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Abstract

This paper presents a simple framework that allows us to survey and relate some
different strands of the game theory literature. We describe a “canonical” way of
adding incomplete information to a complete information game. This framework
allows us to give a simple “complete theory” interpretation (Kreps 1990) of standard
normal form refinements such as perfection, and to relate refinements both to the
“higher order beliefs literature” (Rubinstein 1989; Monderer and Samet 1989; Morris,
Rob and Shin 1995; Kajii and Morris 1995) and the “payoff uncertainty approach”
(Fudenberg, Kreps and Levine 1988; Dekel and Fudenberg 1990).

1 Introduction

Consider a Nash equilibrium of a complete information game. How robust is that equilib-
rium? The classical refinements literature (building on Selten 1965, 1975) asks whether
that equilibrium may still be played when players “tremble” in their choice of actions.
Specifically, does there exist a sequence of full support trembles that justifies the equilib-
rium play? The normal form refinements literature considers robustness to more compli-
cated action trembles (Myerson 1978) and also robustness to small changes in the game’s
payoffs (Kohlberg and Mertens 1986). Kreps [1990] and others have argued that the
classical refinements literature is flawed because there is no explanation for the trembles.
Rather, we should build “complete” theories in which the trembles are endogenously ex-
plained: this at least allows us to have an unambiguous interpretation of the refinement.
This viewpoint is embodied in two papers, Fudenberg, Kreps and Levine [1988] and Dekel
and Fudenberg [1990], that critique existing refinements.

The “higher order beliefs” literature has considered a related question. In analyzing
a complete information game, we implicitly assume that payoffs are common knowledge.
Which Nash equilibria are robust to a lack of common knowledge? Specifically, which
equilibria have the property that they remain equilibria whenever the common knowledge
assumption is weakened a little? Rubinstein [1989] demonstrates that even strict Nash

∗Parts of this paper were first presented in an invited talk by the second author at the 1996 Stony
Brook International Conference on Game Theory. It includes material from Kajii and Morris [1995] that
will not be included in the published version.
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equilibria (which survive all the usual refinements) may not be robust to an (intuitively)
small lack of common knowledge. Monderer and Samet [1989] introduce a notion of
approximate common knowledge that is sufficient to make strict equilibria robust. Kajii
and Morris [1995] ask which Nash equilibria of a complete information game may be
equilibrium play of every incomplete information game where payoffs are almost always
given by the original complete information game. Many complete information games have
no robust equilibria in this sense. This includes games with a unique Nash equilibrium
that is strict. But if a game has a unique correlated equilibrium, it is a robust Nash
equilibrium; and a many player many action generalization of risk dominance is also
sufficient for robustness.

This paper describes a simple framework for relating together all the above results.
Our “canonical elaboration” approach, which builds on Fudenberg, Kreps and Levine
[1988], works as follows. Fix a complete information game. A canonical elaboration of
that complete information game is an incomplete information game with the same players
and action sets for each player. Each type of each player is either a “standard” type,
whose payoffs are exactly as in the complete information game, or a “committed” type,
who has a dominant strategy to play one of the actions of the original game. Importantly,
we allow for a large (possibly infinite) number of standard types: although they do not
differ in payoffs, they will typically have different beliefs and higher order beliefs about
others’ payoffs. To see this, consider the following example. There are two actions, a and
a′. Player 1 has two possible standard types, t1 and t′1, and two possible committed types,
a and a′. Player 2 has only one possible standard type t2, and two possible committed
types, a and a′. Nature chooses a type profile with assigned probability as shown in the
table below.

player 1’s type\player 2’s type t2 a a′

t1 1− 2ε 0 0
t′1 ε ε 0
a 0 0 0
a′ 0 0 0

In any case, player 1 is standard with probability 1; thus his payoffs are given by the
complete information game. But the two types have different beliefs: if he is of type t1,
he is sure that his opponent is standard. But if he is of type t′1, he will think that player
2 may be committed to play action a with (conditional) probability 1/2. This in turn
implies that type t1 of player 1 is sure that player 2 attaches probability ε

1−ε to player 1
attaching probability 1

2 to player 2 being committed to action a. Thus even though type
t1 is sure that player 2 is not committed to action a, that possibility is relevant to his
higher order (specifically, second order) beliefs.

An incomplete information game elaboration of the complete information game is then
parameterized completely by a probability distribution over type profiles. We are con-
cerned with sequences of canonical elaborations where, in the limit, types are standard
with probability one. For instance, we obtain such a sequence by letting ε go to zero in the
example above. We will look at Bayesian-Nash equilibria of the incomplete information
game elaboration; hence we will be assuming that players are always rational and there
are no exogenous trembles. A probability distribution over actions (or action distribution)
is a limit equilibrium action distribution (for some given complete information game and
canonical elaboration sequence) if it represents the limit of the action distributions gen-
erated by equilibria of the elaboration sequence. Because each player has many standard
types, correlation is possible in the limit of the elaborations. Thus any limit equilibrium
action distribution is a correlated equilibrium of the original complete information game.
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In this framework, we can formalize the generic question we want to ask as follows:

Fix a complete information game. Which action distributions are limit equi-
librium action distributions of some (all) canonical elaboration sequences sat-
isfying some property in higher order beliefs?

We can understand each of the above literatures by varying the restrictions we put on
elaboration sequences and whether we require robustness to some or all such sequences.

Our results can be summarized in the following table (a more detailed summary is given
in the conclusion). We write NE for Nash equilibria and CE for correlated equilibria.

class of
elaboration

∖
type of
robustness

Robust to
all sequences

Justified by
some full
support sequence

No
Restrictions

1. not all strict NE
2. risk dominant NE
3. unique CE

undominated CE

Limit
Common
Knowledge

strict NE undominated CE

Limit
Independence strict NE undominated NE

Independence strictly perfect NE perfect NE

For the left hand column, we ask which behavior is a limiting equilibrium action distri-
bution for all sequences satisfying progressively stronger properties. Since we are requiring
robustness to all sequences, we thus weaken the refinement as we impose stronger restric-
tions. If we impose no extra restrictions on the elaborations (beyond the requirement that
standard types are assigned probability one in the limit) then we get the result (in the
spirit of Rubinstein 1989) that even strict equilibria may not be robust; a many person
many action generalization of risk dominance (Harsanyi and Selten 1988) is a sufficient
condition (Kajii and Morris 1995; see also Carlsson and van Damme 1993). A unique
correlated equilibrium is also robust (Kajii and Morris 1995).

Now suppose that we add extra requirements to the elaboration sequence. Limit com-
mon knowledge requires that for all p < 1, the probability that there is common p-belief1

that all types are standard also tends to one. All strict equilibria are robust to limit com-
mon knowledge elaborations (Monderer and Samet 1989). Limit independence requires
that the probability distribution over types is independent in the limit. Interestingly
enough, Limit independence implies limit common knowledge, so strict equilibria are ro-
bust also to limit independent elaborations. Independence requires that all elaborations
are independent (at the limit and before the limit). Robustness to all independent elab-
orations is equivalent to strict perfection in the sense of Okada [1981]. Strict perfection
is equivalent to requiring a singleton strategy profile to be stable (Kohlberg and Mertens
1986).

For the right hand column, we ask which behavior is the limiting action equilibrium
action distribution for some sequence which puts full support (away from the limit) on all
committed type profiles and also satisfies the sequence of progressively stronger properties
introduced above. Now as we strengthen the restriction on the sequence we strengthen

1An event is common p-belief if everyone believes it with probability p, everyone believes with proba-
bility p that everyone believes it with probability p, and so on (Monderer and Samet 1989).
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the refinement. If we put no additional restrictions on the elaboration sequence, the
full support requirement implies that no dominated actions are played. An argument of
Fudenberg, Kreps and Levine [1988] shows that any undominated correlated equilibrium
(a correlated equilibrium where dominated strategies are assigned probability zero) is the
limit equilibrium action distribution of some full support elaboration sequence. Thus
an action distribution is justified by some full support elaboration if and only if it is an
undominated correlated equilibrium. Adding the limit common knowledge requirement
does not effect this argument. However, requiring limit independence implies that we
must have a Nash equilibrium in the limit: thus an action distribution is justified by
some full support limit independent elaboration if and only if it is an undominated Nash
equilibrium. Finally, requiring independence along the sequence makes the canonical
elaboration equivalent to the action trembles of Selten [1975]. Thus an action distribution
is justified by some full support independent elaboration if and only if it is perfect.

