Analysis in Metric Space I

Daisuke Oyama

Topics in Economic Theory

October 1, 2014

Metric Spaces

Definition 1

For a nonempty set S, a function $\rho\colon S\times S\to\mathbb{R}$ is a *metric* or *distance* on S if for any $x,y,z\in S,$

$$\begin{array}{ll} 0. \ \ \rho(x,y) \geq 0, \\ 1. \ \ \rho(x,y) = 0 \ \ \text{if and only if } x = y, \\ 2. \ \ \rho(x,y) = \rho(y,x), \ \text{and} \\ 3. \ \ \rho(x,y) \leq \rho(x,z) + \rho(z,y). \end{array}$$

The pair (S, ρ) is called a *metric space*.

Often we say that S is a metric space with a metric or distance $\rho.$ If ρ is understood, we simply say that S is a metric space.

► Condition 0 actually follows from conditions 1–3.

Normed Vector Spaces

Definition 2

For a nonempty vector space V (over \mathbb{R}), a function $\|\cdot\|: V \to \mathbb{R}$ is a *norm* on V if for any $x, y \in V$ and $\gamma \in \mathbb{R}$,

- 0. $||x|| \ge 0$, 1. ||x|| = 0 if and only if x = 0, 2. $||\gamma x|| = |\gamma| ||x||$, and
- 3. $||x + y|| \le ||x|| + ||y||$.

The pair $(V, \|\cdot\|)$ is called a *normed vector space* or *normed space*. Often we say that V is a normed vector space with a norm $\|\cdot\|$.

If $\|\cdot\|$ is understood, we simply say that V is a normed vector space.

► Condition 0 actually follows from conditions 1–3.

Normed spaces are a special case of metric spaces.

Proposition 1 (Exercise 3.1.3)

Let $(V, \|\cdot\|)$ be a normed vector space, and define the function $\rho \colon V \times V \to \mathbb{R}$ by $\rho(x, y) = \|x - y\|$. Then (V, ρ) is a metric space.

Examples (*p*-Norm)

• For \mathbb{R}^k and $p \ge 1$, let $\|\cdot\|_p \colon \mathbb{R}^k \to \mathbb{R}$ be defined by

$$||x||_p = \left(\sum_{i=1}^k |x_i|^p\right)^{1/p},$$

and $\|\cdot\|_\infty \colon \mathbb{R}^k \to \mathbb{R}$ be defined by

$$||x||_{\infty} = \max_{i=1,\dots,k} |x_i|.$$

▶ For any nonempty set U, let bU be the set of all bounded functions $f: U \to \mathbb{R}$ (functions such that $\sup_{x \in U} |f(x)| < \infty$).

This is a vector space with (f+g)(x) = f(x) + g(x) and $(\gamma f)(x) = \gamma f(x).$

Let

$$||f||_{\infty} = \sup_{x \in U} |f(x)|.$$

• Let ℓ_p be the set of all functions $x \colon \mathbb{N} \to \mathbb{R}$ such that

$$\sum_{i=1}^{\infty} |x_i|^p < \infty.$$

This is a vector space with $x + y = (x_1 + y_1, x_2 + y_2, ...)$ and $\gamma x = (\gamma x_1, \gamma x_2, ...)$.

٠

Let

$$\|x\|_p = \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{1/p}$$

▶ For $\ell = \infty$, let $\ell_{\infty} = b\mathbb{N}$, and $||x||_{\infty} = \sup_{i \in \mathbb{N}} |x_i|$.

Sequences

For a nonempty set S, a sequence in S is a function from N to S.

A sequence is denoted by (x_n) .

For $A \subset S$, we write $(x_n) \subset A$ if $x_n \in A$ for all $n \in \mathbb{N}$.

Definition 3

Let (S, ρ) be a metric space.

A sequence $(x_n) \subset S$ is said to *converge* to $\bar{x} \in S$ if for any $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that

 $\rho(x_n, \bar{x}) < \varepsilon$ for all $n \ge N$.

In this case, we write $\lim_{n\to\infty} x_n = \bar{x}$, or $x_n \to \bar{x}$; and we say that (x_n) is *convergent*.

 \bar{x} is called the *limit* of (x_n) .

Proposition 2 (Theorem 3.1.6)

A sequence in a metric space has at most one limit.

• Let (S, ρ) be a metric space. Let

 $B(r;x) = \{y \in S \mid \rho(y,x) < r\}.$

- ▶ A subset $E \subset S$ is *bounded* if $E \subset B(n; x)$ for some $x \in S$ and $n \in \mathbb{N}$.
- ▶ A sequence $(x_n) \subset S$ is bounded if $\{x_n \in S \mid n \in \mathbb{N}\}$ is bounded.

Proposition 3 (Exercise 3.1.9)

Any convergent sequence in a metric space is bounded.

Subsequences

Definition 4

For a sequence $(x_n) \subset S$, a sequence $(y_n) \subset S$ is a *subsequence* of (x_n) if there exists a strictly increasing function $f \colon \mathbb{N} \to \mathbb{N}$ such that $y_n = x_{f(n)}$ for all $n \in \mathbb{N}$.

We write (x_{n_k}) to denote a subsequence of (x_n) .

Proposition 4

Let (S, ρ) be a metric space.

For $(x_n) \subset S$ and $x \in S$,

- 1. $x_n \rightarrow x$ if and only if every subsequence of (x_n) converges to x;
- 2. $x_n \rightarrow x$ if and only if every subsequence of (x_n) has a subsequence that converges to x.

Continuous Functions

Definition 5

Let S and T be metric spaces, and A a nonempty subset of S. A function $f: A \to T$ is *continuous* at $a \in A$ if for any $(x_n) \subset A$ with $x_n \to a$, we have $f(x_n) \to f(a)$. f is continuous on $B \subset A$ if f is continuous at all $a \in B$. f is continuous if it is continuous on A.

Proposition 5 (Example 3.1.12)

Let (S, ρ) is a metric space, and let \bar{x} be any point in S. Then the function $\rho(\cdot, \bar{x}) \colon S \ni x \mapsto \rho(x, \bar{x}) \in \mathbb{R}$ is continuous.