Finite Markov Chains I

Daisuke Oyama

Topics in Economic Theory

November 12, 2014

Classification of States

Let $\{X_t\}_{t=0}^{\infty}$ be a finite-state discrete-time Markov chain represented by an $n \times n$ stochastic matrix P, with the state space denoted by $S = \{0, 1, \dots, n-1\}$.

Definition 1

- ▶ State *i* has access to state *j*, denoted $i \rightarrow j$, if $(P^k)_{ij} > 0$ for some k = 0, 1, 2, ..., where $P^0 = I$.
- ▶ States *i* and *j* communicate, denoted *i* \leftrightarrow *j*, if $i \rightarrow j$ and $j \rightarrow i$.

Lemma 1

The binary relation \leftrightarrow is an equivalent relation: it is

- 1. reflexive, i.e., $i \leftrightarrow i$ for all $i \in S$;
- 2. symmetric, i.e., if $i \leftrightarrow j$, then $j \leftrightarrow i$; and
- 3. transitive, i.e., if $i \leftrightarrow j$ and $j \leftrightarrow k$, then $i \leftrightarrow k$.

Definition 2

 $C \subset S$ is a *communication class* of $\{X_t\}$, or of P, if it is an equivalent class of \leftrightarrow .

Definition 3

 $\{X_t\}$, or *P*, is *irreducible* if it has only one communication class.

It is *reducible* if it is not irreducible.

Definition 4

A state *i* is *recurrent* if $i \rightarrow j$ implies $j \rightarrow i$.

It is *transient* if it if not recurrent.

Lemma 2

For any communication class C and any states $i, j \in C$, i is recurrent if and only if j is recurrent.

► Thus, recurrence is a property of a communication class.

Definition 5

A communication class ${\cal C}$ is a recurrent class if

- it contains a recurrent state.
- It is *transient* if it if not recurrent.

A recurrent class is also called a *closed communication class*.

Definition 6 (Stokey and Lucas, 11.1)

 $E \subset S$ is an *ergodic set* if

•
$$\sum_{j \in E} P_{ij} = 1$$
, and

• If
$$F \subset E$$
 and $\sum_{j \in F} P_{ij} = 1$, then $F = E$.

Lemma 3

C is a recurrent class if and only if it is an ergodic set.

Equivalent Definitions by Graph-Theoretic Concepts

• A directed graph $\Gamma = (V, E)$ consists of

▶ a nonempty set V of *nodes* (or *vertices*), and

- a set $E \subset V \times V$ of edges (or directed edges or arcs).
- ► A subgraph of a directed graph Γ is a directed graph (V', E') such that $V' \subset V$ and $E' \subset E$.
- A path is a sequence of nodes (v_0, v_1, \ldots, v_k) such that $(v_i, v_{i+1}) \in E$.

(This is often called a *walk*, and a path often refers to a *simple walk*, a walk where the nodes are all distinct, except possibly for v_0 and v_k .)

For each $v \in V$, (v) is also considered to be a path.

We define the *length* of a path (v_0, v_1, \ldots, v_k) to be k.

- State *i* has access to state *j*, denoted *i* → *j*, if there is a path that starts with *i* and terminates with *j*.
- States *i* and *j* communicate, denoted $i \leftrightarrow j$, if $i \rightarrow j$ and $j \rightarrow i$.
- $\blacktriangleright \leftrightarrow$ is an equivalent relation, and thus partitions V into equivalent classes.
- A strongly connected component (SCC) of Γ is a subgraph (C, E_C) of Γ such that C is an equivalent class of \leftrightarrow and $E_C = E \cap (C \times C)$.
- Γ is strongly connected if V constitutes a single equivalent class of \leftrightarrow .

