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Computing Stationary Distributions

We want to solve for a nonzero solution z = (xq, 1, 2, x3) to

-4 1 2 1
(:Uo T To 333) Bl 719 _23 ;) :(0 0 0 0)
0 0 &5 =5
or
—4xg + 4x1 =0
o — 91 + 29 =0

2x0 + 2x1 — 329 + 523 =0
xo+ 3x1 + 219 — bxg3 =0

(from Stewart 2009, Section 10.2).
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(Scaled) Gaussian Elimination: Reduction

Multipliers —x0 + T1 =0
1 o — 921 + 29 =0
2 2x0 + 221 — 322 + 523 =0
1 xo+3x1 + 229 — b3 =0
>
—8x1 + x9 =0

4x1 — 322+ 5x3 =0
4z + 229 — D53 =0

(scaled)
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Multipliers — —x1 + @2 =0
4 4x1 — 329 + 523 =0
4 4x1 + 229 — D3 =0

—%xg +5x3 =0

%xg *5$3 =0

(scaled)

3/16



Multipliers

> (Irrelevant)

5

2

—22+ 223 =0

%:UQ —Sx3 =0

(scaled)
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(Scaled) Gaussian Elimination: Backward Substitution

» x3 is undetermined.
= Set 3 = 1.

v

By —xz9 + 2x3 = 0, we have x9 = 2x3 = 2.

v

1 1 1
By —x1 + g:L'Q = 0, we have r1 = §x2 =7

v

By —zg+ x1 =0, we have g = z1 = i.
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(Scaled) Gaussian Elimination: Normalization

» Normalize z so that > x; = 1:

= (5520 /(G+1+2+1) = (i1

4
7

e

)-

/16



0
0

0

-3
5

-5

(Scaled) Gaussian Elimination: Reduction

(scaling)

(reduction)

(The multipliers and A0, 0] may be left untouched.)
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(Scaled) Gaussian Elimination: Reduction

* * * *
mE -8 4 4
*x 1 =3 2
* 0 5 =5
k% * ok
= | B (scaling)
* % -3 2 &
* 0 5 =5
k% ko k
= |* _11 45 45 (reduction)
8 T2 2
x 0 5 =5

(The multipliers and A[1, 1] may be left untouched.)
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(Scaled) Gaussian Elimination: Reduction

I T
Xk k%
2 2
* * D —H
x % *
I * (scaling)
« o 10 %* scaling
* x 2 =5
x % % *
x % % * _
=, . _o 5 (reduction)
2
* ok 2 0
(The multipliers and A[2, 2] may be left untouched.)
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(Scaled) Gaussian Elimination: Backward Substitution

» We are left with

(l‘o r1 T2 .%'3) :(0 0 0 O)

S O = 0
Qo= O ¥
N O % %
O ¥ X %

where * is understood as 0, and o as —1.
» Solve backward:
xr3 = 1
To = 2x3

r1 = %1'2 + Ox3
zg = lz1 + 022 + Ox3.
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Loss of Significance
Consider, for example,

1—(q+¢) q £
P= q 1-(qg+e) ¢ ;
€ 5 1—2¢

with A = P — I equal to

—(q+e) q €
A: q _(Q+€) € )
€ € —2¢

where 0 < ¢ < 1, and € > 0 is sufficiently small.

» Theoretically, Gaussian elimination leads to

ok %
q
—— o x
qte
£ 10
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» In the Oth step, we have

—(g+¢) q £
q 2
A= e (q+€)+ﬁ €+q+s
ﬁ 8+q+a _2€+q+a

» Numerically, we do not have

2 eq

:6+ s
q+e q—+e¢

(q+¢e)—

where some degree of significance is lost in the LHS
because of subtraction, so that

et

q2

(q + 8) q+5

can be far from 1.
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The Grassmann-Taksar-Heyman (GTH) Algorithm

> Use the property that for each k,

Alk, Bl = = Alk, )
Jj#k

to avoid subtraction.
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GTH: Reduction

-4 1 2 1
0. 4 -9 2 3
0o 1 -3 2
0 5 =95
o 1 2 1
1 -9 2 3
=10 1 -3 9 (scale=1+2+1=4)
0 5 =95
o 1 2 1
1 -8 4 4 .
=10 1 _3 o (reduction)
0 0 5 =5

(The multipliers and A0, 0] may be left untouched.)
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GTH: Reduction

* * * *
mE -8 4 4
*x 1 =3 2
* 0 5 =5
¥ ok ok k
* o 4 4 _ _
=1, L3y (scale=4+4=38)
* 0 5 =5
X ok %k
= |* (1) 45 % (reduction)
8 T2 2
* 0 5 =5

(The multipliers and A[1, 1] may be left untouched.)
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GTH: Reduction

ok *
k k k k
S I A
2 3
* ok 51 -5
* k% %
* * * %

5

scale =2

% % o g ( 2)
* x 2 =5
k k k

* * % .

= 5 (reduction)
* x o 3
* x 2 0

(The multipliers and A[2, 2] may be left untouched.)
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