Analysis in Metric Space Il

Daisuke Oyama

Topics in Economic Theory

October 22, 2014



Compactness

Let (S, p) be a metric space.

Definition 1

» K C S'is precompact if every sequence contained in K has
a subsequence that converges to a point of S.

» K C S is compact if every sequence contained in K has
a subsequence that converges to a point of K.



Proposition 1 (Exercises 3.2.15, 3.2.17)

1. A subset of a compact set is precompact.

2. The closure of a precompact set is compact.

Proof

» Let K be a precompact set.

Consider any sequence (z,) C cl K.
We want to show that (z,,) has a convergent subsequence
whose limit is in cl K.

» For each n € N, let y,, € K be such that p(x,,y,) < 1/n.

» Since K is precompact, there are a subsequence (y,;)) and a
point y € S such that y,) — y.

N
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> We claim z,1) — v.
Fix any € > 0.
Let N € N be such that p(y,),y) <e/2 forall k> N.

We can assume that N is large enough that 1/n(k) < ¢/2 for
allk > N.

» Then

P( Ty ) < P(Tnk)s Yn(k)) T PWn(), ¥) < 1/n(k) +¢/2 <e.

> Since cl K is closed, we have y € cl K.



Let (S, p) be a metric space.
Definition 2

» An open cover of K C S is a collection {Gy}aca of open sets
such that K C (J,e 4 Ga-

Proposition 2 (Theorem 3.2.10)

K C S is compact if and only if
for any open cover {Gy}aca of K, there exists a finite subset
A" C A such that {G,}acar is an open cover of K.
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Proposition 3 (Exercise 3.2.15)
A closed subset of a compact set is compact.
Proof 1

> Let F' be a closed subset of a compact set K.

Let {Ga}aca be any open cover of F'.
We want to find a finite subcover.

» By the closedness of F', S'\ F'is an open set.
Therefore, {{Ga}aca, S\ F} is an open cover of K.

» By the compactness of K, there are finitely many a1, ..., an
such that K C |J; Go, U(S\ F).

» Since FN(S\ F) =0, we have F C | Gq,.



Proof 2

> Let F' be a closed subset of a compact set K in a metric
space.

> Let (x,) be any sequence in F.

» Since (z,) C K and K is compact,

(xy,) has a convergent subsequence (z,, ) and its limit is in K.

» By the closedness of F', the limit must be in F.

6
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Proposition 4 (Exercise 3.2.12)
Every compact subset of a metric space is bounded.
Proof 1
» Let K be a compact subset of a metric space (S, p).
Fix any € > 0. {B(g;x)},eck is an open cover of K.

» By the compactness of K, there are finitely many points
T1,...,2, € K such that K C |}, B(e; ).

» Let 0 = max;—1 . p(xi, 1) < 00, and let m € N be such
that d + ¢ < m.

» We claim K C B(m;z1).

Indeed, take any x € K. Let z;, i = 1,...,k be such that
x € B(e;x;).

Then we have p(z,z1) < p(xi, 1) + p(x,2;) < I+ < m.



Proof 2

> Let K be a subset of a metric space (5, p).

Suppose that K is not bounded.
We want to show that K is not compact.

» Fix any zg € S.
Since K is not bounded,

for each n € N we can take an z,, € KN (S \ B(n;xo)).

We want to show that the sequence (z,,) C K has
no convergent subsequence.

» Take any x € S. Let N € N be such that p(z,z¢) < N.

» Then for all n > N + 1, we have
p(2n,2) > plen, 30) — p(z,0) > (N +1) = N = 1.



Proposition 5 (Exercise 3.2.13)
Every compact subset of a metric space is closed.
Proof 1

» Let K be a compact subset of a metric space (S, p).
We want to show that S\ K is open.

» Takeany z € S\ K.

For each y € K, let U, and V|, be open sets such that
relUy,yeVy,andU,NV, =0.

(For example, let U, = B(p(z,y); z) and

Vy = B(zp(2,9):y).)

» Since {V, }yeK is an open cover of the compact set K, there
are finitely many y1,...,y, € K such that K C |J_, V.

» Let U =, Uy,, which is open.
Then x € U and UN K = 0.



Proof 2

» Let K be a compact subset of a metric space (S, p).

Let (z,) C K, and suppose that x,, — x.
We want to show that z € K.

» By the compactness of K, (z,) has a convergent subsequence
and its limit 2’ is in K.

» But (x,) itself is convergent, so that we must have 2’/ = z.

reK.
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Remark

» Thus, a compact subset of a metric space is closed and
bounded.

» But the converse is not true in general.

» For example, consider oo = {z: N = R | ||z]lo0 < 00},
endowed with the norm ||z ||oc = sup;cy|zil-

The unit closed ball around 0 (= (0,0,0,...)), D(1;0) C {o,
which is closed and bounded, is not precompact
(nor compact).

> To see this, consider the sequence
(1,0,0,...),(0,1,0,...), ...

None of its subsequences is convergent.

» But a closed and bounded subset of R* is compact.
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Proposition 6 (Theorem A.2.10)
Any bounded sequence in (R, |-|) has a convergent subsequence.

Proof

> Let (x,) C R be a bounded sequence, and suppose that
(zn) C a1, b1].

