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Computing Stationary Distributions

We want to solve for a nonzero solution x = (x0, x1, x2, x3) to

(
x0 x1 x2 x3

)
−4 1 2 1
4 −9 2 3
0 1 −3 2
0 0 5 −5

 =
(
0 0 0 0

)
or

−4x0 + 4x1 = 0

x0 − 9x1 + x2 = 0

2x0 + 2x1 − 3x2 + 5x3 = 0

x0 + 3x1 + 2x2 − 5x3 = 0

(from Stewart 2009, Section 10.2).
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(Scaled) Gaussian Elimination: Reduction

I

Multipliers −x0 + x1 = 0 (scaled)

1 x0 − 9x1 + x2 = 0

2 2x0 + 2x1 − 3x2 + 5x3 = 0

1 x0 + 3x1 + 2x2 − 5x3 = 0

I

−8x1 + x2 = 0

4x1 − 3x2 + 5x3 = 0

4x1 + 2x2 − 5x3 = 0
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I

Multipliers −x1 + 1
8x2 = 0 (scaled)

4 4x1 − 3x2 + 5x3 = 0

4 4x1 + 2x2 − 5x3 = 0

I

−5
2x2 + 5x3 = 0
5
2x2 − 5x3 = 0
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I

Multipliers −x2 + 2x3 = 0 (scaled)
5
2

5
2x2 − 5x3 = 0

I (Irrelevant)

0 = 0
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(Scaled) Gaussian Elimination: Backward Substitution

I x3 is undetermined.
⇒ Set x3 = 1.

I By −x2 + 2x3 = 0, we have x2 = 2x3 = 2.

I By −x1 + 1
8x2 = 0, we have x1 =

1
8x2 =

1
4 .

I By −x0 + x1 = 0, we have x0 = x1 =
1
4 .
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(Scaled) Gaussian Elimination: Normalization

I Normalize x so that
∑

xi = 1:

x =
(
1
4 ,

1
4 , 2, 1

)
/
(
1
4 + 1

4 + 2 + 1
)
=
(

1
14 ,

1
14 ,

4
7 ,

4
7

)
.
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(Scaled) Gaussian Elimination: Reduction

0.


−4 1 2 1
4 −9 2 3
0 1 −3 2
0 0 5 −5



⇒


−1◦ 1∗ 2∗ 1∗

1 −9 2 3
0 1 −3 2
0 0 5 −5

 (scaling)

⇒


−1◦ 1∗ 2∗ 1∗

1 −8 4 4
0 1 −3 2
0 0 5 −5

 (reduction)

(The multipliers and A[0, 0] may be left untouched.)
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(Scaled) Gaussian Elimination: Reduction

1.


∗ ∗ ∗ ∗
∗ −8 4 4
∗ 1 −3 2
∗ 0 5 −5



⇒


∗ ∗ ∗ ∗
∗ −1◦ 4∗ 4∗

∗ 1
8 −3 2

∗ 0 5 −5

 (scaling)

⇒


∗ ∗ ∗ ∗
∗ −1◦ 4∗ 4∗

∗ 1
8 −5

2
5
2

∗ 0 5 −5

 (reduction)

(The multipliers and A[1, 1] may be left untouched.)
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(Scaled) Gaussian Elimination: Reduction

2.


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ −5

2
5
2

∗ ∗ 5 −5



⇒


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ −1◦ 5

2

∗

∗ ∗ 2 −5

 (scaling)

⇒


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ −1◦ 5

2

∗

∗ ∗ 2 0

 (reduction)

(The multipliers and A[2, 2] may be left untouched.)
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(Scaled) Gaussian Elimination: Backward Substitution

I We are left with

(
x0 x1 x2 x3

)
◦ ∗ ∗ ∗
1 ◦ ∗ ∗
0 1

8 ◦ ∗
0 0 2 0

 =
(
0 0 0 0

)

where ∗ is understood as 0, and ◦ as −1.

I Solve backward:

x3 = 1

x2 = 2x3

x1 =
1
8x2 + 0x3

x0 = 1x1 + 0x2 + 0x3.
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Loss of Significance
Consider, for example,

P =

1− (q + ε) q ε
q 1− (q + ε) ε
ε ε 1− 2ε

 ,

with A = P − I equal to

A =

−(q + ε) q ε
q −(q + ε) ε
ε ε −2ε

 ,

where 0 < q < 1, and ε > 0 is sufficiently small.

I Theoretically, Gaussian elimination leads to ◦ ∗ ∗
q

q+ε ◦ ∗
ε

q+ε 1 0

 .
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I In the 0th step, we have

A =

−(q + ε) q ε
q

q+ε −(q + ε) + q2

q+ε ε+ εq
q+ε

ε
q+ε ε+ εq

q+ε −2ε+ ε2

q+ε

 .

I Numerically, we do not have

(q + ε)− q2

q + ε
= ε+

εq

q + ε
,

where some degree of significance is lost in the LHS
because of subtraction, so that

ε+ εq
q+ε

(q + ε)− q2

q+ε

can be far from 1.
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The Grassmann-Taksar-Heyman (GTH) Algorithm

I Use the property that for each k,

A[k, k] = −
∑
j 6=k

A[k, j]

to avoid subtraction.
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GTH: Reduction

0.


−4 1 2 1
4 −9 2 3
0 1 −3 2
0 0 5 −5



⇒


◦ 1 2 1
1 −9 2 3
0 1 −3 2
0 0 5 −5

 (scale = 1 + 2 + 1 = 4)

⇒


◦ 1 2 1
1 −8 4 4
0 1 −3 2
0 0 5 −5

 (reduction)

(The multipliers and A[0, 0] may be left untouched.)
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GTH: Reduction

1.


∗ ∗ ∗ ∗
∗ −8 4 4
∗ 1 −3 2
∗ 0 5 −5



⇒


∗ ∗ ∗ ∗
∗ ◦ 4 4
∗ 1

8 −3 2
∗ 0 5 −5

 (scale = 4 + 4 = 8)

⇒


∗ ∗ ∗ ∗
∗ ◦ 4 4
∗ 1

8 −5
2

5
2

∗ 0 5 −5

 (reduction)

(The multipliers and A[1, 1] may be left untouched.)
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GTH: Reduction

2.


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ −5

2
5
2

∗ ∗ 5 −5



⇒


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ◦ 5

2

∗ ∗ 2 −5

 (scale = 5
2)

⇒


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ◦ 5

2

∗ ∗ 2 0

 (reduction)

(The multipliers and A[2, 2] may be left untouched.)
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