This paper lays out these arguments in essentially this order. We first introduce our
notion of canonical elaborations (section 2) and review some techniques and Lemmas from
the higher beliefs literature that we will exploit (section 3). We survey results concerning
robustness to all elaborations in section 4 and review refinements which are justified by
some full support elaboration in section 5. Section 6 concludes.

Before we start, let us highlight some limitations of our exercise.

1. The “canonical elaborations” we consider are very simple. In particular, it would
make sense to allow “standard types” to have a small amount of uncertainty about
their own payoffs; similarly, it would make sense to allow types with very different
payoffs who are not necessarily committed to a particular action. We allow neither.
We consider simple elaborations because they are sufficient to explain the relation
between the literatures we survey; put differently, we believe that the issues raised
by considering more complicated elaborations are orthogonal to the main conceptual
issues in these literatures. Nonetheless, we do not want to claim they are in any
sense the “right” elaborations to consider. Papers such as Fudenberg, Kreps and
Levine [1988], Dekel and Fudenberg [1990] and the survey paper of Dekel and Gul
[1997] consider different classes of elaborations and discuss their justifications.

2. In analyzing our canonical elaborations, we assume that players have common prior
beliefs and play according to some (Bayesian) Nash equilibrium. We thus ignore
two sets of issues studied in the literature. First, when and how can assumptions
on knowledge and higher order knowledge justify equilibrium assumptions (e.g.,
Aumann [1987], Brandenburger and Dekel [1987] and Aumann and Brandenburger
[1995])? Second, which refinements can be justified even before making equilib-
rium/common prior assumptions (e.g., Börgers [1994], Dekel and Fudenberg [1990]
and Gul [1996])?

3. This is a survey. We sketch proofs and cite close but not identical proofs in the
literature. While our interpretation of results may differ from the literatures we
survey, almost all the results are out there even if we do not cite them correctly.
We believe that many researchers have thought about “complete theory” issues in
refinements but we are not sure of the appropriate citations.

4. In many cases, there are large gaps between the necessary and sufficient conditions
we report. In some cases (such as section 4.1) we have tried hard elsewhere to fill
these gaps (without success). In other cases (such as sections 4.2 and 4.3) there may
be existing results or easy arguments that we have missed.
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2 Canonical Elaborations

In this section, a simple framework for studying incomplete information elaborations of
complete information games is presented. Our elaborations are a modified version of
the elaborations introduced by Fudenberg, Kreps and Levine (1988). Fix a finite set of
players, I = {1, ..., I}, and their finite action sets, {Ai}i∈I . Write A ≡ A1 × ..×AI .

2.1 Complete Information Game

A complete information game g ≡ {gi}i∈I , where each gi : A→ 
. Write Ai ≡ ∆(Ai) for
the set of mixed strategies for player i and A ≡ A1× ..×AI . Write α ≡ (α1, .., αI) ∈ A for
a profile of mixed strategies; write α−i for a profile of mixed strategies excluding player
i’s. The domain of each gi is extended to mixed strategies in the usual way. We record
some standard complete information game concepts that we will be using.

Definition 1 Action ai ∈ Ai is dominated (in g) if there exists α′i ∈ Ai such that

gi (α′i, a−i) ≥ gi (ai, a−i) , for all a−i ∈ A−i,

with strict inequality for at least one a−i.

Definition 2 Action ai ∈ Ai is weakly dominant (in g) if

gi (ai, a−i) ≥ gi (a′i, a−i) , for all a′i ∈ A and a−i ∈ A−i.

Definition 3 Mixed strategy profile α ∈ A is a Nash equilibrium (of g) if

gi (αi, α−i) ≥ gi (α′i, α−i) , for all i ∈ I and α′i ∈ Ai.

Definition 4 Action distribution µ ∈ ∆(A) is a correlated equilibrium (of g) if, for all
i ∈ I and ai, a′i ∈ Ai,∑

a−i∈A−i

gi (ai, a−i)µ (ai, a−i) ≥
∑

a−i∈A−i

gi (a′i, a−i)µ (ai, a−i) .

Definition 5 Action distribution µ ∈ ∆(A) is a Nash equilibrium action distribution
(of g) if µ is a correlated equilibrium and µ (a) =

∏
i∈I
µi (ai), where µi is the marginal

distribution of µ on Ai. Equivalently, µ is a Nash equilibrium action distribution if µ (a) =∏
i∈I
αi (ai) for some Nash equilibrium α.

Definition 6 Action distribution µ ∈ ∆(A) is an undominated correlated equilibrium (of
g) if [1] µ is a correlated equilibrium and [2] µ (a) = 0 if ai is a dominated action.

Definition 7 Action distribution µ ∈ ∆(A) is an undominated Nash equilibrium action
distribution (of g) if [1] µ is a Nash equilibrium action distribution and [2] µ (a) = 0 if ai
is a dominated action.
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2.2 Incomplete Information Elaborations

In considering elaborations of complete information games, the state space will be fixed.
Let T ∗

i be a countably infinite set of standard types of player i. Let Ai be committed types
of player i. The set of possible types of player i is the union of these two, Ti = T ∗

i ∪ Ai.
The state space now consists of all type profiles, T = T1 × ..× TI .

Definition 8 A canonical elaboration consists of a complete information game g and a
probability distribution P ∈ ∆(T ).

A canonical elaboration (g, P ) is an incomplete information game under the following
interpretation: P ∈ ∆(T ) gives a probability distribution over types; payoff functions g
give payoffs of standard types; and committed type ai of player i has a strictly dominant
strategy to play ai.

More formally, let (g, P ) be the incomplete information game with type space T ,
probability distribution P and incomplete information game payoff functions:

ui (a, t) =


gi (a) , if ti ∈ T ∗

i

1, if ai = ti ∈ Ai

0, if ai �= ti and ti ∈ Ai

.

Thus (for simplicity) we focus on extreme standard and committed types, excluding:

• Standard types with a small amount of uncertainty about their own payoffs;

• Non-standard types without strictly dominant actions.

Now a (mixed) strategy for player i is function σi : Ti → ∆(Ai). Write Σi for the set of
mixed strategies of player i, and write σ ≡ (σ1, .., σI) ∈ Σ ≡ Σ1 × ..×ΣI . Write σi (ai|ti)
for the probability of action ai, given type ti of player i; write σ (a|t) ≡

∏
i∈I
σi (ai|ti) and

σ−i (a−i|t−i) ≡
∏
j �=i

σj (aj |tj).
The standard definition of equilibrium in this setting is:

Definition 9 Strategy profile σ is an equilibrium if, for all i ∈ I and σ′i ∈ Σi,∑
t∈T

∑
a∈A

ui (a, t)σi (a|t)P (t) ≥
∑
t∈T

∑
a∈A

ui (a, t)σ′i (ai|ti)σ−i (a−i|t−i)P (t).

This is equivalent to:

Definition 10 Strategy profile σ is an equilibrium if, for all i ∈ I, ti ∈ Ti with P (ti) > 0,
and ai ∈ Ai with σi(ai|ti) > 0,

ai ∈ argmax
a′

i
∈Ai

∑
t−i∈T−i

∑
a−i∈A−i

ui ((a′i, a−i) , t)σ−i (a−i|t−i)P (t−i|ti),

where P (t−i|ti) is the conditional probability of type profile t−i given ti, i.e., P (t−i|ti) =
P (ti,t−i)∑

t′−i
∈T ′

−i

P(ti,t′−i)
.

