Analysis in Metric Space II

Daisuke Oyama

Topics in Economic Theory

October 8, 2014

Open Sets, Closed Sets

Let (S,ρ) be a metric space. Let $B(r;x) = \{y \in S \mid \rho(y,x) < r\}.$ Definition 1

For $E \subset S$,

• The *closure* of E, denoted cl E, is defined by

 $\mathrm{cl}\, E = \{ x \in S \mid B(\varepsilon; x) \cap E \neq \emptyset \text{ for all } \varepsilon > 0 \}.$

• The *interior* of E, denoted int E, is defined by

int $E = \{x \in S \mid B(\varepsilon; x) \subset E \text{ for some } \varepsilon > 0\}.$

- Observe that by definition, $E \subset \operatorname{cl} E$ and $\operatorname{int} E \subset E$.
- $x \in S$ is said to *adhere* to E if $x \in \operatorname{cl} E$.
- $x \in S$ is said to be *interior* to E if $x \in int E$.

Definition 2

- ▶ $E \subset S$ is *closed* if *E* contains all points that adhere to *E*, i.e., if $cl E \subset E$.
- E ⊂ S is open if all points in E are interior to E, i.e., if E ⊂ int E.
- Since E ⊂ cl E by definition, it is equivalent to define: E ⊂ S is closed if cl E = E.
- Since int E ⊂ E by definition, it is equivalent to define: E ⊂ S is open if int E = E.

Proposition 1

 $\operatorname{cl} E = S \setminus \operatorname{int}(S \setminus E).$

Proposition 2 (Theorem 3.1.18)

E is closed if and only if $S \setminus E$ is open.

Proposition 3 (Exercise 3.1.19)

For any $x \in S$ and any $r \ge 0$, $B(r; x) = \{y \in S \mid \rho(y, x) < r\}$ is open.

Proposition 4

For any
$$x \in S$$
 and any $r \ge 0$,
 $D(r; x) = \{y \in S \mid \rho(y, x) \le r\}$ is closed.

Proposition 5

- $1. \ \mathrm{cl}\, \emptyset = \emptyset.$
- **2**. $E \subset \operatorname{cl} E$.
- 3. 3.1 If $E \subset F$, then $\operatorname{cl} E \subset \operatorname{cl} F$. 3.2 $\operatorname{cl}(E \cup F) = \operatorname{cl} E \cup \operatorname{cl} F$.
- 4. $\operatorname{cl}(\operatorname{cl} E) \subset \operatorname{cl} E$.

Proposition 6 (Exercise 3.1.30)

- 1. $\operatorname{cl} E$ is closed.
- 2. If F is closed and $F \supset E$, then $\operatorname{cl} E \subset F$.
- 3. $\operatorname{cl} E$ is equal to the intersection of all closed sets containing E.

Proposition 7 (Exercises 3.1.20, 27, 28)

- 1. \emptyset and S are closed.
- 2. If $\{F_{\alpha}\}_{\alpha \in A}$ is a collection of closed sets, then $\bigcap_{\alpha \in A} F_{\alpha}$ is also closed.
- 3. If A is finite and $\{F_{\alpha}\}_{\alpha \in A}$ is a collection of closed sets, then $\bigcup_{\alpha \in A} F_{\alpha}$ is also closed.

Definition 3

For $A \subset \mathbb{R}$, $A \neq \emptyset$, 1. $s = \sup A$ if 1.1 $a \leq s \forall a \in A$, and 1.2 if $a \leq u \forall a \in A$, then $s \leq u$; 2. $i = \inf A$ if 2.1 $i \leq a \forall a \in A$, and 2.2 if $\ell \leq a \forall a \in A$, then $\ell \leq i$.

If A is not bounded above, we define $\sup A = \infty$. If A is not bounded below, we define $\inf A = -\infty$.

(Sometimes it is convenient to define $\sup \emptyset = -\infty$ and $\inf \emptyset = \infty.)$

Lemma 8

$$\begin{aligned} a &\leq u \; \forall \, a \in A \Rightarrow s \leq u \\ \Longleftrightarrow \; \forall \, \varepsilon > 0 : \; \exists \, a \in A : \; s - \varepsilon < a. \end{aligned}$$

Proposition 9 (Theorem 3.1.22)

If $F \subset \mathbb{R}$, $F \neq \emptyset$, is bounded and closed, then $\sup F \in F$.

Let (S, ρ) be a metric space.

Proposition 10 (Exercise 3.1.16)

 $\operatorname{cl} F = \{x \in S \mid x = \lim_{n \to \infty} x_n \text{ for some } (x_n) \subset F\}.$

Proposition 11 (Theorem 3.1.17)

 $F \subset S$ is closed if and only if $\lim_{n\to\infty} x_n \in F$ for any convergent sequence $(x_n) \subset F$. Let S and T be metric spaces.

Proposition 12 (Exercise 3.1.16)

 $f: S \to T$ is continuous if and only if $f^{-1}(G)$ is open in S for any open set $G \subset T$.

$$(f^{-1}(G) = \{x \in S \mid f(x) \in G\}.)$$

Completeness

Definition 4

A sequence (x_n) in a metric space (S, ρ) is a *Cauchy* sequence if for any $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that

 $\rho(x_m, x_n) < \varepsilon \text{ for all } m, n \ge N.$

A sequence in a normed vector space $(V, \|\cdot\|)$ is a Cauchy sequence if it is a Cauchy sequence in the metric space induced by $(V, \|\cdot\|)$.

Definition 5

A subset A of a metric space (or a normed vector space) is *complete* if every Cauchy sequence in A converges to some point in A.

(A complete normed vector space is called a Banach space.)

Proposition 13 (Theorem 3.2.3)

Let S be a complete metric space.

 $A \subset S$ is complete if and only if it is closed.

Axiom 1 $(\mathbb{R}, |\cdot|)$ is complete.

 $(bU, \|\cdot\|_{\infty})$ denotes the set of bounded functions $f: U \to \mathbb{R}$ endowed with the norm $\|\cdot\|_{\infty}$ defined by $\sup_{x \in U} |f(x)|$.

Proposition 14 (Theorem 3.2.6)

Let U be any nonempty set. $(bU, \|\cdot\|_{\infty})$ is complete (i.e., it is a Banach space). For a metric space U, let $(bcU, \|\cdot\|_{\infty})$ be the set of bounded continuous functions $f: U \to \mathbb{R}$ endowed with the norm $\|\cdot\|_{\infty}$ defined by $\sup_{x \in U} |f(x)|$.

Proposition 15 (Theorem 3.2.9)

Let U be a metric space.

 $(bcU, \|\cdot\|_{\infty})$ is complete (i.e., it is a Banach space).