Analysis in Metric Space III

Daisuke Oyama

Topics in Economic Theory

October 22, 2014

Compactness

Let (S, ρ) be a metric space.

Definition 1

- K ⊂ S is precompact if every sequence contained in K has a subsequence that converges to a point of S.
- K ⊂ S is compact if every sequence contained in K has a subsequence that converges to a point of K.

Proposition 1 (Exercises 3.2.15, 3.2.17)

- 1. A subset of a compact set is precompact.
- 2. The closure of a precompact set is compact.

Proof

Let K be a precompact set.

Consider any sequence $(x_n) \subset \operatorname{cl} K$. We want to show that (x_n) has a convergent subsequence whose limit is in $\operatorname{cl} K$.

- For each $n \in \mathbb{N}$, let $y_n \in K$ be such that $\rho(x_n, y_n) < 1/n$.
- Since K is precompact, there are a subsequence $(y_{n(k)})$ and a point $y \in S$ such that $y_{n(k)} \to y$.

• We claim $x_{n(k)} \to y$. Fix any $\varepsilon > 0$. Let $N \in \mathbb{N}$ be such that $\rho(y_{n(k)}, y) < \varepsilon/2$ for all $k \ge N$. We can assume that N is large enough that $1/n(k) < \varepsilon/2$ for all $k \ge N$.

Then

 $\rho(x_{n(k)}, y) \le \rho(x_{n(k)}, y_{n(k)}) + \rho(y_{n(k)}, y) < 1/n(k) + \varepsilon/2 < \varepsilon.$

Since $\operatorname{cl} K$ is closed, we have $y \in \operatorname{cl} K$.

Let (S, ρ) be a metric space.

Definition 2

▶ An open cover of $K \subset S$ is a collection $\{G_{\alpha}\}_{\alpha \in A}$ of open sets such that $K \subset \bigcup_{\alpha \in A} G_{\alpha}$.

Proposition 2 (Theorem 3.2.10)

 $K \subset S$ is compact if and only if for any open cover $\{G_{\alpha}\}_{\alpha \in A}$ of K, there exists a finite subset $A' \subset A$ such that $\{G_{\alpha}\}_{\alpha \in A'}$ is an open cover of K.

Proposition 3 (Exercise 3.2.15)

A closed subset of a compact set is compact.

Proof 1

- Let F be a closed subset of a compact set K.
 Let {G_α}_{α∈A} be any open cover of F.
 We want to find a finite subcover.
- By the closedness of F, S \ F is an open set. Therefore, {{G_α}_{α∈A}, S \ F} is an open cover of K.
- ▶ By the compactness of K, there are finitely many $\alpha_1, \ldots, \alpha_n$ such that $K \subset \bigcup_{i=1}^n G_{\alpha_i} \cup (S \setminus F)$.
- Since $F \cap (S \setminus F) = \emptyset$, we have $F \subset \bigcup_{i=1}^{n} G_{\alpha_i}$.

Proof 2

- Let F be a closed subset of a compact set K in a metric space.
- Let (x_n) be any sequence in F.
- Since (x_n) ⊂ K and K is compact, (x_n) has a convergent subsequence (x_{n_k}) and its limit is in K.
- ▶ By the closedness of *F*, the limit must be in *F*.

Proposition 4 (Exercise 3.2.12)

Every compact subset of a metric space is bounded.

Proof 1

- Let K be a compact subset of a metric space (S, ρ).
 Fix any ε > 0. {B(ε; x)}_{x∈K} is an open cover of K.
- ▶ By the compactness of K, there are finitely many points $x_1, \ldots, x_n \in K$ such that $K \subset \bigcup_{i=1}^n B(\varepsilon; x_i)$.
- ▶ Let $\delta = \max_{i=1,...,n} \rho(x_i, x_1) < \infty$, and let $m \in \mathbb{N}$ be such that $\delta + \varepsilon < m$.
- We claim $K \subset B(m; x_1)$.

Indeed, take any $x \in K$. Let x_i , i = 1, ..., k be such that $x \in B(\varepsilon; x_i)$.

Then we have $\rho(x, x_1) \le \rho(x_i, x_1) + \rho(x, x_i) \le \delta + \varepsilon < m$.

Proof 2

Let K be a subset of a metric space (S, p).
 Suppose that K is not bounded.
 We want to show that K is not compact.

Fix any
$$x_0 \in S$$
.

Since K is not bounded, for each $n \in \mathbb{N}$ we can take an $x_n \in K \cap (S \setminus B(n; x_0))$. We want to show that the sequence $(x_n) \subset K$ has no convergent subsequence.

• Take any $x \in S$. Let $N \in \mathbb{N}$ be such that $\rho(x, x_0) < N$.

► Then for all
$$n \ge N + 1$$
, we have $\rho(x_n, x) \ge \rho(x_n, x_0) - \rho(x, x_0) > (N + 1) - N = 1.$

Proposition 5 (Exercise 3.2.13)

Every compact subset of a metric space is closed.