Substituting for the particular form of ui, we have:
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Definition 11 Strategy profile σ is an equilibrium if, for all i ∈ I and ti ∈ Ti with
P (ti) > 0, [1] σi (ai |ti ) = 1, if ti = ai; and

[2] ai ∈ arg max
a′

i
∈Ai

∑
t−i∈T−i

∑
a−i∈A−i

gi (a′i, a−i)σ−i (a−i| ti)P ( t−i| ti) ,

if ti ∈ T ∗
i and σi (ai |ti ) > 0.

We are interested in average behavior in equilibria of the canonical elaborations:

Definition 12 Action distribution µ ∈ ∆(A) is an equilibrium action distribution [EAD]
of (g, P ) if there is an equilibrium σ of (g, P ) with µ (a) =

∑
t∈T

σ (a|t)P (t) for all a ∈ A.

2.3 Elaboration Sequences

Definition 13 Sequence
{
P k
}∞

k=1
, each P k ∈ ∆(A), is an elaboration sequence if P k →

P∞ pointwise and P k [T ∗] → 1.

Definition 14 Action distribution µ ∈ ∆(A) is a limiting equilibrium action distribu-
tion [LEAD] of

[
g,
{
P k
}∞

k=1

]
if there exist equilibrium action distributions

{
µk
}∞

k=1
of[

g,
{
P k
}∞

k=1

]
with µk → µ. If µ (a∗) = 1, a∗ is a limit equilibrium of

[
g,
{
P k
}∞

k=1

]
.

Lemma 1 If µ is an LEAD of
[
g,
{
P k
}∞

k=1

]
, then µ is a correlated equilibrium of g.

Proof. (Sketch: Corollary 3.5 of Kajii and Morris [1995] can be used to give a complete
proof). If µk is a EAD of

(
g, P k

)
for large k, it can be shown to be an approximate

correlated equilibrium of g. The limit of a convergent sequence is thus a correlated
equilibrium.

The generic question that we will be asking in this paper is the following:

Fix g. Which µ ∈ ∆(A) are limiting equilibrium action distributions of[
g,
{
P k
}∞

k=1

]
for some (all) elaboration sequence(s)

{
P k
}∞

k=1
satisfying prop-

erty X?

3 Preliminaries

We introduce some techniques from the higher order beliefs literature that will be ex-
tensively used in later sections. Thus we first introduce the idea of p-evident, or almost
public, events (Monderer and Samet 1989). Then we introduce the p-dominant equilib-
ria (Morris, Rob and Shin 1995). Finally, we relate these together to provide “the basic
Lemma,” on which much of the higher order beliefs literature builds.

3.1 Almost Public Events

An event is almost public if whenever it is true, everyone believes that it is true with high
probability. We will be interested only in events that are the products of sets of types of
each player.

Definition 15 S ⊆ T is a simple event if S = ×
i∈I
Si, where each Si ⊆ Ti.
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Given simple event S, write S−i = S1 × ..× Si−1 × Si+1 × ..× SI . If P (ti) > 0, define

P (S−i|ti) ≡

∑
t−i∈S−i

P (ti, t−i)∑
t−i∈T−i

P (ti, t−i)
.

Fix a vector p = (p1, ..., pI), each pi ∈ [0, 1].

Definition 16 A simple event S is p-evident (under P ) if whenever it is true, each
individual i believes it with probability at least pi. Formally, S is p-evident if for all i ∈ I
and ti ∈ Si such that P (ti) > 0, P (S−i|ti) ≥ pi.

3.2 p-Dominant Equilibria

An action profile a∗ is a p-dominant equilibrium (of g) if, for each player i, action a∗i is a
best response whenever he assigns probability at least pi to other players following action
profile a∗:

Definition 17 Action Profile a∗ is a p-dominant equilibrium of g if, for all i ∈ I, ai ∈ Ai

and λ ∈ ∆(A−i) with λ
(
a∗−i

) ≥ pi,∑
a−i∈A−i

λ (a−i) gi (a∗i , a−i) ≥
∑

a−i∈A−i

λ (a−i) gi (ai, a−i) .

The following are immediate by definition.

• a∗ is a (1, .., 1)-dominant equilibrium if and only if a∗ is a Nash equilibrium.

• a∗ is a (0, .., 0)-dominant equilibrium if and only if each a∗i is a weakly dominant
action.

If a∗ is a p-dominant equilibrium of g, then a∗ is a p′-dominant for any probability
vector p′ ≥ p. So if a∗ is a Nash equilibrium (thus (1, .., 1)-dominant), we will be interested
in the smallest p for which a∗ is a p-dominant equilibrium.

3.3 Higher Order Beliefs and the Equilibria of Incomplete Infor-
mation Games

Lemma 2 (The Basic Lemma). Let a∗ be a p-dominant equilibrium of g. Let S be a
p-evident subset of T ∗ (under P ). Then (g, P ) has an equilibrium with σi (a∗i | ti) = 1 for
all ti ∈ Si.

Proof. (Sketch: see Kajii and Morris 1995, Lemma 5.2, for full proof). Consider the
modified game where we require σi (a∗i |ti) = 1 for all ti ∈ Si. Let σ∗ be any equilibrium
of the modified game. By construction, σ∗ is an equilibrium of the original game.

For any simple event S, define

Bp,k
∗ (S) ≡

{
t ∈ T :

for all i with P k (ti) > 0,
(i) ti ∈ Si; (ii) P k (S−i|ti) ≥ pi

}
and Cp,k (S) ≡ ∩

n≥1

[
Bp,k

]n
(S) .
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Lemma 3 (The p-Belief Lemma). For any simple event S, Cp,k (S) is p-evident (under
P k) and contains all p-evident events contained in S, i.e., E ⊆ Bp,k

∗ (E) and E ⊆ S
⇒ E ⊆ Cp,k (S).

This is a special case of the characterization of common p-belief in Monderer and
Samet [1989].

Corollary 1 Let a∗ be a p-dominant equilibrium of g. Then
(
g, P k

)
has an equilibrium

σ with σi (a∗i | ti) = 1 for all i ∈ I if t ∈ Cp,k (T ∗).

This follows immediately from the p-Belief Lemma (Lemma 3) and the Basic Lemma
(Lemma 2).

4 Robustness to all Elaborations

One way of examining the robustness of equilibria of g is to ask if behavior close to those
equilibria is possible equilibrium behavior in all nearby elaborations. In this section,
we consider this question under progressively stronger restrictions on the elaboration
sequences. This implies progressively weaker solution concepts. For a given restriction X
on the canonical elaborations, we will say:

Definition 18 Action distribution µ ∈ ∆(A) is robust to (type X) elaborations if µ is a
LEAD of

[
g,
{
P k
}∞

k=1

]
for every (type X) elaboration sequence

{
P k
}∞

k=1
.

4.1 No Restrictions

Consider first the case with no additional restrictions on the elaborations. A variation
of an example due to Rubinstein [1989] shows that it is possible to have a∗ a strict
Nash equilibrium of g and an elaboration sequence

{
P k
}∞

k=1
such that every limiting

equilibrium action distribution of
[
g,
{
P k
}∞

k=1

]
has µ (a∗) = 0. This implies that not all

strict Nash equilibria are robust to canonical elaborations.

Example 1 The complete information game g is described by the following matrix.

