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Compactness

Let (S, ρ) be a metric space.

Definition 1

I K ⊂ S is precompact if every sequence contained in K has
a subsequence that converges to a point of S.

I K ⊂ S is compact if every sequence contained in K has
a subsequence that converges to a point of K.
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Proposition 1 (Exercises 3.2.15, 3.2.17)

1. A subset of a compact set is precompact.

2. The closure of a precompact set is compact.

Proof

I Let K be a precompact set.

Consider any sequence (xn) ⊂ clK.
We want to show that (xn) has a convergent subsequence
whose limit is in clK.

I For each n ∈ N, let yn ∈ K be such that ρ(xn, yn) < 1/n.

I Since K is precompact, there are a subsequence (yn(k)) and a
point y ∈ S such that yn(k) → y.
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I We claim xn(k) → y.

Fix any ε > 0.

Let N ∈ N be such that ρ(yn(k), y) < ε/2 for all k ≥ N .

We can assume that N is large enough that 1/n(k) < ε/2 for
all k ≥ N .

I Then
ρ(xn(k), y) ≤ ρ(xn(k), yn(k)) + ρ(yn(k), y) < 1/n(k) + ε/2 < ε.

I Since clK is closed, we have y ∈ clK.
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Let (S, ρ) be a metric space.

Definition 2

I An open cover of K ⊂ S is a collection {Gα}α∈A of open sets
such that K ⊂

⋃
α∈AGα.

Proposition 2 (Theorem 3.2.10)

K ⊂ S is compact if and only if
for any open cover {Gα}α∈A of K, there exists a finite subset
A′ ⊂ A such that {Gα}α∈A′ is an open cover of K.
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Proposition 3 (Exercise 3.2.15)

A closed subset of a compact set is compact.

Proof 1

I Let F be a closed subset of a compact set K.

Let {Gα}α∈A be any open cover of F .
We want to find a finite subcover.

I By the closedness of F , S \ F is an open set.

Therefore, {{Gα}α∈A, S \ F} is an open cover of K.

I By the compactness of K, there are finitely many α1, . . . , αn
such that K ⊂

⋃n
i=1Gαi ∪ (S \ F ).

I Since F ∩ (S \ F ) = ∅, we have F ⊂
⋃n
i=1Gαi .
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Proof 2

I Let F be a closed subset of a compact set K in a metric
space.

I Let (xn) be any sequence in F .

I Since (xn) ⊂ K and K is compact,
(xn) has a convergent subsequence (xnk

) and its limit is in K.

I By the closedness of F , the limit must be in F .
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Proposition 4 (Exercise 3.2.12)

Every compact subset of a metric space is bounded.

Proof 1

I Let K be a compact subset of a metric space (S, ρ).

Fix any ε > 0. {B(ε;x)}x∈K is an open cover of K.

I By the compactness of K, there are finitely many points
x1, . . . , xn ∈ K such that K ⊂

⋃n
i=1B(ε;xi).

I Let δ = maxi=1,...,n ρ(xi, x1) <∞, and let m ∈ N be such
that δ + ε < m.

I We claim K ⊂ B(m;x1).

Indeed, take any x ∈ K. Let xi, i = 1, . . . , k be such that
x ∈ B(ε;xi).

Then we have ρ(x, x1) ≤ ρ(xi, x1) + ρ(x, xi) ≤ δ + ε < m.
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Proof 2

I Let K be a subset of a metric space (S, ρ).

Suppose that K is not bounded.
We want to show that K is not compact.

I Fix any x0 ∈ S.

Since K is not bounded,
for each n ∈ N we can take an xn ∈ K ∩ (S \B(n;x0)).

We want to show that the sequence (xn) ⊂ K has
no convergent subsequence.

I Take any x ∈ S. Let N ∈ N be such that ρ(x, x0) < N .

I Then for all n ≥ N + 1, we have
ρ(xn, x) ≥ ρ(xn, x0)− ρ(x, x0) > (N + 1)−N = 1.
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Proposition 5 (Exercise 3.2.13)

Every compact subset of a metric space is closed.

Proof 1

I Let K be a compact subset of a metric space (S, ρ).
We want to show that S \K is open.