» At least one of {n € N|z, € [a1, (a1 +b1)/2]} and
{n € N |z, € [(a1 + b1)/2,b1]} is an infinite set.

Let [ag, bo] = [a1, (a1 + b1)/2] if the former is infinite, and
[GQ, bg] = [(a1 + bl)/Q, bl] otherwise.

Repeat this procedure, to have a sequence I, = [a,, byy).
» Construct a subsequence as follows:
Pick any @1y € I1, and for m = 2,3,.. ., let
n(m) > n(m — 1) be such that x,.,) € L.
> (Ty(m)) is Cauchy (by the Archimedean Axiom), and so it is
convergent by Axiom A.2.4 (Completeness of R).



Proposition 7

1. A subset of (R¥,||-||) is precompact if and only if
it is bounded.

2. A subset of (R¥, ||-||oc) is compact if and only if
it is closed and bounded.

Proof

» Let K C R” be a bounded set, and take any (z,) C K, which
is bounded.

» (1) C R is bounded and has a convergent subsequence
(lecl(”))'
(:U?cl(n)) C R is bounded and has a convergent subsequence
(:U?%(n))'
Repeat this procedure, which terminates in finitely many steps.

» The resulting subsequence is convergent.
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Optimization, Equivalence
Proposition 8 (Theorem 3.2.20)
Let S and T be metric spaces.

If f: S— T is continuous and K C S is compact,
then f(K) is compact.

Proof 1
» {Go}aca be an open cover of f(K).
We want to find a finite subcover.
» By the continuity of f, {f7'(G4a)}aca is an open cover of K.

» By the compactness of K, there are aq,...,a, € A such that
K cUL, f1(Ga).

» Therefore we have f(K) C |J | Gq,.
If y € f(K), then there are x € K and i such that f(z) =y
and x € f71(G,,), which implies that y € G,,, for some i.

14 /22



Proof 2

> Let (y,) be any sequence in f(K).
We want to find a convergent subsequence whose limit is in
f(K).

» Let (z,,) C K be such that f(z,) = y, for each n € N.

» Since K is compact, (z,) has a convergent subsequence
(2n,,) whose limit, which we denote z, is in K.

» Consider the subsequence (yy, ).

By the continuity of f, we have
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Proposition 9 (Theorem 3.2.22)

Let S be a metric space.

IfK CS, K#1,is compact and f: K — R is continuous,
then there exist z*, x** € K such that
f(z*) > f(x) for all x € K and f(x**) < f(z) for all z € K.

Proof

» By the previous theorem, f(K) is compact, and hence is
bounded and closed.

» Therefore sup f(K) and inf f(K) exist, and
sup f(K), inf f(K) € f(K).

» By the definition of f(K), there are x* and z** such that

F(a*) = sup f(K) and f(z*) = inf f(K).
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Let (S, p) be a metric space.

Definition 3
Let S be a nonempty set, and p and p’ be metrics on S.

p and p' are equivalent if there exist ¢, such that

p(z,y) < cp'(x,y) and p'(z,y) < p(x,y)

forall z,y € S.

Two norms on a vector space are equivalent if the induced metrics
are equivalent.

» The equivalence defined above is an equivalence relation.

» If p and p’ are equivalent, then for any {z,,} C S,
{zy} is p-convergent if and only if it is p’-convergent, .. ..
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Proposition 10 (Theorem 3.2.30)
All norms on R* are equivalent.
Proof
» Let |-|| be any norm on R*.
We show that ||-|| and ||-||e are equivalent.

» First, let ¢ = kmax;||e/||, where ¢’ is the jth unit vector in
RF,

Then we have, for any z € R,
loll = || by 276l < Eh o el < ellalloc

» Second, =+ ||z|| is continuous in (R*, ||||0),
since |[|lznll = [[z]]] < [lzn — 2| < cllzn — z[jc = 0
as Ty, — = in ||| co-
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» Now consider the set E = {x € R* | |z||o = 1}, which is
bounded and closed in (R¥, ||-||o), and hence is compact.

» Therefore, by Theorem 3.2.22 = — ||z|| has a minimizer z* on
L.

Note that z* # 0 so that ||z*|| # 0.

» Then for all z € R*, we have

[2lloo > flz7[[[[]|oo-

= ]

Letting ¢ = 1/||=*||, we have ¢||z|| > ||%]|co-
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Fixed Points

Let (S, p) be a metric space.

Definition 4
» T: S5 — S is nonexpansive on S if
p(Tx,Ty) < p(x,y) Va,y€eSs.
» T: S5 — S is contracting on S if
p(Tz,Ty) < p(xz,y) Y,y S with z #y.

» T: S — S is uniformly contracting on .S with modulus X if
0<A<1and

p(Tx, Ty) < Ap(x,y) Va,yeSs.
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Proposition 11 (Theorem 3.2.36)

Let (S, p) be a complete metric space.

» IfT: S — S is uniformly contracting on S with modulus ),

then T has a unique fixed point z* € S.

» Moreover, for any x € S,
p(T"x,x*) < X\'p(x,x*) for all n € N, and hence
Tre — x* as n — 0.
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Proposition 12 (Theorem 3.2.38)
Let (S, p) be a compact metric space.

> IfT: S — S is contracting on S, then T has a unique fixed
point x* € S.

» Moreover, for any x € S, T"x — x* as n — oo.