A B
A 1, 1 −2, 0
B 0,−2 0, 0

(1)

The elaboration sequence P k → P∞, where P∞ is given by the rule: P∞ (t1, t2) =
α (1− α)2n if t1 = t2 = n; = α (1− α)2n+1 if t1 = n = t2 − 1; = 0 otherwise, where
0 < α < 1/2. This is illustrated in the following table:

A B 0 1 · k − 1 k k + 1 ·
A 0 0 0 0 · 0 0 0 ·
B 0 0 0 0 · 0 0 0 ·
0 0 0 α 0 · 0 0 0 ·
1 0 0 α(1− α) α(1− α)2 · 0 0 0 ·
· · · · · · · · · ·

k − 1 0 0 0 0 · α(1− α)2k−4 0 0 ·
k 0 0 0 0 · α(1− α)2k−3 α(1− α)2k−2 0 ·
k + 1 0 0 0 0 · 0 α (1− α)2k−1 α (1− α)2k ·
· · · · · · · · · ·

.
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P k is identical to P∞ except that P k (k − 1, k) = P k (k, k) = 0 and P k (B, k − 1) =
α(1− α)2k−3 and P k (B, k) = α(1− α)2k−2. P k is illustrated in the following table:

A B 0 1 · k − 1 k k + 1 ·
A 0 0 0 0 · 0 0 0 ·
B 0 0 0 0 · α(1− α)2k−1 α(1− α)2k 0 ·
0 0 0 α 0 · 0 0 0 ·
1 0 0 α(1− α) α(1− α)2 · 0 0 0 ·
· · · · · · · · · ·

k − 1 0 0 0 0 · α(1− α)2k−2 0 0 ·
k 0 0 0 0 · 0 0 0 ·
k + 1 0 0 0 0 · 0 α(1− α)2k+1 α(1− α)2k+2 ·
· · · · · · · · · ·

.

• The Electronic Mail Interpretation. Suppose players communicate with each other
as follows. Player 2 sends a message to player 1, which gets lost with probability
α. If the message is lost, communication stops. If player 1 receives the message, he
sends a message to player 2, which also gets lost with probability α. The commu-
nication process continues like this. A player’s type corresponds to the number of
messages he has received. The game (g, P∞) corresponds to a situation where play-
ers communicate according to this protocol but payoffs are always given by matrix
(1), independent of types. The game

(
g, P k

)
corresponds to the situation where

player 1, if he receives exactly k messages, has a dominant strategy to play B. All
other types of player 1, and all types of player 2, have payoffs given by matrix (1).

One equilibrium of (g, P∞) has all standard types playing A (another has all standard
types playing B). But the essentially2 unique equilibrium of

(
g, P k

)
has action B played

by all standard types. To see why, observe that committed type B of player 1 plays
B by assumption. Now in any equilibrium, standard types k − 1 and k of player 2
assign probabilities at least 1−α

2−α and 1
2−α respectively to player 1 choosing B. Both these

probabilities are strictly more than 1
3 (since α < 1

2 ). Given the payoff matrix (1), this
ensures that action B is the unique best response. But now a similar argument ensures
that B must be played by types k − 1 and k + 1 of player 1. The argument iterates to
ensure the result. Thus the unique LEAD of

[
g,
{
P k
}∞

k=1

]
has µ ((B,B)) = 1.

Kajii and Morris [1995] show more:

Proposition 1 [1] There exist an open set of games for which no µ ∈ ∆(A) is robust
to elaborations. This includes games with a unique Nash equilibrium that is strict. [2] If
g has a unique correlated equilibrium µ∗, then µ∗ is robust to elaborations. [3] If a∗ is a
p-dominant equilibrium (of g), with

∑
i∈I
pi ≤ 1, then a∗ is robust to elaborations.3

Proof. [1] is proved by a more complicated version of the above example (see KM example
3.1). [2] follows from the fact that all LEADs are correlated equilibria (Lemma 1). [3] is
proved by combining Corollary 1 with the following Proposition.

2Throughout the paper an equilibrium is said to be essentially unique if it is unique up to zero
probability types.

3The notion of “robustness to incomplete information” considered in Kajii and Morris [1995] is slightly
different to that described here. First, we allowed a richer class of non-standard types. This makes no
difference to this result. Second, we implicitly required robustness to elaboration sequences without
well-defined limits. This makes a small difference, effecting only equilibria which are p-dominant with∑
i∈I

pi = 1 but not p-dominant with
∑
i∈I

pi < 1 (see section 9.3 of Kajii and Morris 1995).
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Proposition 2 If P k [S] → 1 as k → ∞, then P k
[
Cp,k (S)

]→ 1 for all p with
∑
i∈I
pi ≤

1.4

In the case of two player two action games with two strict equilibria, the requirement
that a∗ is a p-dominant equilibrium with

∑
i∈I
pi ≤ 1 is equivalent to the requirement that

a∗ is risk dominant in the sense of Harsanyi and Selten [1988]. But except for non generic
cases, a two player two action game has (1) a unique strict pure strategy equilibrium;
(2) a unique mixed strategy equilibrium; or (3) two pure strategy equilibria, in which
case only one is risk dominant. The unique equilibrium in cases (1) and (2) is also a
unique correlated equilibrium. So for such generic games, Proposition 1 gives a complete
characterization of robustness.

Corollary 2 In generic two player two action games, there exists a unique equilibrium
robust to elaborations.

Carlsson and van Damme [1993a] have given a closely related justification for the risk
dominant equilibrium. Suppose that players of a two player two action game observe a
continuous signal of the payoffs (represented by a vector in 
8) with a small amount of
symmetric noise. This generates an incomplete information game. They show that as the
noise goes to zero (specifically, the support of the noise), the unique equilibrium of the
incomplete information game has the risk dominant equilibrium played everywhere.

It is useful to understand the difference between the Carlsson and van Damme result
and the robustness question discussed here. There are some inessential differences: Carls-
son and van Damme have a continuum of types and do not have the ex ante probability
of any particular payoff vector tending to one in the limit. But the crucial difference is
that while they demonstrate an (intuitive and general) class of elaboration sequences for
which only the risk dominant equilibrium is a limit equilibrium, they do not show the
non-existence of some different class of elaboration sequences for which the risk dominant
equilibrium is not a limit equilibrium. This is the harder part of showing robustness.

Morris [1997] describes another class of games where it is possible to provide a complete
characterization of robustness. A “symmetric binary action co-ordination” (SBAC) game
is a game where players have a choice of two actions; each player’s payoff depends only
on his own action and the number of his opponents choosing each action; and there
are strategic complementarities, i.e., an action becomes a better response as more players
choose that action. In an N -player SBAC, an action is said to be a uniform best response if
it is best response to a conjecture putting uniform probability on the number of opponents
choosing each action. In a generic SBAC, exactly one action is the uniform best response.
The unique robust equilibrium of a SBAC is the action profile where all players choose
the uniform best response.5

4.2 Limit Common Knowledge Elaborations

What restriction on the elaborations is required to ensure the robustness of at least strict
Nash equilibria? Monderer and Samet [1989] identified one. Observe that for every

4This result is tight: if
∑
i∈I

pi > 1, it is possible to construct an elaboration sequence
{

Pk
}∞

k=1
with

Pk
[
Cp,k (T∗)

]
= 0 for all k.

5This result again follows the work of Carlsson and van Damme (see Carlsson and van Damme [1993b]
and also Kim [1996]) who showed that the uniform best response must be played in the limit equilibrium
of a particular elaboration sequence with uniform noise.
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elaboration sequence
{
P k
}∞

k=1
with P k → P∞, P∞ [C1,∞(T ∗)

]
= 1. Thus we might be

interested in the following property:

Definition 19 Elaboration sequence
{
P k
}∞

k=1
satisfies limit common knowledge if P k

[
Cp,k(T ∗)

]→
1 for all p < 1.

We will show that a slight generalization of strict equilibrium is a sufficient condition
for robustness to limit common knowledge elaborations.

Definition 20 Pure strategy profile a∗ is a semi-strict equilibrium of g if, for each i and
ai ∈ Ai, either gi

(
a∗i , a

∗
−i

)
> gi

(
ai, a

∗
−i

)
or gi (a∗i , a−i) ≥ gi (ai, a−i) for all a−i ∈ A−i.

Proposition 3 If a∗ is a semi-strict equilibrium of g, then a∗ is robust to limit common
knowledge elaborations.

The Proposition is an immediate consequence of two results showing [1] that a∗ is
semi-strict if and only if it is p-dominant for some p < 1 (Corollary 3 below); and [2]
that if a∗ is a p-dominant equilibrium for some p < 1, then a∗ is robust to limit common
knowledge elaborations (Lemma 5 below).

