A.5.2, we only need to show that if
for any T such that S = {i ∈ I |Ti 6= ∞} is nonempty and 0S is a Nash
equilibrium, there exists i ∈ S such that ∆V θ

i (ψd
T)(Ti) > 0, then the same

condition holds for any T such that 0S is not necessarily a Nash equilibrium.
Suppose not, and choose T and S such that S is maximal among all subsets
that violate the condition. Then ∆V θ

i (ψd
T)(Ti) ≤ 0 for any i ∈ S. Since 0S

is not a Nash equilibrium, (i) there exists j ∈ S such that dj(0S) > 0, or
(ii) there exists j /∈ S such that dj(0S) < 0. In case (i), however, by the
supermodularity,

dj(0S) ≤ ∆V θ
j (ψd

T)(Tj) ≤ 0,

which is a contradiction. Therefore, case (ii) holds. Choose such a j.
Define T′ = (T ′

1, . . . , T
′
N ) by T ′

i = Ti for i 6= j and T ′
j as a sufficiently

large but finite number. Then ψd
T′ - ψd

T, so that

∆V θ
i (ψd

T′)(T ′
i ) ≤ ∆V θ

i (ψd
T)(Ti) ≤ 0

for i ∈ S by the supermodularity. Moreover, since ∆V θ
j (ψd

T′)(T ′
j) converges

to dj(0S) < 0 as T ′
j → ∞, we have

∆V θ
j (ψd

T′)(T ′
j) < 0.

This contradicts the maximality of S.
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Proposition 5.1.4 follows immediately from the following.

Lemma A.5.3. The following conditions are equivalent:
(a) 1 is absorbing for all θ > 0;
(b) there exists θ̄ such that 1 is absorbing for all θ ∈ (0, θ̄);
(c) for any T = (Ti)i∈I ∈ R̄N

+ such that S = {i ∈ I |Ti 6= ∞} is
nonempty and 0S is a Nash equilibrium of the stage game, there exists i ∈ S
such that

∆V 0
i (ψd

T)(Ti) ≥ 0.

Proof. (a) ⇒ (b): Obvious.
(b) ⇒ (c): Suppose that there exists T = (Ti)i∈I ∈ R̄N

+ such that S =
{i ∈ I |Ti 6= ∞} is nonempty, 0S is a Nash equilibrium, and ∆V 0

i (ψd
T)(Ti) <

0 for all i ∈ S. Fix such a T. Since ∆V θ
i (ψd

T)(Ti) is continuous in θ, there
exists θ̄ > 0 such that for all θ ∈ (0, θ̄),

∆V θ
i (ψd

T)(Ti) < 0

for all i ∈ S, implying that 1 is not absorbing for any θ ∈ (0, θ̄) by Proposi-
tion 5.1.3.

(c) ⇒ (a): Suppose (c). For each T = (Ti)i∈I ∈ R̄N
+ such that S = {i ∈

I |Ti 6= ∞} is nonempty and 0S is a Nash equilibrium, take i ∈ S as in (c).
By the monotonicity of di, we have di(1) ≥ di(0S). If di(1) = di(0S),

then for any θ > 0,
∆V θ

i (ψd
T)(Ti) = di(1) > 0

by the monotonicity of di. If di(1) > di(0S), then ∆V θ
i (ψd

T)(Ti) is increasing
in θ by Lemma A.5.1, so that for any θ > 0,

∆V θ
i (ψd

T)(Ti) > ∆V 0
i (ψd

T)(Ti) ≥ 0.

It follows that 1 is absorbing for all θ > 0 by Proposition 5.1.3.
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