I Take any x ∈ S \K.

For each y ∈ K, let Uy and Vy be open sets such that
x ∈ Uy, y ∈ Vy, and Uy ∩ Vy = ∅.

(For example, let Uy = B(12ρ(x, y);x) and
Vy = B(12ρ(x, y); y).)

I Since {Vy}y∈K is an open cover of the compact set K, there
are finitely many y1, . . . , yn ∈ K such that K ⊂

⋃n
i=1 Vyi .

I Let U =
⋂n
i=1 Uyi , which is open.

Then x ∈ U and U ∩K = ∅.
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Proof 2

I Let K be a compact subset of a metric space (S, ρ).

Let (xn) ⊂ K, and suppose that xn → x.
We want to show that x ∈ K.

I By the compactness of K, (xn) has a convergent subsequence
and its limit x′ is in K.

I But (xn) itself is convergent, so that we must have x′ = x.

∴ x ∈ K.
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Remark

I Thus, a compact subset of a metric space is closed and
bounded.

I But the converse is not true in general.

I For example, consider `∞ = {x : N→ R | ‖x‖∞ <∞},
endowed with the norm ‖x‖∞ = supi∈N|xi|.

The unit closed ball around 0 (= (0, 0, 0, . . .)), D(1; 0) ⊂ `∞,
which is closed and bounded, is not precompact
(nor compact).

I To see this, consider the sequence
(1, 0, 0, . . .), (0, 1, 0, . . .), . . ..

None of its subsequences is convergent.

I But a closed and bounded subset of Rk is compact.
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Proposition 6 (Theorem A.2.10)

Any bounded sequence in (R, |·|) has a convergent subsequence.

Proof

I Let (xn) ⊂ R be a bounded sequence, and suppose that
(xn) ⊂ [a1, b1].

I At least one of {n ∈ N | xn ∈ [a1, (a1 + b1)/2]} and
{n ∈ N | xn ∈ [(a1 + b1)/2, b1]} is an infinite set.

Let [a2, b2] = [a1, (a1 + b1)/2] if the former is infinite, and
[a2, b2] = [(a1 + b1)/2, b1] otherwise.

Repeat this procedure, to have a sequence Im = [am, bm].

I Construct a subsequence as follows:

Pick any xn(1) ∈ I1, and for m = 2, 3, . . ., let
n(m) > n(m− 1) be such that xn(m) ∈ Im.

I (xn(m)) is Cauchy (by the Archimedean Axiom), and so it is
convergent by Axiom A.2.4 (Completeness of R).
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Proposition 7

1. A subset of (Rk, ‖·‖∞) is precompact if and only if
it is bounded.

2. A subset of (Rk, ‖·‖∞) is compact if and only if
it is closed and bounded.

Proof

I Let K ⊂ Rk be a bounded set, and take any (xn) ⊂ K, which
is bounded.

I (x1n) ⊂ R is bounded and has a convergent subsequence
(x1f1(n)).

(x2f1(n)) ⊂ R is bounded and has a convergent subsequence

(x2f2(n)).

Repeat this procedure, which terminates in finitely many steps.

I The resulting subsequence is convergent.
13 / 22



Optimization, Equivalence
Proposition 8 (Theorem 3.2.20)

Let S and T be metric spaces.

If f : S → T is continuous and K ⊂ S is compact,
then f(K) is compact.

Proof 1

I {Gα}α∈A be an open cover of f(K).

We want to find a finite subcover.

I By the continuity of f , {f−1(Gα)}α∈A is an open cover of K.

I By the compactness of K, there are α1, . . . , αn ∈ A such that
K ⊂

⋃n
i=1 f

−1(Gαi).

I Therefore we have f(K) ⊂
⋃n
i=1Gαi .

∵ If y ∈ f(K), then there are x ∈ K and i such that f(x) = y
and x ∈ f−1(Gαi), which implies that y ∈ Gαi for some i.
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Proof 2

I Let (yn) be any sequence in f(K).

We want to find a convergent subsequence whose limit is in
f(K).

I Let (xn) ⊂ K be such that f(xn) = yn for each n ∈ N.