The sufficient condition of Proposition 3 is not necessary: part 2 of Proposition 1
shows that if a two player two action game has a unique, strictly mixed, Nash equilibrium,
then that equilibrium is robust to all (including limit common knowledge) elaborations,
although it certainly does not satisfy the sufficient condition of Proposition 3.

The following Lemma characterizes for which p an action profile is p-dominant. This
Lemma can then be used to give an exact characterization of when an action profile is
p-dominant for some p < 1. Fix game g and Nash equilibrium a∗. Write

A+
i = {ai ∈ Ai : gi (a∗i , a−i) < gi (ai, a−i) for some a−i ∈ A−i} .

If A+
i is empty, set pi = 0. If A+

i is non-empty, then for each ai ∈ A+
i , choose fi (ai) ∈

argmax
a−i∈A−i

(gi (ai, a−i)− gi (a∗i , a−i)) and set

pi = max
ai∈A+

i

{
gi (ai, fi (ai))− gi (a∗i , fi (ai))(

gi
(
a∗i , a

∗
−i

)− gi (ai, a∗−i

))
+ (gi (ai, fi (ai))− gi (a∗i , fi (ai)))

}
. (2)

Lemma 4 For any p ∈ [0, 1]I , a∗ is a p-dominant equilibrium of g if and only if pi ≥ pi
for all i ∈ I.

Proof. (if) Suppose pi ≥ pi for all i ∈ I. Now by construction of p= {pi}i∈I ,

pi
(
gi
(
a∗i , a

∗
−i

)− gi (ai, a∗−i

))
+ (1− pi) (gi (a∗i , a−i)− gi (ai, a−i)) ≥ 0 (3)

for all ai ∈ Ai and a−i ∈ A−i. So for any ai ∈ Ai and λ ∈ ∆(A−i) with 1 > λ
(
a∗−i

) ≥
pi ≥ pi , we have:∑

a−i∈A−i

λ (a−i) (gi (a∗i , a−i)− gi (ai, a−i))

≥

 λ
(
a∗−i

) (
gi
(
a∗i , a

∗
−i

)− gi (ai, a∗−i

))
+
(
1− λ (a∗−i

)) ∑
a−i �=a∗

−i

(
λ(a−i)

(1−λ(a∗
−i))

)
(gi (a∗i , a−i)− gi (ai, a−i))


=

∑
a−i �=a∗

−i

(
λ (a−i)(

1− λ (a∗−i

)))( λ (a∗−i

) (
gi
(
a∗i , a

∗
−i

)− gi (ai, a∗−i

))
+
(
1− λ (a∗−i

))
(gi (a∗i , a−i)− gi (ai, a−i))

)
≥ 0, by (3).

12



This proves that a∗ is p-dominant.
(Only if) If pi > 0, then there exists âi ∈ Ai and â−i ∈ A−i such that for all pi < pi,

pi
(
gi
(
a∗i , a

∗
−i

)− gi (âi, a∗−i

))
+ (1− pi) (gi (a∗i , â−i)− gi (âi, â−i)) < 0.

But if pi < pi, pi > 0; now consider λ ∈ ∆(A−i) with λ
(
a∗−i

)
= pi and λ (â−i) = 1− pi;∑

a−i∈A−i

λ (a−i) (gi (a∗i , a−i)− gi (âi, a−i)) =
{

pi
(
gi
(
a∗i , a

∗
−i

)− gi (âi, a∗−i

))
+(1− pi) (gi (a∗i , â−i)− gi (âi, â−i))

}
< 0

so a∗i is not a best response to λ. Thus a∗ is not p-dominant for any p with pi < pi.

We can use Lemma 4 to give an exact characterization of when an action profile is
p-dominant for some p < 1.

Corollary 3 Pure strategy profile a∗ is a p-dominant equilibrium of g, for some p < 1,
if and only if it is semi-strict.

Proof. By construction, p < 1 if and only if gi
(
a∗i , a

∗
−i

)
> gi

(
ai, a

∗
−i

)
for all ai ∈ A+

i .
But this is exactly the definition of semi-strict equilibrium, since ai is not an element of
A+

i exactly if gi (a∗i , a−i) ≥ gi (ai, a−i) for all a−i ∈ A−i.

Lemma 5 If a∗ is a p-dominant equilibrium of g, for some p < 1, then a∗ is robust to
limit common knowledge elaborations.

Proof. Follows immediately from Corollary 1.

The converse is false; see example 2. So limit common knowledge does not fully
characterize semi-strict equilibria. However, the following result holds: if

{
P k
}∞

k=1
is an

elaboration sequence that does not satisfy limit common knowledge, then there exists a
complete information game g with a strict equilibrium a∗ such that every LEAD µ of[
g,
{
P k
}∞

k=1

]
has µ (a∗) = 0. See the Appendix. This result is closely related to the

approximate lower hemicontinuity results of Monderer and Samet [1996] and Kajii and
Morris [1997].

4.3 Limit Independent Elaborations

Definition 21 Probability distribution P ∈ ∆(T ) is independent if P (t) =
∏
i∈I
Pi (ti),

for some Pi ∈ ∆(Ti).

Definition 22 Elaboration sequence
{
P k
}∞

k=1
, with P k → P∞, satisfies limit indepen-

dence if P∞ is independent.

Lemma 6 If sequence
{
P k
}∞

k=1
satisfies limit independence, then it satisfies limit com-

mon knowledge.

Proof. First note that since the state space is countable, P k → P∞ pointwise implies
that convergence is uniform in states. Let

{
P k
}∞

k=1
be an elaboration sequence satisfying

limit independence. Write

Ak
i (ε) =

{
ti ∈ T ∗

i :
P k (ti) > 0 and∣∣P k (S−i| ti)− P∞ (S−i| ti)

∣∣ ≤ ε, for all S−i ⊆ T−i

}
.
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Since P k [T ∗] → 1 and P k converges uniformly, P k
(
Ak

i (ε)
) → 1 as k → ∞. Fix ε,

and choose K (ε) such that P∞
(

∩
i∈I

Ak
i (ε)

)
≥ 1 − ε for all k ≥ K (ε). Now for all

k ≥ K (ε) and ti ∈ Ak
i (ε) with P k (ti) > 0,

∣∣P k
(
Ak

−i (ε)
∣∣ ti)− P∞ (Ak

−i (ε)
∣∣ ti)∣∣ ≤ ε

and P∞ (Ak
−i (ε)

) ≥ 1 − ε. By independence, P∞ (Ak
−i (ε)

∣∣ ti) = P∞ (Ak
−i (ε)

)
. Thus

P k
(
Ak

−i (ε)
∣∣ ti) ≥ 1− 2ε. So for all k ≥ K (ε),

∩
i∈I

Ak
i (ε) ⊆ B(1−2ε,..,1−2ε),k

∗

(
∩

i∈I
Ak

i (ε)
)
,

so by Lemma 3, ∩
i∈I

Ak
i (ε) ⊆ C(1−2ε,..,1−2ε),k (T ∗) and

{
P k
}∞

k=1
satisfies limit common

knowledge.

Proposition 4 If a∗ is a semi-strict equilibrium of g, then a∗ is robust to limit indepen-
dent elaborations.

Proof. Follows immediately from Proposition 3 and Lemma 6.

4.4 Independent Elaborations

Definition 23 Elaboration sequence
{
P k
}∞

k=1
satisfies independence if each P k is inde-

pendent.

• If
{
P k
}∞

k=1
satisfies independence, then it satisfies limit independence.

Okada [1981] introduced the following definition of strictly perfect equilibria. Fix
ε̃ ≡ {ε̃i}i∈I , each ε̃i : Ai → 
++. Let g (ε̃) be the complete information game where
payoffs are given by g, but each player i is constrained to chose action ai with probability
at least εi(ai). Strategy profile α is an equilibrium of g (ε̃) if and only if αi (ai) = ε̃i(ai)
holds whenever gi(ai, α−i) < gi(a′i, α−i) for some a′i ∈ Ai.