Proof 1

• Let K be a compact subset of a metric space (S, ρ) . We want to show that $S \setminus K$ is open.

• Take any
$$x \in S \setminus K$$
.

For each $y \in K$, let U_y and V_y be open sets such that $x \in U_y$, $y \in V_y$, and $U_y \cap V_y = \emptyset$. (For example, let $U_y = B(\frac{1}{2}\rho(x,y);x)$ and $V_y = B(\frac{1}{2}\rho(x,y);y)$.)

Since {V_y}_{y∈K} is an open cover of the compact set K, there are finitely many y₁,..., y_n ∈ K such that K ⊂ ⋃ⁿ_{i=1} V_{y_i}.

► Let
$$U = \bigcap_{i=1}^{n} U_{y_i}$$
, which is open.
Then $x \in U$ and $U \cap K = \emptyset$.

Proof 2

 \blacktriangleright Let K be a compact subset of a metric space $(S,\rho).$

Let $(x_n) \subset K$, and suppose that $x_n \to x$. We want to show that $x \in K$.

- ▶ By the compactness of K, (x_n) has a convergent subsequence and its limit x' is in K.
- But (x_n) itself is convergent, so that we must have x' = x.
 ∴ x ∈ K.

Remark

- Thus, a compact subset of a metric space is closed and bounded.
- But the converse is not true in general.
- ▶ For example, consider $\ell_{\infty} = \{x : \mathbb{N} \to \mathbb{R} \mid ||x||_{\infty} < \infty\}$, endowed with the norm $||x||_{\infty} = \sup_{i \in \mathbb{N}} |x_i|$.

The unit closed ball around 0 (= (0, 0, 0, ...)), $D(1; 0) \subset \ell_{\infty}$, which is closed and bounded, is not precompact (nor compact).

► To see this, consider the sequence (1,0,0,...), (0,1,0,...),....

None of its subsequences is convergent.

• But a closed and bounded subset of \mathbb{R}^k is compact.

Proposition 6 (Theorem A.2.10)

Any bounded sequence in $(\mathbb{R}, |{\cdot}|)$ has a convergent subsequence. Proof

- ▶ Let $(x_n) \subset \mathbb{R}$ be a bounded sequence, and suppose that $(x_n) \subset [a_1, b_1].$
- At least one of $\{n \in \mathbb{N} \mid x_n \in [a_1, (a_1 + b_1)/2]\}$ and $\{n \in \mathbb{N} \mid x_n \in [(a_1 + b_1)/2, b_1]\}$ is an infinite set.

Let $[a_2,b_2]=[a_1,(a_1+b_1)/2]$ if the former is infinite, and $[a_2,b_2]=[(a_1+b_1)/2,b_1]$ otherwise.

Repeat this procedure, to have a sequence $I_m = [a_m, b_m]$.

Construct a subsequence as follows:

Pick any $x_{n(1)} \in I_1$, and for $m = 2, 3, \ldots$, let n(m) > n(m-1) be such that $x_{n(m)} \in I_m$.

 (x_{n(m)}) is Cauchy (by the Archimedean Axiom), and so it is convergent by Axiom A.2.4 (Completeness of ℝ).

Proposition 7

- 1. A subset of $(\mathbb{R}^k, \|\cdot\|_{\infty})$ is precompact if and only if it is bounded.
- 2. A subset of $(\mathbb{R}^k, \|\cdot\|_{\infty})$ is compact if and only if it is closed and bounded.

Proof

- ▶ Let $K \subset \mathbb{R}^k$ be a bounded set, and take any $(x_n) \subset K$, which is bounded.
- $(x_n^1) \subset \mathbb{R}$ is bounded and has a convergent subsequence $(x_{f_1(n)}^1).$

 $(x_{f_1(n)}^2)\subset \mathbb{R}$ is bounded and has a convergent subsequence $(x_{f_2(n)}^2).$

Repeat this procedure, which terminates in finitely many steps.

• The resulting subsequence is convergent.

Optimization, Equivalence Proposition 8 (Theorem 3.2.20)

Let S and T be metric spaces.

If $f: S \to T$ is continuous and $K \subset S$ is compact, then f(K) is compact.

Proof 1

• $\{G_{\alpha}\}_{\alpha \in A}$ be an open cover of f(K).

We want to find a finite subcover.

- ▶ By the continuity of f, $\{f^{-1}(G_\alpha)\}_{\alpha \in A}$ is an open cover of K.
- ▶ By the compactness of K, there are $\alpha_1, \ldots, \alpha_n \in A$ such that $K \subset \bigcup_{i=1}^n f^{-1}(G_{\alpha_i}).$
- Therefore we have $f(K) \subset \bigcup_{i=1}^n G_{\alpha_i}$.

: If $y \in f(K)$, then there are $x \in K$ and i such that f(x) = yand $x \in f^{-1}(G_{\alpha_i})$, which implies that $y \in G_{\alpha_i}$ for some i.