I Since K is compact, (xn) has a convergent subsequence
(xnk

) whose limit, which we denote x, is in K.

I Consider the subsequence (ynk
).

By the continuity of f , we have
ynk

= f(xnk
)→ f(x) ∈ f(K).
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Proposition 9 (Theorem 3.2.22)

Let S be a metric space.

If K ⊂ S, K 6= ∅, is compact and f : K → R is continuous,
then there exist x∗, x∗∗ ∈ K such that
f(x∗) ≥ f(x) for all x ∈ K and f(x∗∗) ≤ f(x) for all x ∈ K.

Proof

I By the previous theorem, f(K) is compact, and hence is
bounded and closed.

I Therefore sup f(K) and inf f(K) exist, and
sup f(K), inf f(K) ∈ f(K).

I By the definition of f(K), there are x∗ and x∗∗ such that
f(x∗) = sup f(K) and f(x∗∗) = inf f(K).
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Let (S, ρ) be a metric space.

Definition 3

Let S be a nonempty set, and ρ and ρ′ be metrics on S.

ρ and ρ′ are equivalent if there exist c, c′ such that

ρ(x, y) ≤ cρ′(x, y) and ρ′(x, y) ≤ c′ρ(x, y)

for all x, y ∈ S.

Two norms on a vector space are equivalent if the induced metrics
are equivalent.

I The equivalence defined above is an equivalence relation.

I If ρ and ρ′ are equivalent, then for any {xn} ⊂ S,
{xn} is ρ-convergent if and only if it is ρ′-convergent, . . . .
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Proposition 10 (Theorem 3.2.30)

All norms on Rk are equivalent.

Proof

I Let ‖·‖ be any norm on Rk.

We show that ‖·‖ and ‖·‖∞ are equivalent.

I First, let c = kmaxj‖ej‖, where ej is the jth unit vector in
Rk.

Then we have, for any x ∈ Rk,

‖x‖ =
∥∥∥∑k

j=1 x
jej
∥∥∥ ≤∑k

j=1|xj |‖ej‖ ≤ c‖x‖∞.

I Second, x 7→ ‖x‖ is continuous in (Rk, ‖·‖∞),
since |‖xn‖ − ‖x‖| ≤ ‖xn − x‖ ≤ c‖xn − x‖∞ → 0
as xn → x in ‖·‖∞.
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I Now consider the set E = {x ∈ Rk | ‖x‖∞ = 1}, which is
bounded and closed in (Rk, ‖·‖∞), and hence is compact.

I Therefore, by Theorem 3.2.22 x 7→ ‖x‖ has a minimizer x∗ on
E.

Note that x∗ 6= 0 so that ‖x∗‖ 6= 0.

I Then for all x ∈ Rk, we have

‖x‖ =
∥∥∥∥ x

‖x‖∞

∥∥∥∥ ‖x‖∞ ≥ ‖x∗‖‖x‖∞.
Letting c′ = 1/‖x∗‖, we have c′‖x‖ ≥ ‖x‖∞.
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Fixed Points

Let (S, ρ) be a metric space.

Definition 4

I T : S → S is nonexpansive on S if

ρ(Tx, Ty) ≤ ρ(x, y) ∀x, y ∈ S.

I T : S → S is contracting on S if

ρ(Tx, Ty) < ρ(x, y) ∀x, y ∈ S with x 6= y.

I T : S → S is uniformly contracting on S with modulus λ if
0 ≤ λ < 1 and

ρ(Tx, Ty) ≤ λρ(x, y) ∀x, y ∈ S.
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Proposition 11 (Theorem 3.2.36)

Let (S, ρ) be a complete metric space.

I If T : S → S is uniformly contracting on S with modulus λ,
then T has a unique fixed point x∗ ∈ S.

I Moreover, for any x ∈ S,
ρ(Tnx, x∗) ≤ λnρ(x, x∗) for all n ∈ N, and hence
Tnx→ x∗ as n→∞.
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Proposition 12 (Theorem 3.2.38)

Let (S, ρ) be a compact metric space.

I If T : S → S is contracting on S, then T has a unique fixed
point x∗ ∈ S.

I Moreover, for any x ∈ S, Tnx→ x∗ as n→∞.
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