Definition 24 Strategy profile α ∈ A is a strictly perfect equilibrium (of g) if for every
sequence of functions

{
ε̃k
}∞

k=1
, with ε̃ki (ai) → 0 for every i ∈ I and ai ∈ Ai, there exists

a sequence
{
αk
}∞

k=1
, each αk an equilibrium of g(ε̃k), with αk → α.

Definition 25 Action distribution µ is a strictly perfect equilibrium action distribution
if µ (a) =

∏
i∈I
αi(ai) for some strictly perfect equilibrium α.

Proposition 5 Action distribution µ ∈ ∆(A) is robust to independent elaborations if and
only if it is strictly perfect.

Proof. Suppose µ is robust to independent elaborations. Fix any
{
ε̃k
}∞

k=1
, with ε̃k → 0.

Consider any independent elaboration sequence
{
P k
}∞

k=1
with P k =

∏
i∈I
P k

i and P k
i (ai) =

ε̃i(ai). There exists a sequence of equilibrium strategies
{
σk
}∞

k=1
which induce action

distributions µk → µ with the property µk =
∏
i∈I
µk

i , where µ
k
i is the distribution on Ai

induced by σk
i . Let α

k
i (ai) = P k

i (ai) +
∑

ti∈T∗
i

P k
i (ti)σk

i (ai |ti ). Note that σk
i (ai |ti ) > 0

14



for some ti ∈ T ∗
i implies that ai is a best response to αk

−i. Thus αk
i is best response to

αk
−i in the constrained game g(ε̃k). Since P k (T ∗) → 1 and

∏
i∈I
αk

i → µ, µ is a strictly

perfect equilibrium action distribution.
Conversely, suppose µ =

∏
i∈I
αi is a strictly perfect Nash equilibrium action distrib-

ution. Consider any independent elaboration sequence
{
P k
}∞

k=1
. Let ε̃ki (ai) = P k

i (ai).
Let

{
αk
}∞

k=1
be any sequence of equilibria of

{
g
(
ε̃k
)}∞

k=1
with αk → α. Let σk

i (ai|t∗i ) =
αk

i (ai)−P k
i (ai)∑

ti∈T∗
i

P k
i (ti)

for all t∗i ∈ T ∗
i . Clearly σ

k is an equilibrium of
(
g, P k

)
.

4.5 Tightening Results: Examples

The only tight result in this section was the equivalence of strict perfection and robustness
to all independent elaborations. In all the other results, we have a gap between known
necessary and known sufficient conditions. Here we report three examples highlighting
what tight results might and might not be feasible.

Example 2 Player 1 chooses the row, player 2 chooses the column:

L M R
U 0, 0 1, 0 −1, 0
D 0, 0 0, 0 0, 0

.

Strategy profile (U,L) is a Nash equilibrium. It is not semi-strict, since g1 (U,L) =
g1 (D,L) and g1 (U,R) < g1 (D,R). So it is not p-dominant for any p < 1 (by Corollary
3). Thus it does not satisfy the sufficient condition that we identified for robustness
to all limit common knowledge elaborations. Nonetheless, it is robust not only to all
limit common knowledge elaborations, but to all elaborations. To see why, consider any
elaboration sequence

{
P k
}∞

k=1
. Let γk =

√
1− P k [T ∗

2 |T ∗
1 ] → 0 as k → ∞ and

T̂ k
1 =

{
t1 ∈ T ∗

1 : P k (t1) = 0 or γkP k (T ∗
2 | t1) + P k (M | t1) ≥ P k (R| t1)

}
.

The following strategy profile for standard types gives an equilibrium of the game
(
g, P k

)
:

σk
1 (U |t∗1 ) = 1− σk

1 (D |t1 ) =
{

1, if t1 ∈ T̂ k
1

0, if t1 ∈ T ∗
1

∖
T̂ k

1

and σk
2 (a2 |t2 ) =


1− γk, if a2 = L
γk, if a2 =M
0, if a2 = R

for all t2 ∈ T ∗
2 .

Now t1 /∈ T̂ k
1 ⇒ γkP k (T ∗

2 | t1) + P k (M | t1) < P k (R| t1) ⇒ γkP k (T ∗
2 | t1) < 1 −

P k (T ∗
2 | t1) ⇒ P k (T ∗

2 | t1) < 1
1+γk . Thus for each k,

1− (γk
)2

= P k [T ∗
2 |T ∗

1 ]

≤ P k
[
T̂ k

1

∣∣∣T ∗
1

]
+
(
1− P k

[
T̂ k

1

∣∣∣T ∗
1

])( 1
1 + γk

)
.
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Re-arranging gives

P k
[
T̂ k

1

∣∣∣T ∗
1

]
≥

(
1 + γk

) (
1− (γk

)2)− 1

γk

= 1− γk − (γk
)2

→ 1 as k → ∞.

Thus if µk is the EAD corresponding to strategy profile σk,

µk ((U,L)) ≥ P k [T ∗]P k
[
T̂ k

1

∣∣∣T ∗
1

] (
1− γk

)→ 1.

Example 3 Player 1 chooses the row, player 2 chooses the column, and player 3 chooses
the matrix:

L R
L 0, 1, 1 1, 0, 1
R 0, 1, 1 0, 0, 1

.
L R

L 1, 1, 0 −1, 0, 0
R 0, 1, 0 0, 0, 0

(L,L, L) is strictly perfect but not robust to limit independent elaborations (and thus
not robust to limit common knowledge elaborations).

• (L,L, L) is strictly perfect: consider any ε̃k → 0. If αk is an equilibrium of g
(
ε̃k
)
,

then αk
2 (R) = ε̃k2 (R) and αk

3 (R) = ε̃k3 (R). Thus player 1’s payoff to action L is
ε̃k2 (R) (1− ε̃k3 (R)) + ε̃k3 (R) (1− ε̃k2 (R))− ε̃k2 (R) ε̃k3 (R). As k → ∞, this expression
becomes positive. Since player 1’s payoff to R is 0, we have αk

1(R) = ε̃
k
1(R) in the

unique equilibrium of g
(
ε̃k
)
for k sufficient large. Thus αk

i (R) → 0 for all i and
(L,L, L) is strictly perfect.

• (L,L, L) is not robust to limit independent elaborations: consider elaboration se-
quence

{
P k
}∞

k=1
, with P k (t∗) = 1 − εk and P k (t∗1, R,R) = εk, for some t∗ ∈ T ∗

and real numbers εk → 0. Every EAD of
(
g, P k

)
has µk (R,L, L) = 1 − εk and

µk (L,L, L) = εk. Thus (L,L, L) is not robust to limit independent elaborations.

Example 4 Player 1 chooses the row, player 2 chooses the column, and player 3 chooses
the matrix:

L R
L −1,−1,−1 −1, 1, 1
R 1, 1,−1 1,−1, 1

.
L R

L 1,−1, 1 1, 1,−1
R −1, 1, 1 −1,−1,−1

The game has the following “matching pennies” interpretation. Each player chooses
L or R. Each player gets −1 if he matches the choice of the player preceding him in the
cycle 1 → 2 → 3 → 1..., 1 otherwise.

This game has a unique Nash equilibrium (all randomize 50/50). This equilibrium
satisfies all standard refinements. In particular, it is regular, and thus strictly perfect and
essential (van Damme 1991). But we will show that it is not robust to limit common
knowledge elaborations.