Proof 2

• Let (y_n) be any sequence in f(K).

We want to find a convergent subsequence whose limit is in f(K).

- Let $(x_n) \subset K$ be such that $f(x_n) = y_n$ for each $n \in \mathbb{N}$.
- ► Since K is compact, (x_n) has a convergent subsequence (x_{nk}) whose limit, which we denote x, is in K.
- Consider the subsequence (y_{n_k}) .

By the continuity of f, we have $y_{n_k} = f(x_{n_k}) \rightarrow f(x) \in f(K).$

Proposition 9 (Theorem 3.2.22)

Let S be a metric space.

If $K \subset S$, $K \neq \emptyset$, is compact and $f: K \to \mathbb{R}$ is continuous, then there exist $x^*, x^{**} \in K$ such that $f(x^*) \ge f(x)$ for all $x \in K$ and $f(x^{**}) \le f(x)$ for all $x \in K$.

Proof

- By the previous theorem, f(K) is compact, and hence is bounded and closed.
- Therefore $\sup f(K)$ and $\inf f(K)$ exist, and $\sup f(K), \inf f(K) \in f(K)$.
- ▶ By the definition of f(K), there are x^* and x^{**} such that $f(x^*) = \sup f(K)$ and $f(x^{**}) = \inf f(K)$.

Let (S, ρ) be a metric space.

Definition 3

Let S be a nonempty set, and ρ and ρ' be metrics on S. ρ and ρ' are *equivalent* if there exist c, c' such that

$$\rho(x,y) \leq c \rho'(x,y) \text{ and } \rho'(x,y) \leq c' \rho(x,y)$$

for all $x, y \in S$.

Two norms on a vector space are equivalent if the induced metrics are equivalent.

- The equivalence defined above is an equivalence relation.
- If ρ and ρ' are equivalent, then for any {x_n} ⊂ S, {x_n} is ρ-convergent if and only if it is ρ'-convergent,

Proposition 10 (Theorem 3.2.30)

All norms on \mathbb{R}^k are equivalent.

Proof

• Let $\|\cdot\|$ be any norm on \mathbb{R}^k .

We show that $\|{\cdot}\|$ and $\|{\cdot}\|_\infty$ are equivalent.

First, let $c = k \max_j ||e^j||$, where e^j is the *j*th unit vector in \mathbb{R}^k .

Then we have, for any $x \in \mathbb{R}^k$, $\|x\| = \left\|\sum_{j=1}^k x^j e^j\right\| \le \sum_{j=1}^k |x^j| \|e^j\| \le c \|x\|_{\infty}.$

▶ Second, $x \mapsto ||x||$ is continuous in $(\mathbb{R}^k, ||\cdot||_\infty)$, since $|||x_n|| - ||x||| \le ||x_n - x|| \le c ||x_n - x||_\infty \to 0$ as $x_n \to x$ in $||\cdot||_\infty$.

- Now consider the set E = {x ∈ ℝ^k | ||x||_∞ = 1}, which is bounded and closed in (ℝ^k, ||·||_∞), and hence is compact.
- ► Therefore, by Theorem 3.2.22 x → ||x|| has a minimizer x* on E.

Note that $x^* \neq 0$ so that $||x^*|| \neq 0$.

• Then for all $x \in \mathbb{R}^k$, we have

$$||x|| = \left\|\frac{x}{||x||_{\infty}}\right\| ||x||_{\infty} \ge ||x^*|| ||x||_{\infty}.$$

Letting $c' = 1/\|x^*\|$, we have $c'\|x\| \ge \|x\|_{\infty}$.

Fixed Points

Let (S, ρ) be a metric space.

Definition 4

• $T: S \to S$ is *nonexpansive* on S if

 $\rho(Tx,Ty) \leq \rho(x,y) \quad \forall \, x,y \in S.$

• $T: S \to S$ is contracting on S if

 $\rho(Tx,Ty)<\rho(x,y)\quad\forall\,x,y\in S\text{ with }x\neq y.$

▶ $T: S \to S$ is *uniformly contracting* on S with modulus λ if $0 \le \lambda < 1$ and

 $\rho(Tx,Ty) \le \lambda \rho(x,y) \quad \forall \, x,y \in S.$

Proposition 11 (Theorem 3.2.36)

Let (S, ρ) be a complete metric space.

 If T: S → S is uniformly contracting on S with modulus λ, then T has a unique fixed point x^{*} ∈ S.

• Moreover, for any $x \in S$, $\rho(T^n x, x^*) \leq \lambda^n \rho(x, x^*)$ for all $n \in \mathbb{N}$, and hence $T^n x \to x^*$ as $n \to \infty$. Proposition 12 (Theorem 3.2.38)

Let (S, ρ) be a compact metric space.

- If T: S → S is contracting on S, then T has a unique fixed point x^{*} ∈ S.
- Moreover, for any $x \in S$, $T^n x \to x^*$ as $n \to \infty$.