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Open Sets, Closed Sets
Let (S, ρ) be a metric space. Let B(r;x) = {y ∈ S | ρ(y, x) < r}.

Definition 1

For E ⊂ S,

I The closure of E, denoted clE, is defined by

clE = {x ∈ S | B(ε;x) ∩ E 6= ∅ for all ε > 0}.

I The interior of E, denoted intE, is defined by

intE = {x ∈ S | B(ε;x) ⊂ E for some ε > 0}.

I Observe that by definition, E ⊂ clE and intE ⊂ E.

I x ∈ S is said to adhere to E if x ∈ clE.

I x ∈ S is said to be interior to E if x ∈ intE.
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Definition 2

I E ⊂ S is closed if E contains all points that adhere to E, i.e.,
if clE ⊂ E.

I E ⊂ S is open if all points in E are interior to E, i.e.,
if E ⊂ intE.

I Since E ⊂ clE by definition, it is equivalent to define:
E ⊂ S is closed if clE = E.

I Since intE ⊂ E by definition, it is equivalent to define:
E ⊂ S is open if intE = E.

Proposition 1

clE = S \ int(S \ E).

Proposition 2 (Theorem 3.1.18)

E is closed if and only if S \ E is open.
2 / 13



Proposition 3 (Exercise 3.1.19)

For any x ∈ S and any r ≥ 0,
B(r;x) = {y ∈ S | ρ(y, x) < r} is open.

Proposition 4

For any x ∈ S and any r ≥ 0,
D(r;x) = {y ∈ S | ρ(y, x) ≤ r} is closed.
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Proposition 5

1. cl ∅ = ∅.

2. E ⊂ clE.

3. 3.1 If E ⊂ F , then clE ⊂ clF .

3.2 cl(E ∪ F ) = clE ∪ clF .

4. cl(clE) ⊂ clE.

Proposition 6 (Exercise 3.1.30)

1. clE is closed.

2. If F is closed and F ⊃ E, then clE ⊂ F .

3. clE is equal to the intersection of all closed sets containing E.
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Proposition 7 (Exercises 3.1.20, 27, 28)

1. ∅ and S are closed.

2. If {Fα}α∈A is a collection of closed sets,
then

⋂
α∈A Fα is also closed.

3. If A is finite and {Fα}α∈A is a collection of closed sets,
then

⋃
α∈A Fα is also closed.
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Definition 3

For A ⊂ R, A 6= ∅,

1. s = supA if

1.1 a ≤ s ∀ a ∈ A, and

1.2 if a ≤ u ∀ a ∈ A, then s ≤ u;

2. i = inf A if

2.1 i ≤ a ∀ a ∈ A, and

2.2 if ` ≤ a ∀ a ∈ A, then ` ≤ i.

If A is not bounded above, we define supA =∞.
If A is not bounded below, we define inf A = −∞.

(Sometimes it is convenient to define sup ∅ = −∞ and inf ∅ =∞.)
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Lemma 8

a ≤ u ∀ a ∈ A⇒ s ≤ u
⇐⇒ ∀ ε > 0 : ∃ a ∈ A : s− ε < a.

Proposition 9 (Theorem 3.1.22)

If F ⊂ R, F 6= ∅, is bounded and closed, then supF ∈ F .
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Let (S, ρ) be a metric space.

Proposition 10 (Exercise 3.1.16)

clF = {x ∈ S | x = limn→∞ xn for some (xn) ⊂ F}.

Proposition 11 (Theorem 3.1.17)

F ⊂ S is closed if and only if
limn→∞ xn ∈ F for any convergent sequence (xn) ⊂ F .
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Let S and T be metric spaces.

Proposition 12 (Exercise 3.1.16)

f : S → T is continuous if and only if f−1(G) is open in S for any
open set G ⊂ T .

(f−1(G) = {x ∈ S | f(x) ∈ G}.)
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Completeness

Definition 4

A sequence (xn) in a metric space (S, ρ) is a Cauchy sequence if
for any ε > 0, there exists N ∈ N such that

ρ(xm, xn) < ε for all m,n ≥ N.

A sequence in a normed vector space (V, ‖·‖) is a Cauchy sequence
if it is a Cauchy sequence in the metric space induced by (V, ‖·‖).

Definition 5

A subset A of a metric space (or a normed vector space) is
complete if every Cauchy sequence in A converges to some point
in A.

(A complete normed vector space is called a Banach space.)
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Proposition 13 (Theorem 3.2.3)

Let S be a complete metric space.

A ⊂ S is complete if and only if it is closed.
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Axiom 1

(R, |·|) is complete.

(bU , ‖·‖∞) denotes the set of bounded functions f : U → R
endowed with the norm ‖·‖∞ defined by supx∈U |f(x)|.

Proposition 14 (Theorem 3.2.6)

Let U be any nonempty set.

(bU , ‖·‖∞) is complete (i.e., it is a Banach space).
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For a metric space U ,
let (bcU , ‖·‖∞) be the set of bounded continuous functions
f : U → R endowed with the norm ‖·‖∞ defined by supx∈U |f(x)|.

Proposition 15 (Theorem 3.2.9)

Let U be a metric space.

(bcU , ‖·‖∞) is complete (i.e., it is a Banach space).
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