Let T ∗
1 = {t1, t′1, ...}, T ∗

2 = {t2, t′2, ..} and T ∗
3 = {t3, ..}. Let P k satisfy P k (t1, t2, L) =

εk, P k (t1, t2, t3) = 2
3 and P k (t′1, t′2, t3) = 1

3 − εk with P k (t) = 0 for all other t. Thus
(ignoring zero probability types) we have:
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t3 L
t1, t2

2
3 εk

t′1, t
′
2

1
3 − εk 0

where εk → 0 as k → ∞.
The game

(
g, P k

)
has an essentially unique Bayesian Nash equilibrium. This equi-

librium has σk
1 (L|t1) = 1

2 , σ
k
1 (L|t′1) = 1, σk

2 (L|t2) = 3
4

(
1− εk), σk

2 (L|t′2) = 0 and
σk

3 (L|t3) = 1
2 − 3

4ε
k. To see why, first note that we would get a contradiction if type

t1, t2, or t3 of player 1,2 and 3 respectively played a pure strategy. But if type t2 of
player 2 plays a mixed strategy, we must have σk

1 (L|t1) = 1
2 . But if type t1 of player

1 plays a mixed strategy, he must assess the probability that 3 plays L to be 1
2 . Thus

3εk

2+3εk (1)+ 2
2+3εk

(
σk

3 (L|t3)
)
= 1

2 ; so σ
k
3 (L|t3) = 1

2− 3
4ε

k. But σk
3 (L|t3) < 1

2 ⇒ σk
1 (L|t′1) =

1 ⇒ σk
2 (L|t′2) = 0. Finally, if type t3 of 3 plays a mixed strategy, he must assess the

probability that 2 plays L to be 1
2 ; thus

2
3−3εk

(
σk

2 (L|t2)
)
+ 1−3εk

3−3εk (0) = 1
2 ; so σ

k
2 (L|t2)

= 3
4 − 3

4ε
k.

What happens as k → ∞? Type t1 of player 1 plays L with probability 1
2 , type t

′
1 of

player 1 always plays L, type t2 of player 2 plays L with probability 3
4 , type t

′
2 of player

2 always plays R, while type t3 of player 3 plays L with probability 1
2 . Writing µk for

the equilibrium action distribution generated by the strategies above, we have µk → µ
where µ (L,L, L) = 1

8 , µ (L,L,R) =
1
8 , µ (L,R,L) =

5
24 , µ (L,R,R) =

5
24 , µ (R,L, L) =

1
8 ,

µ (R,L,R) = 1
8 , µ (R,R,L) =

1
24 and µ (R,R,R) = 1

24 . This is a correlated equilibrium
of g.6

5 Justified by Full Support Elaborations

Another way of examining the robustness of equilibria of g is to ask if behavior close to
those equilibria is possible equilibrium behavior in some elaboration where all committed
types are possible. In this section, we consider this question under the same progressively
stronger restrictions on the elaboration sequences considered in the previous section. But
now the solution concepts become progressively stronger.

Definition 26 Probability distribution P ∈ ∆(T ) has full support if, for all ti ∈ T ∗
i with

P (ti) > 0, P (a−i|ti) > 0 for all a−i ∈ A−i.

Definition 27 Elaboration sequence
{
P k
}∞

k=1
has full support if each P k has full support.

For a given property X of canonical elaborations, we will say:

Definition 28 Action distribution µ ∈ ∆(A) is justified by some full support (type X)
elaboration if µ is a LEAD of

[
g,
{
P k
}∞

k=1

]
for some full support (type X) elaboration

sequence
{
P k
}∞

k=1
.

6If the game g is perturbed, but we hold fixed the elaboration sequence
{

P k
}∞

k=1
, one can verify

that
[
g,
{

P k
}∞

k=1

]
has a unique LEAD equal to the unique Nash equilibrium action distribution of the

perturbed game g. However, it is presumably possible to choose
{

P k
}∞

k=1
(as a function of the perturbed

g) in order to show that the Nash equilibria of the perturbed games are not robust either.
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5.1 No Restrictions

We will use the following well known characterization of when an action is dominated.

Lemma 7 Action ai ∈ Ai is not dominated (in g) if and only if there exists a full support
probability distribution φ ∈ ∆++ (A−i) such that ai is a best response to φ, i.e. for all
a′i ∈ Ai, ∑

a−i∈A−i

φ (a−i) gi(ai, a−i) ≥
∑

a−i∈A−i

φ (a−i) gi(a′i, a−i).

Proof. See Pearce [1984], appendix B.

Proposition 6 Action distribution µ is justified by some full support elaboration if and
only if it is an undominated correlated equilibrium.

The following proof is close to the arguments of Fudenberg, Kreps and Levine [1988].
Proof. Suppose µ is a LEAD of some full support elaboration sequence

[
g,
{
P k
}∞

k=1

]
.

By Lemma 1, µ is a correlated equilibrium of g. If ai is dominated and distribution P k has
full support, then Lemma 7 implies µk(ai) = 0 in any EAD of

(
g, P k

)
. Thus µ (ai) = 0

in every LEAD of
[
g,
{
P k
}∞

k=1

]
.

Now suppose µ is an undominated correlated equilibrium of g. LetA+
i = {ai ∈ Ai : µ (ai) > 0}.

By Lemma 7, for each ai ∈ A+
i , we can define φi (.|ai) ∈ ∆++ (A−i) such that ai is

a best response to φi(.|ai). Now let N =
∑
i∈I

#A+
i , fix εk → 0, let fi : A+

i → T ∗
i

be onto and write f(a) = (f1(a1), ..., fI(aI)). Thus for each action ai, we identify
a unique standard type, fi(ai). Now set P k (f(a)) =

(
1−Nεk)µ (a) for all a ∈ A,

P k
(
fi(ai), a′−i

)
= εkφi

(
a′−i

∣∣ ai) for all ai ∈ A+
i and a′−i ∈ A−i, and P k(t) = 0 for all

other t. Sequence
{
P k
}∞

k=1
has full support. Consider the strategy profile where each

standard type fj(aj) chooses action aj . Under this strategy profile, type fi(ai) attaches
probability( (

1−Nεk)µ (ai)
(1−Nεk)µ (ai) + εk

)
µ
(
a′−i

∣∣ ai)+ ( εk

(1−Nεk)µ (ai) + εk
)
φi

(
a′−i

∣∣ ai)
to his opponents playing a′−i. This gives a convex combination of distributions with ai a
best response to both. Thus this strategy profile is an equilibrium of

(
g, P k

)
. But if µk

is the action distribution generated by this strategy profile, µk → µ.

5.2 Limit Common Knowledge Elaborations

Proposition 7 Action distribution µ is justified by some full support limit common knowl-
edge elaboration if and only if it is an undominated correlated equilibrium.

Proof. Exactly the same argument as that for Proposition 6 works, since the elab-
oration sequences constructed in the proof of that Proposition satisfied limit common
knowledge.

Börgers [1994] showed how one round of deletion of weakly dominated strategies follows
from approximate common knowledge of rationality.
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5.3 Limit Independent Elaborations

Proposition 8 Action distribution µ is justified by some full support limit independent
elaboration if and only if it is an undominated Nash equilibrium.

Proof. Again, the same argument as that for Proposition 6 works, except that now
independence in the limit ensures that µ is a Nash equilibrium.

A version of this result appears in Fudenberg, Kreps and Levine [1988] (they assumed
a unique standard type, which implies limit independence). Dekel and Fudenberg [1990]
clarified the role of limit independent elaborations in deleting (one round of) weakly
dominated strategies.

5.4 Independent Elaborations

Consider the perturbed game g (ε̃) introduced in section 4.4. The following notion is due
to Selten [1965, 1975].

Definition 29 Strategy profile α ∈ A is a perfect equilibrium if there exist a sequence of
functions ε̃k, each ε̃ki (ai) → 0 as k → ∞, and

{
αk
}∞

k=1
, with αk → α, such that each αk

is an equilibrium of g
(
ε̃k
)
.

An equivalent characterization is the following: strategy profile α ∈ A is a perfect
Nash equilibrium if there exists real numbers εk → 0 and αk → α, such that αk

i (ai) < ε
k

holds whenever gi(ai, αk
−i) < gi(a

′
i, α

k
−i) for some a′i ∈ Ai.

Definition 30 Action distribution µ is a perfect equilibrium action distribution if µ (a) =∏
i∈I
αi(ai) for some perfect equilibrium α.

Proposition 9 Action distribution µ is justified by some full support independent elabo-
ration if and only if it is a perfect equilibrium action distribution.