- The condensation of Γ is the directed graph $(V/_{\leftrightarrow}, \tilde{E})$ where
 - \blacktriangleright $V/_{\leftrightarrow}$ is the quotient set (the set of equivalent classes) of $\leftrightarrow,$ and
 - $(C,C') \in \tilde{E}$ if and only if $C \neq C'$ and there exist $i \in C$ and $j \in C'$ such that $i \rightarrow j$.
- ► The condensation is *acyclic*, i.e., it has no path (V₀,...,V_k) such that V₀ = V_k.

Therefore, it has at least one *sink node*, a node $C \in V/_{\leftrightarrow}$ such that $(C, C') \notin \tilde{E}$ for all $C' \in V/_{\leftrightarrow}$.

Given a stochastic matrix P with state space S, let Γ(P) = (S, E) be the directed graph such that (i, j) ∈ E if and only if P_{ij} > 0.

Observation 1

For all k = 0, 1, ... and all $i, j \in S$, the following are equivalent:

•
$$P_{ij}^k > 0;$$

• there is a path of $\Gamma(P)$ of length k from i to j.

Thus, the two equivalent relations are equal.

Observation 2

- C ⊂ S is a communication class of P if and only if C is the set of nodes of a strongly connected component of Γ(P).
- P is irreducible if and only if $\Gamma(P)$ is strongly connected.
- C ⊂ S is a recurrent class if and only if
 C constitutes a sink node of the condensation of Γ(P).

Observation 3

Any Markov chain, or stochastic matrix, has at least one recurrent class.

Definition 7

 $x \in \mathbb{R}^n_+$ is a stationary distribution of $\{X_t\}$, or of P, if x'P = x' and $x'\mathbf{1} = 1$, where $\mathbf{1} \in \mathbb{R}^n$ is the vector of ones.

Proposition 4

Any Markov chain, or stochastic matrix, has at least one stationary distribution.

Proposition 5

Let P be an irreducible stochastic matrix.

- P has a unique stationary distribution.
- The unique stationary distribution is strictly positive.

Proposition 6

For any stationary distribution x, $x_i = 0$ for any transient state i.

Corollary 7

- For any stationary distribution x and any recurrent class C, if supp(x) ∩ C ≠ Ø, then C ⊂ supp(x), and x|_C/||x|_C|| is the unique stationary distribution of P|_C.
- Any stationary distribution is a convex combination of these stationary distributions.

Corollary 8

P has a unique stationary distribution if and only if it has a unique recurrent class.

Periodicity

Definition 8

 $d \in \mathbb{Z}_{++}$ is the *period* of state *i* if it is the greatest common divisor of all *k*'s such that $(P^k)_{ii} > 0$.

Lemma 9

For any communication class C and any states $i, j \in C$, i has period d if and only if has period d.

Thus, recurrence is a property of a communication class.

Definition 9

- The period of a recurrent class is the period of any state in that class.
- ► The period of {*X_t*}, or of *P*, is the least common multiple of the periods of the recurrent classes.
- $\{X_t\}$, or of P, is *aperiodic* if its period is one.

Proposition 10

- For any stochastic matrix P, lim_{t→∞}(1/t) ∑_{s=0}^{t-1} P^s exists, and each row of it is a stationary distribution.
- If P is aperiodic, then lim_{t→∞} P^t exists, and each row of it is a stationary distribution.
- ▶ If P in addition has only one recurrent class, then

$$\lim_{t \to \infty} P^t = \begin{pmatrix} x' \\ \vdots \\ x' \end{pmatrix},$$

where x is the unique stationary distribution of P.

- ▶ Suppose that an irreducible Markov chain has period *d*.
- Fix any state, say state 0.
- For each m = 0,..., d − 1, let S_m be the set of states i such that (P^{kd+m})_{0i} > 0 for some k.
- These sets S₀,..., S_{d-1} constitute a partition of S and are called the cyclic classes.
- ▶ For each S_m and each $i \in S_m$, we have $\sum_{j \in S_{m+1}} P_{ij} = 1$, where $S_d = S_0$.