Proof. Suppose µ is justified by some full support independent elaboration. Then there
exists independent elaboration sequence P k =

∏
i∈I
P k

i , a sequence of equilibrium strat-

egy profiles of
(
g, P k

)
,
{
σk
}∞

k=1
, which induce action distributions µk → µ. Clearly

µk =
∏
i∈I
µk

i where µk
i is the distribution on Ai induced by σk

i . Let αk
i (ai) = P k

i (ai) +∑
ti∈T∗

i

P k
i (ti)σk

i (ai |ti ). Clearly αk
i has full support. Also note that σk

i (ai |ti ) > 0 im-

plies that ai is a best response to αk
−i. Thus if ai is not a best response to αk

−i, then
αk

i (ai) ≤ 1 − P k
i (T

∗
i ) ≤ 1 − P k (T ∗). Thus αk is a full support strategy profile which

assigns probability less than 1 − P k (T ∗) to actions that are not best responses. Since
P k (T ∗) → 1 and

∏
i∈I
αk

i → µ, µ is a perfect equilibrium action distribution. The converse

is straightforward.
It is well known that all perfect equilibria are undominated Nash equilibria. The

following example shows that, with more than two players, they need not be equivalent
(see van Damme 1991, page 29).
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Example 5 Player 1 chooses the row, player 2 chooses the column, and player 3 chooses
the matrix:

L R
L 1, 1, 1 1, 0, 1
R 1, 1, 1 0, 0, 1

.
L R

L 1, 1, 0 0, 0, 0
R 0, 1, 0 1, 0, 0

(L,L, L) is the unique perfect equilibrium, but (R,L, L) is an undominated Nash
equilibrium.

6 Discussion

6.1 Summary

We conclude by summarizing the results surveyed in the paper in a little more detail.
In each case, we either report the best sufficient conditions (sc) and necessary conditions
(nc) that we know, or we give an exact characterization (*) where available:

class of
elaboration

∖
type of
robustness

Robust to
all sequences

Justified by
some full
support sequence

No
Restrictions

sc: unique CE
sc: p-dom. with

∑
i∈I
pi ≤ 1

nc: strictly perfect NE
note: not all strict NE

*: undominated CE

Limit
Common
Knowledge

sc: unique CE
sc: semi-strict NE
nc: strictly perfect NE
note: not all essential NE

*: undominated CE

Limit
Independence

sc: unique CE
sc: semi-strict NE
nc: strictly perfect NE

*: undominated NE

Independence *: strictly perfect NE *: perfect NE

What should we conclude from this table? The right hand column indicates which
outcomes might be reasonable equilibrium outcomes for a game g, assuming that there is
some possibility that the analyst’s model g is not quite complete. The left hand column
indicates which equilibrium outcomes of game g are equilibrium outcomes, whatever the
fine details that have been missed from the analysis.

In each case, what restrictions on the elaborations are relevant? In Kajii and Morris
[1995], we argued that if you want to avoid assuming (full or approximate) common
knowledge of payoffs on the part of the players, then no extra restrictions are justified. But
the limit common knowledge case clearly provides an important benchmark. Fudenberg,
Kreps and Levine [1988] argue for limit independence in analyzing the right hand column
on the grounds that we should allow for the possibility of correlation conditional on the
game not being as expected. The refinements literature has focussed on independent
elaborations for no obvious reason.

6.2 Two More Restrictions

Two more natural restrictions to place on elaboration sequences
{
P k
}∞

k=1
are:
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Definition 31 Elaboration sequence
{
P k
}∞

k=1
has finite support if

{
t : P k (t) > 0 for some k

}
is finite.

Definition 32 Elaboration sequence
{
P k
}∞

k=1
has a unique standard type if

{
ti ∈ T ∗

i : P k
i (ti) > 0 for some k

}
is a singleton for all i and k.

Fudenberg and Tirole [1991, Theorem 14.5] showed that if
{
P k
}∞

k=1
has finite support,

it satisfies limit common knowledge. It may still fail to satisfy limit independence. If{
P k
}∞

k=1
has a unique standard type, then it satisfies limit independence. It may fail to

satisfy independence.
Fudenberg and Tirole [1991, Theorem 14.6] show that if an equilibrium is essential

[Wu and Jiang 1962], it is robust to all elaboration sequences with a unique standard
type. For a generic choice of normal form payoffs, all equilibria are essential. It seems
likely that essential equilibria are robust to limit independent elaborations, but the unique
standard type result doesn’t show this. Example 4 shows that not all essential equilibria
are robust to limit common knowledge elaborations (or even finite support elaborations).
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Appendix
In this appendix, we show that if sequence

{
P k
}∞

k=1
does not satisfy limit common

knowledge, then we can find a game g with strict Nash equilibrium a∗ such that a∗ is not
a LEAD of

[
g,
{
P k
}∞

k=1

]
.

More formally, we have:

Definition 33 Elaboration sequence
{
P k
}∞

k=1
satisfies payoff continuity if, for any strict

Nash equilibrium a∗ of any complete information game g, a∗ is a limit equilibrium of[
g,
{
P k
}∞

k=1

]
.

Proposition 10
{
P k
}∞

k=1
satisfies payoff continuity if and only if

{
P k
}∞

k=1
satisfies limit

common knowledge.

Proof. “if” follows from Lemma 5. For “only if,” fix a ∈ A and let Ep,k
i (a) be the

projection of Cp,k

(
×

i∈I
(T ∗

i ∪ {ai})
)

on Ti, i.e., Cp,k

(
×

i∈I
(T ∗

i ∪ {ai})
)

= ×
i∈I
Ep,k

i (a),

each Ep,k
i (a) ⊆ Ti. Now we have

P k
[
Ep,k

−i (a)
∣∣∣ ti] ≥ pi, for all ti ∈ Ep,k

i (a) with P k (ti) > 0. (4)

Since Ep,k
j (a) ⊆ T ∗

j ∪ {aj} for all j ∈ I,

P k

[
×

j �=i

(
T ∗

j ∪ {aj}
)∣∣∣∣ ti] ≥ pi, for all ti ∈ Ep,k

i (a) with P k (ti) > 0. (5)

Write Fp,k
i = ∩

a∈A
Ep,k

i (a), F p,k
−i = ×

j �=i
Fp,k

j and N = #A. By (4),

P k
[
Fp,k
−i

∣∣∣ ti] ≥ 1−N(1− pi), for all ti ∈ F p,k
i with P k (ti) > 0. (6)

By (5),

P k

[
×

j �=i

(
T ∗

j ∪ {aj}
)∣∣∣∣ ti] ≥ pi ≥ 1−N(1− pi), for all ti ∈ Fp,k

i with P k (ti) > 0. (7)

Thus

∩
a∈A

(
Cp,k

(
×

i∈I
(T ∗

i ∪ {ai})
))

= ∩
i∈I
F p,k

i ⊆ Cq,k (T ∗) (8)

whenever qi = 1 − N(1 − pi) [equivalently, whenever pi = 1 − 1
N (1− qi)]. Now suppose

that P k does not satisfy limit common knowledge. That is, there exists q < 1 and ε > 0
such that P k

[
Cq,k (T ∗)

] ≤ 1 − ε for infinitely many k. Then there exists a∗ ∈ A, p < 1

and δ > 0 such that P k

[
Cp,k

(
×

i∈I
(T ∗

i ∪ {a∗i })
)]

≤ 1 − δ for infinitely many k. Let

η < 1− pi for all i. Now consider the following game:

gi (a) =


η, if a = a∗

0, if ai = a∗i and a−i �= a∗−i

0, if ai �= a∗i and a−i = a∗−i

1, if ai �= a∗i and a−i �= a∗−i

.

Action profile a∗ is never played by type profiles not in Cp,k

(
×

i∈I
(T ∗

i ∪ {a∗i })
)
. Thus

µk (a∗) < 1 − δ if µk is an equilibrium action distribution of
(
g, P k

)
; so µ (a∗) < 1− δ if

µ is a LEAD of
[
g,
{
P k
}∞

k=1

]
.
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